WO2018123648A1 - ハロゲン化α-フルオロエーテル類の製造方法 - Google Patents

ハロゲン化α-フルオロエーテル類の製造方法 Download PDF

Info

Publication number
WO2018123648A1
WO2018123648A1 PCT/JP2017/045082 JP2017045082W WO2018123648A1 WO 2018123648 A1 WO2018123648 A1 WO 2018123648A1 JP 2017045082 W JP2017045082 W JP 2017045082W WO 2018123648 A1 WO2018123648 A1 WO 2018123648A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halogenated
formula
alkyl group
represented
Prior art date
Application number
PCT/JP2017/045082
Other languages
English (en)
French (fr)
Inventor
健史 細井
直也 上島
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US16/474,112 priority Critical patent/US10882809B2/en
Priority to CN201780081293.2A priority patent/CN110121488B/zh
Publication of WO2018123648A1 publication Critical patent/WO2018123648A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/22Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms

Definitions

  • the present invention relates to a method for producing halogenated ⁇ -fluoroethers.
  • Halogenated ⁇ -fluoroethers targeted by the present invention are important pharmaceutical and agrochemical intermediates and alternative chlorofluorocarbon compounds, and in particular, ⁇ , ⁇ , ⁇ , ⁇ -tetrafluoroethers are intermediates of the inhalation anesthetic desflurane. is there.
  • Prior art relating to a method for producing ⁇ -fluoroethers includes a method of reacting hemiacetals, which are fluoral (2,2,2-trifluoroacetaldehyde) equivalents, with a Yarobenco reagent (Patent Document 1), and hemiacetals.
  • Patent Document 2 After conversion to the corresponding p-toluenesulfonic acid ester, followed by a fluorination reaction under basic conditions (Patent Document 2), by adding methanol to hexafluoropropene oxide, the corresponding ester is obtained Thereafter, a method of producing the ester by decarboxylation (Patent Document 3), and converting the hemiacetals to the corresponding fluorosulfate ester, then, under basic conditions, “organic base and fluorination” A method (Patent Document 4) for producing by reacting a “salt or complex comprising hydrogen” is known. .
  • a Jarobenco reagent is used as a dehydroxyfluorinating agent.
  • this reagent must be prepared in advance from low-boiling chlorotrifluoroethylene and diethylamine, and further, an organic fluorine-containing reagent. Due to the stoichiometric by-product of waste, industrial implementation was difficult.
  • Patent Document 2 and Patent Document 3 since the reaction is carried out through two steps, the operation including post-treatment is complicated, high productivity cannot be expected, and the total yield is not expected. The rate was not satisfactory.
  • HaloR represents a haloalkyl group
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group or a substituted alkyl group
  • R 2 represents an alkyl group or a substituted alkyl group.
  • HaloR represents a haloalkyl group
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group or a substituted alkyl group
  • R 2 represents an alkyl group or a substituted alkyl group.
  • orthoesters function as a dehydrating agent that collects water generated with the progress of the fluorination reaction, and the fluorination reaction easily proceeds.
  • the obtained halogenated ⁇ -fluoroethers can be increased in purity by an extremely simple method such as only a washing operation, and the usefulness and value of the present invention are extremely high.
  • the present invention provides a method for producing halogenated ⁇ -fluoroethers described in the following [Invention 1] to [Invention 4].
  • halogenated ⁇ -fluoroethers by reacting halogenated aldehydes or halogenated hemiacetals with hydrogen fluoride.
  • HaloR in the halogenated aldehydes represented by the formula [4] and the halogenated hemiacetals represented by the formula [1] used in the present invention represents a haloalkyl group.
  • the haloalkyl group includes a straight or branched alkyl group having 1 to 6 carbon atoms and a cyclic alkyl group having 3 to 6 carbon atoms, each having a halogen atom (fluorine on the carbon atom of the alkyl group). , Chlorine, bromine, iodine) with any number or any combination. Of these, those having 1 to 4 carbon atoms are preferred, and those having 1 carbon atom are particularly preferred.
  • haloalkyl groups a fluoroalkyl group substituted with a fluorine atom or a chloroalkyl group substituted with a chlorine atom is preferred, and a perfluoroalkyl group or a perchloroalkyl group substituted with all fluorine atoms or chlorine atoms is particularly preferred.
  • haloalkyl group examples include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, trichloromethyl group, pentachloroethyl group, heptachloropropyl group, nonachlorobutyl group, A trifluoromethyl group, a pentafluoroethyl group, a trichloromethyl group, or a pentachloroethyl group is preferable, and a trifluoromethyl group or a trichloromethyl group is particularly preferable because it is inexpensive and excellent in reactivity.
  • R 1 in the halogenated hemiacetals represented by the formula [1] represents a hydrogen atom, a halogen atom, an alkyl group, or a substituted alkyl group.
  • the halogen atom is fluorine, chlorine, bromine or iodine
  • the alkyl group is a linear or branched alkyl group having 1 to 18 carbon atoms and a cyclic alkyl group having 3 to 18 carbon atoms.
  • An alkyl group is a halogen atom, a lower alkoxy group, a lower haloalkoxy group, a cyano group, a lower alkoxycarbonyl group, an aromatic ring group, a carboxyl group, a protected group of a carboxyl group, an amino group, an amino group on the carbon atom of the alkyl group.
  • an alkyl group substituted with a substituent such as a hydroxyl group and a protected group of a hydroxyl group.
  • substituent in the substituted alkyl group include fluorine, chlorine, bromine, iodine as a halogen atom, fluoromethoxy group, chloromethoxy group, bromomethoxy group as a lower haloalkoxy group, and methoxycarbonyl as a lower alkoxycarbonyl group.
  • “Lower” means a linear or branched chain having 1 to 6 carbon atoms or a cyclic having 3 to 6 carbon atoms.
  • alkyl groups methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl and n-hexyl are substituted.
  • alkyl groups a fluoromethyl group, a chloromethyl group, a bromomethyl group, an iodomethyl group, a trifluoroethyl group, a trichloroethyl group, a tribromoethyl group, and a triiodoethyl group are preferable.
  • R 1 a hydrogen atom is particularly preferable because it is stable as a halogenated hemiacetal.
  • R 2 in the halogenated hemiacetals represented by the formula [1] represents an alkyl group or a substituted alkyl group.
  • the definitions of the alkyl group and the substituted alkyl group are the same as the alkyl group and the substituted alkyl group described for R 1 in the halogenated hemiacetals represented by the formula [1].
  • an alkyl group is preferable, and a methyl group or an ethyl group is particularly preferable because of excellent reactivity.
  • R 1 and R 2 in the halogenated hemiacetals represented by the formula [1] can be independently selected from the groups described above.
  • the carbon atom to which the hydroxyl group is bonded is an asymmetric carbon except when HaloR and R 1 have the same substituent.
