WO2018163910A1 - 金属負極電池 - Google Patents

金属負極電池 Download PDF

Info

Publication number
WO2018163910A1
WO2018163910A1 PCT/JP2018/007208 JP2018007208W WO2018163910A1 WO 2018163910 A1 WO2018163910 A1 WO 2018163910A1 JP 2018007208 W JP2018007208 W JP 2018007208W WO 2018163910 A1 WO2018163910 A1 WO 2018163910A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolyte
battery
metal
metal negative
Prior art date
Application number
PCT/JP2018/007208
Other languages
English (en)
French (fr)
Inventor
猪口 正幸
正男 無漏田
Original Assignee
ineova株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ineova株式会社 filed Critical ineova株式会社
Priority to CN202211648803.9A priority Critical patent/CN116053663A/zh
Priority to AU2018231515A priority patent/AU2018231515B2/en
Priority to EP18763550.3A priority patent/EP3595081B1/en
Priority to US16/492,860 priority patent/US10938073B2/en
Priority to CN201880028765.2A priority patent/CN110612636A/zh
Priority to KR1020197029518A priority patent/KR102420563B1/ko
Priority to CA3060931A priority patent/CA3060931A1/en
Publication of WO2018163910A1 publication Critical patent/WO2018163910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5022Arrangements for moving electrodes or separating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal negative electrode battery in which the negative electrode is mainly made of metal.
  • Patent Document 1 proposes an aluminum negative electrode battery having aluminum or an aluminum alloy as a negative electrode and a positive electrode active material as a positive electrode.
  • Patent Document 2 proposes an air battery using aluminum or magnesium for the negative electrode.
  • Patent Document 3 proposes an air battery in which a porous member is provided in a cell and an aluminum negative electrode columnar body that can be continuously replenished in contact with the porous member is used.
  • Patent Document 4 in a reel-type magnesium battery in which a negative electrode film in which a magnesium foil is laminated on an insulating film is unwound and wound, power generation can be turned on and off by dividing the magnesium foil into blocks. Has been proposed.
  • the self-discharge tends to occur when the negative electrode comes into contact with the electrolyte, and the battery capacity loss is likely to occur.
  • the state of the electrolyte in the cell and the surface state of the electrode are likely to change, and even if the negative electrode is supplied in the same apparent state as in Patent Document 3, it is difficult to obtain the same output. Moreover, even if the power generation can be turned on and off in the reel type battery as in Patent Document 4, it is difficult to vary the power generation amount according to the demand.
  • the present invention reduces the self-discharge amount, reduces the capacity loss of the battery during use or storage, and also provides a metal negative battery that can stably change the battery output according to demand, and generally It is an object of the present invention to provide a metal negative electrode battery having a high degree of freedom in a metal negative electrode battery with large restrictions on the structure and dimensions.
  • the present invention provides the following metal negative electrode battery.
  • a metal negative electrode battery having a positive electrode, a metal negative electrode, and an electrolytic solution, and comprising a dipping means in which the metal negative electrode is immersed in the electrolyte according to demand.
  • the metal negative electrode is pushed or pushed back toward the electrolytic solution, or the liquid level of the electrolytic solution is raised or lowered, whereby the metal negative electrode A metal negative electrode battery comprising dipping means for dipping in the electrolyte according to demand.
  • the electrode of the metal negative electrode is a metal negative electrode battery mainly composed of a metal of aluminum, magnesium, zinc, or lithium, or an alloy or mixed composition thereof.
  • the output voltage of the battery is detected, and the output is controlled by controlling the area in which the negative electrode is immersed in the electrolytic solution according to the increase or decrease Negative battery.
  • the metal negative electrode battery according to the above (1) to (5) which has a water level adjusting mechanism of the electrolytic solution and maintains the electrolytic solution at a constant water level.
  • an electrolyte delivery system that includes a separator that separates the electrolyte solution into a positive electrode side electrolyte solution and a negative electrode side electrolyte solution, and delivers the negative electrode electrolyte to the negative electrode electrolyte solution
  • a metal negative electrode battery comprising either one or both of a mechanism and an electrolyte delivery mechanism for delivering a positive electrode electrolyte to the positive electrode electrolyte, and controlling the concentration of the negative electrode electrolyte and the positive electrode electrolyte or both electrolytes.
  • a metal negative electrode battery comprising a reaction cassette that is integrated and accommodated in the above (1) to (8) except for the metal negative electrode main body and the electrolyte delivery mechanism or a part of the structure.
  • the self-discharge amount is reduced, the capacity loss of the battery during use or storage is reduced, and the battery output according to the demand is also achieved. It is possible to provide a metal negative electrode battery that can stably change the battery voltage.
  • the positive electrode of the present invention is an electrode paired with a metal negative electrode, and for example, an electrode used for an active material positive electrode battery having a positive electrode active material as a positive electrode or an air battery using an air electrode as a positive electrode can be used.
  • the metal negative electrode of the present invention is a metal electrode provided with an auxiliary material and a current collector as required.As the metal electrode, in addition to simple metals such as aluminum, magnesium, zinc and lithium, alloys thereof, Mixed compositions are also included.
  • the generated voltage is low, but it is preferable in that self-discharge is small.
  • Lithium is preferable in that a high power generation voltage and a high energy density can be obtained.
  • the shape of the electrode includes a foil, a plate, a wire, a bar, a sintered body, a non-woven fabric, or a composite or laminate thereof. In the case of using the metal negative electrode, a uniform cross-section is easier to send out.
  • the foil is preferable in that it can be wound and stored, and the nonwoven fabric is preferable in terms of surface area expansion. Further, embossing, corrugated processing, etching unevenness processing, and the like are preferable in terms of surface area expansion.
  • sol metal is also included.
  • the sol metal is a product obtained by kneading a granular metal, a powder metal, or a fine powder metal made of the above metal in a solubilizing agent. Since the sol metal can be handled in the same way as a liquid, it can be stored and stored in any shape, and the negative electrode material can be supplied by piping such as a pipe. Furthermore, it is preferable in that the negative electrode material can be supplied to a large number of cells from one place.
  • the electrolyte of the present invention is appropriately selected according to the battery structure.
  • potassium hydroxide or sodium hydroxide can be used for an alkaline aqueous solution
  • sulfuric acid or phosphoric acid can be used for an acidic aqueous solution.
  • coarsening inhibitors such as sodium sulfide (Na 2 S) and sodium thiosulfate (Na 2 S 2 O 3 ), self-discharge inhibitors such as acidic sodium pyrophosphate (Na 2 H 2 P 2 O 7 ), etc. It may be added.
  • the immersion means of the present invention is a means in which the metal negative electrode is wetted with the electrolyte according to demand, for example, the area according to the demand is pushed out or pushed back toward the electrolyte, or
  • a method in which the metal negative electrode is immersed in the electrolytic solution by raising or lowering the level of the electrolytic solution can be employed.
  • the feed roller is applied to one side and the touch roller is applied to the metal negative electrode from the other side, and the feed roller is extruded by rotating the feed roller or Can be pushed back. Note that if the rotation of the feed roller is stopped during the reaction, the metal negative electrode may appear to be pushed back. Moreover, it can extrude by ejecting liquids, such as a circulating water of electrolyte solution, from a nozzle simultaneously with the surface and back surface.
  • liquids such as a circulating water of electrolyte solution
  • a metal negative electrode is inserted into the cylinder and moved by applying mechanical or air / hydraulic pressure to the side or end surface due to falling by its own weight, or by applying mechanical or air / hydraulic pressure to the side. It can be extruded by the method.
  • a screw In the case of a cylinder, if a screw is cut on the side surface, it can be pushed out or pushed back by rotating its own axis.
  • the sol metal 10a it can be extruded or pushed back by a pump.
  • the electrolyte level can be raised by gradually accumulating the electrolyte by a pump or natural fall, etc., by gradually reducing the bathtub volume of the electrolyte, by the capillary phenomenon, etc. Can be adopted.
  • This method is preferable in that it can be controlled intensively when a large number of cells are operated.
  • the separator of the present invention can be used as necessary, and a conventionally known separator can be used, but it is preferable that the separator is fine enough to prevent the precipitates from intermingling. Moreover, it is preferable that it has the intensity
  • porous membranes such as polyethylene, polypropylene, polyethylene terephthalate, and cellulose
  • nonwoven fabrics such as resin nonwoven fabrics and glass fiber nonwoven fabrics
  • the metal negative electrode battery according to the present invention has an air battery structure, and the metal negative electrode is described below by taking aluminum as the metal and foil as the shape as an example.
  • FIG. 1 is a diagram for explaining the principle of an aluminum-air battery.
  • the aluminum-air battery 100 is configured with an electrolyte solution 106 interposed between a positive electrode (air electrode) 102 and a negative electrode (aluminum electrode) 104.
  • a reaction of the formula (1) that generates a hydroxyl group occurs from oxygen in the air, electrons in the positive electrode, and water in the electrolytic solution.
  • FIG. 2 is a diagram for explaining the configuration of the metal negative electrode battery 10 according to the first embodiment.
  • the metal negative electrode battery 10 includes a battery body 2, an aluminum foil feeding means 4 as an immersion means, and a control for controlling this. And a substrate 6.
  • the battery body 2 is separated into two compartments by a separator 2a, and the inside of one compartment (also referred to as “positive electrode side”) 2-1 is filled with the positive electrode electrolyte 2b and the other compartment (“negative electrode side”). ) The inside of 2-2 is filled with the negative electrode electrolyte 2c.
  • separator 2a for example, the above separator can be used.
  • positive electrode electrolyte 2b for example, 1 wt% to 30 wt% of potassium hydroxide, sodium hydroxide and the like can be used.
  • negative electrode electrolyte 2c for example, a solution obtained by adding 1% to 20% by weight of potassium hydroxide or sodium hydroxide to 5% to 30% by weight of saline can be used.
  • the surface facing the separator 2a on the positive electrode side 2-1 has a three-layer structure, and a positive electrode material 2e, a catalyst 2f on the back surface, and a porous film 2g having water repellency on the back surface are formed.
  • a positive electrode material 2e for example, metal mesh, metal foam, felt carbon, carbon cloth, carbon paper or the like can be used.
  • the catalyst 2f for example, platinum group elements (Ru, Rh, Pd, Os, Ir , Pt), iron group elements (Fe, Co, Ni), manganese group elements (Mn, Tc, Re, Bh), etc. can be used.
  • porous film 2g having water repellency for example, porous fluorine Resins (PTFE, FEP, PVF, etc.), porous hydrocarbon resins (PE, PP, etc.), porous silicon films, etc. can be used.
  • the positive electrode material 2e and the catalyst 2f may be interchanged or integrated.
  • a metal mesh or carbon paper that has been subjected to a water repellent treatment with a fluororesin and a catalyst 2f held by the catalyst 2f can be used.
  • a limit sensor (electrolyte potential detection electrode) 2d is provided inside the negative electrode electrolyte 2c on the negative electrode side 2-2.
  • the limit sensor 2d for example, an inexpensive metal (Ti, Ta, Mo, W, etc.), a carbon rod, a wire, a mesh, or a combination thereof, which has a small ionization tendency can be used.
  • the aluminum foil feeding means 4 includes an aluminum foil feeding roller 4b for feeding an aluminum foil 4d hanging downward from an aluminum foil (aluminum foil) 4a wound in a roll shape to the inside of the negative electrode electrolyte 2c and immersing or pulling it up. And a motor 4c for driving and controlling the roller.
  • the aluminum foil feed roller 4b is made of a metal (stainless steel, Ti, V, Ni, Zr, Mo, Ta, W, etc.) or carbon rods or pipes that are not easily affected by the electrolyte.
  • control board 6 receives the positive electrode (+) potential Vb +, the negative electrode ( ⁇ ) potential Vb ⁇ , and the potential Vlim of the limit sensor 2d, and supplies the power supply voltages Vo + and Vo for external use. -, And outputs the drive voltage Vmo of the aluminum foil feed motor 4b used in this battery.
  • FIG. 3 is a circuit block diagram of the control board 6 of FIG.
  • the control board 6 boosts the battery voltage between the potential Vb + of the positive electrode material 2e of the battery body 2 and the potential Vb- of the negative electrode electrolyte 2c, and supplies it to the MPU 32 and the motor 4c, and an external output terminal And a booster circuit 14 for supplying Vo + and Vo ⁇ .
