WO2018105071A1 - 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板 - Google Patents

熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板 Download PDF

Info

Publication number
WO2018105071A1
WO2018105071A1 PCT/JP2016/086457 JP2016086457W WO2018105071A1 WO 2018105071 A1 WO2018105071 A1 WO 2018105071A1 JP 2016086457 W JP2016086457 W JP 2016086457W WO 2018105071 A1 WO2018105071 A1 WO 2018105071A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
thermosetting resin
component
structural unit
Prior art date
Application number
PCT/JP2016/086457
Other languages
English (en)
French (fr)
Inventor
圭祐 串田
清水 浩
垣谷 稔
芳克 白男川
辰徳 金子
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16880182.7A priority Critical patent/EP3428215B1/en
Priority to CN201680005973.1A priority patent/CN109071778B/zh
Priority to PCT/JP2016/086457 priority patent/WO2018105071A1/ja
Priority to CN201911309606.2A priority patent/CN110982267B/zh
Priority to JP2017522684A priority patent/JP6402827B1/ja
Priority to CN201910814011.6A priority patent/CN110511566B/zh
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/538,581 priority patent/US11136454B2/en
Priority to KR1020177017963A priority patent/KR101828762B1/ko
Priority to MYPI2017000997A priority patent/MY181060A/en
Priority to TW106114611A priority patent/TWI644955B/zh
Publication of WO2018105071A1 publication Critical patent/WO2018105071A1/ja
Priority to HK19101122.8A priority patent/HK1258721A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a thermosetting resin composition and a method for producing the same, a prepreg, a laminated board, and a printed wiring board.
  • L / S impedance control is facilitated by lowering the dielectric constant of the insulating material, so L / S can be stably produced in a shape close to the current design, and the number of layers can be reduced by reducing skip layers. Become.
  • Motherboards used for multifunctional mobile phone terminals and the like are required to be connected by a small-diameter laser via when connecting between layers as the wiring density increases and the pattern width narrows. From the viewpoint of connection reliability, filled plating is often used, and the connectivity at the interface between the inner layer copper and the plated copper is very important. Therefore, improvement in laser workability of the substrate is required.
  • a step of removing resin residual components is performed. Since the desmear process is performed on the bottom surface and the wall surface of the laser via, when the resin component of the base material is dissolved in a large amount by the desmear process, the shape of the laser via may be remarkably deformed.
  • the so-called desmear dissolution amount is an appropriate value.
  • thermosetting resin composition having a low dielectric constant a method of containing an epoxy resin having a low dielectric constant, a method of introducing a cyanate group, a method of containing a polyphenylene ether, and the like have been used. It was. However, it has been difficult to satisfy various requirements such as reduction of relative dielectric constant, high heat resistance, reliability, and halogen-free by simply combining these methods.
  • a resin composition containing an epoxy resin see Patent Document 1
  • a resin composition containing polyphenylene ether and bismaleimide see Patent Document 2
  • a resin composition containing polyphenylene ether and a cyanate resin pattern Reference 3
  • a resin composition containing at least one of styrene-based thermoplastic elastomers and / or triallyl cyanurate see Patent Document 4
  • a resin composition containing polybutadiene see Patent Document 5
  • polyphenylene A resin composition obtained by prereacting an ether-based resin, a polyfunctional maleimide and / or polyfunctional cyanate resin, and liquid polybutadiene see Patent Document 6
  • a compound having an unsaturated double bond group is imparted or Grafted polyphenylene ether and triallyl cyanurate and / or Resin composition containing allyl isocyanurate or the like
  • the present inventors focused on the appearance of the base material obtained from the resin composition that can satisfy the above-mentioned characteristics, while examining the resin composition that satisfies all the above-mentioned characteristics.
  • the surface of the cured product is inhomogeneous due to the presence of multiple relatively high-density locations (hereinafter also referred to as “high-density locations”) of several ⁇ m to several tens of ⁇ m in size on the surface. I found it.
  • the presence of such a high-density portion causes a deterioration in productivity, so improvement is desired.
  • the object of the present invention is to have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature and low thermal expansion, and excellent formability and plating rotation, and further, cured product It is in providing the thermosetting resin composition in which generation
  • thermosetting resin composition containing “C) a copolymer resin having a specific structural unit” and “(D) silica treated with an aminosilane-based coupling agent” contains a flame retardant. It discovered that said subject could be solved by using said flame retardant as "(E) flame retardant dispersion liquid”, and came to complete this invention. That is, the present invention relates to the following [1] to [15].
  • thermosetting resin composition comprising (D) silica treated with an aminosilane-based coupling agent, and (E) a flame retardant dispersion.
  • the component (E) is a dispersion obtained by dispersing a flame retardant in an organic solvent, and the content of the organic solvent in the component (E) is 100 parts by mass of the flame retardant. 25 to 55 parts by mass of the thermosetting resin composition according to [1] above.
  • thermosetting resin composition according to the above [1] or [2], wherein the component (E) contains a metal salt of a disubstituted phosphinic acid as a flame retardant.
  • thermosetting resin composition according to any one of [1] to [3], wherein the component (E) contains a ketone solvent as an organic solvent.
  • the component (A) includes (a1) a maleimide compound having at least two N-substituted maleimide groups in one molecule, (a2) a monoamine compound having an acidic substituent, and (a3) a diamine compound,
  • the component (a2) is a monoamine compound having an acidic substituent represented by the following general formula (a2-1), and the component (a3) is a diamine represented by the following general formula (a3-1)
  • the thermosetting resin composition according to [5] which is a compound.
  • R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group
  • R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • t is an integer of 1 to 5
  • u is an integer of 0 to 4
  • 1 ⁇ t + u ⁇ 5 provided that when t is an integer of 2 to 5, a plurality of R A4 may be the same
  • u is an integer of 2 to 4
  • a plurality of R A5 may be the same or different.
  • X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—.
  • R A6 and R A7 each independently represents an alkyl having 1 to 5 carbon atoms.
  • a group, a halogen atom, a hydroxyl group, a carboxy group, or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.
  • the component (C) is a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii): ]
  • the thermosetting resin composition according to any one of [6] to [6].
  • R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms
  • thermosetting resin composition according to any one of the above [1] to [7], wherein the unit] (molar ratio) is 1 to 9.
  • the component (B) is a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a naphthalene type epoxy resin, an anthracene type epoxy resin, a biphenyl type epoxy resin, a biphenyl aralkyl type epoxy resin, or a diester.
  • the thermosetting resin composition according to any one of the above [1] to [10] further comprising (F) a curing agent.
  • thermosetting resin composition according to any one of [1] to [11].
  • a laminate comprising the prepreg according to the above [12] and a metal foil.
  • a printed wiring board comprising the prepreg according to [12] or the laminated board according to [13].
  • Step 1 A flame retardant is dispersed in a dispersion medium
  • Step 2 A step of preparing a flame retardant dispersion
  • Step 2 A flame retardant dispersion
  • thermosetting resin composition in which generation
  • thermosetting resin composition is (A) a maleimide compound (hereinafter also referred to as “component (A)”), (B) an epoxy resin having at least two epoxy groups in one molecule (hereinafter also referred to as “(B) epoxy resin” or “(B) component”), (C) a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride (hereinafter, also referred to as “(C) copolymer resin” or “(C) component”), (D) Silica treated with an aminosilane coupling agent (hereinafter also referred to as “(D) component”), and (E) Flame retardant dispersion (hereinafter also referred to as “(E) component”).
  • component (A)) an epoxy resin having at least two epoxy groups in one molecule
  • the (A) maleimide compound is not particularly limited as long as it is a compound having a maleimide group, but is preferably a maleimide compound having an N-substituted maleimide group, more preferably (a1) at least two N in one molecule.
  • a maleimide compound having a substituted maleimide group (hereinafter also referred to as “(a1) maleimide compound” or “component (a1)”) and (a2) a monoamine compound having an acidic substituent (hereinafter referred to as “(a2) monoamine compound”)
  • a maleimide having an acidic substituent and an N-substituted maleimide group obtained by reacting “(a2) component” with (a3) a diamine compound (hereinafter also referred to as “(a3) component”).
  • the description regarding the component (A) can be read as a description of the maleimide compound having the acidic substituent and the N-substituted maleimide group.
  • the weight average molecular weight (Mw) of the component (A) is preferably 400 to 3,500, more preferably 600 to 2,300, and still more preferably 800 to 800 from the viewpoints of solubility in organic solvents and mechanical strength. 2,000.
  • the weight average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) method (standard polystyrene conversion) using tetrahydrofuran as an eluent, and more specifically described in Examples. It is a value measured by the method.
  • the maleimide compound is a maleimide compound having at least two N-substituted maleimide groups in one molecule.
  • A1 As the maleimide compound a maleimide compound having an aliphatic hydrocarbon group between any two maleimide groups among a plurality of maleimide groups (hereinafter also referred to as “aliphatic hydrocarbon group-containing maleimide”), Examples thereof include a maleimide compound containing an aromatic hydrocarbon group between any two maleimide groups among a plurality of maleimide groups (hereinafter also referred to as “aromatic hydrocarbon group-containing maleimide”).
  • an aromatic hydrocarbon group-containing maleimide is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating revolving property.
  • maleimide compounds from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating revolving property, two or more per molecule Maleimide compounds having 5 N-substituted maleimide groups are preferred, and maleimide compounds having 2 N-substituted maleimide groups in one molecule are more preferred.
  • the (a1) maleimide compound from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and plating revolving property, the following general formula (a1) Is preferably an aromatic hydrocarbon group-containing maleimide represented by any one of the following formulas (a1-1), (a1-2) or (a1-4): An aromatic hydrocarbon group-containing maleimide is more preferable, and an aromatic hydrocarbon group-containing maleimide represented by the following general formula (a1-2) is more preferable.
  • R A1 to R A3 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X A1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, —C ( ⁇ O) —, —S—, —SS— or a sulfonyl group.
  • p, q, and r are each independently an integer of 0-4.
  • s is an integer of 0 to 10.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A1 to R A3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and n-pentyl group.
  • the aliphatic hydrocarbon group is preferably 1 to 1 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating swirlability.
  • 3 is an aliphatic hydrocarbon group, more preferably a methyl group or an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X A1 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group, and the like. Is mentioned.
  • the alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating rotation. Group, more preferably a methylene group.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • an isopropylidene group is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, and plating rotation.
  • X A1 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms among the above options.
  • p, q, and r are each independently an integer of 0 to 4, and have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and roundness with plating.
  • each is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • s is an integer of 0 to 10, and is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, from the viewpoint of availability.
  • the aromatic hydrocarbon group-containing maleimide compound represented by the general formula (a1-3) is preferably a mixture of integers in which s is 0 to 3.
  • (a1) maleimide compound examples include N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, bis (4-maleimidocyclohexyl) methane, and 1,4-bis (maleimide).
  • Methyl) cyclohexane or other aliphatic hydrocarbon group-containing maleimide N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1,3- (2-methylphenylene)] bismaleimide, N, N ′-[1,3- (4-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4- Maleimidophenyl) methane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, bis (4-maleimidophenyl) A Bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ketone, 1,4-bis (4-maleimidophenyl) cyclo
  • a maleimide compound may be used individually by 1 type, and may use 2 or more types together.
  • the (a2) monoamine compound is a monoamine compound having an acidic substituent, preferably an aromatic monoamine compound having an acidic substituent, and more preferably a monoamine compound represented by the following general formula (a2-1).
  • R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group.
  • R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • t is an integer of 1 to 5
  • u is an integer of 0 to 4
  • 1 ⁇ t + u ⁇ 5 is satisfied.
  • t is an integer of 2 to 5
  • a plurality of R A4 may be the same or different.
  • u is an integer of 2 to 4
  • a plurality of R A5 may be the same or different.
  • the acidic substituent represented by R A4 is preferably a hydroxyl group or a carboxy group from the viewpoint of solubility and reactivity, and more preferably a hydroxyl group in consideration of heat resistance.
  • t is an integer of 1 to 5, and preferably 1 to 3 from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and plating-around properties.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Can be mentioned.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the halogen atom represented by R A5 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • u is an integer of 0 to 4, and preferably 0 to 3 from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and plating rotation.
  • the (a2) monoamine compound from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and plating revolving property, the following general formula ( It is a monoamine compound represented by a2-2) or (a2-3), and particularly preferably a monoamine compound represented by the following general formula (a2-2).
  • R A4 , R A5 and u in the general formulas (a2-2) and (a2-3) are the same as those in the general formula (a2-1), and preferred ones are also the same.
  • Examples of (a2) monoamine compounds include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, Examples thereof include m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline and the like.
  • m-aminophenol, p-aminophenol, p-aminobenzoic acid and 3,5-dihydroxyaniline are preferable from the viewpoint of solubility and reactivity, and o-aminophenol from the viewpoint of heat resistance.
  • M-aminophenol and p-aminophenol are preferable, and p-aminophenol is more preferable in consideration of dielectric properties, low thermal expansibility and production cost.
  • A2 Monoamine compounds may be used alone or in combination of two or more.
  • the diamine compound is a compound having two amino groups in one molecule, preferably a compound having two primary amino groups in one molecule, and two primary in one molecule.
  • An aromatic diamine compound having an amino group is more preferable, and a diamine compound represented by the following general formula (a3-1) is more preferable.
  • X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—.
  • R A6 and R A7 each independently represents an alkyl group having 1 to 5 carbon atoms, a halogen atom, or a hydroxyl group. Represents a carboxy group or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.
  • X A2 is preferably a methylene group.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A6 and R A7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • v and w are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • (a3) diamine compounds include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylpropane, 2,2′-bis [4, 4'-diaminodiphenyl] propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'- Diaminodiphenylethane, 3,3'-diethyl-4,4'-diaminodiphenylethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dihydroxy-4,4'-diamino Diphenylmethane, 2,2 ', 6,6'-tetramethyl-4,4'
  • 4,4′-diaminodiphenylmethane and 3,3′-diethyl-4,4′-diaminodiphenylmethane are preferable from the viewpoint of inexpensiveness, and 4,4′- from the viewpoint of solubility in a solvent.
  • Diaminodiphenylmethane is more preferred.
  • the reaction of component (a1), component (a2) and component (a3) is preferably carried out, for example, by reacting at a reaction temperature of 70 to 200 ° C. for 0.1 to 10 hours in the presence of an organic solvent.
  • the reaction temperature is more preferably 70 to 160 ° C., further preferably 70 to 130 ° C., and particularly preferably 80 to 120 ° C.
  • the reaction time is more preferably 1 to 6 hours, still more preferably 1 to 4 hours.
  • the three amounts used are the primary amino group equivalent [-NH 2 group equivalent] of the component (a2) and component (a3).
  • the maleimide group equivalent of the component (a1) preferably satisfy the following formula. 0.1 ⁇ [maleimide group equivalent] / [-NH 2 group equivalent] ⁇ 10
  • [maleimide group equivalent] / [-NH 2 group equivalent total] is set to 0.1 or more, gelation and heat resistance do not decrease, and by setting it to 10 or less, Solubility, metal foil adhesion and heat resistance are not reduced.
  • the reaction of the component (a1), the component (a2) and the component (a3) is preferably performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not adversely affect the reaction.
  • alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketone solvents such as tetrahydrofuran; ether solvents such as tetrahydrofuran; aromatic solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents including amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; dimethyl sulfoxide Sulfur atom-containing solvents including sulfoxide solvents such as; ester solvents such as