  • the halogenated hemiacetals have an asymmetric carbon, it is possible to perform a fluorination reaction using both a racemate and an optically active substance.
  • Halogenated aldehydes represented by the formula [4] and halogenated hemiacetals represented by the formula [1] can be prepared by a known method.
  • the halogenated aldehyde represented by the formula [4] reacts quickly with alcohols to become stable hemiacetals, that is, halogenated hemiacetals represented by the formula [1].
  • fluoral (2,2,2-trifluoroacetaldehyde) with methanol or ethanol, the corresponding methyl hemiacetal and ethyl hemiacetal are obtained.
  • halogenated hemiacetals may be prepared by reacting halogenated aldehydes with alcohols in the reaction system, but fluoral methyl hemiacetals and ethyl hemiacetals are commercially available. It is convenient to use it.
  • the halogenated aldehyde represented by the formula [4] is used as shown in the examples described later, and the halogenated ⁇ -fluoroether represented by the formula [2], which is the target product, is obtained. It can be obtained efficiently.
  • R 3 in the orthoester represented by the formula [3] represents a hydrogen atom, an alkyl group, a substituted alkyl group, or an aryl group.
  • the definition of the alkyl group and the substituted alkyl group here is the same as the definition of R 2 in the halogenated hemiacetals represented by the formula [1].
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl, n-hexyl and the like.
  • aryl group in R 3 include a phenyl group, a naphthyl group, an anthryl group, a pyrrolyl group (including a nitrogen protector), a pyridyl group, a furyl group, a thienyl group, an indolyl group (also a nitrogen protector). Quinolyl group, benzofuryl group, benzothienyl group, and the like.
  • a hydrogen atom, a methyl group, an ethyl group, or a propyl group is preferable, and a hydrogen atom, a methyl group, and an ethyl group are particularly preferable because they are inexpensive.
  • R 4 in the orthoester represented by the formula [3] represents an alkyl group or a substituted alkyl group.
  • the definition of the alkyl group and the substituted alkyl group is the same as the alkyl group and substituted alkyl group of R 3 in the orthoester, and R 4 and R 3 can be independently selected.
  • an alkyl group is preferable. Specific examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl, n-hexyl, etc. Of these, a methyl group, an ethyl group, and a propyl group are preferable, and a methyl group and an ethyl group are particularly preferable because of excellent reactivity.
  • Adding the ortho ester represented by the formula [3] to the reaction system can be improved as the conversion rate of the fluorination reaction in the present invention, and thus is mentioned as one of the preferred embodiments in the present invention.
  • the fluorination reaction of the halogenated aldehydes represented by the formula [4] and the halogenated hemiacetals represented by the formula [1] using hydrogen fluoride is represented by the following formula.
  • the orthoester represented by the formula [3] is considered to function as a scavenger (scavenger) for water molecules. That is, the ortho ester of the formula [3] is promptly promoted to hydrolyze under the acidic condition of hydrogen fluoride and converted into one molecule of ester and two molecules of alcohol.
  • Alcohol is produced by the reaction of the ortho ester and water (functions as a dehydrating agent).
  • the ester obtained by the reaction is the target product (represented by the formula [2]) after the reaction.
  • the target product represented by the formula [2]
  • the amount of the orthoester used is the halogenated aldehyde represented by the formula [4] or the halogenated aldehyde represented by the formula [1]. It is preferable to use 0.2 equivalents or more, usually 0.5 to 1.5 equivalents, per equivalent of hemiacetals. However, when the ortho ester represented by the formula [3] is used in an amount exceeding 1.5 equivalents, it is affected by the alcohol (R 4 OH) by-produced by hydrolysis and represented by the formula [1].
  • the acetal represented by the formula [5] which is an equilibrium compound with the halogenated hemiacetal, is produced, and the selectivity to the target halogenated ⁇ -fluoroether represented by the formula [2] is slightly reduced. Therefore, using an amount in the above-described range is one preferred embodiment.
  • HaloR represents a haloalkyl group
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group or a substituted alkyl group
  • R 2 represents an alkyl group or a substituted alkyl group.
  • the halogenated aldehyde represented by the formula [4] of the starting material is affected by the alcohol released from the decomposition of the orthoester represented by the formula [3] coexisting in the reaction system, and the aldehyde It is envisaged that some of these form hemiacetals.
  • the halogenated aldehydes can be used as a starting substrate. In this case, the addition of the orthoester to the reaction system can efficiently obtain a halogenated ⁇ -fluoroether. This is one of the preferred embodiments.
  • the amount of hydrogen fluoride used as the fluorinating agent is usually 1 equivalent or more per 1 mol of the halogenated hemiacetal represented by the formula [1] and the halogenated aldehyde represented by the formula [4]. It is preferable to use 2 to 10 equivalents because the reaction proceeds smoothly. Further, considering the post-treatment operation, it is more preferable to use 3 to 6 equivalents.
  • reaction solvent examples include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, esters, amides, nitriles, sulfoxides, and the like. Specific examples include n-hexane, cyclohexane, n-heptane, benzene, toluene, ethylbenzene, xylene, mesitylene, methylene chloride, chloroform, 1,2-dichloroethane, diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, Examples include ethyl acetate, n-butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, acetonitrile, propionitrile, dimethyl sulfoxide and the
  • the reaction can be carried out without using a solvent.
  • a solvent As disclosed in the examples described later, it is more preferable to carry out the reaction without a solvent because there is an advantage that the purification operation after the reaction becomes simple and the high-purity target product can be obtained only by a washing operation.
  • the temperature condition may be in the range of ⁇ 50 to + 100 ° C., usually ⁇ 20 to + 50 ° C. is preferable, and 0 to + 20 ° C. is particularly preferable.
  • the pressure condition may be in the range of atmospheric pressure to 0.9 MPa (absolute pressure, hereinafter the same), and is usually preferably atmospheric pressure to 0.5 MPa, more preferably atmospheric pressure to 0.2 MPa.
  • reaction vessel used in the present invention a metal vessel such as stainless steel, Monel TM , Hastelloy TM , nickel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, and A reactor capable of sufficiently reacting at normal pressure or under pressure, such as one lined with polyethylene resin or the like, can be used.
  • a metal vessel such as stainless steel, Monel TM , Hastelloy TM , nickel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, and A reactor capable of sufficiently reacting at normal pressure or under pressure, such as one lined with polyethylene resin or the like, can be used.