  • the booster circuit 12 is, for example, a DC / DC conversion circuit that generates 2.5 V required for driving the MPU 32.
  • the booster circuit 14 is, for example, a DC / DC conversion circuit that generates 5.0 V used for an external USB or the like.
  • control board 6 includes an operational amplifier 16 and an A / D converter ADC1 (18) for measuring the battery current, an operational amplifier 22 and an A / D converter ADC2 (24) for measuring the battery voltage, and a limit.
  • An operational amplifier 26 and an A / D converter ADC3 (28) for measuring the potential Vlim of the sensor 2d, an MPU 32 for controlling the aluminum foil feed from the battery current / voltage and the potential Vlim of the limit sensor, and the output of the MPU 32 are converted to analog.
  • a motor drive driver 36 that outputs an aluminum foil feed motor drive voltage Vmo.
  • the current generated in the battery 2 is proportional to the contact area between the aluminum foil 4d and the negative electrode electrolyte 2c.
  • the current output from the battery 2 can be controlled by controlling the area immersed in the electrolyte 2c (the length of immersion when the width of the aluminum foil is constant, ie, “immersion length”). That is, it is possible to perform constant current power generation by feedback control that senses the output current by the operational amplifier 16 and drives the aluminum foil feed roller 4b according to the increase or decrease of the output current (constant current output operation). ).
  • the immersion length is set so that the output voltage of the battery 2 is sensed by the operational amplifier 22 and the output voltage is kept constant.
  • the feed speed of the motor 4c that drives the aluminum foil roller 4b can be controlled by the voltage of the DAC 34, that is, the voltage Vmo applied to the motor 4c.
  • the motor 4c By making the Vmo output a pulse wave, the motor 4c can be driven intermittently. Power consumption can be reduced by driving the motor intermittently.
  • the feed length L of the aluminum foil 4d can be obtained by integrating the feed speed v [mm / Sec] with respect to the motor applied voltage obtained in advance and the motor drive time t (pulse ON time) [Sec]. .
  • the impedance of the control system of the metal negative electrode battery 10 shown in FIG. 2 is high because the electrolyte concentration decreases and becomes contaminated, reaction products accumulate, the catalyst of the positive electrode deteriorates over time. It will become. Accordingly, as the impedance increases, the immersion length of the aluminum foil gradually increases.
  • the immersion length of the aluminum foil is controlled so as not to exceed the limit value of the control system of the metal negative electrode battery 10.
  • the limit values are the potential of the limit sensor 2d (the value of ADC3 (28)) and the potential of the aluminum foil (the value of ADC2 (24)) when the aluminum foil 4d is at the bottom of the battery cell. ) Is measured, and when the potentials are substantially the same (that is, the value of ADC3 ⁇ the value of ADC2), it is determined that the limit is reached, and the applied voltage Vmo to the motor 4c is made zero. Since power can be generated for a while even in this state, an alarm signal (LED blinking or warning sound) may be issued to notify the user of power generation stop or to notify the maintenance time.
  • LED blinking or warning sound may be issued to notify the user of power generation stop or to notify the maintenance time.
  • the immersion length of the aluminum foil (proportional to the contact area between the aluminum foil 4d and the negative electrode electrolyte 2c, and eventually the current generated in the battery 2) Can be controlled).
  • the entire aluminum electrode 104 is immersed in the electrolyte from the beginning. Since the metal negative electrode battery 10 according to the present embodiment has an immersion length that requires an aluminum foil, self-discharge (corrosion) is less and energy generation efficiency is higher. In the case of standby such as when no load is connected, the output can be reduced by rotating the motor 4c in reverse to shorten the immersion length. During standby, the power required for the operation of the control board 6 is extremely small, so a slight immersion length is sufficient. Therefore, even if it waits for a long time, the consumption by corrosion of aluminum foil hardly arises.
  • FIG. 4 is a diagram illustrating the configuration of the metal negative battery 20 according to the second embodiment.
  • the metal negative electrode battery 20 has several components (filters 2h and 2i, gas vent valves) of the water tank 42 and the battery body 2 in order to maintain the amount of the positive electrode electrolyte. It is different in that a water injection port 2j with a cap or the like is added.
  • the water tank 42 has a nozzle 42a with a float type water level control valve that injects water into the positive electrode 2-1 to keep the water level constant, and a water injection port 42b with an air intake valve cap.
  • the aluminum battery 20 is the same as the aluminum battery 10 unless otherwise described. That is, the metal negative electrode battery 20 includes the aluminum foil feeding means 4 and the control substrate 6 described in the metal negative electrode battery 10 shown in FIG.
  • the metal negative electrode battery 20 adopts a configuration capable of supplying water from the water tank 42 to the positive electrode side 2-1 as necessary.
  • water may be supplied only to the positive electrode side 2-1 from the formula (1), but it may be supplied to the negative electrode side 2-2 and both.
  • the water is supplied to the positive electrode electrolyte tank 2-1 through the nozzle 42a with the float type water level adjustment valve.
  • the float type water level adjustment valve 42a is closed to stop the inflow of water, and water is stored in the water tank at a constant water level.
  • the float type water level adjustment valve 42a is opened and water flows again from the nozzle.
  • the electrolytic solution can be prepared by previously storing a powdered electrolyte in a positive electrode electrolytic solution tank or a water tank, and pouring water to dissolve the electrolyte in water.
  • a method of dissolving in a large amount of water in advance is employed in order to secure the amount of KOH consumed.
  • By controlling the pH to 8-10, safety due to leakage etc. is secured.
  • the aluminum foil 4d undergoes the reaction of the formula (4) at the position (a) in FIG. 4, and the electrolytic solution convects along the broken line to form the precipitation filter 2s, the first filter 2h, and It passes through the second filter 2i and is supplied to the vicinity of the immersed aluminum foil.
  • K [Al (OH) 4 ] has a property that the specific gravity is heavier than that of the electrolyte and is easy to be adsorbed, it precipitates at the point (b) and is trapped by the precipitation filter 2s. Aluminum hydroxide is generated and KOH is returned to the electrolyte.
  • FIG. 5 is a diagram illustrating the configuration of the metal negative battery 30 according to the third embodiment. Compared with the aluminum battery 20 according to the second embodiment shown in FIG. 4, the aluminum battery 30 is different in that an electrolyte delivery mechanism 44 for controlling the concentration of the negative electrode electrolyte is attached.
  • the electrolyte delivery mechanism 44 adjusts the pH concentration of the negative electrode electrolyte by discharging the negative electrode electrolyte 44a from the powder discharge nozzle 44c by the spiral powder delivery mechanism 44b.
  • the spiral powder delivery mechanism 44b rotates a spiral screw by an electrolyte delivery motor 44d, and sends the powder or granular negative electrode electrolyte 44a in the electrolyte storage chamber to the powder discharge nozzle 44c.
  • the metal negative battery 30 is provided with a connection terminal 2m of the positive electrode liquid potential sensor 2n and a connection terminal 2k of the limit sensor 2d in the battery main body 2.
  • a connection terminal 2m of the positive electrode liquid potential sensor 2n an inexpensive metal (Ti, V, Zr, Mo, Ta, W, etc.) or carbon having a small ionization tendency, carbon, etc. are used.
  • the metal anode battery 30 is the same as the aluminum battery 20 unless otherwise specified. That is, although not shown, the aluminum battery 30 includes the aluminum delivery stage 4, the control board 6, and the like described in the second embodiment.
  • the electrolyte delivery mechanism 44 is provided, the insufficient KOH is stored as powder in the electrolyte tank, and discharged from the powder discharge nozzle 44c to the electrolyte. By adding, the electrolyte concentration is maintained.
  • the electrolyte (KOH powder / particles) is discharged from the discharge nozzle 44c in proportion to the amount of rotation of the spiral screw 44b, falls into the electrolyte tank on the negative electrode side 2-2, and is mixed with the electrolyte.
  • the discharge amount the number of rotations of the screw 44b is controlled by the MPU 32 of the control board 6 in FIG. Although not shown in the circuit block of the control board 6 in FIG. 3, for simplicity, it can be controlled by the drive time of the motor (that is, the discharge amount w ⁇ drive time t).
  • the electrolytic solution potential on the negative electrode side (negative electrode liquid potential) can be detected by the potential difference ⁇ Vlim ⁇ (Vb ⁇ ) ⁇ between the potential Vb ⁇ of the aluminum 4d on the negative electrode side 2-2 and the potential Vlim of the limit sensor. Since it is possible, the electrolytic solution concentration is maintained by feedback control of the motor driving time t so as to keep the negative electrode liquid potential within a certain range.
  • hydrogen is not generated from aluminum when the negative electrode liquid potential is 0.8 V or less, but when it is 1.2 V or more, it reacts violently and consumes aluminum. Therefore, desirably, by controlling the concentration so as to always maintain 0.8 V to 0.9 V, consumption of aluminum can be minimized and power generation efficiency can be increased.
  • the pH concentration cannot be lowered because only the negative electrode electrolyte (for example, KOH) can be added.
  • the pH concentration can be lowered by adding an acidic electrolyte for neutralization (acetic acid, citric acid, etc.) by the same mechanism.
  • an acidic electrolyte for neutralization acetic acid, citric acid, etc.
  • a solid electrolyte is used, but a mechanism for dropping a liquid electrolyte may be used.
  • the output current of the battery can be managed by the immersion length of the aluminum foil in the electrolyte, it is possible to generate power in an optimal state according to the output by controlling it together with the negative electrode liquid potential. is there.
  • the potential of the positive electrode (electromotive voltage of the positive electrode) Vpee can be obtained from the potential difference ⁇ (Vb +) ⁇ Vpe ⁇ between the positive electrode terminal potential Vb + and the positive electrode liquid potential Vpe.
  • the deterioration state of the air electrode can be monitored by the electromotive voltage Vpee of the positive electrode.
  • the electromotive voltage of the positive electrode is 0.4 V, for example, as shown in equation (1), but when it deteriorates, it drops to 0.4 V or less. This deterioration increases as the reaction rate of the expression (1) decreases due to a decrease in oxygen concentration, a decrease in electrolyte concentration, a decrease in catalytic reaction, a decrease in temperature, and the like, and increases as more current flows.
  • the potential Vpee of the positive electrode is constantly measured to limit the generated current to a range where the deterioration does not proceed.
  • the generated current limiting process can be realized by limiting the output current of the 5V booster circuit 14 with the MPU 32 of FIG.
  • the positive electrode potential Vpe can be easily measured by the MPU 32 with a circuit (amplifier 26 and ADC 3 (28)) similar to Vlim in the block diagram of FIG.
  • a positive electrode electrolyte delivery mechanism is employed in the same manner as the negative electrode to control the electrolyte concentration of the positive electrode so that the reaction efficiency is maximized. May be. Vpee can be used for concentration management.
  • FIG. 6 is a diagram illustrating the configuration of the metal negative battery 40 according to the fourth embodiment.
  • the metal negative battery 40 is different in that the battery body 2 and the electrolyte delivery mechanism 44 are integrated and accommodated in the reaction cassette 52.
  • the reaction cassette 52 is provided with an aluminum foil insertion guide 54, from which the aluminum foil 4d is immersed in the negative electrode electrolyte 2c.
  • the metal negative battery 40 is provided with a sealed water tank 43 instead of the water tank 42.
  • the control substrate 6 is installed outside the reaction cassette 52.
  • the metal anode battery 40 is the same as the metal anode battery 30 unless otherwise described. That is, although not shown, the aluminum battery 40 includes the aluminum foil feeding means 4, the control board 6, and the like described in the third embodiment.
  • the electrolyte delivery motor connection gear (flat gear) 44e can be gear-connected to a delivery motor (not shown).
  • the positive electrode potential sensor connection terminal 2m, the limit sensor connection terminal 2k, and the positive electrode terminal + are electrically connected to the terminals of the main body by a connector mechanism (not shown).
  • the sealed water tank 43 can be directly supplied with water from a water supply or the like by making the water tank water supply cap 43a detachable from the water inlet 52a of the reaction cassette 52 (for example, screw type). .
  • the tank 43 can be sealed.
  • the water tank sealing valve of the water tank water supply cap 43a is pressed against the cap (downward in the figure) by the valve sealing spring, water does not leak.
  • the water tank water supply cap 43a is set in the water receiver 52a of the reaction cassette 52 as shown by the arrow in the figure.