  • alcohol solvents, ketone solvents, and ester solvents are preferable from the viewpoint of solubility, and cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and ⁇ -butyrolactone are more preferable from the viewpoint of low toxicity.
  • cyclohexanone, propylene glycol monomethyl ether, and dimethylacetamide are more preferable, and dimethylacetamide is particularly preferable.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the organic solvent used is not particularly limited, but from the viewpoint of solubility and reaction efficiency, it is preferably 25 to 1 with respect to a total of 100 parts by mass of the component (a1), the component (a2) and the component (a3). 1,000 parts by mass, more preferably 40 to 700 parts by mass, still more preferably 60 to 250 parts by mass.
  • By making the usage-amount of an organic solvent more than 25 mass parts it becomes easy to ensure solubility, and by making it the 1,000 mass parts or less, it is easy to suppress the significant fall of reaction efficiency.
  • reaction catalyst You may implement reaction of (a1) component, (a2) component, and (a3) component in presence of a reaction catalyst as needed.
  • the reaction catalyst include amine-based catalysts such as triethylamine, pyridine, and tributylamine; imidazole-based catalysts such as methylimidazole and phenylimidazole; and phosphorus-based catalysts such as triphenylphosphine.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the reaction catalyst used is not particularly limited, but is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the total mass of the components (a1) and (a2).
  • (B) Epoxy resin having at least two epoxy groups in one molecule examples include a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and the like. Among these, a glycidyl ether type epoxy resin is preferable.
  • (B) Epoxy resins are classified into various epoxy resins depending on the difference in the main skeleton. In each of the above types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc.
  • Bisphenol type epoxy resin biphenyl aralkyl phenol type epoxy resin; phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, cresol novolac type epoxy resin, naphthol alkylphenol copolymer novolak type epoxy resin, naphthol aralkyl cresol copolymer novolak type epoxy resin, Bisphenol A novolac epoxy resin, bisphenol F novolac epoxy resin and other novolac epoxy resins; stilbene epoxy Diresin; Triazine skeleton-containing epoxy resin; Fluorene skeleton-containing epoxy resin; Naphthalene-type epoxy resin; Anthracene-type epoxy resin; Triphenylmethane-type epoxy resin; Biphenyl-type epoxy resin; Biphenylaralkyl-type epoxy resin; Xylylene-type epoxy resin; It is classified into alicyclic epoxy resins such as pentadiene type epoxy resins.
  • bisphenol F type epoxy resin, phenol novolac type epoxy resin , Cresol novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, dicyclopentadiene type epoxy resin are preferable, and from the viewpoint of low thermal expansion and high glass transition temperature Novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, phenol novolac type epoxy resin are more preferable, cresol novolac type epoxy resin A further preferred.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the epoxy equivalent of the (B) epoxy resin is preferably 100 to 500 g / eq, more preferably 120 to 400 g / eq, still more preferably 140 to 300 g / eq, and particularly preferably 170 to 240 g / eq.
  • the epoxy equivalent is the mass of the resin per epoxy group (g / eq), and can be measured according to the method defined in JIS K 7236 (2001). Specifically, using an automatic titration device “GT-200 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd., 2 g of epoxy resin was weighed into a 200 ml beaker, 90 ml of methyl ethyl ketone was dropped, and dissolved with an ultrasonic cleaner. It is determined by adding 10 ml of glacial acetic acid and 1.5 g of cetyltrimethylammonium bromide and titrating with a 0.1 mol / L perchloric acid / acetic acid solution.
  • the copolymer resin is a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride.
  • the aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like. Among these, styrene is preferable.
  • the copolymer resin (C) is preferably a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii).
  • R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R C1 and R C2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkenyl group having 2 to 5 carbon atoms represented by R C2 include an allyl group and a crotyl group.
  • the alkenyl group is preferably an alkenyl group having 3 to 5 carbon atoms, more preferably an alkenyl group having 3 or 4 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms.
  • x is preferably 0 or 1, more preferably 0.
  • R C1 is a hydrogen atom and x is 0, derived from the structural unit represented by the following general formula (Ci-1), that is, styrene The structural unit is preferred.
  • (C) Content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin [structural unit derived from the aromatic vinyl compound / structural unit derived from maleic anhydride ] (Molar ratio) is preferably 1 to 9, more preferably 2 to 9, still more preferably 3 to 8, and particularly preferably 3 to 7.
  • the content ratio of the structural unit represented by the general formula (Ci) to the structural unit represented by the formula (C-ii) [(Ci) / (C-ii)] (molar ratio) Similarly, it is preferably 1 to 9, more preferably 2 to 9, further preferably 3 to 8, and particularly preferably 3 to 7.
  • the total content with the structural unit represented by (C-ii) is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, particularly preferably substantially 100%. % By mass.
  • the weight average molecular weight (Mw) of the copolymer resin is preferably 4,500 to 18,000, more preferably 5,000 to 18,000, still more preferably 6,000 to 17,000, and even more preferably. Is 8,000 to 16,000, particularly preferably 8,000 to 15,000, most preferably 9,000 to 13,000.
  • (C) the method of reducing the dielectric constant of an epoxy resin by using a copolymer resin is not sufficient for impregnation into a substrate and copper foil peel strength when applied to a printed wiring board material. Tend to be avoided. For this reason, the use of a copolymer resin (C) generally tends to be avoided, but the present invention contains the component (A) and the component (B) while using the copolymer resin (C).
  • a thermosetting resin composition having high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature and low thermal expansion, and excellent moldability and plating revolving property can be obtained. It was discovered and accomplished.
  • the copolymer resin can be produced by copolymerizing an aromatic vinyl compound and maleic anhydride.
  • aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like as described above. These may be used individually by 1 type and may use 2 or more types together.
  • various polymerizable components may be copolymerized.
  • Examples of various polymerizable components include vinyl compounds such as ethylene, propylene, butadiene, isobutylene and acrylonitrile; compounds having a (meth) acryloyl group such as methyl acrylate and methyl methacrylate. Further, a substituent such as an allyl group, a methacryloyl group, an acryloyl group, or a hydroxy group may be introduced into the aromatic vinyl compound through a reaction using a Friedel-Crafts reaction or a metal catalyst such as lithium.
  • a commercially available product may be used as the copolymer resin.
  • the thermosetting resin composition contains an inorganic filler.
  • the component (D) among silicas, aminosilane-based compounds are used. Silica treated with a coupling agent is used.
  • the adhesiveness with the components (A) to (C) is improved, in addition to the effect of improving the low thermal expansion property and plating revolving property. Since silica is prevented from falling off, the effect of suppressing deformation of the laser via shape due to excessive desmear can be obtained.
  • aminosilane-based coupling agent specifically, a silane coupling agent having a silicon-containing group represented by the following general formula (D-1) and an amino group is preferable.
  • R D1 is an alkyl group having 1 to 3 carbon atoms or an acyl group having 2 to 4 carbon atoms.
  • Y is an integer of 0 to 3
  • Examples of the alkyl group having 1 to 3 carbon atoms represented by R D1 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Among these, a methyl group is preferable.
  • Examples of the acyl group having 2 to 4 carbon atoms represented by RD1 include an acetyl group, a propionyl group, and an acrylic group. Among these, an acetyl group is preferable.
  • the aminosilane coupling agent may have one amino group, two amino groups, or three or more, but usually one amino group or Have two.
  • Examples of the aminosilane coupling agent having one amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-phenyl-3- Examples include aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2-propynyl [3- (trimethoxysilyl) propyl] carbamate and the like.
  • aminosilane coupling agents having two amino groups include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, Examples include 1- [3- (trimethoxysilyl) propyl] urea and 1- [3- (triethoxysilyl) propyl] urea.
  • An aminosilane coupling agent may be used individually by 1 type, and may use 2 or more types together.
  • an epoxy silane coupling agent for example, an epoxy silane coupling agent, a phenyl silane coupling agent, an alkyl silane coupling agent, an alkenyl silane coupling agent, an alkynyl silane coupling agent, a haloalkyl silane coupling.
  • siloxane coupling agent siloxane coupling agent, hydrosilane coupling agent, silazane coupling agent, alkoxysilane coupling agent, chlorosilane coupling agent, (meth) acrylsilane coupling agent, isocyanurate silane coupling agent
  • silica treated with a ureidosilane coupling agent, a mercaptosilane coupling agent, a sulfide silane coupling agent, an isocyanate silane coupling agent or the like it is in close contact with the components (A) to (C). Decreased Tend to silica tends to fall off, become poor effect of suppressing the deformation of the laser via shape due to excessive desmear.
  • silica treated with other coupling agents described above may be used in combination as long as the effects of the present invention are not impaired.
  • the content thereof is preferably 50 parts by mass or less with respect to 100 parts by mass of silica (D) treated with the aminosilane coupling agent.
  • the amount is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, particularly preferably 10 parts by mass or less, and most preferably 5 parts by mass or less.
  • silica used for the component (D) examples include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water.
  • dry process silica examples include crushed silica, fumed silica, fused silica (fused spherical silica) and the like depending on the production method.
  • Silica is preferably fused silica from the viewpoint of low thermal expansibility and high fluidity when filled in a resin.
  • the average particle diameter of silica is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 6 ⁇ m, still more preferably 0.1 to 3 ⁇ m, and particularly preferably 1 to 3 ⁇ m.
  • the average particle diameter of silica 0.1 ⁇ m or more By making the average particle diameter of silica 0.1 ⁇ m or more, the fluidity at the time of high filling can be kept good, and by making it 10 ⁇ m or less, the mixing probability of coarse particles is reduced to make coarse particles. It is possible to suppress the occurrence of defects due to it.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • the specific surface area of silica is preferably 4 cm 2 / g or more, more preferably 4 to 9 cm 2 / g, still more preferably 5 to 7 cm 2 / g.
  • thermosetting resin composition of the present invention comprises (E) a flame retardant dispersion.
  • the thermosetting resin composition of the present invention has excellent flame retardancy by containing a flame retardant. Furthermore, by using the thermosetting resin composition of the present invention as a dispersion in which a flame retardant is previously dispersed with a dispersion medium, generation of high-density spots on the surface of the cured product is suppressed.
  • the flame retardant dispersion (E) is not particularly limited as long as it is a dispersion obtained by dispersing a flame retardant in a dispersion medium.
  • Examples of the flame retardant contained in the flame retardant dispersion include halogen-containing flame retardants containing bromine, chlorine, etc .; phosphorus flame retardants; guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate Nitrogen-based flame retardants such as: phosphazene-based flame retardants such as cyclophosphazene and polyphosphazene; and inorganic flame retardants such as antimony trioxide. Among these, a phosphorus flame retardant is preferable.
  • Examples of phosphorus flame retardants include inorganic phosphorus flame retardants and organic phosphorus flame retardants.
  • inorganic phosphorus flame retardants include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as phosphate amides Phosphoric acid; phosphine oxide and the like.
  • organic phosphorus flame retardants include aromatic phosphate esters, monosubstituted phosphonic acid diesters, disubstituted phosphinic acid esters, disubstituted phosphinic acid metal salts, organic nitrogen-containing phosphorus compounds, cyclic organophosphorus compounds, Examples thereof include phosphorus-containing phenol resins.
  • a metal salt of an aromatic phosphate ester or a disubstituted phosphinic acid is preferable, and a metal salt of a disubstituted phosphinic acid is more preferable.
  • aromatic phosphate ester examples include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol bis (diphenyl phosphate), 1,3 -Phenylenebis (di-2,6-xylenyl phosphate), bisphenol A-bis (diphenyl phosphate), 1,3-phenylenebis (diphenyl phosphate) and the like.
  • Examples of monosubstituted phosphonic acid diesters include divinyl phenylphosphonate, diallyl phenylphosphonate, and bis (1-butenyl) phenylphosphonate.
  • Examples of the disubstituted phosphinic acid ester include phenyl diphenylphosphinate and methyl diphenylphosphinate.
  • Examples of the metal salt of disubstituted phosphinic acid include a metal salt of dialkylphosphinic acid, a metal salt of diallylphosphinic acid, a metal salt of divinylphosphinic acid, a metal salt of diarylphosphinic acid, and the like.
  • the metal salt is preferably a lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt or zinc salt, and more preferably an aluminum salt.
  • organic nitrogen-containing phosphorus compound include phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene; melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melam polyphosphate, and the like.
  • cyclic organophosphorus compound examples include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa- And 10-phosphaphenanthrene-10-oxide.
  • a flame retardant may be used individually by 1 type, and may use 2 or more types together.
  • aromatic phosphate ester is preferably an aromatic phosphate ester represented by the following general formula (E-1) or (E-2), and the metal salt of the disubstituted phosphinic acid is represented by the following general formula A metal salt of a disubstituted phosphinic acid represented by (E-3) is preferable.
  • R E1 to R E5 are each independently an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • E and f are each independently an integer of 0 to 5, and g, h and i are each It is an integer of 0 to 4 independently.
  • R E6 and R E7 are each independently an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • M is a lithium atom, sodium atom, potassium atom, calcium atom, magnesium atom, aluminum atom, titanium atom or zinc atom.
  • j is an integer of 1 to 4.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R E1 to R E5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the halogen atom represented by R E1 to R E5 include a fluorine atom.
  • e and f are preferably integers of 0 to 2, more preferably 2.
  • g, h and i are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • alkyl group having 1 to 5 carbon atoms represented by R E6 and R E7 include the same groups as those in R E1 to R E5 .
  • aryl group having 6 to 14 carbon atoms represented by R E6 and R E7 include a phenyl group, a naphthyl group, a biphenylyl group, and an anthryl group.
  • the aromatic hydrocarbon group is preferably an aryl group having 6 to 10 carbon atoms.
  • j is equal to the valence of the metal ion, that is, varies within the range of 1 to 4 corresponding to the type of M.
  • M is preferably an aluminum atom.
  • j is 3 when M is an aluminum atom.
  • the average particle size of the flame retardant is preferably from 0.1 to 8 ⁇ m, more preferably from 0.5 to 6 ⁇ m, and even more preferably from 1 to 8 ⁇ m, from the viewpoint of effectively suppressing the occurrence of high density spots and the flame retardancy. 5 ⁇ m.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve according to the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • an organic solvent is preferable as a dispersion medium in which the flame retardant is dispersed.
  • the organic solvent include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene and mesitylene; nitrogen atom-containing solvents including amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfur atom-containing solvents including sulfoxide solvents such as dimethyl sulfoxide; Examples thereof include ester solvents such as ethyl acetate and ⁇ -butyrolactone. Among these,
  • the content of the flame retardant and the dispersion medium in the flame retardant dispersion is not particularly limited, but the content of the dispersion medium is preferably 25 to 55 parts by mass, more preferably 100 parts by mass of the flame retardant. Is 30 to 50 parts by mass, more preferably 35 to 45 parts by mass. When the content of the dispersion medium is 25 parts by mass or more, the settling of the flame retardant is suppressed, and when it is 55 parts by mass or less, excellent dispersibility is obtained.
  • the flame retardant dispersion liquid may contain components other than the flame retardant and the dispersion medium as long as the effects of the present invention are not impaired.
  • the total content of the flame retardant and the dispersion medium in the flame retardant dispersion is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. There is no restriction
  • the thermosetting resin composition may further contain (F) a curing agent.
  • a curing agent examples include dicyandiamide; chain aliphatic groups other than dicyandiamide, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, tetramethylguanidine, and triethanolamine.
  • Amine isophoronediamine, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, bis (4-amino-3-methyldicyclohexyl) methane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -2,4 , 8,10-tetraoxaspiro [5.5] undecane and other cyclic aliphatic amines; xylenediamine, phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone and other aromatics Min and the like.
  • dicyandiamide is preferable from the viewpoints of metal foil adhesion and low thermal expansion.
  • the dicyandiamide is represented by H 2 N—C ( ⁇ NH) —NH—CN, and the melting point is usually 205 to 215 ° C., and higher purity is 207 to 212 ° C.