  • the reaction time is usually within 12 hours. It differs depending on the combination of the starting material (formula [1] or formula [4]) and the orthoester (formula [3]) and the difference in reaction conditions due to the amount of hydrogen fluoride used. It is preferable that the progress of the reaction is traced by an analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc., and the point of time when the starting substrate is almost disappeared is the end point of the reaction.
  • an analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc.
  • a simple substance of the halogenated ⁇ -fluoroether represented by the general formula [2] can be easily obtained by carrying out a normal purification operation on the reaction end solution.
  • the target product can be purified to a higher chemical purity product by activated carbon treatment, distillation, recrystallization, column chromatography and the like, if necessary.
  • Example 1 Under ice cooling, a polytetrafluoroethylene (PTFE) stirrer was placed in a pressure-resistant reaction vessel made of 100 mL stainless steel (SUS) equipped with a pressure gauge, and 5.0 g (38.4 mmol) of a halogenated hemiacetal represented by the above formula, 3.8 g (192.2 mmol) of hydrogen fluoride was weighed, naturally heated, and then stirred at room temperature for 2 hours. After the reaction, the pressure of 0.15 MPa was released and the reaction solution was sampled.
  • PTFE polytetrafluoroethylene
  • Example 2 Under ice cooling, a polytetrafluoroethylene (PTFE) stirrer was placed in a pressure-resistant reaction vessel made of 100 mL stainless steel (SUS) equipped with a pressure gauge, and 5.0 g (38.4 mmol) of a halogenated hemiacetal represented by the above formula, 3.8 g (192.2 mmol) of hydrogen fluoride and 2.0 g (19.2 mmol) of methyl orthoformate were weighed out and stirred for 2 hours at room temperature after natural temperature rise. After the reaction, the pressure in the vicinity of 0.10 MPa was released, and the reaction solution was measured by 19 F-NMR. Ether was obtained. At that time, the byproduct rate of the acetal represented by the above formula was 2.4%.
  • SUS stainless steel
  • Example 3-4 In Example 3 and Example 4, the reaction was performed under the same conditions as in Example 2 except that the experiment was performed by changing the amount of methyl orthoformate added.
  • the examples 1 and 2 are also summarized and the results are shown in Table 1 below. Measurement conditions were the same as in Example 2.
  • any of the examples it is possible to obtain a halogenated ⁇ -fluoroether with high selectivity. It can also be confirmed that the conversion rate of the starting material is improved by the addition of methyl orthoformate.
  • Example 5 A 250 ml tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) reactor equipped with a thermometer was charged with a polytetrafluoroethylene (PTFE) stirrer, and 50.0 g (384 mmol) of a hemiacetal halide represented by the above formula was used. ) was weighed and cooled. After cooling, 38.4 g (1.92 mol) of hydrogen fluoride was added at an internal temperature of ⁇ 2.0 ° C. to 15.9 ° C., and then 40.8 g (384 mmol) of methyl orthoformate was added at an internal temperature of ⁇ 1.8 ° C. To 29.8 ° C.
  • PFA polytetrafluoroethylene
  • the obtained organic layer contains methyl formate or methanol which is a hydrolyzate of methyl orthoformate, it is washed with 80 g of a 16% potassium hydroxide solution to obtain a halogenated halogen having a GC purity of 87.1%. 25.1 g of ⁇ -fluoroether was obtained with a yield of 49.4%.
  • Example 6 Under ice cooling, a polytetrafluoroethylene (PTFE) stirrer was placed in a pressure-resistant reaction vessel made of 100 mL stainless steel (SUS) equipped with a pressure gauge, and 5.0 g (38.4 mmol) of a halogenated hemiacetal represented by the above formula, 3.8 g (192.2 mmol) of hydrogen fluoride and 4.6 g (38.4 mmol) of methyl orthoacetate were weighed out and stirred at room temperature for 5 hours after natural temperature rise. After the reaction, the reaction pressure in the vicinity of 0.10 MPa was released, and the reaction solution was measured by 19 F-NMR. As a result, the halogenated ⁇ - Fluoroether was obtained. At that time, the byproduct rate of the acetal represented by the above formula was 2.1%.
  • SUS stainless steel
  • Example 7 Under ice cooling, a polytetrafluoroethylene (PTFE) stirrer was placed in a pressure-resistant reaction vessel made of 100 mL stainless steel (SUS) equipped with a pressure gauge, and 5.0 g (34.7 mmol) of a halogenated hemiacetal represented by the above formula, Hydrogen fluoride (3.5 g, 173.6 mmol) and ethyl orthoformate (5.1 g, 34.7 mmol) were weighed, and after natural temperature increase, the mixture was stirred at room temperature for 5 hours. After the reaction, the reaction pressure in the vicinity of 0.10 MPa was released, and the reaction solution was measured by 19 F-NMR.
  • SUS stainless steel
  • Example 8 A 250 ml tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) reactor equipped with a thermometer was charged with a polytetrafluoroethylene (PTFE) stirrer and weighed 44.4 g (2.22 mol) of hydrogen fluoride. I took it. Separately, 54.5 g (555 mmol) of fluoral prepared by a known method (Japan Society for Synthetic Organic Chemistry (Japan), 1999, Vol. 57, No. 10, pp. 102-103) was added to hydrogen fluoride at an internal temperature of 1.1. Absorption was carried out at 21.0 ° C.
  • PFA perfluoroalkyl vinyl ether copolymer
  • the obtained organic layer contains methyl formate or methanol which is a hydrolyzate of methyl orthoformate, it is washed with 90 g of a 16% potassium hydroxide solution to obtain a halogenated halogen having a GC purity of 97.6%. 39.1 g of ⁇ -fluoroether was obtained with a yield of 53.3%.
  • Example 9 In a 1000 ml stainless steel (SUS) pressure-resistant reaction vessel equipped with a thermometer and a stirring motor, 162 g (8.14 mol) of hydrogen fluoride and 400 g (2.71 mol) of chloral were weighed. Thereafter, 288 g (2.71 mol) of methyl orthoformate was added dropwise at an internal temperature of 4.0 ° C. to 26.7 ° C. under cooling. After reacting at room temperature for 1 hour, it was cooled again, and 400 g of ion-exchanged water was added to the reaction solution while paying attention to heat generation to stop the reaction. After washing for 10 minutes with water, two layers were separated to obtain 555 g of an organic layer having a GC purity of 77.1%.
  • SUS stainless steel
  • the obtained organic layer contains methyl formate or methanol which is a hydrolyzate of methyl orthoformate, it is washed with 600 g of a 16% potassium hydroxide solution to obtain a halogenated halogen having a GC purity of 94.2%. 443 g of ⁇ -fluoroether was obtained at a yield of 90.0%.
  • halogenated ⁇ -fluoroethers targeted by the present invention can be used as an intermediate of the inhalation anesthetic agent desflurane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式: [式(1)中、HaloRはハロアルキル基を表す] で表されるハロゲン化アルデヒド類、またはそれの等価体を、フッ化水素と反応させることにより、式: [式(2)中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す] で表されるハロゲン化α-フルオロエーテル類を工業的規模で効率的に製造することができる。