  • a separator 2a and a positive electrode material 2e are incorporated in the reaction cassette 52, and a negative electrode electrolyte is stored in advance on the negative electrode side 2-2, a positive electrode electrolyte is stored on the positive electrode side 2-1, and a negative electrode electrolyte is stored on the electrolyte delivery mechanism 44. .
  • a negative electrode electrolyte is stored in advance on the negative electrode side 2-2
  • a positive electrode electrolyte is stored on the positive electrode side 2-1
  • a negative electrode electrolyte is stored on the electrolyte delivery mechanism 44.
  • the electrolyte delivery motor 44d is connected to the electrolyte delivery motor connection gear 44e of the reaction cassette 52.
  • the positive electrode potential sensor connection terminal 2m, the limit sensor connection terminal 2k, and the positive electrode terminal are electrically connected to each terminal of the control board 6, respectively.
  • the sealed water tank 43 is connected to the water supply port 52 a of the reaction cassette 52.
  • the reaction cassette 52 can be exchanged without the user directly touching the electrolytic solution when power generation is completed. Further, power generation can be continued quickly, and the reaction cassette 52 can be recycled.
  • the separator 2a and the positive electrode material 2e are incorporated as described above.
  • the negative electrode side 2-2 has a negative electrode electrolyte
  • the positive electrode side 2-1 has a positive electrode electrolyte
  • the electrolyte delivery mechanism 44 has a negative electrode. Although electrolyte is stored, some of these may be stored on the main body side. By these, operation
  • FIG. 7 is a diagram illustrating a configuration of a sealed metal negative battery 50 according to the fifth embodiment.
  • the difference is that the whole battery is a sealed type.
  • the reaction part of the battery is surrounded by a porous PTFE film 58.
  • the generated gas is released to the outside through the porous film, regardless of the direction in which the battery is installed (upside down or sideways), but the electrolyte does not leak to the outside.
  • the motor unit 62 is an ultrasonic motor, and the sliding surface 62a of the motor is conductively processed, and the sliding surface and the aluminum foil 4d are brought into close contact with each other so as to be electrically connected to the aluminum foil 4d. Thereby, leakage of the electrolyte is prevented.
  • the aluminum battery 50 is the same as the aluminum batteries 10 to 40 according to the other embodiments unless otherwise specified.
  • the positive electrode electrolyte 2b, the negative electrode electrolyte 2c, and the like are previously injected into the battery.
  • the aluminum foil end 4d is inserted into the ultrasonic motor 62 but is isolated from the electrolytic solution 2c. In this state, the battery can be stably stored for a long period of time by covering the entire battery with a wrap film, aluminum foil, or the like.
  • the ultrasonic motor 62 When the ultrasonic motor 62 is activated by a spare battery (not shown) such as a button battery, the aluminum foil 6d is immersed in the electrolyte 2c, and power generation is started. Since the aluminum foil 4a cannot be replaced, it is disposable, but since there is no liquid leakage, it can be used for various purposes. For example, it can be reduced in size and carried, or can be increased in size and mounted on a moving body such as a car.
  • FIG. 8 is a diagram showing a configuration of the metal negative battery 60 according to the sixth embodiment.
  • the metal negative electrode battery 60 is a battery in which the positive electrode composed of the air electrode of the metal negative electrode battery 50 according to the fifth embodiment shown in FIG. 7 is replaced with the current collector electrode 2r.
  • the air electrode composed of the positive electrode material 2e, the catalyst 2f, and the porous PTFE film 2g for taking in air is replaced with the current collector 2r, and an oxide such as manganese dioxide is added to the positive electrode electrolyte 2b. When used, it functions as a battery.
  • the electrolyte solution since the electrolyte solution requires an oxide or the like, the energy density per weight is lowered. However, except for releasing the generated gas, it is a sealed type and can be downsized. is there. In addition, since air is unnecessary, there are few restrictions on the use environment.
  • FIG. 9 is a diagram showing a configuration of a sol metal negative electrode battery 70 according to the seventh embodiment.
  • the sol metal negative electrode battery is a battery in which the negative electrode made of the aluminum foil of the metal battery 10 according to the first embodiment shown in FIG. 2 is replaced with the sol metal 10a.
  • the sol metal 10a stored in the negative electrode material storage tank 4e is pushed into the negative electrode current collector 4f by the negative electrode material feed pump 44f, thereby functioning as a battery.
  • the metal particles and metal powder used for the sol metal 10a are coated with a metal having a low ionization tendency (for example, zinc, indium, tin, etc.), or contain carbon or a metal oxide.
  • a metal having a low ionization tendency for example, zinc, indium, tin, etc.
  • Coating the surface with a polymer containing conductive materials graphite, carbon black, acetylene black, cobalt oxide, cobalt oxohydroxide, silver oxide, silver oxide nickel, nickel oxohydroxide, and indium oxide
  • a solubilizing agent starch, cellulose derivatives, emulsifiers and the like having a thickening effect can be used, and conductive particles or fine particles may be included.
  • the conductive particles have an effect of reducing battery resistance.
  • the negative electrode current collector 4f can be made of porous, sponge-like, mesh-like, felt, knitted metal (stainless steel, Ti, V, Ni, Zr, Mo, Ta, W, etc.) or carbon.
  • a solid metal is used for the negative electrode.
  • the degree of freedom of the shape and size of the negative electrode is poor, and the extrusion structure is also limited.
  • an independent electrode and a drive system are required, resulting in a disadvantage that the number of parts increases and the size increases.
  • a sol metal 10a obtained by kneading metal particles, metal powder, and metal fine powder with a solubilizing agent as a negative electrode metal is used, and the sol metal 10a is extruded from a storage tank into the negative electrode current collector 4f to obtain a negative electrode current collector.
  • the sol metal 10a By reacting in the body 4f, it can be handled in the same manner as a solid metal. That is, for example, when the sol metal 10a passes through the porous metal, the reaction of the formula (2) occurs, and the generated electrons are passed to the current collector to generate power.
  • the limit sensor is used to detect that the sol metal 10a is full in the reaction vessel by detecting that the potential difference between the limit sensor and the negative electrode current collector 4f becomes zero.
  • FIG. 10 is a flowchart regarding aluminum foil feed control.
  • step S02 it is determined whether or not the obtained Vout is lower than a preset control target voltage Vtar voltage.
  • step S03 if Vout ⁇ Vtar, in order to increase the Vout voltage, a slight amount of aluminum foil (for example, about 1 to several mm) is driven and sent to the electrolyte. Otherwise, the process proceeds to step S04.
  • step S04 when the aluminum foil is immersed in the electrolytic solution and the reaction is promoted, Vout increases.
  • step S05 it is determined whether the immersion length of the aluminum foil in the electrolytic solution exceeds the limit value. In this determination, the difference between the limit sensor potential Vlim and Vb ⁇ potential ⁇ Vlim ⁇ (Vb ⁇ ) ⁇ is taken, and when the potential difference becomes zero, it is determined that the limit value is exceeded. If the limit value is not exceeded, the process returns to step S01. In step S06, the remaining amount of the negative electrode electrolyte is checked. If there is no battery, the use of the battery is terminated. If there is, the process returns to step S01.
  • FIG. 11 is a flowchart regarding management of the electrolyte solution of the negative electrode in FIGS. 5 and 6.
  • S11 it is assumed that an amount of electrolyte necessary for the initial operation is loaded in the battery or cassette in advance, and an electrolyte having a necessary concentration is generated by filling the battery or cassette with water.
  • the electrolyte tank shown in FIGS. 6 and 7 is filled with the negative electrode electrolyte, and the remaining amount is Qe [g].
  • the remaining amount variable for control is Qre, and the initial value is Qe.
  • the potential Vlim of the limit sensor is compared with a predetermined reference potential Vref.
  • the potential Vlim of the limit sensor is the potential of the negative electrode electrolyte based on the aluminum foil.
  • step S14 the process waits until the electrolyte is dissolved in the electrolytic solution. The waiting time can be shortened by making the electrolyte into powder or granules. In step S15, it is determined whether there is a remaining amount of electrolyte and whether the variable Qre is greater than zero. If there is a remaining amount, return to S12 and repeat. If there is no remaining amount, this process is terminated.
  • FIG. 12 is a flowchart regarding positive electrode potential control.
  • This process is a process for setting the control target voltage Vtar between the positive electrode and the negative electrode of the battery to a voltage as shown in FIG.
  • step S21 the setting range of the Vtar voltage, that is, the target voltage upper limit value is set to Vth, and the target voltage lower limit value is set to Vtl. Further, the upper limit voltage of Vpee (positive electrode voltage ⁇ positive electrode liquid potential sensor voltage) is Vpeeh, and the lower limit voltage is Vpeel. Vtl and Vth are used to set the normal operating range of the battery. Normally, any value from 0.9 V to 1.8 V is set by experiment. Vpeel and Vpeeh are the voltages of the reaction of the formula (1), and are normally set to values of 0 V to 0.4 V. In step S22, Vpee is obtained. In step S23, Vpee and Vpeeh are compared.
  • step S26 the 5.0 V booster circuit of FIG. 3 is stopped and the entire process is shut down.
  • the objects of these embodiments are metal negative batteries in which the positive electrode is an air electrode for the first to fifth and seventh embodiments, and the positive electrode is used as a positive electrode active material and a current collector for the sixth embodiment. It is the substituted metal negative electrode battery. Examples of the characteristics of these metal batteries include the following.
  • the main component of the electrolyte is a solid, it is a metal negative electrode battery that can be maintained in a dry state for a long time and can generate and start an electrolyte by injecting a solvent.
  • reaction part can be a cassette type, an electrolyte or an electrolytic solution necessary for power generation can be supplied, and waste after the reaction can be recovered by cassette replacement.
  • the microcomputer can optimally control the immersion length of the metal in the electrolyte, allowing efficient power generation to be continued and standby for a long period of time (maintaining almost zero load current during operation) ) Is also possible.
  • a battery using an aluminum foil as the negative electrode material has the following effects.
  • the electrolyte and the reaction vessel are integrated in a cassette, power can be generated simply by setting aluminum foil in the device and injecting water or seawater, which can be used by anyone at any time, anywhere. A large-capacity battery that can be stored for a long time can be provided.
  • metal negative batteries for applications such as emergency power supplies that can be stored for long periods of time, lightweight and compact power supplies in non-electrified areas, and quiet and non-hazardous power supplies in the outdoors and construction sites Can now be provided.
  • metal negative batteries for applications such as emergency power supplies that can be stored for long periods of time, lightweight and compact power supplies in non-electrified areas, and quiet and non-hazardous power supplies in the outdoors and construction sites Can now be provided.
  • metal negative batteries for applications such as emergency power supplies that can be stored for long periods of time, lightweight and compact power supplies in non-electrified areas, and quiet and non-hazardous power supplies in the outdoors and construction sites Can now be provided.
  • it can also be used as an auxiliary power source or a UPS power source for EV cars.
  • sol metal By using sol metal, it became easy to supply metal from a single location to a plurality of battery cells connected in series and parallel, increase output, or increase size.
  • 2 battery body, 2-1: positive electrode side, 2-2: negative electrode side, 2a: separator, 2b: positive electrode electrolyte, 2c: negative electrode electrolyte, 2d: limit sensor, 2e: positive electrode material, 2f: catalyst, 2 g: porous membrane, 2 h: filter, 2 i: filter, 2 j: water inlet with a gas vent valve cap, 2 k: limit sensor connection terminal, 2 m: connection terminal, 2 n: positive electrode potential sensor, 2 p: nozzle, 2 q: nozzle 2r: positive electrode current collector electrode, 2s: precipitation filter, 2t: residue after reaction, 2u: porous film, 4: aluminum foil feeding means, 4a: aluminum foil (aluminum foil), 4b: aluminum foil feeding roller, 4c: motor, 4d: aluminum foil, 4e: negative electrode material storage tank, 4f: negative electrode current collector, 6: control board, 8: Liquid level, 10: metal negative battery, 10a: sol metal, 12: booster circuit, 14: booster circuit,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極が主としてアルミニウムやマグネシウム、亜鉛、リチウムなどの金属からなる金属負極電池において、負極と電解液が接触した際に自己放電を起こしやすく、電池の容量損失が大きいという問題が発生しやすい。本願発明は、この自己放電量を軽減し、使用時または保存時の電池の容量損失を緩和し併せてデマンドに応じて電池出力を安定的に可変する金属負極電池を提供することを目的としている。 正極に正極活物質や空気などを使用する正極電極と、主としてアルミニウムやマグネシウム、亜鉛、リチウムなどの金属からなる金属負極電極と、電解液とを有する金属負極電池にあって、前記金属負極電極が前記電解液にデマンドに応じて浸漬される浸漬手段を備えた金属負極電池を提供する。