  • Dicyandiamide is a crystalline substance and may be orthorhombic or plate-like. Dicyandiamide preferably has a purity of 98% or more, more preferably has a purity of 99% or more, and still more preferably has a purity of 99.4% or more.
  • dicyandiamide commercially available products can be used.
  • Dicyandiamide and the like also have an effect as a flame retardant, but in the present invention, those that can function as a curing agent are classified as component (F) and are not included in component (E).
  • the content of the component (A) is not particularly limited, but is preferably 15 to 65 parts by mass, more preferably 100 parts by mass relative to the total of the components (A) to (C). 30 to 55 parts by mass, more preferably 40 to 50 parts by mass.
  • the component (A) is 15 parts by mass or more, high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion tend to be obtained.
  • the fluidity and moldability of the thermosetting resin composition tend to be good.
  • the content of the component (B) is not particularly limited, but is preferably 15 to 50 parts by mass, more preferably 100 parts by mass with respect to the total of the components (A) to (C).
  • the amount is 20 to 40 parts by mass, more preferably 25 to 35 parts by mass.
  • the component (B) is 15 parts by mass or more, high heat resistance, high glass transition temperature, and low thermal expansion tend to be obtained.
  • it is 50 parts by mass or less, it tends to be high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion.
  • the content of the component (C) is not particularly limited, but is preferably 10 to 45 parts by mass, more preferably 100 parts by mass with respect to the total of the components (A) to (C). 15 to 35 parts by mass, more preferably 20 to 30 parts by mass.
  • the component (C) is 10 parts by mass or more, high heat resistance and low relative permittivity tend to be obtained.
  • the amount is 45 parts by mass or less, high heat resistance, high metal foil adhesion, and low thermal expansion tend to be obtained.
  • the content of the component (D) is not particularly limited, but is preferably 30 to 70 parts by weight, more preferably 100 parts by weight of the total of the components (A) to (C).
  • the amount is 40 to 60 parts by mass, more preferably 45 to 55 parts by mass.
  • D It exists in the tendency for the outstanding low thermal expansibility to be acquired because a component is 30 mass parts or more. On the other hand, when it is 70 parts by mass or less, heat resistance is obtained, and the fluidity and moldability of the thermosetting resin composition tend to be good.
  • the content of the component (E) is not particularly limited, but the content of the flame retardant is preferably 0.00 with respect to 100 parts by mass of the sum of the components (A) to (C).
  • An amount of 1 to 20 parts by weight, more preferably an amount of 1 to 15 parts by weight, further preferably an amount of 3 to 12 parts by weight, particularly preferably an amount of 5 to 10 parts by weight, most preferably 7 to The amount is 10 parts by mass.
  • the flame retardant is 0.1 part by mass or more, excellent flame retardancy tends to be obtained.
  • the amount is 20 parts by mass or less, the moldability is excellent and the occurrence of high density portions tends to be effectively suppressed.
  • the content thereof is preferably 0.02 to 5 with respect to 100 parts by mass of the total content of the components (A) to (C).
  • an amount to be parts by mass more preferably an amount to be 0.2 to 4 parts by mass, still more preferably an amount to be 0.5 to 3 parts by mass, particularly preferably an amount to be 1.0 to 2.7 parts by mass, The amount is most preferably 1.5 to 2.5 parts by mass.
  • the phosphorus atom content is 0.02 parts by mass or more, excellent flame retardancy tends to be obtained.
  • the moldability is excellent and the generation of high density portions tends to be effectively suppressed.
  • the component (F) is contained in the thermosetting resin composition of the present invention, the content thereof is preferably 0.5 to 6 with respect to 100 parts by mass of the sum of the components (A) to (C).
  • thermosetting resin composition of the present invention can contain other components such as an additive and an organic solvent as necessary within a range not impairing the effects of the present invention. These may contain 1 type independently, and may contain 2 or more types.
  • additive examples include a curing accelerator, a colorant, an antioxidant, a reducing agent, an ultraviolet absorber, a fluorescent whitening agent, an adhesion improver, and an organic filler.
  • thermosetting resin composition may contain an organic solvent from the viewpoint of facilitating handling by diluting and easy manufacture of a prepreg described later.
  • thermosetting resin composition containing an organic solvent may be referred to as a resin varnish.
  • the organic solvent is not particularly limited, but for example, methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, Alcohol solvents such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; ether solvents such as tetrahydrofuran Aromatic solvents such as toluene, xylene and mesitylene; form Nitrogen-containing solvents including amide solvents such as amide, N-methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrroli
  • alcohol solvents, ketone solvents, and nitrogen atom-containing solvents are preferable, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are more preferable, and methyl ethyl ketone and methyl isobutyl ketone are preferable. More preferred is methyl ethyl ketone.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin composition What is necessary is just to adjust suitably content of the organic solvent in a thermosetting resin composition to such an extent that the handling of a thermosetting resin composition becomes easy, and if it is the range from which the coating property of a resin varnish becomes favorable.
  • the solid content concentration (concentration of components other than the organic solvent) derived from the thermosetting resin composition is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and still more preferably 50 to 80% by mass.
  • the number of high-density portions of 50 ⁇ m or more observed on the surface of a cured product produced under the following conditions is preferably 5 or less, more preferably 2 or less, Preferably 0.
  • the cured product of the thermosetting resin composition described above is a copper-clad laminate manufactured according to the method for producing a thermosetting resin composition, a prepreg, and a copper-clad laminate described in the examples. This means an evaluation board obtained by performing the processing described in the item “appearance inspection”, and the measurement method of the high-density portion is the number measured by the method described in “appearance inspection” which is the evaluation item of the example. It is.
  • thermosetting resin composition of the present invention is preferably produced by a production method having the following steps 1 and 2.
  • Step 1 A flame retardant is dispersed in a dispersion medium
  • Step 2 A step of preparing a flame retardant dispersion
  • D silica treated with an aminosilane coupling agent
  • Step 1 is a step in which a flame retardant is dispersed in a dispersion medium (E) to produce a flame retardant dispersion.
  • a method of dispersing the flame retardant in the dispersion medium a known mixing method can be applied.
  • the mixer used for mixing include an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method.
  • the flame retardant dispersion can be suitably prepared by sufficiently stirring using these mixers.
  • Step 2 is a step of mixing the flame retardant dispersion (E) obtained above with the component (A), the component (B), the component (C), and the component (D).
  • the other components may be mixed as necessary.
  • a known mixing method can be applied.
  • the mixer include mixers such as an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method.
  • the thermosetting resin composition can be suitably prepared by sufficiently mixing using these mixers.
  • an organic solvent may be added to adjust the solid content concentration derived from the thermosetting resin composition as described above.
  • the prepreg of the present invention comprises the thermosetting resin composition of the present invention.
  • it can impregnate or apply
  • the prepreg sheet-like reinforcing substrate known materials used for various types of laminates for electrical insulating materials can be used.
  • the material of the sheet-like reinforcing substrate includes natural fibers such as paper and cotton linter; inorganic fibers such as glass fiber and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; and mixtures thereof Etc.
  • glass fiber is preferable from the viewpoint of flame retardancy.
  • Glass fiber base materials include woven fabrics using E glass, C glass, D glass, S glass, etc., or glass woven fabrics in which short fibers are bonded with an organic binder; Can be mentioned. More preferably, it is a glass woven fabric using E glass.
  • sheet-like reinforcement base materials have shapes, such as a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, a surfacing mat, for example.
  • a material and a shape are selected by the use and performance of the target molding, and 1 type may be used independently and 2 or more types of materials and shapes can also be combined as needed.
  • the thickness of the sheet-like reinforcing substrate is not particularly limited, and for example, about 0.03 to 0.5 mm can be used, and the surface treatment with a silane coupling agent or the like or mechanical fiber opening treatment is performed. What has been applied is preferred from the viewpoints of heat resistance, moisture resistance and processability.
  • thermosetting resin composition As a method for impregnating or applying the thermosetting resin composition to the sheet-like reinforcing substrate, a hot melt method or a solvent method is preferable.
  • the hot melt method is a method in which an organic solvent is not contained in a thermosetting resin composition, and (1) a coated paper having good releasability from the composition is once coated and laminated on a sheet-like reinforcing substrate.
  • the solvent method a varnish is prepared by adding an organic solvent to the thermosetting resin composition, a sheet-like reinforcing substrate is immersed in the varnish, and the sheet-like reinforcing substrate is impregnated, It is a method of drying.
  • thermosetting resin composition After impregnating or coating the thermosetting resin composition on the base material, it is usually dried by heating at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-cured (B-stage).
  • a prepreg can be obtained.
  • the prepreg of the present invention may be used as a single sheet, or a plurality of sheets, preferably 2 to 20 sheets, may be used in an overlapping manner as necessary.
  • the laminate of the present invention contains the prepreg.
  • the production method of the laminate of the present invention is not particularly limited.
  • one sheet of the prepreg of the present invention is used, or 2 to 20 sheets are laminated as necessary, and laminated with a structure in which metal foil is arranged on one side or both sides. It can be manufactured by molding.
  • positioned metal foil may be called a metal-clad laminated board.
  • the metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity, preferably copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, Iron, titanium, chromium, or an alloy containing at least one of these metal elements is preferable, copper and amylnium are more preferable, and copper is more preferable.
  • molding conditions for the laminate known molding techniques for the laminate for electrical insulating material and the multilayer board can be applied.
  • the molding machine for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like is used.
  • the prepreg of the present invention and the printed wiring board for inner layer can be combined and laminated to produce a multilayer board.
  • the thickness of the metal foil is preferably 0.5 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, still more preferably 5 to 50 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
  • a plating layer by plating metal foil.
  • the metal of a plating layer will not be restrict
  • limiting in particular as a plating method For example, a well-known method, for example, an electroplating method, an electroless-plating method etc., can be utilized.
  • the printed wiring board of the present invention is a printed wiring board comprising the prepreg of the present invention or the laminate of the present invention.
  • the printed wiring board of the present invention can be manufactured, for example, by subjecting a metal foil of a metal-clad laminate to circuit processing. For example, after forming a resist pattern on the surface of the metal foil, the unnecessary portion of the metal foil is removed by etching, the resist pattern is peeled off, a necessary through hole is formed by a drill, and a resist pattern is formed again. It can be performed by plating for conducting through holes and finally peeling off the resist pattern.
  • the above metal-clad laminate is further laminated under the same conditions as described above, and the circuit is processed in the same manner as described above to obtain a multilayer printed wiring board.
  • a via hole may be formed, and both can be formed.
  • Such multi-layering is performed as many times as necessary.
  • thermosetting resin composition according to the present invention Using the thermosetting resin composition according to the present invention, a prepreg and a copper-clad laminate were produced, and the produced copper-clad laminate was evaluated. The evaluation method is shown below.
  • Relative permittivity (Dk)> Using a network analyzer “8722C” (manufactured by Hewlett-Packard Company), the relative dielectric constant of a double-sided copper-clad laminate at 1 GHz was measured at 25 ° C. by the triplate structure linear line resonator method.
  • the test piece size is 200 mm x 50 mm x thickness 0.8 mm.
  • a straight line (line length 200 mm) with a width of 1.0 mm is formed by etching at the center of one side of one double-sided copper-clad laminate, and the back side is A ground layer was formed by leaving copper on the entire surface.
  • For the other double-sided copper-clad laminate one side was etched entirely and the back side was a ground layer.
  • Metal foil adhesion (copper foil peel strength)> Metal foil adhesion was evaluated by copper foil peel strength.
  • the double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “ammonium persulfate (APS)” (manufactured by ADEKA) to form a copper foil having a width of 3 mm to produce an evaluation board.
  • the copper foil peel strength was measured using “AG-100C” (manufactured by Shimadzu Corporation). It shows that it is excellent in metal foil adhesiveness, so that a value is large.
  • Glass transition temperature (Tg)> The double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “Ammonium Persulfate (APS)” (manufactured by ADEKA Corporation) to produce a 5 mm square evaluation substrate from which the copper foil was removed. “Q400EM” (manufactured by TA Instruments) was used to obtain a thermal expansion curve at 30 to 260 ° C. in the surface direction (Z direction) of the evaluation substrate, and the inflection point of the expansion amount was defined as the glass transition temperature.
  • APS Ammonium Persulfate
  • Z direction surface direction
  • Tg thermal expansion coefficient below Tg (denoted as “ ⁇ Tg”) and the thermal expansion coefficient above Tg (denoted as “> Tg”) are shown separately.
  • the copper direct method A laser drilling substrate was manufactured by performing laser drilling by performing pulse widths of 15 ⁇ s ⁇ 1 and 7 ⁇ s ⁇ 4 times.
  • the obtained laser drilled substrate was treated for 5 minutes at 70 ° C. using a swelling liquid “Swelling Dip Securigant (registered trademark) P” (manufactured by Atotech Japan Co., Ltd.). Treated at 70 ° C.
  • the difference between the plating thickness at the top of the laser hole and the plating thickness at the bottom of the laser hole is preferably within 10% of the plating thickness at the top of the laser hole.
  • the existence ratio (%) of holes included in this range in the hole was determined.
  • Component (A) A dimethylacetamide solution of a maleimide compound having an acidic substituent and an N-substituted maleimide group produced in Production Example 1 below [Production Example 1] In a reaction vessel having a volume of 1 L equipped with a thermometer, a stirrer and a moisture meter with a reflux condenser, 19.2 g of 4,4′-diaminodiphenylmethane, 174.0 g of bis (4-maleimidophenyl) methane, p-aminophenol 6.6 g and dimethylacetamide 330.0 g were added and reacted at 100 ° C.
  • the weight average molecular weight (Mw) was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) (manufactured by Tosoh Corporation) Was approximated by a cubic equation.
  • the measurement conditions for GPC are shown below.
  • OP-935 aluminum trisdiethylphosphinate, Clariant, phosphorus atom content 23% by mass, average particle size: 2 to 3 ⁇ m
  • (F) component Dicyandiamide (Nippon Carbide Industries Co., Ltd.)
  • thermosetting resin composition prepared by mixing with the composition shown in Table 1 (however, in the case of a solution or dispersion, the amount in terms of solid content is shown), and then sufficiently stirred to solidify the thermosetting resin composition. Methyl ethyl ketone was added so that the partial concentration was 65 to 75% by mass, and thermosetting resin compositions of each Example and each Comparative Example were prepared. The obtained thermosetting resin composition was impregnated with IPC standard # 3313 glass cloth (0.1 mm) and dried at 160 ° C. for 4 minutes to obtain a prepreg.
  • Example 1 to 4 the reflow soldering heat resistance achieved 10 cycles or more, which is higher than the required heat resistance level, a low relative dielectric constant, a high copper foil peel strength and a high glass transition temperature were obtained, and low thermal expansion was exhibited. . Further, in Examples 1 to 4, it was confirmed that the glass cloth had a good throwing property due to the jumping out of the glass cloth from the appropriate wall surface and the appropriate roughened shape. In Examples 1 to 4, the embedding property of the resin was also good in terms of moldability, and no abnormalities such as blurring and voids were confirmed. Furthermore, high-density parts were not seen in the appearance inspection. On the other hand, in (E) Comparative Example 1 using a powdery flame retardant without using a flame retardant dispersion, a large number of high density portions were observed.
  • thermosetting resin composition of the present invention has high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature and low thermal expansion, and is excellent in moldability and plating rotation. Since generation of high-density spots observed on the surface of the cured product is suppressed, it is useful for printed wiring boards for electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Resins (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