Description

ハロゲン化α-フルオロエーテル類の製造方法
 本発明は、ハロゲン化α-フルオロエーテル類の製造方法に関する。
 本発明の対象とするハロゲン化α-フルオロエーテル類は重要な医農薬中間体および代替フロン化合物であり、特にα、β、β、β-テトラフルオロエーテル類は、吸入麻酔剤デスフルランの中間体である。α-フルオロエーテル類の製造方法に関する従来技術としては、フルオラール(2,2,2-トリフルオロアセトアルデヒド)等価体であるヘミアセタール類をヤロベンコ試薬と反応させる方法(特許文献1)、ヘミアセタール類を、対応するp-トルエンスルホン酸エステル体へ変換後、次いで塩基性条件下でフッ素化反応により製造する方法(特許文献2)、ヘキサフルオロプロペンオキシドにメタノールを付加させることにより対応するエステル体を得、その後、該エステル体を脱炭酸することにより製造する方法(特許文献3)、そして、ヘミアセタール類を対応するフルオロ硫酸エステル体へ変換後、次いで、塩基性条件下、「有機塩基とフッ化水素からなる塩または錯体」を反応させて製造する方法(特許文献4)が知られている。なお、本発明にて開示する、ハロゲン化ヘミアセタール類やハロゲン化アルデヒドを、フッ化水素でフッ素化を行うことにより、対応するハロゲン化α-フルオロエーテル類を得る製造方法は知られていない。
特開昭50-076007号公報 特開平2-104545号公報 特開平6-087777号公報 特開2009-286731号公報
 ハロゲン化α-フルオロエーテル類を製造する方法に関して、これまで知られている方法は、小規模で行うには有利であるが、低沸点で取り扱いの難しい試薬を用いているものが多く、またその場合には高圧での反応が実施可能な設備を必要とする。さらに、それぞれの反応には有機溶媒を用いるため、生成物であるハロゲン化α-フルオロエーテル類を単離する場合には、煩雑な精密蒸留等による分離操作を必要とした。
 特許文献1に記載の方法では、脱ヒドロキシフッ素化剤としてヤロベンコ試薬を用いているが、本試薬は予め低沸点なクロロトリフルオロエチレンとジエチルアミンから調製する必要があり、さらには有機性の含フッ素廃棄物を化学量論的に副生するため、工業的な実施が困難であった。特許文献2や特許文献3に記載の方法では、反応を2つの工程を経由することで実施するため、後処理も含めて操作が複雑であり、高い生産性が期待できず、また、全収率も満足の行くものではなかった。特許文献4に記載の方法では、低沸点なフッ化スルフリルを過剰に用いる必要があり、また、反応温度が超低温(-78℃)であることから、製造設備への負荷が大きく、工業的に採用するにはいくぶん難があった。
 このように、ハロゲン化α-フルオロエーテル類を安価で効率的に製造する方法が強く望まれていた。
 本発明者らは、上記の問題点を鑑み、鋭意検討を行った。その結果、式[4]で表されるハロゲン化アルデヒド類、またはハロゲン化アルデヒド類の等価体である、式[1]で表されるハロゲン化ヘミアセタール類を、フッ化水素と反応させることにより、式[2]で表されるハロゲン化α-フルオロエーテル類が容易に製造できることを見出した。
Figure JPOXMLDOC01-appb-C000005
[式[4]中、HaloRはハロアルキル基を表す。]
Figure JPOXMLDOC01-appb-C000006
[式[1]中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す。]
Figure JPOXMLDOC01-appb-C000007
[式[2]中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す。]
 ハロゲン化ヘミアセタール類に対し、フッ化水素でフッ素化反応を行う場合、フッ化水素自身はフッ素化剤であると同時に、それ自身の持つ酸性物質としての機能も有する為、ハロゲン化ヘミアセタール類が、フッ素化反応以外に、該アセタール類自身が副反応を起こし、対応するアルデヒド及びアルコールに分裂することが懸念されたが、実際に行ってみたところ、意外にもヒドロキシル基のフッ素化反応が選択的に進行し、対応するハロゲン化α-フルオロエーテルが得られることとなった。
 更に、反応系内にオルトエステル類を共存させることで、反応速度が飛躍的に向上し、格段と高い収率でハロゲン化α-フルオロエーテル類が製造できるという、好ましい知見を得た。このことは、オルトエステル類が、フッ素化反応の進行と共に発生する水を捕集する脱水剤として機能し、フッ素化反応が進行しやすくなったものと推測される。
 また、得られたハロゲン化α-フルオロエーテル類は、洗浄操作のみといった、極めて簡便な方法で純度を高めることも可能であり、本発明の有用性、価値は極めて高い。
 すなわち本発明は、以下の[発明1]~[発明4]に記載する、ハロゲン化α-フルオロエーテル類の製造方法を提供する。
 [発明1]
 式[4]で表されるハロゲン化アルデヒド類、またはそれの等価体を、フッ化水素と反応させることにより、式[2]で表されるハロゲン化α-フルオロエーテル類を製造する方法。
 [発明2]
 ハロゲン化アルデヒド類の等価体が、式[1]で表されるハロゲン化ヘミアセタール類である、発明1に記載の方法。
 [発明3]
 前記反応を、式[3]で表されるオルトエステルの存在下で行う、発明1または2に記載の方法。
Figure JPOXMLDOC01-appb-C000008
[式[3]中、R3は水素原子、アルキル基、置換アルキル基、アリール基を表し、R4はアルキル基または置換アルキル基を表す。]
 [発明4]
 前記反応を、有機溶媒を用いることなく行う、発明1乃至3の何れかに記載の方法。
 本発明によれば、ハロゲン化アルデヒド類またはハロゲン化ヘミアセタール類を、フッ化水素と反応させることで、効率的にハロゲン化α-フルオロエーテル類を製造できるという効果を奏する。
 以下、本発明を詳細に説明する。本発明は以下の実施態様に限定されるものではなく、本発明の趣旨を損なわない範囲で、当業者の通常の知識に基づいて、適宜実施することができる。
 本発明で用いる、式[4]で表されるハロゲン化アルデヒド類や、式[1]で表されるハロゲン化ヘミアセタール類におけるHaloRはハロアルキル基を表す。該ハロアルキル基としては、炭素数が1~6の直鎖もしくは分枝鎖のアルキル基及び炭素数が3~6の環式のアルキル基の、それぞれのアルキル基の炭素原子上にハロゲン原子(フッ素、塩素、臭素、ヨウ素)が任意の数や任意の組み合わせで置換したものである。その中でも炭素数1~4のものが好ましく、炭素数が1のものが特に好ましい。
 また、ハロアルキル基のうち、フッ素原子が置換したフルオロアルキル基または塩素原子が置換したクロロアルキル基が好ましく、特にフッ素原子または塩素原子が全て置換したパーフルオロアルキル基、パークロロアルキル基が好ましい。
 ハロアルキル基の具体例として、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、トリクロロメチル基、ペンタクロロエチル基、ヘプタクロロプロピル基、ノナクロロブチル基が挙げられるが、トリフルオロメチル基、ペンタフルオロエチル基、トリクロロメチル基、ペンタクロロエチル基が好ましく、特に、トリフルオロメチル基やトリクロロメチル基のものが安価であり、反応性にも優れており、より好ましい。
 式[1]で表されるハロゲン化ヘミアセタール類におけるR1は、水素原子、ハロゲン原子、アルキル基、置換アルキル基を表す。ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素であり、アルキル基としては炭素数1~18の直鎖もしくは分枝鎖のアルキル基及び炭素数が3~18の環式のアルキル基であり、置換アルキル基は、該アルキル基の炭素原子上にハロゲン原子、低級アルコキシ基、低級ハロアルコキシ基、シアノ基、低級アルコキシカルボニル基、芳香環基、カルボキシル基、カルボキシル基の保護体、アミノ体、アミノ基の保護体、ヒドロキシル基及びヒドロキシル基の保護体等の置換基が置換されたアルキル基である。
 置換アルキル基における置換基の具体例としては、ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素、低級ハロアルコキシ基としてはフルオロメトキシ基、クロロメトキシ基、ブロモメトキシ基、低級アルコキシカルボニル基としてはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、芳香環基としてはフェニル基、ナフチル基、アントリル基、ピロリル基(窒素保護体も含む)、ピリジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、キノリル基、ベンゾフリル基、ベンゾチエニル基である。なお、「低級」とは、炭素数1~6の直鎖もしくは分枝鎖の鎖式または炭素数3~6の環式を意味する。