Description

金属負極電池
 本発明は、負極が主として金属からなる金属負極電池に関する。
 近年、エネルギー密度が高くとれるアルミニウムやマグネシウムなどの金属を陰極に使用した金属負極電池が注目されている。この金属負極電池は、負極が主としてアルミニウムやマグネシウムなどの金属からなり、正極に正極活物質を有する活物質正極電池や正極に空気極を用いる空気電池などがある。
 ところで、特許文献1には、負極にアルミニウムまたはアルミニウム合金を有し、正極に正極活物質を有するアルミニウム負極電池が提案されている。特許文献2には、負極にアルミニウムやマグネシウムを使用する空気電池が提案されている。
 また、特許文献3には、セル内に多孔質の部材があり、その上に接して連続的に補充できるアルミニウム負極の柱状体を乗せて使用する空気電池が提案されている。
 また、特許文献4には、マグネシウム箔を絶縁性のフィルムに積層した負極フィルムを巻出し巻き取るリール式のマグネシウム電池において、マグネシウム箔をブロックに分割することにより発電のオンオフができるようにすることが提案されている。
特開2005-71726号公報 特開2017-22036号公報 特開2012-230892号公報 特開2014-89904号公報
 負極が主としてアルミニウムやマグネシウムなどの金属からなる金属負極電池において、負極と電解液が接触した際に自己放電を起こしやすく、電池の容量損失が大きいという問題が発生しやすい。
 また、セル内の電解液の状態、電極表面状態も変化しやすく、特許文献3のように見かけ上同じ状態で負極を供給したとしても、同じ出力は得にくい。また、特許文献4のようなリール式の電池では発電のオンオフはできたとしても、デマンドに応じて発電量を可変することは難しい。
 本願発明は、この自己放電量を軽減し、使用時または保存時の電池の容量損失を緩和し、併せてデマンドに応じて電池出力を安定的に可変する金属負極電池を提供すること及び一般的に構造や寸法の制約の大きい金属負極電池にあって自由度が高い金属負極電池を提供することを目的としている。
 本発明は、上記の課題を解決するために、下記の金属負極電池を提供するものである。
 (1)正極電極、金属負極電極、電解液を有する金属負極電池にあって、前記金属負極電極が前記電解液にデマンドに応じて浸漬される浸漬手段を備えた金属負極電池。
 (2)上記(1)において、前記金属負極電極の電極がゾル金属からなる金属負極電池。
 (3)上記(1)または(2)において、前記金属負極電極が前記電解液に向けて押し出されるかもしくは押し戻されるかまたは前記電解液の液面が上昇もしくは下降することにより、前記金属負極電極が前記電解液にデマンドに応じて浸漬される浸漬手段を備えた金属負極電池。
 (4)上記(1)~(3)において、前記金属負極電極の電極は、主として、アルミニウム、マグネシウム、亜鉛、もしくはリチウムの金属、またはそれらの合金もしくは混合組成物、からなる金属負極電池。
 (5)上記(1)~(4)において、前記電池の出力電圧を検出して、その増減に応じて前記負極電極が、前記電解液に浸漬される面積を制御して出力制御を行う金属負極電池。
 (6)上記(1)~(5)において、前記電解液の水位調整機構を有し、前記電解液を一定の水位に維持している金属負極電池。
 (7)上記(1)~(6)において、負極の反応後の残滓を沈殿フィルタにより沈殿させるようにしている金属負極電池。
 (8)上記(1)~(7)において、前記電解液を正極側電解液と負極側電解液とに分離するセパレータとを有し、前記負極電解液に対して負極電解質を送出する電解質送出機構及び前記正極電解液に対して正極電解質を送出する電解質送出機構のいずれか一方又は両方の機構を備え、負極電解液及び正極電解液又は両方の電解液の濃度を制御する金属負極電池。
 (9)上記(1)~(8)において、前記金属負極電池本体部及び前記電解質送出機構もしくはそれらの構造物の一部を除き一体化して収納した反応カセットを備えた金属負極電池。
 (10)上記(1)~(9)において、発生する気体は透過するが前記電解液が漏洩しない材料を用いて、密閉構造とした金属負極電池。
 本願発明によれば、負極と電解液との接触の方法を工夫することにより、自己放電量を軽減し、使用時または保存時の電池の容量損失を緩和し、併せてデマンドに応じて電池出力を安定的に可変する金属負極電池を提供することが可能となる。
アルミニウム空気電池の原理を説明する図である。 第1実施形態に係る金属負極電池10の構成を説明する図である。 図2の制御基板6の回路ブロック図である。 第2実施形態に係る金属負極電池20の構成を説明する図である。 第3実施形態に係る金属負極電池30の構成を説明する図である。 第4実施形態に係る金属負極電池40の構成を説明する図である 第5実施形態に係る密封型の金属負極電池50の構成を説明する図である。 第6実施形態に係る金属負極電池60の構成を示す図である。 第7実施形態に係るゾル金属負極電池70の構成を示す図である。 アルミニウム箔の送り制御に関するフローチャートである。 図5及び図6における、負極の電解液の管理に関するフローチャートである。 正極電位制御に関するフローチャートである。 正極起電圧Vpeeをパラメータとする目標正極電位Vtar特性を示すグラフである。
 本願発明の正極電極は、金属負極電極と対になる電極で、たとえば、正極に正極活物質を有する活物質正極電池や正極に空気極を用いる空気電池などに使用されるものを利用できる。
 本願発明の金属負極電極は、金属電極に必要に応じて補助材、集電体を設けたもので、金属電極としては、アルミニウム、マグネシウム、亜鉛、リチウムなどの金属単体のほか、それらの合金、混合組成物も含まれる。
 アルミニウム主体の場合は一般家庭で使用するクッキング用アルミニウム箔を使用できるのでコストや汎用性の点で好ましい。
 マグネシウム主体の場合はより高い発電電圧が得られる点で好ましい。
 亜鉛の場合は、発電電圧は低いが自己放電が少ない点で好ましい。
 リチウムの場合は、高い発電電圧および高いエネルギー密度が得られる点で好ましい。
 電極の形状は、箔のほか、板、線、棒、焼結体、不織布またはそれらの複合体、積層体が含まれる。金属負極電極を引き出すような使い方の場合には、断面が均一なほうが送り出しやすい。
 箔は、巻き取って保存できる点で好ましく、不織布は、表面積拡大の点で好ましい。また、エンボス、波状加工、エッチンク凹凸加工なども表面積拡大の点で好ましい。
 また、上記の形状の他、ゾル金属も含まれる。ゾル金属は、前記金属からなる粒状金属、粉末金属、微粉末金属をゾル化剤に混練した物である。ゾル金属は、液体と類似の取り扱いができるため、格納や保管の形状が任意にでき、負極材の供給がパイプ等の配管で行える点で好ましい。更には、多数のセルへ負極材を一か所から供給できる点で好ましい。
 本願発明の電解液は、電池構造に合わせて適宜選択する。たとえば、アルカリ性水溶液であれば、水酸化カリウムや水酸化ナトリウム等が使用でき、酸性水溶液では硫酸やリン酸等が使用できる。
 また、硫化ナトリウム(Na2S)、チオ硫酸ナトリウム(Na2S2O3)などの粗大化抑制剤、酸性ピロリン酸ナトリウム(Na2H2P2O7)などの自己放電抑制剤などを添加してもよい。
 本願発明の浸漬手段とは、金属負極電極がデマンドに応じて電解液に濡れる手段で、たとえば、要求に応じた面積が、金属負極電極が電解液に向けて押し出されるかもしくは押し戻されるか、または電解液の液面が上昇または下降することにより金属負極電極が電解液に浸漬される方法などが採用できる。
 金属負極電極が電解液に向けて押し出すかもしくは押し戻される方法としては、板状の場合、一方に送りローラ、もう一方からタッチローラを金属負極電極に当て、送りローラを回転させることにより押し出すかもしくは押し戻すことができる。なお、反応中、送りローラの回転を止めれば、見かけ上金属負極電極が押し戻された形となる場合もある。また、表面と裏面同時に、電解液の循環水等の液体をノズルから噴出すことにより押し出すことができる。また、ブロックやロッド状の場合、筒に金属負極電極を挿入し、自重による落下による方や端面に機械的または空気・液圧をかける方法あるいは側面に機械的または空気・液圧をかけ移動する方法により、押し出すことができる。また、円柱の場合、側面にネジを切れば、それ自体の軸回転により押し出すかもしくは押し戻すことができる。ゾル金属10aの場合は、ポンプにより押し出しもしくは押し戻すことができる。
 また、電解液の液面を上昇させる方法としては、ポンプや自然落下等により電解液を徐々に溜めていくほか、電解液の浴槽体積を徐々に狭めていく方法、毛細管現象により上昇させる方法などが採用できる。この方法は、多数のセルを稼働するような場合に、集中的に制御できる点で好ましい。
 本願発明のセパレータは、必要に応じて使用し、従来公知のものを用いることができるが、沈殿物が交じり合わない程度に目が細かい方が好ましい。また沈殿物で突き破られない程度の強度があることが好ましい。たとえば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース等の多孔膜や、樹脂不織布、ガラス繊維不織布等の不織布、あるいはイオン透過膜やイオンのみを通す固体電解質等が限定なく使用できる。
 以下、本発明に係る金属負極電池の実施形態に関し、添付の図面を参照しながら詳細に説明する。図面において、同じ要素に対しては同じ参照符号を付して、重複した説明を省略する。
 また、本発明に係る金属負極電池は、空気電池構造で、金属負極電極は、金属としてアルミニウム、形状として箔を例示として以下実施形態を説明する。
 [第1実施形態]
 (構成)
 図1は、アルミニウム空気電池の原理を説明する図である。図1に示すように、アルミニウム空気電池100は、正極(空気極)102と負極(アルミニウム極)104との間に、電解液106を介在させて構成されている。正極102では、空気中の酸素、正極の電子、及び電解液中の水から、水酸基を生じる式(1)の反応が発生する。
 一方、負極では、アルミニウムと水酸基から、水酸化アルミニウムと電子とが生じる式(2)の反応が発生する。従って、全体では、アルミニウム、酸素、及び水から、水酸化アルミニウムが生じる式(3)の反応が起きて、電気的エネルギーを得ることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 図2は、第1実施形態に係る金属負極電池10の構成を説明する図で、金属負極電池10は、電池本体部2と、浸漬手段としてのアルミニウム箔送り手段4と、これを制御する制御基板6とを備えている。
 電池本体部2は、セパレータ2aにより2つの区画に分離され、一方の区画(「正極側」ともいう。)2-1の内部には正極電解液2bが満たされ、他方の区画(「負極側」ともいう。)2-2の内部には負極電解液2cが満たされている。
 セパレータ2aとしては、例えば、前記のセパレータが使用できる。正極電解液2bとしては、例えば、1 wt%~30wt%の水酸化カリウム、水酸化ナトリウムなどが使用できる。負極電解液2cとしては、例えば、5 wt%~30wt%の食塩水に1 wt%~20wt%の水酸化カリウムや水酸化ナトリウムを添加した溶液が使用できる。