(A)マレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(D)アミノシラン系カップリング剤で処理されたシリカ、及び(E)難燃剤分散液を含有してなる熱硬化性樹脂組成物である。

Description

熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板
 本発明は、熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板に関する。
 近年、多機能型携帯電話端末等のマザーボードにおいて、高速通信化、配線の高密度化、配線板の極薄化と共に、配線板の配線幅(L)と間隔(S)の比[L/S]も狭小化する傾向にある。このようなL/Sの狭小化に伴い、配線板を歩留り良く安定して生産することが困難となりつつある。また、従来の配線板の設計では、通信障害等を考慮して、一部の層に「スキップ層」と呼ばれる配線パターンの無い層を設けている。電子機器が高機能化によって、配線設計量が増加して配線板の層数が増加していくが、前記スキップ層を設けることにより、マザーボードの厚みがより一層増加するという問題が生じている。
 これらの問題を改善する方法として、配線板に使用される絶縁材料の比誘電率を低下させることが有効である。絶縁材料の比誘電率の低下により、L/Sのインピーダンスコントロールを行い易くなることから、L/Sを現状設計に近い形状で安定生産でき、スキップ層を減らすことで層数の減少が可能となる。
 近年、電子機器の高密度化に伴い、薄型化と低価格化が進んでいる携帯電話等のマザーボードにおいても、薄型化に対応するために比誘電率が低い材料が求められており、サーバー、ルータ、携帯基地局等に代表される通信系の機器は、より高周波帯領域で使用されるようになってきていることから低誘電率の材料が求められている。
 また、電子部品のはんだ付けに高融点の鉛フリーはんだが利用されるようになってきたことから、高ガラス転移温度(高Tg)であり、且つ、リフロー耐熱性に優れた材料が求められている。さらには、環境意識の高まりから、ハロゲンフリー基板が用いられており、ハロゲンフリー基板は、通常のハロゲン含有基板に比べて難燃性に劣るため、従来のものよりも高い難燃性が必要とされる。
 多機能型携帯電話端末等に使用されるマザーボードは、配線密度の増加及びパターン幅の狭小化に伴い、層間を接続する際には、小径なレーザビアによる接続が要求されている。接続信頼性の観点から、フィルドめっきが使用される事例が多く、内層銅とめっき銅の界面における接続性が非常に重要であることから、基材のレーザ加工性の向上が求められている。
 基材のレーザ加工後に、樹脂の残渣成分を除去する工程(デスミア処理工程)が行われることが一般的である。レーザビア底面及び壁面においてデスミア処理が行われることから、デスミア処理によって基材の樹脂成分が大量に溶解した場合、レーザビア形状が著しく変形するおそれがある。また、壁面の凹凸のバラつきによるめっき付き回りの不均一性が生じる等の種々の問題が起こり得る。このことから、デスミア処理によって基材の樹脂成分が溶解する量、いわゆるデスミア溶解量が適正な値となることが求められる。
 これまで、比誘電率の小さい熱硬化性樹脂組成物とするためには、比誘電率の小さいエポキシ樹脂を含有させる方法、シアネート基を導入する方法、ポリフェニレンエーテルを含有させる方法等が用いられてきた。しかし、これらの方法を単純に組み合わせただけでは、比誘電率の低減、高い耐熱性、信頼性、ハロゲンフリーといった、種々の要求を満足することが困難であった。例えば、エポキシ樹脂を含有した樹脂組成物(特許文献1参照)、ポリフェニレンエーテルとビスマレイミドとを含有した樹脂組成物(特許文献2参照)、ポリフェニレンエーテルとシアネート樹脂とを含有した樹脂組成物(特許文献3参照)、スチレン系熱可塑性エラストマー等及び/又はトリアリルシアヌレート等の少なくとも一方を含有した樹脂組成物(特許文献4参照)、ポリブタジエンを含有した樹脂組成物(特許文献5参照)、ポリフェニレンエーテル系樹脂と、多官能性マレイミド及び/又は多官能性シアネート樹脂と、液状ポリブタジエンとを予備反応させてなる樹脂組成物(特許文献6参照)、不飽和二重結合基を有する化合物を付与又はグラフトさせたポリフェニレンエーテルと、トリアリルシアヌレート及び/又はトリアリルイソシアヌレート等とを含有した樹脂組成物(特許文献7参照)、ポリフェニレンエーテルと不飽和カルボン酸又は不飽和酸無水物との反応生成物と、多官能性マレイミド等とを含有した樹脂組成物(特許文献8参照)等が提案されている。
特開昭58-69046号公報 特開昭56-133355号公報 特公昭61-18937号公報 特開昭61-286130号公報 特開昭62-148512号公報 特開昭58-164638号公報 特開平2-208355号公報 特開平6-179734号公報
 特許文献1~8に記載の樹脂組成物を含有してなるプリプレグは、比較的良好な比誘電率を示すが、近年の市場の厳しい要求を満たすことができない事例が多くなってきた。また、高耐熱性、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性(レーザ加工性)のいずれかが不十分となることも多く、さらなる改善の余地がある。
 さらに、本発明者等は、上記のような諸特性を全て満足させる樹脂組成物について検討を行う中で、上記の諸特性を満足し得る樹脂組成物から得られた基材の外観に着目したところ、表面に数μm~数10μmサイズの、相対的に高密度となっている箇所(以下、「高密度箇所」ともいう)が複数存在し、硬化物の表面が不均質となる問題を新たに見出した。このような高密度箇所の存在は、生産性の悪化を招くため、改善が望まれている。
 そこで、本発明の課題は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度及び低熱膨張性を有し、且つ成形性、及びめっき付き回り性に優れ、さらに硬化物の表面に観察される高密度箇所の発生が抑制された熱硬化性樹脂組成物及びその製造方法、該熱硬化性樹脂組成物を用いたプリプレグ、積層板及びプリント配線板を提供することにある。
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、「(A)マレイミド化合物」と、「(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂」と、「(C)特定の構造単位を有する共重合樹脂」と、「(D)アミノシラン系カップリング剤で処理されたシリカ」とを含有してなる熱硬化性樹脂組成物が、難燃剤を含有する場合に上記の高密度箇所が発生すること、及び該難燃剤を「(E)難燃剤分散液」として使用することにより、上記の課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記[1]~[15]に関する。
[1](A)マレイミド化合物、
 (B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、
 (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
 (D)アミノシラン系カップリング剤で処理されたシリカ、及び
 (E)難燃剤分散液を含有してなる、熱硬化性樹脂組成物。
[2]前記(E)成分が、有機溶媒中に難燃剤を分散してなる分散液であり、前記(E)成分中における前記有機溶媒の含有量が、前記難燃剤100質量部に対して、25~55質量部である、上記[1]に記載の熱硬化性樹脂組成物。
[3]前記(E)成分が、難燃剤として、2置換ホスフィン酸の金属塩を含有する、上記[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]前記(E)成分が、有機溶媒として、ケトン系溶媒を含有する、上記[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]前記(A)成分が、(a1)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物と、(a2)酸性置換基を有するモノアミン化合物と、(a3)ジアミン化合物とを反応させて得られる、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物である、上記[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記(a2)成分が、下記一般式(a2-1)で示される酸性置換基を有するモノアミン化合物であり、前記(a3)成分が、下記一般式(a3-1)で示されるジアミン化合物である、上記[5]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

(一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005

(一般式(a3-1)中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
[7]前記(C)成分が、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂である、上記[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000006