 前記アルキル基のうち、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基及びn-ヘキシル基が、前記置換アルキル基のうち、フルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、トリフルオロエチル基、トリクロロエチル基、トリブロモエチル基及びトリヨードエチル基が好ましい。特に、R1の中でも、特に水素原子が、ハロゲン化ヘミアセタール類として安定である為、特に好ましい。
 式[1]で表されるハロゲン化ヘミアセタール類におけるR2は、アルキル基、置換アルキル基を表す。該アルキル基および置換アルキル基の定義は、式[1]で表されるハロゲン化ヘミアセタール類におけるR1で記載したアルキル基および置換アルキル基と同じである。その中でもアルキル基が好ましく、特にメチル基やエチル基が、反応性に優れており、より好ましい。
 なお、式[1]で表されるハロゲン化ヘミアセタール類におけるR1とR2とはそれぞれ独立に前述した基を選択できる。
 式[1]で表されるハロゲン化ヘミアセタール類の立体化学については、HaloRとR1が同じ置換基を採る場合を除き、ヒドロキシル基が結合している炭素原子は不斉炭素になる。ハロゲン化ヘミアセタール類が不斉炭素を有する場合、ラセミ体や光学活性体の双方を用いてフッ素化反応を行うことが可能である。
 式[4]で表されるハロゲン化アルデヒド類や、式[1]で表されるハロゲン化ヘミアセタール類は、公知の方法で調製することができる。例えば、式[4]で表されるハロゲン化アルデヒド類は、アルコール類と速やかに反応し、安定なヘミアセタール類、すなわち、式[1]で表されるハロゲン化ヘミアセタール類となる。具体的には、フルオラール(2,2,2-トリフルオロアセトアルデヒド)にメタノールまたはエタノールを反応させることで、それぞれ対応するメチルヘミアセタール、エチルヘミアセタールとなる。このように、ハロゲン化ヘミアセタール類は、反応系内でハロゲン化アルデヒド類とアルコール類とを反応させることで調製しても良いが、フルオラールのメチルヘミアセタール体およびエチルヘミアセタール体については商用的に市販されているので、それを利用するのが便利である。なお、本発明では、後述の実施例で示すように、式[4]で表されるハロゲン化アルデヒド類を用い、目的物である式[2]で表されるハロゲン化α-フルオロエーテル類を効率的に得ることが可能である。
 式[3]で表されるオルトエステルにおけるR3は、水素原子、アルキル基、置換アルキル基、アリール基を表す。ここで言うアルキル基、置換アルキル基の定義は、式[1]で表されるハロゲン化ヘミアセタール類におけるR2の定義と同じである。
 アルキル基の具体例としてはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル、n-ヘキシル等が挙げられる。なお、R3におけるアリール基の具体的な基としては、フェニル基、ナフチル基、アントリル基、ピロリル基(窒素保護体も含む)、ピリジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、キノリル基、ベンゾフリル基及びベンゾチエニル基等が挙げられる。
 これらのうち、水素原子、メチル基、エチル基またはプロピル基が好ましく、特に水素原子、メチル基及びエチル基のものが安価であり、より好ましい。
 式[3]で表されるオルトエステルにおけるR4は、アルキル基または置換アルキル基を表す。該アルキル基および置換アルキル基の定義は、該オルトエステルにおけるR3のアルキル基および置換アルキル基と同様であり、R4とR3とはそれぞれ独立に選択することができる。
 R4の定義の中でもアルキル基が好ましい。具体的にはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル、n-ヘキシル等が挙げられるが、これらのうち、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基が、反応性にも優れており、特に好ましい。
 式[3]で表されるオルトエステルを反応系に添加することは、本発明におけるフッ素化反応の変換率を向上させることができることから、本発明における好ましい態様の一つとして挙げられる。式[4]で表されるハロゲン化アルデヒド類や、式[1]で表されるハロゲン化ヘミアセタール類のフッ化水素を用いたフッ素化反応は、下記式で表されるように、反応の進行と共に、目的物の他、水分子が発生する。式[3]で表されるオルトエステルは、水分子に対するスカベンジャー(捕捉剤)として機能しているものと考えられる。すなわち、式[3]のオルトエステルはフッ化水素の酸性条件下、速やかに加水分解反応を促され、1分子のエステルと2分子のアルコールへ変換される。
 オルトエステルと水との反応によりアルコールが生成し(脱水剤として機能)、それと同時に、該反応で得られるエステル体(下記スキームを参照)は、反応後、目的物(式[2]で表されるハロゲン化α-フルオロエーテル類)と容易に分離が可能である。
Figure JPOXMLDOC01-appb-C000009
 式[3]で表されるオルトエステルを脱水剤として機能させるには、該オルトエステルの使用量は、式[4]で表されるハロゲン化アルデヒド類または式[1]で表されるハロゲン化ヘミアセタール類1当量に対し0.2当量以上、通常は0.5~1.5当量用いるのが良い。但し、式[3]で表されるオルトエステルを、1.5当量を超える量を用いた場合、加水分解により副生するアルコール(R4OH)の影響を受け、式[1]で表されるハロゲン化ヘミアセタールとの平衡化合物である、式[5]で表されるアセタールが生じ、目的物である、式[2]で表されるハロゲン化α-フルオロエーテルへの選択性がやや低下することがあるので、前述した範囲の量を用いることは、好ましい態様の一つである。
Figure JPOXMLDOC01-appb-C000010
[式[5]中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す。]
 なお、出発原料の式[4]で表されるハロゲン化アルデヒド類は、反応系中に共存する式[3]で表されるオルトエステルの分解から放出されるアルコールの影響を受け、該アルデヒド類の一部がヘミアセタール類を形成することが想定される。本発明は該ハロゲン化アルデヒド類を出発基質として用いることが可能であるが、この場合、反応系内に該オルトエステルを添加することは、ハロゲン化α-フルオロエーテルを効率的に得ることができる好ましい態様の1つである。
 フッ素化剤であるフッ化水素の使用量は、式[1]で表されるハロゲン化ヘミアセタールや式[4]で表されるハロゲン化アルデヒド1モルに対し、通常、1当量以上あれば良く、2当量~10当量用いると反応は円滑に進行するため好ましい。さらに、後処理操作を考慮すると、3当量~6当量用いることがより好ましい。
 反応溶媒は脂肪族炭化水素系、芳香族炭化水素系、ハロゲン化炭化水素系、エーテル系、エステル系、アミド系、ニトリル系、スルホキシド系等が挙げられる。具体例としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、酢酸エチル、酢酸n-ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、アセトニトリル、プロピオニトリル、ジメチルスルホキシド等が挙げられる。これらの反応溶媒は、単独または組み合わせて用いることができる。
 なお、本発明は溶媒を用いずに反応を行うこともできる。後述の実施例で開示しているように、反応を無溶媒で行うことは、反応後の精製操作が簡便となり、高純度な該目的物を洗浄操作のみで得る利点があり、より好ましい。
 温度条件は、-50から+100℃の範囲で行えば良く、通常は-20から+50℃が好ましく、中でも0から+20℃が特に好ましい。
 圧力条件は、大気圧から0.9MPa(絶対圧、以下、同じ)の範囲で行えば良く、通常は大気圧から0.5MPaが好ましく、特に大気圧から0.2MPaがより好ましい。
 本発明で用いる反応容器としては、ステンレス鋼、モネルTM、ハステロイTM、ニッケルなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、そしてポリエチレン樹脂などを内部にライニングしたもの等、常圧又は加圧下で十分反応を行うことができる反応器を使用することができる。
 反応時間は、通常は12時間以内である。出発原料(式[1]または式[4])とオルトエステル(式[3])の組み合わせ、および採用したフッ化水素の使用量に起因した反応条件の違いにより異なる。ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、出発基質が殆ど消失した時点を反応の終点とすることが好ましい。
 後処理は、反応終了液に対して通常の精製操作を実施することにより、目的とする一般式[2]で表されるハロゲン化α-フルオロエーテル類の単体を容易に得ることができる。目的生成物は、必要に応じて、活性炭処理、蒸留、再結晶、カラムクロマトグラフィー等により、さらに高い化学純度品へ精製することができる。