 正極側2-1のセパレータ2aと対向する面は、三層構造となっており、正極材2e、その背面に触媒2f、その背面に撥水性のある多孔質膜2gが形成されている。正極材2eには、例えば、金属メッシュ、金属発泡体、フェルトカーボン、カーボンクロス、カーボンペーパーなどを用いることができ、触媒2fとしては、例えば、白金族元素(Ru, Rh,Pd, Os, Ir, Pt)、鉄族元素(Fe, Co, Ni)やマンガン族元素(Mn, Tc, Re, Bh)等を用いることができ、撥水性のある多孔質膜2gには、例えば、多孔質フッ素樹脂(PTFE,FEP,PVF等)、多孔質炭化水素樹脂(PE,PP等)、多孔質シリコン膜等を用いることができる。また、正極材2eと触媒2fとは入れ替わってもよいし、一体化してもよい。例えば、金属メッシュやカーボンペーパーをフッ素樹脂により撥水処理したものに触媒2fを胆持させたものを用いることができる。
 負極側2-2の負極電解液2cの内部には、リミットセンサ(電解液電位検出電極)2dが設けられている。リミットセンサ2dとしては、例えば、イオン化傾向の小さく安価な金属(Ti, Ta, Mo, W等)や炭素製の棒、線、メッシュ又はこれらの組み合わせ等が使用できる。
 アルミニウム箔送り手段4は、ロール状に巻かれたアルミニウム箔(アルミフォイル)4aから下方に垂れ下がったアルミニウム箔4dを負極電解液2cの内部に送り出して浸漬し又は引き上げるアルミニウム箔送りローラ4bと、このローラを駆動制御するモータ4cとを備えている。アルミニウム箔送りローラ4bは、電解液に侵されにくい金属(ステンレス、Ti, V, Ni, Zr, Mo, Ta, W等)や炭素による棒やパイプで形成されている。
 制御基板6は、全体的には、電池の正極(+)の電位Vb+と、負極(-)の電位Vb-と、リミットセンサ2dの電位Vlimとが入力され、外部利用の電源電圧Vo+,Vo-と、この電池で利用するアルミニウム箔送りモータ4bの駆動電圧Vmoを出力する。
 図3は、図2の制御基板6の回路ブロック図である。制御基板6は、電池本体部2の正極材2eの電位Vb+と負極電解液2cの電位Vb-との間の電池電圧を昇圧し、MPU32及びモータ4cに供給する昇圧回路12と,外部出力端子Vo+とVo-間に供給する昇圧回路14とを備えている。昇圧回路12は、例えば、MPU32を駆動に必要な2.5 Vを発生するDC/DC変換回路である。昇圧回路14は、例えば、外部のUSB等に使用される5.0 Vを発生するDC/DC変換回路である。
 更に、制御基板6は、電池電流を計測するためのオペアンプ16及びA/D変換器ADC1(18)と、電池電圧を計測するためのオペアンプ22及びA/D変換器ADC2(24)と、リミットセンサ2dの電位Vlimを計測するためのオペアンプ26及びA/D変換器ADC3(28)と、電池電流・電圧及びリミットセンサの電位Vlimからアルミニウム箔送りを制御するMPU32と、MPU32の出力をアナログ変換するDAC34と、アルミニウム箔送りのモータ駆動電圧Vmoを出力するモータ駆動ドライバ36とを備えている。
 (動作)
 図2を参照されたい。負極側2-2では、アルミニウム箔送りローラ4bによってアルミニウム箔4dが負極電解液2cに浸かると、式(2)の反応が起こり、アルミニウム箔で生じた電子は、アルミニウム箔送りローラ4bを経由して制御基板6の-極を通り、+極から正極側2eへ供給される。電子が供給された正極側2eでは、式(1)の反応が起こり、全体として式(3)の反応により、制御基板6の+極と-極間へ電力が供給される。触媒2fは、式(1)の反応を促進、継続させる。
 電池2の内部インピーダンスが十分小さいとすると(例えば、数mΩ~数Ω)、電池2で発生する電流は、アルミニウム箔4dと負極電解液2cとの接触面積に比例するため、アルミニウム箔4dを負極電解液2cに浸ける面積(アルミニウム箔の幅が一定とすると、浸ける長さ。即ち「浸漬長」)を制御することにより、電池2から出力する電流を制御することができる。即ち、オペアンプ16によって出力電流を感知して、浸漬長を、出力電流の増減に応じてアルミニウム箔送りローラ4bを駆動するフィードバック制御により、定電流発電を行うことが可能である(定電流出力動作)。
 若しくは、出力端子に接続した負荷で消費される電流に応じて内部抵抗により出力電圧が低下するため、電池2の出力電圧をオペアンプ22によって感知して出力電圧を一定に保つように、浸漬長をフィードバック制御することにより、負荷変動があっても電圧を一定に保つことが可能である(定電圧出力動作)。
 アルミニウム箔ローラ4bを駆動するモータ4cの送り速度は、DAC34の電圧、即ちモータ4cへの印加電圧Vmoで制御することができる。Vmo出力をパルス波にすることより、モータ4cを間歇的に駆動することができる。モータを間歇的に駆動することにより、消費電力を削減することができる。
 また、アルミニウム箔4dの送り長Lは、予め求めておいたモータ印加電圧に対する送り速度v[mm/Sec]とモータの駆動時間t(パルスのON時間)[Sec]の積分により求めることができる。
 一般的には、図2に示す金属負極電池10の制御系のインピーダンスは、使用時間の経過と共に電解液濃度の低下・汚染、反応生成物の堆積、正極の触媒の劣化等が生じるため、高くなっていく。従って、インピーダンスが増加するにつれて、次第にアルミニウム箔の浸漬長が長くなっていく。
 このため、アルミニウム箔の浸漬長は、金属負極電池10の制御系の限界値を超えないように制御する。MPU32において、限界値は、発電電流が流れている時、アルミニウム箔4dが電池セルの底部にあるリミットセンサ2dの電位(ADC3(28)の値)とアルミニウム箔の電位(ADC2(24)の値)を測定し、電位がほぼ同じ(即ちADC3の値≒ADC2の値)になったら限界と判断し、モータ4cへの印加電圧Vmoをゼロにする。なお、この状態でもしばらく発電できるので、アラーム信号(LED点滅や警告音)を出しユーザへ発電停止を予告したりメンテナンス時期を知らせたりするようにしてもよい。
 本実施形態に係る金属負極電池10では、必要とする電池出力に応じて、アルミニウム箔の浸漬長(アルミニウム箔4dと負極電解液2cとの接触面積に比例し、結局、電池2で発生する電流に比例する。)を制御することができる。これに対し、図1に示す従来のアルミニウム空気電池100では、最初からアルミニウム電極104全体が電解液に浸漬されている。本実施形態に係る金属負極電池10は、アルミニウム箔が必要な浸漬長にとどまるので、自己放電(腐食)が少なく、エネルギー発生効率が高くなる。また、負荷が接続されていない等の待機時の場合は、モータ4cを逆回転させ浸漬長を短くすることにより出力を小さくすることができる。待機時は、制御基板6の動作に必要な電力が極めて少ないため、僅かな浸漬長でよい。従って、長時間待機しても、アルミニウム箔の腐食による消耗が殆ど生じない。
 [第2実施形態]
 (構成)
 図4は、第2実施形態に係る金属負極電池20の構成を説明する図である。第1実施形態に係るアルミニウム電池10と比較すると、金属負極電池20は、正極電解液量を維持するため、水タンク42及び電池本体部2の幾つかの部品(フィルタ2h,2i,ガス抜き弁キャップ付き注水口2j等)が追加された点で相違する。
 水タンク42は、正極側2-1に水を注入して水位を一定に保つフロート式水位調節弁付きノズル42aと、空気吸入弁キャップ付き注水口42bとを有している。
 その他の点に関しては、特に説明がない限り、アルミニウム電池20は、アルミニウム電池10と同じである。即ち、金属負極電池20は、図示されていないが、図2に示す金属負極電池10で説明したアルミニウム箔送り手段4及び制御基板6を備えている。
 (動作)
 金属負極電池では、発電するためには、(1)式のようにアルミニウム4モルに対して、水6モルが必要となる。このため、アルミニウム箔全てを発電に使用する場合、図2のアルミニウム電池10では、正極電解液2bの水の量が不足するおそれがある。
 このため、金属負極電池20では、必要に応じて、水タンク42から正極側2-1に水を供給出来る構成を採用する。水は、原理的には式(1)から正極側2-1のみに供給すればよいが、負極側2-2および両方へ供給しても構わない。
 金属負極電池20では、空気吸入弁キャップ付き注水口42bから水タンク2に水を注入すると、フロート式水位調整弁付きノズル42aを経由して、正極電解液槽2-1へ水が給水される。正極電解液槽2-1が水で満たされると、フロート式水位調整弁42aが閉じて水の流入が停止され、水タンク内に水が一定水位に貯水される。正極電解液2bの水が不足すると、フロート式水位調整弁42aが開いて、再びノズルから水が流入する。この機構により、必要以上の圧力がかかることなく、常に正極側2-1の電解液槽が電解液2bで満たされる。
 なお、電解液は、予め、正極電解液槽若しくは水タンク内に粉体の電解質を納めておき、水が注水されて電解質が水に溶解することで作成することができる。
 一方、負極側2-1では、式(2)の反応が進む過程において、例えば電解質がKOHの場合に式(4)の反応が生じ、水溶性のテトラヒドロキシドアルミン酸カリウム( K[Al(OH)4] )が生成される。このためKOHの濃度(即ちpH濃度)を減少させて反応速度を低下させる。
Figure JPOXMLDOC01-appb-C000004
 金属負極電池20では、消費されるKOHの量を確保するため、予め多量の水に溶解させておく方法を採用する。pHを8~10に抑えることで、漏液等による安全性を確保している。
 負極側2-2では、アルミニウム箔4dは、図4の箇所(a)で式(4)の反応を生じ、電解液は、破線に沿って対流して、沈殿フィルタ2s、第1フィルタ2h及び第2フィルタ2iを通り、浸漬しているアルミニウム箔近傍へ供給される。K[Al(OH)4]は比重が電解液よりも重くかつ吸着し易い性質があるため、箇所(b)へ沈殿し、沈殿フィルタ2sによりトラップされ、経過すると式(5)の反応が起き、水酸化アルミニウムが生成されてKOHが電解液へ戻される。
Figure JPOXMLDOC01-appb-C000005
 [第3実施形態]
 (構成)
 図5は、第3実施形態に係る金属負極電池30の構成を説明する図である。図4に示す第2実施形態に係るアルミニウム電池20と比較すると、アルミニウム電池30は、負極電解液濃度を制御するための電解質送出機構44が取り付けられた点で相違する。
 電解質送出機構44は、負極電解質44aをスパイラル式粉体送出機構44bにより粉体放出ノズル44cから吐出して、負極電解液のpH濃度を調節する。スパイラル式粉体送出機構44bは、スパイラル状のスクリューを電解質送出モータ44dにより回転させ、電解質格納室にある粉体又は粒体状の負極電解質44aを粉体放出ノズル44cへ送り出す。
 更に、金属負極電池30は、電池本体部2に、正極液電位センサ2nの接続端子2m及びリミットセンサ2dの接続端子2kを備えている。正極液電位センサ2nには、イオン化傾向の小さく安価な金属(Ti, V, Zr, Mo, Ta, W等)や炭素から成る棒、線、メッシュ等が使用される。
 その他の点に関しては、特に説明がない限り、金属負極電池30は、アルミニウム電池20と同じである。即ち、アルミニウム電池30は、図示していないが、第2実施形態で説明したアルミニウム送り出段4,制御基板6等を備えている。
 (動作)
 第2実施形態に係る金属負極電池20では、大量のアルミニウム箔を用いて発電しようとすると、前記の式(4)の反応により、KOH濃度が減少する。式(5)の反応が不十分な場合KOHが電解液中に戻らないため、pH濃度が下がり発電が停止してしまう。
 これに対し、第3実施形態に係る金属負極電池30では、電解質送出機構44を設け、不足するKOHを粉体として電解質タンクへ格納しておき、粉体放出ノズル44cから放出して電解液へ添加することにより、電解質濃度を維持している。
 電解質(KOH粉体/粒体)は、スパイラル状スクリュー44bの回転量に比例して放出ノズル44cから吐出され、負極側2-2の電解液槽に落下し電解液と混合される。吐出量は、スクリュー44bの回転数を、図3の制御基板6のMPU32により制御している。図3の制御基板6の回路ブロックには示されていないが、簡略的には、モータの駆動時間(即ち、吐出量w∝駆動時間t)で制御することができる。ここで、負極側の電解液電位(負極液電位)は、負極側2-2のアルミニウム4dの電位Vb-とリミットセンサの電位Vlimの電位差{Vlim-(Vb-)}とにより検出することが可能であるため、負極液電位を或る範囲に保つようにモータの駆動時間tをフィードバック制御して電解液濃度を維持する。
 一般的に、負極液電位が0.8 V以下では、アルミニウムから水素を発生しないが、1.2 V以上では激しく反応しアルミニウムを消耗してしまう。従って、望ましくは、常に0.8V~0.9 Vを維持するように濃度を制御することにより、アルミニウムの消耗を最小化し、発電効率を高めることができる。
 第3実施形態に係る金属負極電池30では、負極電解質(例えば、KOH)の添加しかできないため、pH濃度を下げることはできない。しかし、図に示されていないが、中和用の酸性電解質(酢酸、クエン酸等)を同様な機構にて添加することにより、pH濃度を下げることが可能である。また、本実施形態では固体の電解質としているが、液体の電解液を滴下する機構でもよい。
 前記のように、電池の出力電流は、アルミニウム箔の電解液への浸漬長でも管理できるため、負極液電位と合わせて制御することにより、出力に応じた最適な状態で発電することが可能である。
 正極液電位センサ2nにより、正極側の電解液電位(正極液電位=正極液電位センサ電圧)Vpeを計測することができる。正極電極の電位(正極の起電圧)Vpeeは、正極端子電位Vb+と正極液電位Vpeとの電位差{(Vb+) - Vpe}により求めることができる。正極の起電圧Vpeeにより、空気極の劣化状態をモニターすることができる。正極の起電圧は、例えば(1)式のように、0.4 Vであるが、劣化すると0.4 V以下に低下する。この劣化は、酸素濃度低下、電解液濃度低下、触媒反応低下、温度低下等により(1)式の反応速度が低下する程大きくなり、電流を多く流す程大きくなる。
 劣化を防止するには、発電電流を小さくしたり、発電を停止したりすることが効果的であるため、正極電極の電位Vpeeを常時計測して劣化が進行しない範囲に発電電流を制限する。発電電流制限処理は、図3のMPU32で5 V昇圧回路14の出力電流を制限することにより実現することができる。なお、正極電位Vpeは、図3のブロック図のVlimと同様な回路(アンプ26とADC3(28))で、容易にMPU32で計測することができる。
 また、正極での式(1)の反応効率も正極電解液の濃度により変化するため、負極と同様に正極電解質送出機構を採用し正極の電解液濃度を反応効率が最大となるように管理してもよい。濃度管理のためにVpeeを利用することが可能である。
 [第4実施形態]
 (構成)
 図6は、第4実施形態に係る金属負極電池40の構成を説明する図である。図5に示す第3実施形態に係る金属負極電池30と比較すると、金属負極電池40は、電池本体部2及び電解質送出機構44を一体化して反応カセット52に収納した点で相違する。反応カセット52には、アルミニウム箔挿入ガイド54が設けられ、ここからアルミニウム箔4dが負極電解液2cに浸漬される。更に、金属負極電池40は、水タンク42の代わりに、密封型水タンク43が設けられている。図示していないが、制御基板6は、反応カセット52の外部に設置されている。
 その他の点に関しては、特に説明がない限り、金属負極電池40は、金属負極電池30と同じである。即ち、アルミニウム電池40は、図示していないが、第3実施形態で説明したアルミニウム箔送り手段4,制御基板6等を備えている。
 これらの相違点を実現するため、電解質送出モータ接続ギヤ(平ギヤ)44eは、送出モータ(図示せず。)とギヤ接続可能である。正極電位センサ接続端子2m、リミットセンサ接続端子2k、及び正極端子+は、コネクタ機構(図示せず。)により其々本体の端子と電気的に接続される。
 一方、密封型水タンク43は、水タンク給水キャップ43aを、反応カセット52の吸水口52aに着脱可能な構造(例えば、ネジ式)にすることにより、水道等から直接給水することが可能である。水タンク給水キャップ43aを付けて取り付けることにより、タンク43を密閉することができる。この時、水タンク給水キャップ43aの水タンク密閉バルブは、バルブ密閉バネによりキャップに(図では下側に)押しつけられているため、水が漏れることはない。
 密封型水タンク43を反応カセット52にセットすると、図の矢印のように水タンク給水キャップ43aが、反応カセット52の水受け52aにセットされる。
 (動作)
 反応カセット52には、セパレータ2a、正極材2eが組み込まれ、予め、負極側2-2に負極電解質、正極側2-1には正極電解質、電解質送出機構44には負極電解質が格納されている。このとき、反応カセット52の全体を、例えば、気密構造としラップフィルムで覆うことにより、水や余剰な空気の浸入を防ぐことができ、長期間安定して保存することができる。
 反応カセット52の電解質送出モータ接続ギヤ44eには、電解質送出モータ44dが接続される。正極電位センサ接続端子2m、リミットセンサ接続端子2k、正極端子は、制御基板6の各端子と夫々電気的に接続される。密封型水タンク43は、反応カセット52の給水口52aへ接続される。
 反応カセット52がセットされ、水が満たされた密封型水タンクがセットされると、給水が開始する。水は、水受け52aを経由して正極反応槽、負極反応槽へ其々フロート式水位調整弁付きノズル2p,2qより供給される。フロート式水位調整機構により、水位が一定水位に達すると弁が閉じられ、水位が常に一定に保たれる。ノズルの弁が閉じると水受け52aが水で満たされ、これにより密封型水タンクの吸気口が塞がれ、密封型水タンクからの水の供給が停止する。この機構のため、水受けから水が溢れることはなく、水受け内で一定の水位が保たれ、従って水位調整弁への圧力が一定に保たれるため、精度の高い水位調整が可能である。
 上記の機能により、発電が終了した時点でユーザが電解液に直接触れるような事がなく反応カセット52を交換することができるため安全性を高めることができる。また、迅速に発電を継続することができ、反応カセット52のリサイクルも可能となる。なお、反応カセット52には、前記のようにセパレータ2a、正極材2eが組み込まれ、予め、負極側2-2に負極電解質、正極側2-1には正極電解質、電解質送出機構44には負極電解質が格納されているが、これらの一部は本体側に格納されてもよい。
 これらにより、第3実施形態の金属負極電池30と同様な動作が行われる。
 [第5実施形態]
 (構成)
 図7は、第5実施形態に係る密封型の金属負極電池50の構成を説明する図である。第1~4実施形態に係る金属負極電池10~40と比較すると、電池全体が密封型である点で相違する。密封型電池を実現するため、電池の反応部周囲を多孔質PTFE膜58で囲っている。これにより、電池の設置方向がどの方向(天地逆や横向き)であっても、発生したガスは多孔質膜を通して外部へ放出されるが、電解液は外部へ漏洩しない。
 また、モータ部62は、超音波モータとし、モータの摺動面62aを導電加工し、摺動面とアルミニウム箔4dとを密着させてアルミニウム箔4dと電気的導通を図っている。これにより、電解液の漏えいを防いでいる。その他の点に関しては、アルミニウム電池50は、特に説明がない限り、他の実施形態に係るアルミニウム電池10~40と同じである。
 (動作)
 密封型金属負極電池50には、正極電解液2b、負極電解液2c等は電池内に予め注入されている。アルミニウム箔端部4dは、超音波モータ62に挿入はされているが、電解液2cからは隔離されているものとする。この状態では、電池全体をラップフィルムやアルミニウム箔等で覆うことにより、電池は長期間安定して保存することができる。
 ボタン電池等の予備電池(図示せず)により超音波モータ62が起動すると、アルミニウム箔6dが電解液2cに浸かり、発電が開始される。アルミニウム箔4aの交換ができないため使い捨てとなるが、液漏れが無いため、多様な用途に対応可能となる。例えば、小型化して携帯することも、大型化して車等の移動体に搭載することも可能である。
 また、密閉型であるため、たとえ電解液に有機電解液を使用しても匂いを封じ込めることが出来る。同様に、密閉型であるため、水の浸入を防ぐことが可能になるため、水系の電解液に特化する必要はなく、アルミニウム二次電池として発展の可能性もある。
[第6実施形態]
 (構成)
 図8は、第6実施形態に係る金属負極電池60の構成を示す図である。金属負極電池60は、図7に示す第5実施形態係る金属負極電池50の空気極から成る正極を、集電体電極2rに置換した電池である。金属負極電池50における、正極材2e、触媒2f、空気取り入れのための多孔質PTFE膜2gから構成される空気極を集電体2rで置換し、正極電解液2bに二酸化マンガン等の酸化物を使用することにより、電池として機能する。
 (動作)
 一般に、空気電池では出力を上げようとすると、空気極の反応効率が悪いため広い面積必要となり、コンパクトに実現することが困難であった。本実施形態では、正極2rに二酸化マンガンなどの還元能力を持つ酸化物を使用することにより、大きな電流を流すことができる。正極の反応が異なる以外は、第1~5実施形態と同様の動作が可能である。正極電解液に二酸化マンガンとKOHを使用した場合は、式(1)に代わり、式(6)の反応が起きる。空気を必要としないため、反応が早く、従って大電流を流すことが可能である。 
Figure JPOXMLDOC01-appb-C000006
 本実施形態では、電解液に酸化物等を必要とするため重量当りエネルギー密度が低下するという欠点はあるが、発生するガスを放出する以外は密閉型となっており小型化することが可能である。また、空気も不要であるため、使用環境の制約も少ない。
 [第7実施形態]
 (構成)
 図9は、第7実施形態に係るゾル金属負極電池70の構成を示す図である。ゾル金属負極電池は、図2に示す第1実施形態係る金属電池10のアルミ箔から成る負極を、ゾル金属10aに置換した電池である。負極材貯蔵タンク4eに貯蔵されているゾル金属10aを負極材送液ポンプ44fにより負極集電体4f中へ押し出すことにより、電池として機能する。