(式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
[8]前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が1~9である、上記[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]前記(C)成分の重量平均分子量が4,500~18,000である、上記[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選ばれる1種以上である、上記[1]~[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]さらに(F)硬化剤を含有してなる、上記[1]~[10]のいずれかに記載の熱硬化性樹脂組成物。
[12]上記[1]~[11]のいずれかに記載の熱硬化性樹脂組成物を含有してなるプリプレグ。
[13]上記[12]に記載のプリプレグと金属箔とを含有してなる積層板。
[14]上記[12]に記載のプリプレグ又は上記[13]に記載の積層板を含有してなるプリント配線板。
[15]上記[1]~[11]のいずれかに記載の熱硬化性樹脂組成物を製造する方法であって、下記工程1~2を有する、熱硬化性樹脂組成物の製造方法。
 工程1:難燃剤を分散媒中に分散させて(E)難燃剤分散液を作製する工程
 工程2:(A)マレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(D)アミノシラン系カップリング剤で処理されたシリカ、及び工程1で得られた(E)難燃剤分散液を混合する工程
 本発明により、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度及び低熱膨張性を有し、且つ成形性及びめっき付き回り性に優れ、さらに硬化物の表面に観察される高密度箇所の発生が抑制された熱硬化性樹脂組成物及びその製造方法、該熱硬化性樹脂組成物を用いたプリプレグ、積層板及びプリント配線板を提供することができる。
[熱硬化性樹脂組成物]
 本発明の熱硬化性樹脂組成物は、
 (A)マレイミド化合物(以下、「(A)成分」ともいう)、
 (B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(以下、「(B)エポキシ樹脂」又は「(B)成分」ともいう)、
 (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂(以下、「(C)共重合樹脂」又は「(C)成分」ともいう)、
 (D)アミノシラン系カップリング剤で処理されたシリカ(以下、「(D)成分」ともいう)、及び
 (E)難燃剤分散液(以下、「(E)成分」ともいう)
 を含有してなる熱硬化性樹脂組成物である。
 以下、熱硬化性樹脂組成物が含有する各成分について詳細に説明する。
<(A)マレイミド化合物>
 (A)マレイミド化合物は、マレイミド基を有する化合物であれば特に限定されないが、好ましくはN-置換マレイミド基を有するマレイミド化合物であり、より好ましくは、(a1)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(以下、「(a1)マレイミド化合物」又は「(a1)成分」ともいう)と、(a2)酸性置換基を有するモノアミン化合物(以下、「(a2)モノアミン化合物」又は「(a2)成分」ともいう)と、(a3)ジアミン化合物(以下、「(a3)成分」ともいう)とを反応させて得られる、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物である。以下、(A)成分に関する記載は、上記の酸性置換基とN-置換マレイミド基とを有するマレイミド化合物の記載として読むこともできる。
 (A)成分の重量平均分子量(Mw)は、有機溶媒への溶解性の観点及び機械強度の観点から、好ましくは400~3,500、より好ましくは600~2,300、さらに好ましくは800~2,000である。なお、本明細書における重量平均分子量は、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)で測定された値であり、より具体的には実施例に記載の方法により測定された値である。
((a1)マレイミド化合物)
 (a1)マレイミド化合物は、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物である。
 (a1)マレイミド化合物としては、複数のマレイミド基のうちの任意の2個のマレイミド基の間に脂肪族炭化水素基を有するマレイミド化合物(以下、「脂肪族炭化水素基含有マレイミド」ともいう)、複数のマレイミド基のうちの任意の2個のマレイミド基の間に芳香族炭化水素基を含有するマレイミド化合物(以下、「芳香族炭化水素基含有マレイミド」ともいう)等が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、芳香族炭化水素基含有マレイミドが好ましい。
 (a1)マレイミド化合物としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、1分子中に2個~5個のN-置換マレイミド基を有するマレイミド化合物が好ましく、1分子中に2個のN-置換マレイミド基を有するマレイミド化合物がより好ましい。また、(a1)マレイミド化合物としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、下記一般式(a1-1)~(a1-4)のいずれかで表される芳香族炭化水素基含有マレイミドであることが好ましく、下記一般式(a1-1)、(a1-2)又は(a1-4)で表される芳香族炭化水素基含有マレイミドであることがより好ましく、下記一般式(a1-2)で表される芳香族炭化水素基含有マレイミドであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式中、RA1~RA3は、各々独立に、炭素数1~5の脂肪族炭化水素基を示す。XA1は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-、-C(=O)-、-S-、-S-S-又はスルホニル基を示す。p、q及びrは、各々独立に、0~4の整数である。sは、0~10の整数である。
 RA1~RA3が示す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1~3の脂肪族炭化水素基であり、より好ましくはメチル基、エチル基である。
 XA1が示す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1~3のアルキレン基であり、より好ましくはメチレン基である。
 XA1が示す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、イソプロピリデン基が好ましい。
 XA1としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基が好ましい。より好ましいものは前述の通りである。
 p、q及びrは、各々独立に、0~4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 sは、0~10の整数であり、入手容易性の観点から、好ましくは0~5の整数、より好ましくは0~3の整数である。特に、一般式(a1-3)で表される芳香族炭化水素基含有マレイミド化合物は、sが0~3の整数の混合物であることが好ましい。
 (a1)マレイミド化合物としては、具体的には、例えば、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(マレイミドメチル)シクロヘキサン等の脂肪族炭化水素基含有マレイミド;N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4-ビス(3-マレイミドフェノキシ)ビフェニル、4,4-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、2,2’-ビス(4-マレイミドフェニル)ジスルフィド、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等の芳香族炭化水素基含有マレイミドが挙げられる。
 これらの中でも、反応率が高く、より高耐熱性化できるという観点からは、ビス(4-マレイミドフェニル)メタン、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ジスルフィド、N,N’-(1,3-フェニレン)ビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましく、安価であるという観点からは、ビス(4-マレイミドフェニル)メタン、N,N’-(1,3-フェニレン)ビスマレイミドが好ましく、溶媒への溶解性の観点からは、ビス(4-マレイミドフェニル)メタンが特に好ましい。
 (a1)マレイミド化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
((a2)モノアミン化合物)
 (a2)モノアミン化合物は、酸性置換基を有するモノアミン化合物であり、好ましくは酸性置換基を有する芳香族モノアミン化合物であり、より好ましくは下記一般式(a2-1)で示されるモノアミン化合物である。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。
 RA4が示す酸性置換基としては、溶解性及び反応性の観点から、好ましくは水酸基、カルボキシ基であり、耐熱性も考慮すると、より好ましくは水酸基である。
 tは1~5の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。
 RA5が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RA5が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 uは0~4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は1、特に好ましくは0である。
 (a2)モノアミン化合物としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、さらに好ましくは下記一般式(a2-2)又は(a2-3)で表されるモノアミン化合物であり、特に好ましくは下記一般式(a2-2)で表されるモノアミン化合物である。但し、一般式(a2-2)及び(a2-3)中のRA4、RA5及びuは、一般式(a2-1)中のものと同じであり、好ましいものも同じである。
Figure JPOXMLDOC01-appb-C000009
 (a2)モノアミン化合物としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等が挙げられる。
 これらの中でも、溶解性及び反応性の観点からは、m-アミノフェノール、p-アミノフェノール、p-アミノ安息香酸、3,5-ジヒドロキシアニリンが好ましく、耐熱性の観点からは、o-アミノフェノール、m-アミノフェノール、p-アミノフェノールが好ましく、誘電特性、低熱膨張性及び製造コストも考慮すると、p-アミノフェノールがより好ましい。
 (a2)モノアミン化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
((a3)ジアミン化合物)
 (a3)ジアミン化合物は、1分子中に2個のアミノ基を有する化合物であり、1分子中に2個の第1級アミノ基を有する化合物が好ましく、1分子中に2個の第1級アミノ基を有する芳香族ジアミン化合物がより好ましく、下記一般式(a3-1)で示されるジアミン化合物がさらに好ましい。
Figure JPOXMLDOC01-appb-C000010

(式中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
 XA2が示す炭素数1~3の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、プロピリデン基等が挙げられる。
 XA2としては、メチレン基が好ましい。
 RA6及びRA7が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 v及びwは、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 (a3)ジアミン化合物としては、具体的には、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルプロパン、2,2’-ビス[4,4’-ジアミノジフェニル]プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルエタン、3,3’-ジエチル-4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルチオエーテル、3,3’-ジヒドロキシ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、3,3’-ジブロモ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラメチルクロロ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラブロモ-4,4’-ジアミノジフェニルメタン等が挙げられる。これらの中でも、安価であるという観点から、4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましく、溶媒への溶解性の観点から、4,4’-ジアミノジフェニルメタンがより好ましい。
 (a1)成分、(a2)成分及び(a3)成分の反応は、例えば、有機溶媒の存在下、反応温度70~200℃で0.1~10時間反応させることにより実施することが好ましい。
 反応温度は、より好ましくは70~160℃、さらに好ましくは70~130℃、特に好ましくは80~120℃である。
 反応時間は、より好ましくは1~6時間、さらに好ましくは1~4時間である。
((a1)成分、(a2)成分及び(a3)成分の使用量)
 (a1)成分、(a2)成分及び(a3)成分の反応において、三者の使用量は、(a2)成分及び(a3)成分が有する第1級アミノ基当量[-NH基当量と記す]の総和と、(a1)成分のマレイミド基当量との関係が、下記式を満たすことが好ましい。
   0.1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦10
 〔マレイミド基当量〕/〔-NH基当量の総和〕を0.1以上とすることにより、ゲル化及び耐熱性が低下することがなく、また、10以下とすることにより、有機溶媒への溶解性、金属箔接着性及び耐熱性が低下することがない。
 同様の観点から、より好ましくは、
   1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦9 を満たし、
 さらに好ましくは、
   2≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦8 を満たす。
(有機溶媒)
 前述の通り、(a1)成分、(a2)成分及び(a3)成分の反応は、有機溶媒中で行うことが好ましい。
 有機溶媒としては、当該反応に悪影響を及ぼさない限り特に制限はなく、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒を包含する窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を包含する硫黄原子含有溶媒;酢酸エチル、γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、エステル系溶媒が好ましく、低毒性であるという観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ-ブチロラクトンがより好ましく、揮発性が高く、プリプレグの製造時に残溶媒として残り難いことも考慮すると、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドがさらに好ましく、ジメチルアセトアミドが特に好ましい。
 有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒の使用量は、特に制限はないが、溶解性及び反応効率の観点から、(a1)成分、(a2)成分及び(a3)成分の合計100質量部に対して、好ましくは25~1,000質量部、より好ましくは40~700質量部、さらに好ましくは60~250質量部である。有機溶媒の使用量を25質量部以上とすることによって溶解性を確保し易くなり、1,000質量部以下とすることによって、反応効率の大幅な低下を抑制し易い。
(反応触媒)
 (a1)成分、(a2)成分及び(a3)成分の反応は、必要に応じて、反応触媒の存在下で実施してもよい。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン系触媒;メチルイミダゾール、フェニルイミダゾール等のイミダゾール系触媒;トリフェニルホスフィン等のリン系触媒などが挙げられる。
 反応触媒は1種を単独で使用してもよいし、2種以上を併用してもよい。
 反応触媒の使用量は、特に制限はないが、(a1)成分と(a2)成分の質量の総和100質量部に対して、好ましくは0.001~5質量部である。
<(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂>
 (B)エポキシ樹脂としては、例えば、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等が挙げられる。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 (B)エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニルアラルキルフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールアルキルフェノール共重合ノボラック型エポキシ樹脂、ナフトールアラルキルクレゾール共重合ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;ナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などに分類される。
 これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましく、低熱膨張性及び高ガラス転移温度の観点から、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂がより好ましく、クレゾールノボラック型エポキシ樹脂がさらに好ましい。
 (B)エポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (B)エポキシ樹脂のエポキシ当量は、好ましくは100~500g/eq、より好ましくは120~400g/eq、さらに好ましくは140~300g/eq、特に好ましくは170~240g/eqである。
 ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JIS K 7236(2001年)に規定された方法に従って測定することができる。具体的には、株式会社三菱化学アナリテック製の自動滴定装置「GT-200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器で溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
 (B)エポキシ樹脂の市販品としては、クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N-673」(DIC株式会社製、エポキシ当量;205~215g/eq)、ナフタレン型エポキシ樹脂「HP-4032」(三菱化学株式会社製、エポキシ当量;152g/eq)、ビフェニル型エポキシ樹脂「YX-4000」(三菱化学株式会社製、エポキシ当量;186g/eq)、ジシクロペンタジエン型エポキシ樹脂「HP-7200H」(DIC株式会社製、エポキシ当量;280g/eq)等が挙げられる。なお、エポキシ当量は、その商品の製造会社のカタログに記載された値である。
<(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂>
 (C)共重合樹脂は、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂である。芳香族ビニル化合物としては、例えば、スチレン、1-メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらの中でも、スチレンが好ましい。
 (C)共重合樹脂としては、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000011

(式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
 RC1及びRC2が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RC2が表す炭素数2~5のアルケニル基としては、例えば、アリル基、クロチル基等が挙げられる。該アルケニル基としては、好ましくは炭素数3~5のアルケニル基、より好ましくは炭素数3又は4のアルケニル基である。
 RC2が表す炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6~12のアリール基、より好ましくは6~10のアリール基である。
 xは、好ましくは0又は1、より好ましくは0である。
 一般式(C-i)で表される構造単位においては、RC1が水素原子であり、xが0である下記一般式(C-i-1)で表される構造単位、つまりスチレンに由来する構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000012
 (C)共重合樹脂中における、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)は、好ましくは1~9、より好ましくは2~9、さらに好ましくは3~8、特に好ましくは3~7である。また、前記式(C-ii)で表される構造単位に対する前記一般式(C-i)で表される構造単位の含有比率[(C-i)/(C-ii)](モル比)も同様に、好ましくは1~9、より好ましくは2~9、さらに好ましくは3~8、特に好ましくは3~7である。これらのモル比が1以上であれば、誘電特性の改善効果が十分となる傾向にあり、9以下であれば、相容性が良好となる傾向にある。
 (C)共重合樹脂中における、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との合計含有量、及び、一般式(C-i)で表される構造単位と式(C-ii)で表される構造単位との合計含有量は、それぞれ、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは実質的に100質量%である。
 (C)共重合樹脂の重量平均分子量(Mw)は、好ましくは4,500~18,000、より好ましくは5,000~18,000、さらに好ましくは6,000~17,000、よりさらに好ましくは8,000~16,000、特に好ましくは8,000~15,000、最も好ましくは9,000~13,000である。
 なお、(C)共重合樹脂を用いることによりエポキシ樹脂を低誘電率化する手法は、プリント配線板用材料に適用すると基材への含浸性及び銅箔ピール強度が不十分となるため、一般的には避けられる傾向にある。そのため、(C)共重合樹脂を用いることも一般的には避けられる傾向にあるが、本発明は、(C)共重合樹脂を用いながらも、(A)成分及び(B)成分を含有させることにより、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度及び低熱膨張性を有し、且つ成形性及びめっき付き回り性に優れる熱硬化性樹脂組成物となることが判明して成し遂げられたものである。
((C)共重合樹脂の製造方法)
 (C)共重合樹脂は、芳香族ビニル化合物と無水マレイン酸とを共重合することにより製造することができる。
 芳香族ビニル化合物としては、前述の通り、スチレン、1-メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 さらに、前記芳香族ビニル化合物及び無水マレイン酸以外にも、各種の重合可能な成分を共重合させてもよい。各種の重合可能な成分としては、例えば、エチレン、プロピレン、ブタジエン、イソブチレン、アクリロニトリル等のビニル化合物;メチルアクリレート、メチルメタクリレート等の(メタ)アクリロイル基を有する化合物などが挙げられる。
 また、該芳香族ビニル化合物に、フリーデル・クラフツ反応、リチウム等の金属系触媒を用いた反応を通じて、アリル基、メタクリロイル基、アクリロイル基、ヒドロキシ基等の置換基を導入してもよい。
 (C)共重合樹脂としては、市販品を用いることもできる。市販品としては、例えば、SMA(登録商標)1000」(スチレン/無水マレイン酸=1、Mw=5,000)、「SMA(登録商標)EF30」(スチレン/無水マレイン酸=3、Mw=9,500)、「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000)、「SMA(登録商標)EF60」(スチレン/無水マレイン酸=6、Mw=11,500)、「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400)(以上、CRAY VALLEY社製)等が挙げられる。
<(D)アミノシラン系カップリング剤で処理されたシリカ>
 熱硬化性樹脂組成物には、絶縁樹脂層の熱膨張率を低下させるために無機充填材を含有させることが行われるが、本発明においては、(D)成分として、シリカの中でも、アミノシラン系カップリング剤で処理されたシリカを用いる。(D)成分を熱硬化性樹脂組成物に含有させることにより、低熱膨張性及びめっき付き回り性が向上するという効果以外に、前記(A)~(C)成分との密着性が向上することによりシリカの脱落が抑制されるため、過剰なデスミアによるレーザビア形状の変形等を抑制する効果が得られる。
 アミノシラン系カップリング剤としては、具体的には、下記一般式(D-1)で表されるケイ素含有基と、アミノ基とを有するシランカップリング剤が好ましい。
Figure JPOXMLDOC01-appb-C000013