 以下、実施例により本発明を詳細に説明するが、これらの実施態様に限られない。
 [実施例1]
Figure JPOXMLDOC01-appb-C000011
 氷冷下、圧力計を備えた100mLステンレス鋼(SUS)製耐圧反応容器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、上式に示すハロゲン化ヘミアセタール5.0g(38.4mmol)、フッ化水素3.8g(192.2mmol)を量り取り、自然昇温後、室温にて2時間攪拌を行った。反応後、0.15MPaの圧力を開放し、反応液をサンプリングした。サンプリング液には未反応のフッ化水素を吸着するため、無水塩化カルシウムを添加後、19F-NMRにて測定したところ、変換率29.2%、選択率93.5%にて上式に示すハロゲン化α-フルオロエーテルを得た。また、その際、上式に示すアセタールの副生率は3.7%であった。
[物性データ]
(1,2,2,2-テトラフルオロエチル)メチルエーテル:
1H-NMR(400MHz,CDCl3)δ(ppm):3.72(3H,s),5.28(1H,dq,J=60.0,3.2Hz).
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-84.33(3F,s),-146.04(1F,d,J=60.7Hz).
 [実施例2]
Figure JPOXMLDOC01-appb-C000012
 氷冷下、圧力計を備えた100mLステンレス鋼(SUS)製耐圧反応容器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、上式に示すハロゲン化ヘミアセタール5.0g(38.4mmol)、フッ化水素3.8g(192.2mmol)、そしてオルトギ酸メチル2.0g(19.2mmol)を量り取り、自然昇温後、室温にて2時間攪拌を行った。反応後、0.10MPa付近の圧力を開放し、反応液を19F-NMRにて測定したところ、変換率54.0%、選択率93.4%にて上式に示すハロゲン化α-フルオロエーテルを得た。また、その際、上式に示すアセタールの副生率は2.4%であった。
 [実施例3-4]
 実施例3及び実施例4は、オルトギ酸メチルの添加量を変化させて実験を行った他は、実施例2と同一の条件で反応を行った。前記実施例1及び2もまとめて、結果を以下の表1に示す。測定条件についても実施例2と同様に行った。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-T000014
 このように、何れの実施例も高い選択率でハロゲン化α-フルオロエーテルを得ることが可能である。また、オルトギ酸メチルの添加により、出発原料の変換率も向上していることが確認できる。
 [実施例5]
Figure JPOXMLDOC01-appb-C000015
 温度計を備えた250mlのテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)反応器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、上式に示すハロゲン化ヘミアセタール50.0g(384mmol)を量り取り、冷却した。冷却後、フッ化水素38.4g(1.92mol)を内温-2.0℃から15.9℃にて添加し、次いでオルトギ酸メチル40.8g(384mmol)を内温-1.8℃から29.8℃にて定量ポンプを用い、導入した。自然昇温後、室温にて2時間反応を行ったところで19F-NMRによる分析を行ったところ、変換率78.4%、選択率90.9%にて上式に示すハロゲン化α-フルオロエーテルを得た。その際、上式に示すアセタールが4.4%にて副生していることを合わせて確認した。反応後、再度冷却を行い、発熱に注意しながらイオン交換水80gを反応液へ添加し、反応を停止させた。10分間の水洗後、2層分離を行うことでGC純度68.6%の有機層を37.2g得た。得られた有機層にはオルトギ酸メチルの加水分解体であるギ酸メチルやメタノールが含有するため、16%水酸化カリウム溶液80gを用いて洗浄を行うことにより、GC純度87.1%のハロゲン化α-フルオロエーテルを収率49.4%にて25.1g得た。
 [実施例6]
Figure JPOXMLDOC01-appb-C000016
 氷冷下、圧力計を備えた100mLステンレス鋼(SUS)製耐圧反応容器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、上式に示すハロゲン化ヘミアセタール5.0g(38.4mmol)、フッ化水素3.8g(192.2mmol)、そしてオルト酢酸メチル4.6g(38.4mmol)を量り取り、自然昇温後、室温にて5時間攪拌を行った。反応後、0.10MPa付近の反応圧力を開放し、反応液を19F-NMRにて測定したところ、変換率55.9%、選択率94.1%にて上式に示すハロゲン化α-フルオロエーテルを得た。また、その際、上式に示すアセタールの副生率は2.1%であった。
 [実施例7]
Figure JPOXMLDOC01-appb-C000017
 氷冷下、圧力計を備えた100mLステンレス鋼(SUS)製耐圧反応容器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、上式に示すハロゲン化ヘミアセタール5.0g(34.7mmol)、フッ化水素3.5g(173.6mmol)、そしてオルトギ酸エチル5.1g(34.7mmol)を量り取り、自然昇温後、室温にて5時間攪拌を行った。反応後、0.10MPa付近の反応圧力を開放し、反応液を19F-NMRにて測定したところ、変換率69.3%、選択率93.7%にて上式に示すハロゲン化α-フルオロエーテルを得た。また、その際、上式に示すアセタールの副生率は4.4%であった。
[物性データ]
(1,2,2,2-テトラフルオロエチル)エチルエーテル:
1H-NMR(400MHz,CDCl3)δ(ppm):1.33(3H,t,J=7.1Hz),3.83(1H,m),4.03(1H,m),5.36(1H,dq,J=61.8, 3.2Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-84.36(3F,s)-142.60(1F,d,J=60.7Hz)
 [実施例8]
Figure JPOXMLDOC01-appb-C000018
 温度計を備えた250mlのテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)反応器にポリテトラフルオロエチレン(PTFE)の攪拌子を入れ、フッ化水素44.4g(2.22mol)を量り取った。別途、公知の方法(有機合成化学協会誌(日本)、1999年、57巻、10号、102-103ページ)で調製したフルオラール54.5g(555mmol)をフッ化水素へ内温-1.1℃から21.0℃にて吸収させた。その後、冷却下、オルトギ酸メチル50.1g(472mmol)を内温-5℃から25.5℃にて滴下した。そのまま室温にて1時間反応後、再度冷却を行い、発熱に注意しながらイオン交換水90gを反応液へ添加し、反応を停止させた。10分間の水洗後、2層分離を行うことでGC純度75.7%の有機層を51.8g得た。得られた有機層にはオルトギ酸メチルの加水分解体であるギ酸メチルやメタノールが含有するため、16%水酸化カリウム溶液90gを用いて洗浄を行うことにより、GC純度97.6%のハロゲン化α-フルオロエーテルを収率53.3%にて39.1g得た。
 [実施例9]
Figure JPOXMLDOC01-appb-C000019
 温度計、攪拌モーターを備えた1000mlのステンレス鋼(SUS)製耐圧反応容器にフッ化水素162g(8.14mol)、そしてクロラール400g(2.71mol)を量り取った。その後、冷却下、オルトギ酸メチル288g(2.71mol)を内温4.0℃から26.7℃にて滴下した。室温にて1時間反応後、再度冷却を行い、発熱に注意しながらイオン交換水400gを反応液へ添加し、反応を停止させた。10分間の水洗後、2層分離を行うことでGC純度77.1%の有機層を555g得た。得られた有機層にはオルトギ酸メチルの加水分解体であるギ酸メチルやメタノールが含有するため、16%水酸化カリウム溶液600gを用いて洗浄を行うことにより、GC純度94.2%のハロゲン化α-フルオロエーテルを収率90.0%にて443g得た。
[物性データ]
(1-フルオロ‐2,2,2‐トリクロロエチル)メチルエーテル:
1H-NMR(400MHz,CDCl3)δ(ppm):3.75(3H,d,J=1.58Hz),5.34(1H,d,J=63.8Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-128.1(1F,d,J=63.7Hz)
 本発明で対象とするハロゲン化α-フルオロエーテル類、特にα,β,β,β-テトラフルオロエーテル類は、吸入麻酔剤デスフルランの中間体として利用できる。