ゾル金属10aに使用する金属粒子や金属粉末は、自己放電を少なくするために、イオン化傾向の低い金属(例えば、亜鉛、インジウム、スズ等)で表面をコーティングしたり、炭素又は金属酸化物を含む導電性材料(グラファイト、カーボンブラック、アセチレンブラック、酸化コバルト、オキソ水酸化コバルト、酸化銀、酸化銀ニッケル、オキソ水酸化ニッケル、及び酸化インジウム)を含むポリマーで表面をコーティングしたり、それらを混成してもよい。ゾル化剤には、増粘効果がある、デンプン、セルロース誘導体、乳化剤等が使用でき、導電性のある粒子や微粒子を含んでいてもよい。導電性粒子は、電池の抵抗を低減する効果がある。負極集電体4fは、多孔質あるいはスポンジ状やメッシュ状、フェルト上、ニット状の金属(ステンレス、Ti, V, Ni, Zr, Mo, Ta, W等)や炭素を使用することができる。
 (動作)
 第1実施形態~第6実施形態では負極に固体の金属を使用しているが、固体の場合は、負極の形状やサイズの自由度が乏しく、押し出し構造も限定される。また、複数の電池を直列もしくは並列に接続する場合、独立した電極と駆動系が必要となり、部品が増加し大型化するという欠点がある。
 本実施形態では、負極金属として金属粒子、金属粉末、金属微粉末をゾル化剤と混練したゾル金属10aを使用し、ゾル金属10aを貯蔵タンクより負極集電体4f中へ押し出し、負極集電体4f中で反応させることにより、固体金属と同様に取り扱うことが可能である。即ち、ゾル金属10aは例えば多孔質金属中を通過する際に、式(2)の反応を起こし、発生した電子を集電体へ渡すことにより、発電を行う。リミットセンサは、リミットセンサと負極集電体4f間の電位差がゼロになることを検出することにより、ゾル金属10aが反応容器に一杯になっていることを検出するために使用される。
 [全実施形態共通の動作]
 以上に説明した実施形態に共通する動作に関して説明する。具体的な処理を図10~図12のフローチャートに示す。これらの処理は、MPU32で実行される。
 図10は、アルミニウム箔の送り制御に関するフローチャートである。
 ステップS01で、図2における正極電位Vb+と負極電位Vb-から、Vout={(Vb+) - (Vb-)} により電極間電圧を求める。
 ステップS02で、求めたVoutが、予め設定している制御目標電圧Vtar電圧より低いか否か判断する。
 ステップS03で、Vout < Vtarの場合、Vout電圧を上げるために、アルミニウム箔を僅か(例えば、1~数mm程度)モータを駆動して電解液へ送り出す。それ以外は、ステップS04へ進む。
 ステップS04で、アルミニウム箔が電解液へ浸かり反応が促進されるとVoutが上昇するので、反応が開始するまで待つ。待ち時間は実験により決定するが、数秒~数十秒程度である。
 ステップS05で、アルミニウム箔の電解液への浸漬長がリミット値を超えていないか判断する。なお、この判断は、リミットセンサ電位VlimとVb-電位の差{Vlim-(Vb-)}を取り、電位差がゼロとなったらリミット値を超えたと判定する。リミット値を越えていない場合、ステップS01へ戻る。
 ステップS06で、負極電界質の残量をチェックする。無い場合には、電池の使用を終了し、有る場合には、ステップS01に戻る。
 図11は、図5及び図6における、負極の電解液の管理に関するフローチャートである。
 S11で、予め、初期動作に必要な量の電解質は、電池若しくはカセットに装填されていて、水を電池若しくはカセットに満たすことで、必要な濃度の電解液が生成されるものとする。この時、図6、図7に示す電解質タンクには、負極電解質が装填されており、その残量をQe [g]とする。また、制御するための残量変数をQreとし、初期値をQeとする。
 ステップS12で、リミットセンサの電位Vlimを予め決めている基準電位Vrefと比較する。リミットセンサの電位Vlimは、アルミニウム箔を基準にした負極電解液の電位である。基準電位Vrefは、一般的には、水素が発生しにくい0.7 V~1.0 Vに設定する。
 ステップS13で、リミットセンサ電位Vlimが基準電位Vrefよりも低い場合、電解液濃度が小さいと考えられるので、電解質を吐出する。吐出量DripをQreから差し引く(Qre = Qre - Drip)。Dripは実験により決定する。
 ステップS14で、電解質が電解液へ溶解するまで待つ。待ち時間は、電解質を粉体又は粒体にしておくことで短縮することができる。
 ステップS15で、電解質の残量があるかどうか、変数Qreがゼロより大きいか否かで判断する。残量があれば、S12に戻って繰り返す。残量がなければ、この処理を終了する。
 図12は、正極電位制御に関するフローチャートである。この処理は、電池の正極・負極間の制御目標電圧Vtarが、図12に示すような電圧になるように設定するための処理である。図13は、正極起電圧Vpeeをパラメータとする目標正極電位Vtar特性を示すグラフである。即ち、Vtarは、正極起電圧Vpee=(正極電圧Vb+ - 正極液電位センサ電圧Vpe)がVpeel~Vpeeh間では、図のように一定勾配で低下し、Vpeehを超えたらVtlの一定値になる関数である。Vpee がVpeel以下では、過放電状態となるため放電を停止する。
 ステップS21で、Vtar電圧の設定範囲、即ち目標電圧上限値をVth, 目標電圧下限値をVtlとする。また、Vpee(正極電圧 - 正極液電位センサ電圧)の上限電圧をVpeeh、下限電圧をVpeelとする。Vtl、Vthは電池の正常稼働範囲を設定するもので、通常は実験により0.9 V~1.8 Vの任意の値を設定する。Vpeel,Vpeehは、式(1)の反応の電圧であり、通常は0 V~0.4 Vの値を設定する。
 ステップS22で、Vpeeを求める。
 ステップS23で、VpeeとVpeehを比較する。Vpee > Vpeehの場合、Vtarは変更せずに、S22に戻る。
 ステップS24で、VpeeとVpeelを比較する。Vpee < Vpeelの場合、S26に進む。Vpee >= Vpeelの場合はS25に進む。
 ステップS25で、Vtarを下式により求め、S22から繰り返す。
Figure JPOXMLDOC01-appb-C000007
 ステップS26で、図3の5.0 V昇圧回路を停止し、全体の処理をシャットダウンする。
 [全実施形態共通の特徴]
 以上に説明した実施形態に共通する特徴に関して説明する。
 これら実施形態の対象は、第1~5および第7実施形態に関しては、正極が空気極である金属負極電池であり、第6実施形態に関しては、空気極正極を正極活物質と集電体に置換した金属負極電池である。これらの金属電池の特徴として、例えば、次の事項が挙げられる。
 (1)金属の自動送り機構を持つ金属負極電池である。
 (2)下記の1乃至複数のパラメータにより、(a)電解液の表面水位若しくは液量、(b)金属送りによる金属の電解液に浸かっている長さ(浸漬長)若しくは面積、(c)電解液中の電解質の量(即ち電解質濃度)、の内少なくとも一つを制御可能な金属負極電池である。
  (i)発電電流、発電電圧、発電電力、累積発電電力若しくは稼働時間。
  (ii)電解液温度、大気温度、金属電極温度。
  (iii)電解液のpH値。
  (iv)電解液の電気伝導度(電解液抵抗値)。
  (v)正極、負極若しくはセパレータ電位に対する正極電解液の電位若しくは負極電解液の電位。
  (vi)金属使用量(反応済みの金属量)若しくは累積送り時間
 (3)電解質の主成分を固体とした場合、乾燥状態で長期間維持でき溶媒を注入することで電解液を生成し起動できる金属負極電池である。
 (4)前記溶媒に、水や海水等の水溶液が使用できる金属負極電池である。
 (5)反応部をカセット式にでき、発電に必要な電解質若しくは電解液を供給し、反応後の廃棄物をカセット交換により回収できる前記の金属負極電池である。
 [これら実施形態の利点・効果]
(1)電解液漏えいや自己放電がなく、長期保存が可能となった。
(2)マイコンにより、金属の電解液への浸漬長を出力により最適制御できるため、効率のよい発電を継続することができ、長時間の待機(稼働中の負荷電流がほぼゼロの状態を維持)も可能となった。
(3)負極材にアルミニウム箔を使用した電池にあっては、下記の効果がある。
  (i)アルミニウム箔1本で、コンパクト軽量にも拘わらず大きな電力量が得られる。また、交換可能であるため、長時間発電することが可能となった。
  (ii)特別なアルミニウム箔ではなく一般家庭で使用するクッキング用アルミニウム箔を使用できるため、別途本体と電解液カセットは必要ではあるが、電極材を普段に常備することが可能になった。
 (iii)電解質と反応容器がカセットで一体化されたため、本装置にアルミニウム箔をセットして水または海水を注入するだけで発電できるようになり、何時でも、何処ででも、誰にでも使える、長期保存可能な大容量電池が提供できるようになった。
 (4)上記により、長期保存可能な災害時等の非常用電源、未電化地域での軽量コンパクトな電源、アウトドアや工事現場等での静かで有害物質を出さない電源などの用途に金属負極電池を提供できるようになった。また、大型化することにより、EV車等の補助電源やUPS電源として使用することも可能となった。
 (5)密閉型構造とすることで、コンパクトに実現することが可能となり、携帯用途や車載用途への応用が可能となった。
 (6)ゾル金属を使用することで、直並列接続された複数の電池セルへ1か所から金属を供給したり大出力化したり大型化したりすることが容易となった。
 2:電池本体部、 2-1:正極側、 2-2:負極側、 2a:セパレータ、 2b:正極電解液、 2c:負極電解液、 2d:リミットセンサ、 2e:正極材、 2f:触媒、 2g:多孔質膜、 2h:フィルタ、 2i:フィルタ、 2j:ガス抜き弁キャップ付き注水口、 2k:リミットセンサ接続端子、 2m:接続端子、 2n:正極液電位センサ、 2p:ノズル、 2q:ノズル、 2r:正極集電体電極, 2s:沈殿フィルタ、 2t:反応後の残渣、 2u:多孔質膜、 4:アルミニウム箔送り手段、 4a:アルミニウム箔(アルミフォイル)、 4b:アルミニウム箔送りローラ、 4c:モータ、 4d:アルミニウム箔、 4e:負極材貯蔵タンク、 4f:負極集電体、 6:制御基板、 8:液面、 10:金属負極電池、 10a:ゾル金属、 12:昇圧回路、 14:昇圧回路、 16:オペアンプ、 20:アルミニウム電池、 22:オペアンプ、 24:ADC2、 26:オペアンプ、 28:ADC3、 30:金属負極電池、 32:MPU、 34:DAC、 36:モータ駆動ドライバ、 40:金属負極電池カセット、 42:水タンク、 42a:フロート式水位調節弁付きノズル、 42b:吸気吸入弁キャップ付き注水口、 43:密封型水タンク、 43a:水タンク給水キャップ、 44:電解質送出機構、 44a:負極電解質、 44b:スパイラル式粉体送出機構、 44c:粉体放出ノズル、 44d:電解質送出モータ、 44e:電解質送出モータ接続ギヤ、 44f:負極材圧送ポンプ44f、 50:金属負極電池、 52:反応カセット、 52a:水受け付き給水口、 54:アルミニウム箔挿入ガイド、 58:多孔質PTFE膜、 60:密閉型金属負極電池、 62:超音波モータ、 62a:摺動面、 100:アルミニウム空気電池原理図、 102:正極、 104:アルミニウム電極、 106:電解液、 108:セパレータ

Claims (10)

  1. 正極電極、金属負極電極、電解液を有する金属負極電池にあって、前記金属負極電極が前記電解液にデマンドに応じて浸漬される浸漬手段を備えた金属負極電池。
  2. 請求項1に記載の金属負極電池において、前記金属負極電極の電極がゾル金属からなる金属負極電池。
  3. 請求項1又は2に記載の金属負極電池において、
    前記金属負極電極が前記電解液に向けて押し出されるかもしくは押し戻されるかまたは前記電解液の液面が上昇もしくは下降することにより、前記金属負極電極が前記電解液にデマンドに応じて浸漬される浸漬手段を備えた金属負極電池。
  4. 請求項1~3のいずれか一項に記載の金属負極電池において、
     前記金属負極電極の電極は、主として、アルミニウム、マグネシウム、亜鉛、もしくはリチウムの金属、またはそれらの合金もしくは混合組成物、からなる金属負極電池。
  5. 請求項1~4のいずれか一項に記載の金属負極電池において、
     前記電池の出力電圧や負極の起電力を検出して、その増減に応じて前記負極電極が、前記電解液に浸漬される面積を制御して出力制御を行う金属負極電池。
  6. 請求項1~5のいずれか一項に記載の金属負極電池において、
    前記電解液の水位調整機構を有し、前記電解液を一定の水位に維持している金属負極電池。
  7.  請求項1~6のいずれか一項に記載の金属負極電池において、負極の反応後の残滓を沈殿フィルタにより沈殿させるようにしている金属負極電池。
  8.  請求項1~7のいずれか一項に記載の金属負極電池において、
     前記電解液を正極側電解液と負極側電解液とに分離するセパレータとを有し、
    前記負極電解液に対して負極電解質を送出する電解質送出機構及び前記正極電解液に対して正極電解質を送出する電解質送出機構のいずれか一方又は両方の機構を備え、負極電解液及び正極電解液又は両方の電解液の濃度を制御する金属負極電池。
  9.  請求項1~8のいずれか一項に記載の金属負極電池において、
     前記金属負極電池本体部及び前記電解質送出機構もしくはそれらの構造物の一部を除き一体化して収納した反応カセットを備えた金属負極電池。
  10.  請求項1~9のいずれか一項に記載の金属負極電池において、
     発生する気体は透過するが前記電解液が漏洩しない材料を用いて、密閉構造とした金属負極電池。
PCT/JP2018/007208 2017-03-10 2018-02-27 金属負極電池 WO2018163910A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202211648803.9A CN116053663A (zh) 2017-03-10 2018-02-27 金属负极电池
AU2018231515A AU2018231515B2 (en) 2017-03-10 2018-02-27 Metal anode cell
EP18763550.3A EP3595081B1 (en) 2017-03-10 2018-02-27 Metal anode cell
US16/492,860 US10938073B2 (en) 2017-03-10 2018-02-27 Metal negative electrode cell
CN201880028765.2A CN110612636A (zh) 2017-03-10 2018-02-27 金属负极电池
KR1020197029518A KR102420563B1 (ko) 2017-03-10 2018-02-27 금속 음극전지
CA3060931A CA3060931A1 (en) 2017-03-10 2018-02-27 Metal negative electrode cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046230 2017-03-10
JP2017046230A JP6695614B2 (ja) 2017-03-10 2017-03-10 金属負極電池

Publications (1)

Publication Number Publication Date
WO2018163910A1 true WO2018163910A1 (ja) 2018-09-13

Family

ID=63448477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007208 WO2018163910A1 (ja) 2017-03-10 2018-02-27 金属負極電池

Country Status (9)

Country Link
US (1) US10938073B2 (ja)
EP (1) EP3595081B1 (ja)
JP (1) JP6695614B2 (ja)
KR (1) KR102420563B1 (ja)
CN (2) CN116053663A (ja)
AU (1) AU2018231515B2 (ja)
CA (1) CA3060931A1 (ja)
TW (1) TWI660540B (ja)
WO (1) WO2018163910A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069119A (zh) * 2021-11-05 2022-02-18 深圳市力胜源电子科技有限公司 一种设有电解液补给装置的动力电池包

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075616A1 (ja) * 2018-10-10 2020-04-16 住友化学株式会社 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体
CN111403778B (zh) * 2020-03-27 2021-06-11 北京理工大学 一种开放式可不间断供电的金属空气燃料电池系统
CN113097606B (zh) * 2021-03-23 2023-02-03 深圳大学 一种液流金属空气电池系统
WO2022246747A1 (zh) * 2021-05-27 2022-12-01 中国科学技术大学 金属-氢气电池及其制备方法
CN115036520B (zh) * 2022-05-30 2023-06-30 长虹三杰新能源有限公司 一种水系锂空气电池复合氧电极催化剂及其复合氧电极制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163085A (ja) * 1992-11-17 1994-06-10 Ee C Ii:Kk 電池残存容量計
JP2000133322A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 二次電池の充放電システム
JP2005071726A (ja) 2003-08-22 2005-03-17 Toshiba Corp アルミニウム負極電池
JP2012230892A (ja) 2011-04-14 2012-11-22 Sumitomo Chemical Co Ltd 空気電池
JP2013101788A (ja) * 2011-11-07 2013-05-23 Toyota Motor Corp 非水電解液二次電池システム
JP2013168360A (ja) * 2012-01-19 2013-08-29 Nissan Motor Co Ltd 注液型金属空気電池
JP2014089904A (ja) 2012-10-31 2014-05-15 Kazuyuki Hogo マグネシウム箔を使う電池ならびに電池システム
JP2015228317A (ja) * 2014-05-30 2015-12-17 株式会社ペガソス・エレクトラ マグネシウム金属電池
JP2016071990A (ja) * 2014-09-29 2016-05-09 三鷹光器株式会社 非常用金属空気電池構造
JP2016085789A (ja) * 2014-10-23 2016-05-19 住友重機械工業株式会社 金属燃料電池
JP2017022036A (ja) 2015-07-13 2017-01-26 トヨタ自動車株式会社 金属空気電池用電解液、及び、金属空気電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577281A (en) * 1969-04-28 1971-05-04 Amp Inc Rechargeable moving tape cell
US4521497A (en) * 1984-05-18 1985-06-04 Lth Associates, Ltd. Electrochemical generators and method for the operation thereof
JPS61156643A (ja) 1984-12-27 1986-07-16 Toyota Motor Corp 亜鉛−臭素電池
US6299998B1 (en) * 1999-03-15 2001-10-09 Reveo, Inc. Movable anode fuel cell battery
KR100326460B1 (ko) * 2000-02-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP2004362869A (ja) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd 金属−空気電池用ケース、金属−空気電池、および、金属−空気電池を用いる携帯用電子機器
JP5412977B2 (ja) * 2009-06-16 2014-02-12 トヨタ自動車株式会社 金属気体電池
JP6183040B2 (ja) 2013-08-02 2017-08-23 日産自動車株式会社 空気電池システム
DE102014208044A1 (de) * 2014-04-29 2015-10-29 Mahle International Gmbh Metall-Luft-Batterie
CN106463663B (zh) * 2014-04-29 2019-09-10 马勒国际有限公司 金属空气电池
JP2016066429A (ja) 2014-09-24 2016-04-28 シャープ株式会社 金属空気電池及び電源モジュール
JP2016122635A (ja) * 2014-12-25 2016-07-07 株式会社日本自動車部品総合研究所 非水電解液二次電池
JP6744704B2 (ja) * 2015-10-20 2020-08-19 シャープ株式会社 金属空気電池、電解液槽、及び、金属空気電池の使用方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163085A (ja) * 1992-11-17 1994-06-10 Ee C Ii:Kk 電池残存容量計
JP2000133322A (ja) * 1998-10-28 2000-05-12 Hitachi Ltd 二次電池の充放電システム
JP2005071726A (ja) 2003-08-22 2005-03-17 Toshiba Corp アルミニウム負極電池
JP2012230892A (ja) 2011-04-14 2012-11-22 Sumitomo Chemical Co Ltd 空気電池
JP2013101788A (ja) * 2011-11-07 2013-05-23 Toyota Motor Corp 非水電解液二次電池システム
JP2013168360A (ja) * 2012-01-19 2013-08-29 Nissan Motor Co Ltd 注液型金属空気電池
JP2014089904A (ja) 2012-10-31 2014-05-15 Kazuyuki Hogo マグネシウム箔を使う電池ならびに電池システム
JP2015228317A (ja) * 2014-05-30 2015-12-17 株式会社ペガソス・エレクトラ マグネシウム金属電池
JP2016071990A (ja) * 2014-09-29 2016-05-09 三鷹光器株式会社 非常用金属空気電池構造
JP2016085789A (ja) * 2014-10-23 2016-05-19 住友重機械工業株式会社 金属燃料電池
JP2017022036A (ja) 2015-07-13 2017-01-26 トヨタ自動車株式会社 金属空気電池用電解液、及び、金属空気電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069119A (zh) * 2021-11-05 2022-02-18 深圳市力胜源电子科技有限公司 一种设有电解液补给装置的动力电池包
CN114069119B (zh) * 2021-11-05 2022-07-22 深圳市力胜源电子科技有限公司 一种设有电解液补给装置的动力电池包

Also Published As

Publication number Publication date
AU2018231515B2 (en) 2022-06-30
AU2018231515A1 (en) 2019-10-17
KR102420563B1 (ko) 2022-07-13
TWI660540B (zh) 2019-05-21
TW201841417A (zh) 2018-11-16
JP6695614B2 (ja) 2020-05-20
CA3060931A1 (en) 2019-10-18
US20200185786A1 (en) 2020-06-11
KR20190122829A (ko) 2019-10-30
CN116053663A (zh) 2023-05-02
JP2018152184A (ja) 2018-09-27
EP3595081B1 (en) 2022-03-23
EP3595081A1 (en) 2020-01-15
EP3595081A4 (en) 2021-01-13
US10938073B2 (en) 2021-03-02
CN110612636A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
AU2018231515B2 (en) Metal anode cell
JP2018152184A5 (ja)
US11611115B2 (en) Long life sealed alkaline secondary batteries
JP5446392B2 (ja) 空気電池
JP5769095B2 (ja) 注液式空気電池
JP2010267476A (ja) 空気電池システム
WO2015119041A1 (ja) 空気極及び金属空気電池
WO2014002755A1 (ja) 大容量蓄電装置
US9627694B2 (en) Zinc-water battery and system
US20150340704A1 (en) Magnesium-air fuel cell
JP2010170887A (ja) 燃料電池システムおよび電子機器
JP2015084336A (ja) 燃料電池装置、およびそれを動作させる方法
JP2015103430A (ja) 金属空気電池
JP2007059332A (ja) 燃料電池システムおよびその制御方法
JP2011249161A (ja) 発電装置
US20150340710A1 (en) Carbon electrode and method therefor
JP2017098188A (ja) 空気電池
JP2017147068A (ja) 化学電池、化学電池に用いる活物質、活物質生成装置、及び活物質生成方法
JP6523658B2 (ja) キャパシタ空気電池用の中間層原料組成物、該原料組成物を含有する中間層を有する電極、および該電極を備えたキャパシタ空気電池
CN104716404A (zh) 一种金属/空气电池
JP5470666B1 (ja) 空気電池
JP2017120704A (ja) 金属空気電池
JP2020099851A (ja) 液体処理システム
JP2015032448A (ja) 注液型空気電池の注液システム
JP2020116505A (ja) 液体処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029518

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018231515

Country of ref document: AU

Date of ref document: 20180227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018763550

Country of ref document: EP

Effective date: 20191010

Ref document number: 3060931

Country of ref document: CA