(式中、RD1は、炭素数1~3のアルキル基又は炭素数2~4のアシル基である。yは、0~3の整数である。)
 RD1が表す炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。これらの中でも、メチル基が好ましい。
 RD1が表す炭素数2~4のアシル基としては、アセチル基、プロピオニル基、アクリル基が挙げられる。これらの中でも、アセチル基が好ましい。
 アミノシラン系カップリング剤は、アミノ基を1つ有していてもよいし、2つ有していてもよいし、3つ以上有していてもよいが、通常は、アミノ基を1つ又は2つ有する。
 アミノ基を1つ有するアミノシラン系カップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-プロピニル[3-(トリメトキシシリル)プロピル]カルバメート等が挙げられる。
 アミノ基を2つ有するアミノシラン系カップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、1-[3-(トリメトキシシリル)プロピル]ウレア、1-[3-(トリエトキシシリル)プロピル]ウレア等が挙げられる。
 アミノシラン系カップリング剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (D)成分の代わりに、例えば、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、アルキニルシラン系カップリング剤、ハロアルキルシラン系カップリング剤、シロキサン系カップリング剤、ヒドロシラン系カップリング剤、シラザン系カップリング剤、アルコキシシラン系カップリング剤、クロロシラン系カップリング剤、(メタ)アクリルシラン系カップリング剤、イソシアヌレートシラン系カップリング剤、ウレイドシラン系カップリング剤、メルカプトシラン系カップリング剤、スルフィドシラン系カップリング剤、イソシアネートシラン系カップリング剤等で処理されたシリカを用いると、前記(A)~(C)成分との密着性が低下してシリカが脱落し易くなる傾向にあり、過剰なデスミアによるレーザビア形状の変形等の抑制効果に乏しくなる。
 (D)アミノシラン系カップリング剤で処理されたシリカを用いる限りにおいて、本発明の効果を損なわない範囲で、上記したその他のカップリング剤で処理されたシリカを併用してもよい。
 上記したその他のカップリング剤で処理されたシリカを併用する場合、その含有量は、アミノシラン系カップリング剤で処理されたシリカ(D)100質量部に対して、好ましくは50質量部以下、より好ましくは30質量部以下、さらに好ましくは15質量部以下、特に好ましくは10質量部以下、最も好ましくは5質量部以下である。
 (D)成分に用いられるシリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカ等が挙げられる。乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)等が挙げられる。シリカは、低熱膨張性及び樹脂に充填した際の高流動性の観点から、溶融シリカが好ましい。
 シリカの平均粒子径に特に制限はないが、好ましくは0.1~10μm、より好ましくは0.1~6μm、さらに好ましくは0.1~3μm、特に好ましくは1~3μmである。シリカの平均粒子径を0.1μm以上にすることで、高充填した際の流動性を良好に保つことができ、また、10μm以下にすることで、粗大粒子の混入確率を減らして粗大粒子に起因する不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 シリカの比表面積は、好ましくは4cm/g以上、より好ましくは4~9cm/g、さらに好ましくは5~7cm/gである。
<(E)難燃剤分散液>
 本発明の熱硬化性樹脂組成物は、(E)難燃剤分散液を含有してなるものである。
 本発明の熱硬化性樹脂組成物は、難燃剤を含有することにより、優れた難燃性を有するものとなる。さらに、本発明の熱硬化性樹脂組成物は、難燃剤を予め分散媒によって分散させた分散液として使用することにより、硬化物の表面における高密度箇所の発生が抑制されたものとなる。
 (E)難燃剤分散液は、難燃剤を分散媒中に分散させた分散液であれば特に限定されず使用することができる。
 (E)難燃剤分散液に含有される難燃剤としては、例えば、臭素、塩素等を含有する含ハロゲン系難燃剤;リン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。これらの中でも、リン系難燃剤が好ましい。
 リン系難燃剤としては、無機系のリン系難燃剤、有機系のリン系難燃剤が挙げられる。
 無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
 有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物、リン含有フェノール樹脂等が挙げられる。これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩が好ましく、2置換ホスフィン酸の金属塩がより好ましい。
 芳香族リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ-2,6-キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)、ビスフェノールA-ビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジフェニルホスフェート)等が挙げられる。
 1置換ホスホン酸ジエステルとしては、例えば、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1-ブテニル)等が挙げられる。
 2置換ホスフィン酸エステルとしては、例えば、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル等が挙げられる。
 2置換ホスフィン酸の金属塩としては、例えば、ジアルキルホスフィン酸の金属塩、ジアリルホスフィン酸の金属塩、ジビニルホスフィン酸の金属塩、ジアリールホスフィン酸の金属塩等が挙げられる。なお、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましく、アルミニウム塩であることがより好ましい。
 有機系含窒素リン化合物としては、例えば、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラムなどが挙げられる。
 環状有機リン化合物としては、例えば、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド等が挙げられる。
 難燃剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 また、芳香族リン酸エステルは、下記一般式(E-1)又は(E-2)で表される芳香族リン酸エステルであることが好ましく、2置換ホスフィン酸の金属塩は、下記一般式(E-3)で表される2置換ホスフィン酸の金属塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、RE1~RE5は各々独立に、炭素数1~5のアルキル基又はハロゲン原子である。e及びfは各々独立に0~5の整数であり、g、h及びiは各々独立に0~4の整数である。
 RE6及びRE7は各々独立に、炭素数1~5のアルキル基又は炭素数6~14のアリール基である。Mは、リチウム原子、ナトリウム原子、カリウム原子、カルシウム原子、マグネシウム原子、アルミニウム原子、チタン原子又は亜鉛原子である。jは、1~4の整数である。)
 RE1~RE5が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。RE1~RE5が表すハロゲン原子としては、例えば、フッ素原子等が挙げられる。
 e及びfは、好ましくは0~2の整数、より好ましくは2である。g、h及びiは、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 RE6及びRE7が表す炭素数1~5のアルキル基としては、RE1~RE5の場合と同じものが挙げられる。
 RE6及びRE7が表す炭素数6~14のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基、アントリル基等が挙げられる。該芳香族炭化水素基としては、炭素数6~10のアリール基が好ましい。
 jは金属イオンの価数と等しく、つまり、Mの種類に対応して1~4の範囲内で変化する。
 Mとしては、アルミニウム原子が好ましい。なお、Mがアルミニウム原子である場合、jは3である。
 難燃剤の平均粒子径は、高密度箇所の発生を効果的に抑制する観点及び難燃性の観点から、好ましくは0.1~8μm、より好ましくは0.5~6μm、さらに好ましくは1~5μmである。
 ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
 (E)難燃剤分散液において、難燃剤を分散させる分散媒としては、有機溶媒が好ましい。
 有機溶媒としては、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒を包含する窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を包含する硫黄原子含有溶媒;酢酸エチル、γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、高密度箇所の発生を抑制する観点から、ケトン系溶媒が好ましく、メチルエチルケトンがより好ましい。
 有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (E)難燃剤分散液中における難燃剤及び分散媒の含有量に特に制限はないが、分散媒の含有量が、難燃剤100質量部に対して、好ましくは25~55質量部、より好ましくは30~50質量部、さらに好ましくは35~45質量部である。分散媒の含有量が、25質量部以上であると難燃剤の沈降が抑制され、55質量部以下であると優れた分散性が得られる。
 (E)難燃剤分散液は、本発明の効果を阻害しない範囲で、難燃剤及び分散媒以外の成分を含有していてもよい。(E)難燃剤分散液中における難燃剤及び分散媒の合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。上限値については特に制限はなく、100質量%以下であってもよく、実質的に100質量%であってもよい。
<(F)硬化剤>
 熱硬化性樹脂組成物は、さらに、(F)硬化剤を含有してもよい。(F)硬化剤としては、例えば、ジシアンジアミド;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ジエチルアミノプロピルアミン、テトラメチルグアニジン、トリエタノールアミン等の、ジシアンジアミドを除く鎖状脂肪族アミン;イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の環状脂肪族アミン;キシレンジアミン、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミンなどが挙げられる。これらの中でも、金属箔接着性及び低熱膨張性の観点から、ジシアンジアミドが好ましい。
 該ジシアンジアミドは、HN-C(=NH)-NH-CNで表され、融点は通常、205~215℃、より純度の高いものでは207~212℃である。ジシアンジアミドは、結晶性物質であり、斜方状晶であってもよいし、板状晶であってもよい。ジシアンジアミドは、純度98%以上のものが好ましく、純度99%以上のものがより好ましく、純度99.4%以上のものがさらに好ましい。ジシアンジアミドとしては、市販品を使用することができ、例えば、日本カーバイド工業株式会社製、東京化成工業株式会社製、キシダ化学株式会社製、ナカライテスク株式会社製等の市販品を使用することができる。
 なお、ジシアンジアミド等は難燃剤としての効果も有するが、本発明においては、硬化剤として機能し得るものは(F)成分に分類し、(E)成分には包含されないこととする。
(各成分の含有量)
 熱硬化性樹脂組成物中、(A)成分の含有量は、特に制限されないが、(A)~(C)成分の総和100質量部に対して、好ましくは15~65質量部、より好ましくは30~55質量部、さらに好ましくは40~50質量部である。(A)成分が15質量部以上であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性が得られる傾向にある。一方、65質量部以下であることにより、熱硬化性樹脂組成物の流動性及び成形性が良好となる傾向にある。
 熱硬化性樹脂組成物中、(B)成分の含有量は、特に制限されないが、(A)~(C)成分の総和100質量部に対して、好ましくは15~50質量部、より好ましくは20~40質量部、さらに好ましくは25~35質量部である。(B)成分が15質量部以上であることにより、高耐熱性、高ガラス転移温度及び低熱膨張性が得られる傾向にある。一方、50質量部以下であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性となる傾向にある。
 熱硬化性樹脂組成物中、(C)成分の含有量は、特に制限されないが、(A)~(C)成分の総和100質量部に対して、好ましくは10~45質量部、より好ましくは15~35質量部、さらに好ましくは20~30質量部である。(C)成分が10質量部以上であることにより、高耐熱性及び低比誘電率が得られる傾向にある。一方、45質量部以下であることにより、高耐熱性、高金属箔接着性及び低熱膨張性が得られる傾向にある。
 熱硬化性樹脂組成物中、(D)成分の含有量は、特に制限されないが、(A)~(C)成分の総和100質量部に対して、好ましくは30~70質量部、より好ましくは40~60質量部、さらに好ましくは45~55質量部である。(D)成分が30質量部以上であることにより、優れた低熱膨張性が得られる傾向にある。一方、70質量部以下であることにより、耐熱性が得られ、且つ熱硬化性樹脂組成物の流動性及び成形性が良好となる傾向にある。
 熱硬化性樹脂組成物中、(E)成分の含有量は、特に制限されないが、(A)~(C)成分の総和100質量部に対して、難燃剤の含有量が、好ましくは0.1~20質量部となる量、より好ましくは1~15質量部となる量、さらに好ましくは3~12質量部となる量、特に好ましくは5~10質量部となる量、最も好ましくは7~10質量部となる量である。難燃剤が0.1質量部以上であることにより、優れた難燃性が得られる傾向にある。一方、20質量部以下であることにより、成形性に優れると共に、高密度箇所の発生を効果的に抑制できる傾向にある。
 特に、(E)成分としてリン系難燃剤を用いる場合、その含有量は、リン原子含有率が、(A)~(C)成分の総和100質量部に対して、好ましくは0.02~5質量部となる量、より好ましくは0.2~4質量部となる量、さらに好ましくは0.5~3質量部となる量、特に好ましくは1.0~2.7質量部となる量、最も好ましくは1.5~2.5質量部となる量である。リン原子含有率が、0.02質量部以上であることにより、優れた難燃性が得られる傾向にある。一方、5質量部以下であることにより、成形性に優れると共に、高密度箇所の発生を効果的に抑制できる傾向にある。
 また、本発明の熱硬化性樹脂組成物に(F)成分を含有させる場合、その含有量は、(A)~(C)成分の総和100質量部に対して、好ましくは0.5~6質量部、より好ましくは0.7~4質量部、さらに好ましくは1~3質量部である。(F)成分が0.5質量部以上であることにより、高金属箔接着性及び優れた低熱膨張性が得られる傾向にある。一方、6質量部以下であることにより、高耐熱性が得られる傾向にある。
<その他の成分>
 本発明の熱硬化性樹脂組成物には、本発明の効果を損なわない範囲で必要に応じて、添加剤、有機溶媒等のその他の成分を含有させることができる。これらは1種を単独で含有させてもよいし、2種以上を含有させてもよい。
(添加剤)
 添加剤としては、例えば、硬化促進剤、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填材等が挙げられる。
(有機溶媒)
 熱硬化性樹脂組成物は、希釈することによって取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶媒を含有してもよい。本明細書では、有機溶媒を含有させた熱硬化性樹脂組成物を、樹脂ワニスと称することがある。
 該有機溶媒としては、特に制限されないが、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒を含む、窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を含む硫黄原子含有溶媒;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等のエステル系溶媒などが挙げられる。
 これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、窒素原子含有溶媒が好ましく、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテルがより好ましく、メチルエチルケトン、メチルイソブチルケトンがさらに好ましく、メチルエチルケトンが特に好ましい。
 有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 熱硬化性樹脂組成物における有機溶媒の含有量は、熱硬化性樹脂組成物の取り扱いが容易になる程度に適宜調整すればよく、また、樹脂ワニスの塗工性が良好となる範囲であれば特に制限はない。熱硬化性樹脂組成物由来の固形分濃度(有機溶媒以外の成分の濃度)は、好ましくは30~90質量%、より好ましくは40~80質量%、さらに好ましくは50~80質量%である。
 本発明の熱硬化性樹脂組成物は、下記条件によって作製された硬化物の表面に観察される、50μm以上の高密度箇所の個数が、好ましくは5個以下、より好ましくは2個以下、さらに好ましくは0個である。
 なお、上記の熱硬化性樹脂組成物の硬化物とは、実施例に記載の熱硬化性樹脂組成物、プリプレグ及び銅張積層板の製造方法に従って製造した銅張積層板を、実施例の評価項目である「外観検査」に記載の処理を行って得られた評価基板を意味し、高密度箇所の測定方法は、実施例の評価項目である「外観検査」に記載の方法で測定した個数である。