Claims (4)

  1. 式[4]で表されるハロゲン化アルデヒド類、またはそれの等価体を、フッ化水素と反応させることにより、式[2]で表されるハロゲン化α-フルオロエーテル類を製造する方法。
    Figure JPOXMLDOC01-appb-C000001
    [式[4]中、HaloRはハロアルキル基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式[2]中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す。]
  2. ハロゲン化アルデヒド類の等価体が、式[1]で表されるハロゲン化ヘミアセタール類である、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000003
    [式[1]中、HaloRはハロアルキル基を表し、R1は水素原子、ハロゲン原子、アルキル基、置換アルキル基を表し、R2はアルキル基または置換アルキル基を表す。]
  3. 前記反応を、式[3]で表されるオルトエステルの存在下で行う、請求項1または2に記載の方法。
    Figure JPOXMLDOC01-appb-C000004
    [式[3]中、R3は水素原子、アルキル基、置換アルキル基、アリール基を表し、R4はアルキル基または置換アルキル基を表す。]
  4. 前記反応を、有機溶媒を用いることなく行う、請求項1乃至3の何れかに記載の方法。
PCT/JP2017/045082 2016-12-29 2017-12-15 ハロゲン化α-フルオロエーテル類の製造方法 WO2018123648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/474,112 US10882809B2 (en) 2016-12-29 2017-12-15 Production method for halogenated alpha-fluoroethers
CN201780081293.2A CN110121488B (zh) 2016-12-29 2017-12-15 卤代α-氟醚类的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016257221A JP6886104B2 (ja) 2016-12-29 2016-12-29 ハロゲン化α−フルオロエーテル類の製造方法
JP2016-257221 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018123648A1 true WO2018123648A1 (ja) 2018-07-05

Family

ID=62707428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045082 WO2018123648A1 (ja) 2016-12-29 2017-12-15 ハロゲン化α-フルオロエーテル類の製造方法

Country Status (4)

Country Link
US (1) US10882809B2 (ja)
JP (1) JP6886104B2 (ja)
CN (1) CN110121488B (ja)
WO (1) WO2018123648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026582A1 (ja) * 2017-08-04 2019-02-07 セントラル硝子株式会社 フルオロアセトアルデヒド類の保存方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076007A (ja) * 1973-08-10 1975-06-21
JPH02104545A (ja) * 1988-07-18 1990-04-17 Boc Group Inc:The Chf↓2ochfcf↓3の製造方法及びそれを製造するための新規な中間体
JP2006290870A (ja) * 2005-03-18 2006-10-26 Central Glass Co Ltd スルフリルフルオリドを用いるフッ素化反応
JP2009286731A (ja) * 2008-05-29 2009-12-10 Central Glass Co Ltd ハロゲン化α−フルオロエーテル類の製造方法
JP2010254678A (ja) * 2009-03-30 2010-11-11 Fujifilm Corp パーフルオロクロロエーテル溶媒を含有する液体組成物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017436A (en) 1956-11-28 1962-01-16 Dow Chemical Co Preparation of fluoral
US3897502A (en) 1971-10-22 1975-07-29 Airco Inc Process for making fluorinated ethers
DE2361058A1 (de) 1973-12-07 1975-06-19 Hoechst Ag 1.2.2.2-tetrafluoraethyl-chlorfluormethylaether und verfahren zu dessen herstellung
DE2656545A1 (de) 1976-12-14 1978-06-15 Hoechst Ag Polyhalogenierte alpha, alpha'-difluordialkylaether und verfahren zu ihrer herstellung
FR2556339B1 (fr) 1983-12-13 1986-05-16 Atochem Procede catalytique de preparation de trifluoroacetaldehyde
US4762856A (en) 1987-02-02 1988-08-09 Boc, Inc. Anesthetic composition and method of using the same
US4874901A (en) 1988-05-06 1989-10-17 Boc, Inc. Process for the production of polyfluorinated ethers
US5015781A (en) 1988-05-06 1991-05-14 Boc, Inc. Anesthetic compound and method of preparing
US5026924A (en) 1989-03-14 1991-06-25 Anaquest, Inc. Process for production of 1,2,2,2-tetrafluoroethyl difluoromethyl ether
US5185474A (en) 1990-10-02 1993-02-09 W. R. Grace & Co.-Conn. Synthesis of fluorinated dimethyl ethers
GB9023370D0 (en) 1990-10-26 1990-12-05 Rhone Poulenc Chemicals Synthesis of fluorinated substituted ethanes
GB9126355D0 (en) 1991-12-11 1992-02-12 Ici Plc Production of hydrofluorocarbons
US5196600A (en) 1992-03-25 1993-03-23 W. R. Grace & Co.-Conn. Synthesis of fluorinated dimethyl ethers
US5278342A (en) 1992-03-25 1994-01-11 Hampshire Chemical Corp. Vapor phase chlorination of difluoromethyl methyl ether
US5205914A (en) 1992-08-14 1993-04-27 Anaquest, Inc. Synthesis of desflurane
JPH0747556B2 (ja) 1992-12-25 1995-05-24 工業技術院長 含フッ素エーテル化合物の製造方法
CA2118828A1 (en) 1993-03-15 1994-09-16 Gerald J. O'neill Vapor phase chlorination of difluoromethyl methyl ether
US5446211A (en) 1994-04-01 1995-08-29 Hampshire Chemical Corp. Chlorination of difluoromethyl methyl ether
US5543055A (en) 1995-06-06 1996-08-06 Hampshire Chemical Corp. Purifications of flourinated dimethyl ethers
DE19627150C1 (de) * 1996-07-05 1998-03-26 Hoechst Ag Verfahren zur Herstellung von 2-Fluorisobuttersäureestern
US6849194B2 (en) 2000-11-17 2005-02-01 Pcbu Services, Inc. Methods for preparing ethers, ether compositions, fluoroether fire extinguishing systems, mixtures and methods
US6800786B1 (en) 2002-09-25 2004-10-05 Baxter International, Inc. Preparation of desflurane
CA2594747C (en) 2005-01-12 2011-11-15 Halocarbon Products Corporation Synthesis of fluorinated ethers
US8378149B2 (en) 2007-07-13 2013-02-19 Piramal Enterprises Limited Process for production of 1,2,2,2-tetrafluoroethyl difluoromethyl ether (desflurane)
US10683252B2 (en) * 2016-12-29 2020-06-16 Central Glass Company, Limited Production method for 1,2,2,2-tetrafluoroethyl difluoromethyl ether (desflurane)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076007A (ja) * 1973-08-10 1975-06-21
JPH02104545A (ja) * 1988-07-18 1990-04-17 Boc Group Inc:The Chf↓2ochfcf↓3の製造方法及びそれを製造するための新規な中間体
JP2006290870A (ja) * 2005-03-18 2006-10-26 Central Glass Co Ltd スルフリルフルオリドを用いるフッ素化反応
JP2009286731A (ja) * 2008-05-29 2009-12-10 Central Glass Co Ltd ハロゲン化α−フルオロエーテル類の製造方法
JP2010254678A (ja) * 2009-03-30 2010-11-11 Fujifilm Corp パーフルオロクロロエーテル溶媒を含有する液体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BANGNALL, R. D. ET AL.: "New inhalation anaesthetics: III. fluorinated aliphatic ethers", JOURNAL OF FLUORINE CHEMISTRY, vol. 13, no. 2, 1979, pages 123 - 140, XP055605269 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026582A1 (ja) * 2017-08-04 2019-02-07 セントラル硝子株式会社 フルオロアセトアルデヒド類の保存方法

Also Published As

Publication number Publication date
CN110121488B (zh) 2022-04-12
JP6886104B2 (ja) 2021-06-16
US20190352246A1 (en) 2019-11-21
JP2018108960A (ja) 2018-07-12
US10882809B2 (en) 2021-01-05
CN110121488A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
JP5939980B2 (ja) 溶媒の存在下でのアルケノンのハロゲン化前駆体の製造方法
JP5694576B2 (ja) ジフルオロアセトニトリル及びその誘導体の製造方法
EP2006274B1 (en) Method for producing 3,3,3-trifluoropropionic acid chloride
JP2017137267A (ja) 環状硫酸エステルの製造方法
JP5412742B2 (ja) 4−パーフルオロイソプロピルアニリン類の製造方法
JP6886104B2 (ja) ハロゲン化α−フルオロエーテル類の製造方法
JP5793996B2 (ja) フルオロ硫酸芳香環エステル類の製造方法
JP5853771B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
CN107250097B (zh) 含氟α-酮羧酸酯类的实用制造方法
JP2006137725A (ja) 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
JP5853772B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
JP2006298855A (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
JP5900182B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
JP4561120B2 (ja) 2,2,3,3−テトラフルオロオキセタンの製造法
JP2020011926A (ja) ハロゲン化エーテル類の製造方法
JP2006298854A (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
Tverdomed et al. Application of perfluoro (2-propoxypropyl vinyl ether)(PPVE-2) in the synthesis of perfluoro (propyl vinyl ether)(PPVE-1)
JP2008174552A (ja) 4−パーフルオロイソプロピルアニリン類の製造方法
KR101212565B1 (ko) 함불소 레지스트용 모노머류의 제조 방법
JP2018177700A (ja) 1,2,2,2−テトラフルオロエチルジフルオロメチルエーテル(デスフルラン)の製造方法
JP2021120354A (ja) 1,2,2,2−テトラフルオロエチルメチルエーテルの製造方法
JP2005047856A (ja) 含フッ素エーテル化合物の製造方法
JP2011116661A (ja) フルオロアルキルエーテルの製造方法
JP5378688B2 (ja) フッ素化試薬組成物およびgem−ジフルオロ化合物の製造方法
JP2019127449A (ja) 光学活性1−クロロ−3,3−ジフルオロイソプロピルアルコールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889251

Country of ref document: EP

Kind code of ref document: A1