<熱硬化性樹脂組成物の製造方法>
 本発明の熱硬化性樹脂組成物は、下記工程1~2を有する製造方法により製造することが好ましい。
 工程1:難燃剤を分散媒中に分散させて(E)難燃剤分散液を作製する工程
 工程2:(A)マレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(D)アミノシラン系カップリング剤で処理されたシリカ、及び工程1で得られた(E)難燃剤分散液を混合する工程
(工程1)
 工程1は、難燃剤を分散媒中に分散させて(E)難燃剤分散液を作製する工程である。
 難燃剤を分散媒中に分散させる方法としては、公知の混合方法を適用することができる。混合に用いる混合機としては、例えば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、自転公転式分散方式等の混合機が挙げられる。(E)難燃剤分散液は、これらの混合機を用いて充分に撹拌することで好適に調製することができる。
 (E)難燃剤分散液を調製する際の難燃剤と分散媒の使用量は、前記した(E)難燃剤分散液中における難燃剤と分散媒の好適な含有量と同じである。
(工程2)
 工程2は、上記で得た(E)難燃剤分散液を、(A)成分、(B)成分、(C)成分及び(D)成分と混合する工程である。工程2において、必要に応じて、前記その他の成分を混合してもよい。
 工程2における混合方法としては、公知の混合方法を適用することができる。混合機としては、例えば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、自転公転式分散方式等の混合機が挙げられる。熱硬化性樹脂組成物は、これらの混合機を用いて、充分に混合することで好適に調製することができる。
 なお、本工程において、前記のとおり熱硬化性樹脂組成物由来の固形分濃度を調整するために有機溶媒を添加してもよい。
[プリプレグ]
 本発明のプリプレグは、本発明の熱硬化性樹脂組成物を含有してなるものである。
 本発明のプリプレグの製造方法に特に制限はないが、例えば、シート状補強基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。
 プリプレグのシート状補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。シート状補強基材の材質としては、紙、コットンリンター等の天然繊維;ガラス繊維、アスベスト等の無機物繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン、アクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混沙したもの等が挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
 これらのシート状補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有する。
 なお、材質及び形状は、目的とする成形物の用途及び性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
 シート状補強基材の厚さは、特に制限されず、例えば、約0.03~0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性及び加工性の観点から好ましい。
 熱硬化性樹脂組成物をシート状補強基材に含浸又は塗工させる方法としては、ホットメルト法又はソルベント法が好ましい。
 ホットメルト法は、熱硬化性樹脂組成物に有機溶媒を含有させず、(1)該組成物との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする方法、又は(2)ダイコーターによりシート状補強基材に直接塗工する方法である。
 一方、ソルベント法は、熱硬化性樹脂組成物に有機溶媒を含有させてワニスを調製し、該ワニスにシート状補強基材を浸漬して、ワニスをシート状補強基材に含浸させ、その後、乾燥させる方法である。
 熱硬化性樹脂組成物を基材に含浸又は塗工した後、通常、好ましくは100~200℃の温度で1~30分加熱乾燥して半硬化(Bステージ化)させることにより、本発明のプリプレグを得ることができる。
 本発明のプリプレグは、1枚で用いてもよく、必要に応じて複数枚、好ましくは2~20枚を重ね合わせて用いてもよい。
[積層板]
 本発明の積層板は、前記プリプレグを含有してなるものである。
 本発明の積層板の製造方法に特に制限はないが、例えば、本発明のプリプレグを1枚用いるか又は必要に応じて2~20枚重ね、その片面又は両面に金属箔を配置した構成で積層成形することにより製造することができる。なお、金属箔を配置した積層板を、金属張積層板と称することがある。
 金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましく、銅、アミルニウムがより好ましく、銅がさらに好ましい。
 積層板の成形条件としては、電気絶縁材料用積層板及び多層板の公知の成形手法を適用することができる。成形機として、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、例えば、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の条件で成形することができる。
 また、本発明のプリプレグと内層用プリント配線板とを組合せ、積層成形して、多層板を製造することもできる。
 金属箔の厚みに特に制限はなく、プリント配線板の用途等により適宜選択できる。金属箔の厚みは、好ましくは0.5~150μm、より好ましくは1~100μm、さらに好ましくは5~50μm、特に好ましくは5~30μmである。
 なお、金属箔にめっきをすることによりめっき層を形成することも好ましい。
 めっき層の金属は、めっきに使用し得る金属であれば特に制限されず、前記金属箔として使用される金属と同じものが挙げられる。
 めっき方法としては特に制限はなく、公知の方法、例えば、電解めっき法、無電解めっき法等が利用できる。
[プリント配線板]
 本発明のプリント配線板は、本発明のプリプレグ又は本発明の積層板を含有してなるプリント配線板である。
 本発明のプリント配線板は、例えば、金属張積層板の金属箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、金属箔表面にレジストパターンを形成後、エッチングにより不要部分の金属箔を除去し、レジストパターンを剥離後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを剥離することにより行うことができる。このようにして得られたプリント配線板の表面に、さらに上記の金属張積層板を前記したのと同様の条件で積層し、さらに、上記と同様にして回路加工して多層プリント配線板とすることができる。この場合、必ずしもスルーホールを形成する必要はなく、バイアホールを形成してもよく、両方を形成することができる。このような多層化は必要枚数行われる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。本発明に係る熱硬化性樹脂組成物を用いて、プリプレグ、さらに銅張積層板を作製し、作製された銅張積層板を評価した。評価方法を以下に示す。
[評価方法]
<1.耐熱性(リフローはんだ耐熱性)>
 各例で作製した4層銅張積層板を、260℃以上(最高到達温度が266℃)の恒温槽に30秒間通過させることを1サイクルとし、目視にて4層銅張積層板が膨れたと確認できるまでのサイクル数を求めた。サイクル数が多いほど、耐熱性に優れる。
<2.比誘電率(Dk)>
 ネットワークアナライザ「8722C」(ヒューレットパッカード社製)を用い、トリプレート構造直線線路共振器法により、1GHzにおける両面銅張積層板の比誘電率を25℃で測定した。試験片サイズは、200mm×50mm×厚さ0.8mmで、1枚の両面銅張積層板の片面の中心にエッチングにより幅1.0mmの直線線路(ライン長さ200mm)を形成し、裏面は全面に銅を残してグランド層とした。もう1枚の両面銅張積層板について、片面を全面エッチングし、裏面はグランド層とした。これら2枚の両面銅張積層板を、グランド層を外側にして重ね合わせ、ストリップ線路とした。
<3.金属箔接着性(銅箔ピール強度)>
 金属箔接着性は、銅箔ピール強度によって評価した。各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、オートグラフ「AG-100C」(株式会社島津製作所製)を用いて銅箔ピール強度を測定した。値が大きいほど、金属箔接着性に優れることを示す。
<4.ガラス転移温度(Tg)>
 各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用い、評価基板の面方向(Z方向)の30~260℃における熱膨張曲線を得て、膨張量の変曲点をガラス転移温度とした。
<5.低熱膨張性(熱膨張率)>
 各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用いて、評価基板の面方向の熱膨張率(線膨張率)を測定した。なお、評価基板が有する熱歪みの影響を除去するため、昇温-冷却サイクルを2回繰り返し、2回目の温度変位チャートの、30℃~260℃の熱膨張率[ppm/℃]を測定し、低熱膨張性の指標とした。値が小さいほど、低熱膨張性に優れている。なお、表中には、Tg未満(「<Tg」と表記する。)における熱膨張率とTg超(「>Tg」と表記する。)における熱膨張率とに分けて記載した。
  測定条件 1st Run:室温→210℃(昇温速度10℃/min)
       2nd Run:0℃→270℃(昇温速度10℃/min)
<6.めっき付き回り性(レーザ加工性)>
 各例で作製した4層銅張積層板に対して、レーザマシン「LC-2F21B/2C」(日立ビアメカニクス株式会社製)を用いて、目標穴径80μm、ガウシアン、サイクルモードにより、銅ダイレクト法、パルス幅15μs×1回、7μs×4回を行い、レーザ穴あけを実施して、レーザ穴あけ基板を作製した。
 得られたレーザ穴あけ基板に対して、膨潤液「スウェリング ディップ セキュリガント(登録商標)P」(アトテックジャパン株式会社製)を使用して70℃で5分間処理し、次いで、粗化液「ドージング セキュリガント(登録商標)P500J」(アトテックジャパン株式会社製)を使用して70℃で9分間処理し、続いて、中和液「リダクションコンディショナー セキュリガント(登録商標)P500」(アトテックジャパン株式会社製)を使用して40℃で5分間処理して、デスミア処理を実施した。この後、無電解めっき液「プリントガント(登録商標)MSK-DK」(アトテックジャパン株式会社製)を使用して30℃で20分間、無電解めっきを行い、次いで、電気めっき液「カパラシドHL」(アトテックジャパン株式会社製)を使用して24℃で2A/dm、2時間、電気めっきを施した。
 得られたレーザ穴あけ基板の断面観察を実施し、めっきの付き回り性を確認した。めっきの付き回り性の評価方法として、レーザ穴上部のめっき厚みとレーザ穴底部のめっき厚みの差が、レーザ穴上部のめっき厚みの10%以内であることが付き回り性として好ましいことから、100穴中における、この範囲に含まれる穴の存在割合(%)を求めた。
<7.成形性>
 各例で作製した4層銅張積層板について、外層銅を除去した後、340×500mmの面内中における、ボイド及びかすれの有無を目視によって確認し、ボイド及びかすれが無いものを「異常なし」と評価した。ボイド及びかすれが無いことが、成形性が良好であることを示す。
<8.外観検査(高密度箇所の個数)>
 各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除き、500mm角の評価基板を作製した。該評価基板について、自動外観検査装置「Discovery-OLB」(オルボテック株式会社製)を用いて外観検査を実施した。なお、外観検査方法としては、大きさが50μm以上の高密度箇所の個数を計測した。高密度箇所の個数が少ないほど外観に優れる。
 以下、実施例及び比較例で使用した各成分について説明する。
(A)成分:下記製造例1で製造した酸性置換基とN-置換マレイミド基とを有するマレイミド化合物のジメチルアセトアミド溶液
[製造例1]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン19.2g、ビス(4-マレイミドフェニル)メタン174.0g、p-アミノフェノール6.6g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(Mw=1,370)のジメチルアセトアミド溶液を得た。
 なお、上記重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)(東ソー株式会社製)を用いて3次式で近似した。GPCの測定条件を、以下に示す。
 装置:ポンプ:L-6200型(株式会社日立ハイテクノロジーズ製)
    検出器:L-3300型RI(株式会社日立ハイテクノロジーズ製)
    カラムオーブン:L-655A-52(株式会社日立ハイテクノロジーズ製)
 カラム;TSKgel SuperHZ2000+TSKgel SuperHZ2300(すべて東ソー株式会社製)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:20mg/5mL
 注入量:10μL
 流量:0.5mL/分
 測定温度:40℃
(B)成分:クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N-673」(DIC株式会社製、エポキシ当量:205~215g/eq)
(C-1)成分:スチレンと無水マレイン酸の共重合樹脂「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000、CRAY VALLEY社製)
(C-2)成分:スチレンと無水マレイン酸の共重合樹脂「SMA(登録商標)3000」(スチレン/無水マレイン酸=2、Mw=7,500、CRAY VALLEY社製)
(C-3)成分:スチレンと無水マレイン酸の共重合樹脂「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400、CRAY VALLEY社製)
(C-4)成分:スチレンと無水マレイン酸の共重合樹脂「SMA(登録商標)1000」(スチレン/無水マレイン酸=1、Mw=5,000、CRAY VALLEY社製)
(D)成分:「Megasil 525 ARI」(アミノシラン系カップリング剤により処理された溶融シリカ、平均粒子径:1.9μm、比表面積5.8m/g、シベルコ・ジャパン株式会社製)
(E)成分:下記製造例2で製造した難燃剤分散液
[製造例2]
 「OP-935」(トリスジエチルホスフィン酸アルミニウム塩、クラリアント社製、リン原子含有量23質量%、平均粒子径:2~3μm)100質量部を、メチルエチルケトン42.8質量部と混合し、充分に撹拌することにより、難燃剤分散液を得た。
(E’)成分:「OP-935」(ホスフィン酸アルミニウム塩、クラリアント社製、リン原子含有量23質量%、平均粒子径:2~3μm)を分散液とすることなく、粉末の状態で使用した。
(F)成分:ジシアンジアミド(日本カーバイド工業株式会社製)
実施例1~4、比較例1
(熱硬化性樹脂組成物及びプリプレグの作製)
 上記に示した各成分を、表1に記載の組成で配合(但し、溶液又は分散液の場合は固形分換算量を示す。)した後、充分に撹拌し、熱硬化性樹脂組成物の固形分濃度が65~75質量%になるようにメチルエチルケトンを追加し、各実施例及び各比較例の熱硬化性樹脂組成物を調製した。
 得られた熱硬化性樹脂組成物をIPC規格#3313のガラスクロス(0.1mm)に含浸させ、160℃で4分間乾燥してプリプレグを得た。
(両面銅箔積層板の作製)
 上記で作製したプリプレグ8枚を重ねたものの両面に18μmの銅箔「3EC-VLP-18」(三井金属株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.8mm(プリプレグ8枚分)の両面銅張積層板を作製した。該両面銅張積層板を用いて、前記方法に従って、比誘電率、金属箔接着性、ガラス転移温度(Tg)、低熱膨張性及び外観検査の評価を実施した。結果を表1に示す。
(4層銅張積層板の作製)
 一方で、上記で作製したプリプレグ1枚を使用し、両面に18μmの銅箔「YGP-18」(日本電解株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.1mm(プリプレグ1枚分)の両面銅張積層板を作製した。次に、該両面銅張積層板の両銅箔面に、「BF処理液」(日立化成株式会社製)を使用して内層密着処理を施した。続いて、内層密着処理を施した両面の銅箔面に、厚さ0.05mmのプリプレグを1枚と、18μmの銅箔「YGP-18」(日本電解株式会社製)とを、各々この順に重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形して4層銅張積層板を作製した。該4層銅張積層板を用いて、前記方法に従って、耐熱性、めっき付き回り性及び成形性の評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例1~4では、リフローはんだ耐熱性が耐熱要求レベル以上の10サイクル以上を達成し、低比誘電率、高銅箔ピール強度及び高ガラス転移温度が得られ、且つ低熱膨張性を示した。また、実施例1~4では、適度な壁面からのガラスクロスの飛び出しや、適度な粗化形状を有すことから、良好なめっき付き回り性を有していることを確認した。実施例1~4は、成形性においても、樹脂の埋め込み性は良好であり、かすれ、ボイド等の異常は確認されなかった。さらに、外観検査で高密度箇所は見られなかった。
 一方、(E)難燃剤分散液を使用せず、粉末状の難燃剤を用いた比較例1では、高密度箇所が多数見られた。
 本発明の熱硬化性樹脂組成物は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度及び低熱膨張性を有し、且つ成形性及びめっき付き回り性に優れ、さらに硬化物の表面に観察される高密度箇所の発生が抑制されたものであるため、電子機器用のプリント配線板に有用である。

Claims (15)

  1.  (A)マレイミド化合物、
     (B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、
     (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
     (D)アミノシラン系カップリング剤で処理されたシリカ、及び
     (E)難燃剤分散液を含有してなる、熱硬化性樹脂組成物。
  2.  前記(E)成分が、有機溶媒中に難燃剤を分散してなる分散液であり、前記(E)成分中における前記有機溶媒の含有量が、前記難燃剤100質量部に対して、25~55質量部である、請求項1に記載の熱硬化性樹脂組成物。
  3.  前記(E)成分が、難燃剤として、2置換ホスフィン酸の金属塩を含有する、請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  前記(E)成分が、有機溶媒として、ケトン系溶媒を含有する、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。
  5.  前記(A)成分が、(a1)1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物と、(a2)酸性置換基を有するモノアミン化合物と、(a3)ジアミン化合物とを反応させて得られる、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物である、請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
  6.  前記(a2)成分が、下記一般式(a2-1)で示される酸性置換基を有するモノアミン化合物であり、前記(a3)成分が、下記一般式(a3-1)で示されるジアミン化合物である、請求項5に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(a3-1)中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
  7.  前記(C)成分が、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂である、請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    (式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
  8.  前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が1~9である、請求項1~7のいずれか1項に記載の熱硬化性樹脂組成物。
  9.  前記(C)成分の重量平均分子量が4,500~18,000である、請求項1~8のいずれか1項に記載の熱硬化性樹脂組成物。
  10.  前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選ばれる1種以上である、請求項1~9のいずれか1項に記載の熱硬化性樹脂組成物。
  11.  さらに(F)硬化剤を含有してなる、請求項1~10のいずれか1項に記載の熱硬化性樹脂組成物。
  12.  請求項1~11のいずれか1項に記載の熱硬化性樹脂組成物を含有してなるプリプレグ。
  13.  請求項12に記載のプリプレグと金属箔とを含有してなる積層板。
  14.  請求項12に記載のプリプレグ又は請求項13に記載の積層板を含有してなるプリント配線板。
  15.  請求項1~11のいずれか1項に記載の熱硬化性樹脂組成物を製造する方法であって、下記工程1~2を有する、熱硬化性樹脂組成物の製造方法。
     工程1:難燃剤を分散媒中に分散させて(E)難燃剤分散液を作製する工程
     工程2:(A)マレイミド化合物、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(D)アミノシラン系カップリング剤で処理されたシリカ、及び工程1で得られた(E)難燃剤分散液を混合する工程
PCT/JP2016/086457 2016-12-07 2016-12-07 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板 WO2018105071A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201680005973.1A CN109071778B (zh) 2016-12-07 2016-12-07 热固化性树脂组合物及其制造方法、预浸渍体、层叠板以及印制线路板
PCT/JP2016/086457 WO2018105071A1 (ja) 2016-12-07 2016-12-07 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板
CN201911309606.2A CN110982267B (zh) 2016-12-07 2016-12-07 热固化性树脂组合物及其制造方法、预浸渍体、层叠板以及印制线路板
JP2017522684A JP6402827B1 (ja) 2016-12-07 2016-12-07 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板
CN201910814011.6A CN110511566B (zh) 2016-12-07 2016-12-07 热固化性树脂组合物及其制造方法、预浸渍体、层叠板以及印制线路板
EP16880182.7A EP3428215B1 (en) 2016-12-07 2016-12-07 Thermosetting resin composition, method for producing same, prepreg, laminate, and printed wiring board
US15/538,581 US11136454B2 (en) 2016-12-07 2016-12-07 Thermosetting resin composition and its production method, prepreg, laminate, and printed wiring board
KR1020177017963A KR101828762B1 (ko) 2016-12-07 2016-12-07 열 경화성 수지 조성물 및 그의 제조 방법, 프리프레그, 적층판 및 프린트 배선판
MYPI2017000997A MY181060A (en) 2016-12-07 2016-12-07 Thermosetting resin composition and its production method, prepreg, laminate, and printed wiring board
TW106114611A TWI644955B (zh) 2016-12-07 2017-05-03 熱硬化性樹脂組成物及其製造方法、預浸體、積層板以及印刷線路板
HK19101122.8A HK1258721A1 (zh) 2016-12-07 2019-01-22 熱固化性樹脂組合物及其製造方法、預浸漬體、層叠板以及印製線路板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086457 WO2018105071A1 (ja) 2016-12-07 2016-12-07 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板

Publications (1)

Publication Number Publication Date
WO2018105071A1 true WO2018105071A1 (ja) 2018-06-14

Family

ID=61225098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086457 WO2018105071A1 (ja) 2016-12-07 2016-12-07 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板

Country Status (9)

Country Link
US (1) US11136454B2 (ja)
EP (1) EP3428215B1 (ja)
JP (1) JP6402827B1 (ja)
KR (1) KR101828762B1 (ja)
CN (3) CN110982267B (ja)
HK (1) HK1258721A1 (ja)
MY (1) MY181060A (ja)
TW (1) TWI644955B (ja)
WO (1) WO2018105071A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940674B2 (en) 2016-12-07 2021-03-09 Showa Denko Materials Co., Ltd. Resin varnish, prepreg, laminate, and printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070592A (ja) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 シリカ粒子、樹脂組成物、樹脂フィルム及び金属張積層板
CN114133748B (zh) * 2021-12-23 2023-06-13 佛山(华南)新材料研究院 一种低介电树脂组合物及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153098A (ja) * 1974-06-03 1975-12-09
JPS56133355A (en) 1980-03-24 1981-10-19 Mitsubishi Gas Chem Co Inc Curable polyphenylene ether resin composition
JPS5869046A (ja) 1981-10-21 1983-04-25 旭化成株式会社 積層板及びその成形法
JPS58164638A (ja) 1982-03-25 1983-09-29 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物
JPS6118937B2 (ja) 1980-04-03 1986-05-15 Mitsubishi Gas Chemical Co
JPS61286130A (ja) 1985-06-13 1986-12-16 松下電工株式会社 積層板およびその製法
JPS62148512A (ja) 1985-12-23 1987-07-02 Matsushita Electric Works Ltd ポリフエニレンオキサイド固化物の改質法
JPH02208355A (ja) 1989-02-08 1990-08-17 Asahi Chem Ind Co Ltd 硬化性ポリフェニレンエーテル樹脂組成物並びにこれを用いた複合材料および積層体
JPH06179734A (ja) 1992-12-15 1994-06-28 Asahi Chem Ind Co Ltd 硬化性の樹脂組成物および硬化性複合材料
WO2009081601A1 (ja) * 2007-12-25 2009-07-02 Hitachi Chemical Company, Ltd. 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2011006683A (ja) * 2004-02-04 2011-01-13 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板
JP2012229363A (ja) * 2011-04-27 2012-11-22 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物並びにこれを用いたプリプレグ、積層板及び配線板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309805B4 (de) * 2003-03-05 2005-07-21 Clariant Gmbh Flammschutzmittel-Dispersion
JP4599921B2 (ja) * 2004-07-13 2010-12-15 日立化成工業株式会社 樹脂組成物およびそれを用いたプリプレグ、金属箔張積層板、印刷配線板
JP5023877B2 (ja) 2006-12-05 2012-09-12 日立化成工業株式会社 難燃性樹脂化合物、これを用いた熱硬化性樹脂組成物並びにプリプレグ及び積層板
JP5104507B2 (ja) 2007-04-26 2012-12-19 日立化成工業株式会社 セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
CN101215405B (zh) 2007-12-29 2011-07-06 东莞联茂电子科技有限公司 一种热固性树脂组合物
JP2010053334A (ja) * 2008-07-31 2010-03-11 Sekisui Chem Co Ltd エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板
WO2014088099A1 (ja) * 2012-12-06 2014-06-12 三菱瓦斯化学株式会社 金属箔張積層板の製造方法
JP6384711B2 (ja) * 2014-06-23 2018-09-05 日立化成株式会社 絶縁性樹脂組成物及びこれを用いたプリプレグ、プリント配線板用積層板
JP6443657B2 (ja) * 2014-07-04 2018-12-26 日立化成株式会社 熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板
JP2016060840A (ja) * 2014-09-18 2016-04-25 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6503754B2 (ja) * 2015-01-20 2019-04-24 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、樹脂付フィルム、積層板、多層プリント配線板及び半導体パッケージ
EP3290480B1 (en) * 2015-04-30 2020-12-09 Showa Denko Materials Co., Ltd. Resin composition, prepreg, laminate and multilayer printed wiring board
JP6801652B2 (ja) * 2015-06-02 2020-12-16 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6701630B2 (ja) 2015-06-02 2020-05-27 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153098A (ja) * 1974-06-03 1975-12-09
JPS56133355A (en) 1980-03-24 1981-10-19 Mitsubishi Gas Chem Co Inc Curable polyphenylene ether resin composition
JPS6118937B2 (ja) 1980-04-03 1986-05-15 Mitsubishi Gas Chemical Co
JPS5869046A (ja) 1981-10-21 1983-04-25 旭化成株式会社 積層板及びその成形法
JPS58164638A (ja) 1982-03-25 1983-09-29 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物
JPS61286130A (ja) 1985-06-13 1986-12-16 松下電工株式会社 積層板およびその製法
JPS62148512A (ja) 1985-12-23 1987-07-02 Matsushita Electric Works Ltd ポリフエニレンオキサイド固化物の改質法
JPH02208355A (ja) 1989-02-08 1990-08-17 Asahi Chem Ind Co Ltd 硬化性ポリフェニレンエーテル樹脂組成物並びにこれを用いた複合材料および積層体
JPH06179734A (ja) 1992-12-15 1994-06-28 Asahi Chem Ind Co Ltd 硬化性の樹脂組成物および硬化性複合材料
JP2011006683A (ja) * 2004-02-04 2011-01-13 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板
WO2009081601A1 (ja) * 2007-12-25 2009-07-02 Hitachi Chemical Company, Ltd. 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2012229363A (ja) * 2011-04-27 2012-11-22 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物並びにこれを用いたプリプレグ、積層板及び配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940674B2 (en) 2016-12-07 2021-03-09 Showa Denko Materials Co., Ltd. Resin varnish, prepreg, laminate, and printed wiring board

Also Published As

Publication number Publication date
JPWO2018105071A1 (ja) 2018-12-06
EP3428215B1 (en) 2020-04-29
CN110511566B (zh) 2022-06-03
EP3428215A1 (en) 2019-01-16
KR101828762B1 (ko) 2018-02-12
TW201821509A (zh) 2018-06-16
CN110982267A (zh) 2020-04-10
CN109071778A (zh) 2018-12-21
US11136454B2 (en) 2021-10-05
CN110982267B (zh) 2024-03-08
CN110511566A (zh) 2019-11-29
JP6402827B1 (ja) 2018-10-10
MY181060A (en) 2020-12-16
CN109071778B (zh) 2019-12-10
HK1258721A1 (zh) 2019-11-15
US20200002526A1 (en) 2020-01-02
TWI644955B (zh) 2018-12-21
EP3428215A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP7459900B2 (ja) プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP6801652B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6701630B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6454416B2 (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板
JP6402827B1 (ja) 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板
TWI814156B (zh) 預浸體、積層板及印刷線路板
JP2016222838A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2018012791A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2018095889A (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板
JP7452417B2 (ja) 樹脂ワニス、プリプレグ、積層板、プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017522684

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020177017963

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2016880182

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE