JP2016222838A - 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 - Google Patents

熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 Download PDF

Info

Publication number
JP2016222838A
JP2016222838A JP2015112008A JP2015112008A JP2016222838A JP 2016222838 A JP2016222838 A JP 2016222838A JP 2015112008 A JP2015112008 A JP 2015112008A JP 2015112008 A JP2015112008 A JP 2015112008A JP 2016222838 A JP2016222838 A JP 2016222838A
Authority
JP
Japan
Prior art keywords
group
resin composition
mass
thermosetting resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015112008A
Other languages
English (en)
Other versions
JP6676884B2 (ja
Inventor
芳克 白男川
Yoshikatsu Shiraokawa
芳克 白男川
容子 市澤
Yoko Ichizawa
容子 市澤
浩彰 吉野
Hiroaki Yoshino
浩彰 吉野
辰徳 金子
Tatsunori Kaneko
辰徳 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015112008A priority Critical patent/JP6676884B2/ja
Publication of JP2016222838A publication Critical patent/JP2016222838A/ja
Application granted granted Critical
Publication of JP6676884B2 publication Critical patent/JP6676884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】高耐熱性、低比誘電率、高い金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性に優れる熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板を提供すること。【解決手段】(A)N−置換マレイミド基を有するマレイミド化合物15〜65質量部、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂15〜50質量部、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂10〜45質量部、及び(D)アミノトリアジンフェノールノボラック樹脂2〜7質量部(但し、(A)〜(D)成分の総和は100質量部である。)を含有してなる熱硬化性樹脂組成物。【選択図】なし

Description

本発明は、電子機器等の材料として好適な熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板に関する。
近年、多機能型携帯電話端末等のマザーボードにおいて、高速通信化、配線の高密度化、配線板の極薄化と共に、配線板の配線幅(L)と間隔(S)の比[L/S]も狭小化する傾向にある。このようなL/Sの狭小化に伴い、配線板を歩留り良く安定して生産することが困難となりつつある。また、従来の配線板の設計では、通信障害等を考慮して、一部の層に「スキップ層」と呼ばれる配線パターンの無い層を設けている。電子機器が高機能になって配線設計量が増加して配線板の層数が増加していくが、前記スキップ層を設けることにより、マザーボードの厚みがより一層増加するという問題が生じている。
これらの問題を改善する方法として、配線板に使用される絶縁材料の比誘電率を低下させることが有効である。絶縁材料の比誘電率の低下により、L/Sのインピーダンスコントロールをし易くなることから、L/Sを現状設計に近い形状で安定生産でき、スキップ層を減らすことで層数の減少が可能となる。そのため、配線板に使用される絶縁材料には、比誘電率の小さい材料特性が求められるようになっている。
近年、電子機器の高密度化に伴い、薄型化と低価格化が進んでいる携帯電話等のマザーボードにおいても、薄型化に対応するために比誘電率が低い材料が求められている。また、サーバー、ルータ、携帯基地局等に代表される通信系の機器においても、より高周波帯領域で使用されるようになってきており、また、電子部品のはんだ付けに高融点の鉛フリーはんだが利用されるようになってきたことから、これらに使用される基板の材料としては、低誘電率、高ガラス転移温度(高Tg)であり、且つ、リフロー耐熱性に優れた材料が求められるようになってきた。
また、多機能型携帯電話端末等に使用されるマザーボードは、配線密度の増加及びパターン幅の狭小化に伴い、層間を接続する際には、小径なレーザビアによる接続が要求されている。接続信頼性の観点から、フィルドめっきが使用される事例が多く、内層銅とめっき銅の界面における接続性が非常に重要であることから、基材のレーザ加工性の向上が求められている。
基材のレーザ加工後に、樹脂の残渣成分を除去する工程(デスミア処理工程)が行われることが一般的である。レーザビア底面及び壁面においてデスミア処理が行われることから、デスミア処理によって基材の樹脂成分が大量に溶解した場合、樹脂の溶解によりレーザビア形状が著しく変形するおそれがあり、また、壁面の凹凸のバラつきによるめっき付き回りの不均一性が生じる等の種々の問題が起こり得る。このことから、デスミア処理によって基材の樹脂成分が溶解する量、いわゆるデスミア溶解量が適正な値となることが求められる。
これまで、比誘電率の小さい熱硬化性樹脂組成物とするためには、比誘電率の小さいエポキシ樹脂を含有させる方法、シアネート基を導入する方法、ポリフェニレンエーテルを含有させる方法等が用いられてきた。しかし、これらの方法を単純に組み合わせただけでは、比誘電率の低減、高い耐熱性、信頼性、ハロゲンフリーといった、種々の要求を満足することが困難であった。例えば、エポキシ樹脂を含有した樹脂組成物(特許文献1参照)、ポリフェニレンエーテルとビスマレイミドとを含有した樹脂組成物(特許文献2参照)、ポリフェニレンエーテルとシアネート樹脂とを含有した樹脂組成物(特許文献3参照)、スチレン系熱可塑性エラストマー等及び/又はトリアリルシアヌレート等の少なくとも一方を含有した樹脂組成物(特許文献4参照)、ポリブタジエンを含有した樹脂組成物(特許文献5参照)、ポリフェニレンエーテル系樹脂と、多官能性マレイミド及び/又は多官能性シアネート樹脂と、液状ポリブタジエンとを予備反応させてなる樹脂組成物(特許文献6参照)、不飽和二重結合基を有する化合物を付与又はグラフトさせたポリフェニレンエーテルと、トリアリルシアヌレート及び/又はトリアリルイソシアヌレート等とを含有した樹脂組成物(特許文献7参照)、ポリフェニレンエーテルと不飽和カルボン酸又は不飽和酸無水物との反応生成物と、多官能性マレイミド等とを含有した樹脂組成物(特許文献8参照)等が提案されている。
特開昭58−69046号公報 特開昭56−133355号公報 特公昭61−18937号公報 特開昭61−286130号公報 特開昭62−148512号公報 特開昭58−164638号公報 特開平2−208355号公報 特開平6−179734号公報
特許文献1〜8に記載の熱硬化性樹脂組成物は、比較的良好な比誘電率を示すが、近年の市場の厳しい要求を満たすことが出来ない事例が多くなってきた。また、高耐熱性、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性(レーザ加工性)のいずれかが不十分となることも多く、さらなる改善の余地がある。また、従来は、めっき付き回り性に対して適するという観点からの材料開発が十分になされていないのが実情である。
そこで、本発明の課題は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性に優れる熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意研究した結果、「(A)N−置換マレイミド基を有するマレイミド化合物」と、「(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂」と、「(C)特定の構造単位を有する共重合樹脂」と、「(D)アミノトリアジンフェノールノボラック樹脂」とを特定比率で含有してなる熱硬化性樹脂組成物が、上記の課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。
本発明は下記[1]〜[12]に関する。
[1](A)N−置換マレイミド基を有するマレイミド化合物15〜65質量部、
(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂15〜50質量部、
(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂10〜45質量部、及び
(D)アミノトリアジンフェノールノボラック樹脂2〜7質量部(但し、(A)〜(D)成分の総和は100質量部である。)
を含有してなる熱硬化性樹脂組成物。
[2]前記(C)成分が、下記一般式(C−i)で表される構造単位と下記式(C−ii)で表される構造単位とを有する共重合樹脂である、上記[1]に記載の熱硬化性樹脂組成物。

(式中、RC1は、水素原子又は炭素数1〜5のアルキル基であり、RC2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
[3]前記一般式(C−i)中、RC1が水素原子であり、且つxが0である、上記[2]に記載の熱硬化性樹脂組成物。
[4]前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が2〜9である、上記[1]に記載の熱硬化性樹脂組成物。
[5]前記(A)成分が、さらに酸性置換基を有する、上記[1]〜[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂又はジシクロペンタジエン型エポキシ樹脂である、上記[1]〜[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]さらに(E)無機充填材を含有してなる、上記[1]〜[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]前記(E)無機充填材が、アミノシラン系カップリング剤で処理されたシリカである、上記[7]に記載の熱硬化性樹脂組成物。
[9]さらに(F)難燃剤を含有してなる、上記[1]〜[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]上記[1]〜[9]のいずれかに記載の熱硬化性樹脂組成物を用いて形成されるプリプレグ。
[11]上記[10]に記載のプリプレグと金属箔とを用いて形成される積層板。
[12]上記[10]に記載のプリプレグ又は上記[11]に記載の積層板を用いて形成されるプリント配線板。
本発明により、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性に優れる熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板が得られる。また、本発明の熱硬化性樹脂組成物を用いてなる積層板は、耐電食性にも優れる。
以下、本発明について詳細に説明する。
[熱硬化性樹脂組成物]
本発明の熱硬化性樹脂組成物は、(A)N−置換マレイミド基を有するマレイミド化合物15〜65質量部、(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂15〜50質量部、(C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂10〜45質量部、及び(D)アミノトリアジンフェノールノボラック樹脂2〜7質量部(但し、(A)〜(D)成分の総和は100質量部である。)を含有してなる熱硬化性樹脂組成物である。
以下、本発明の熱硬化性樹脂組成物が含有する各成分について詳細に説明する。
<(A)N−置換マレイミド基を有するマレイミド化合物>
(A)N−置換マレイミド基を有するマレイミド化合物は、熱硬化性樹脂組成物の硬化物の剛性及び機械強度の観点から、酸性置換基を有するものであることが好ましい。また、(A)N−置換マレイミド基を有するマレイミド化合物の重量平均分子量(Mw)は、有機溶媒への溶解性の観点及び機械強度の観点から、好ましくは400〜3500、より好ましくは400〜2300、さらに好ましくは800〜2000である。なお、本明細書における重量平均分子量は、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)で測定された値である。
(A)N−置換マレイミド基を有するマレイミド化合物は、例えば、(a1)1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物[以下、マレイミド化合物(a1)と略称する]と、(a2)後述する一般式(a2−1)で示されるモノアミン化合物[以下、モノアミン化合物(a2)と略称する]と、(a3)後述する一般式(a3−1)で示されるジアミン化合物[以下、ジアミン化合物(a3)と略称する]とを反応させることにより製造することができる。
該マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)のうちの少なくとも1つが酸性置換基を有していることが好ましく、モノアミン化合物(a2)及びジアミン化合物(a3)のうちのいずれかが酸性置換基を有していることがより好ましく、ジアミン化合物(a3)が酸性置換基を有していることがさらに好ましい。
(マレイミド化合物(a1))
マレイミド化合物(a1)は、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物である。
マレイミド化合物(a1)としては、複数のマレイミド基のうちの任意の2個のマレイミド基の間に脂肪族炭化水素基を有するマレイミド化合物[以下、脂肪族炭化水素基含有マレイミドと称する]であるか、又は、複数のマレイミド基のうちの任意の2個のマレイミド基の間に芳香族炭化水素基を含有するマレイミド化合物[以下、芳香族炭化水素基含有マレイミドと称する]が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、芳香族炭化水素基含有マレイミドが好ましい。芳香族炭化水素基含有マレイミドは、任意に選択した2つのマレイミド基の組み合わせのいずれかの間に芳香族炭化水素基を含有していればよい。
マレイミド化合物(a1)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、1分子中に2個〜5個のN−置換マレイミド基を有するマレイミド化合物が好ましく、1分子中に2個のN−置換マレイミド基を有するマレイミド化合物がより好ましい。また、マレイミド化合物(a1)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、下記一般式(a1−1)〜(a1−4)のいずれかで表される芳香族炭化水素基含有マレイミドであることがより好ましく、下記一般式(a1−1)、(a1−2)又は(a1−4)で表される芳香族炭化水素基含有マレイミドであることがさらに好ましく、下記一般式(a1−2)で表される芳香族炭化水素基含有マレイミドであることが特に好ましい。
上記式中、RA1〜RA3は、各々独立に、炭素数1〜5の脂肪族炭化水素基を示す。XA1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。sは、0〜10の整数である。
A1〜RA3が示す炭素数1〜5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該脂肪族炭化水素基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1〜3の脂肪族炭化水素基であり、より好ましくはメチル基、エチル基である。
A1が示す炭素数1〜5のアルキレン基としては、例えば、メチレン基、1,2−ジメチレン基、1,3−トリメチレン基、1,4−テトラメチレン基、1,5−ペンタメチレン基等が挙げられる。該アルキレン基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1〜3のアルキレン基であり、より好ましくはメチレン基である。
A1が示す炭素数2〜5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、イソプロピリデン基が好ましい。
A1としては、上記選択肢の中でも、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基が好ましい。より好ましいものは前述の通りである。
p、q及びrは、各々独立に、0〜4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、いずれも、好ましくは0〜2の整数、より好ましくは0又は1、さらに好ましくは0である。
sは、0〜10の整数であり、入手容易性の観点から、好ましくは0〜5、より好ましくは0〜3である。特に、一般式(a1−3)で表される芳香族炭化水素基含有マレイミド化合物は、s=0〜3の混合物であることが好ましい。
マレイミド化合物(a1)としては、具体的には、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(マレイミドメチル)シクロヘキサン等の脂肪族炭化水素基含有マレイミド;N,N’−(1,3−フェニレン)ビスマレイミド、N,N’−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N’−[1,3−(4−メチルフェニレン)]ビスマレイミド、N,N’−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(マレイミドメチル)シクロヘキサン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、4,4−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2,2’−ビス(4−マレイミドフェニル)ジスルフィド、ビス(4−マレイミドフェニル)ジスルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等の芳香族炭化水素基含有マレイミドが挙げられる。
これらの中でも、反応率が高く、より高耐熱性化できるという観点からは、ビス(4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ジスルフィド、N,N’−(1,3−フェニレン)ビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンが好ましく、安価であるという観点からは、ビス(4−マレイミドフェニル)メタン、N,N’−(1,3−フェニレン)ビスマレイミドが好ましく、溶剤への溶解性の観点からは、ビス(4−マレイミドフェニル)メタンが特に好ましい。
マレイミド化合物(a1)は1種を単独で使用してもよいし、2種以上を併用してもよい。
(モノアミン化合物(a2))
モノアミン化合物(a2)は、下記一般式(a2−1)で示される、酸性置換基を有するモノアミン化合物であることが好ましい。
上記一般式(a2−1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。
A4が示す酸性置換基としては、溶解性及び反応性の観点から、好ましくは水酸基、カルボキシ基であり、耐熱性も考慮すると、より好ましくは水酸基である。
tは1〜5の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは1〜3の整数、より好ましくは1又は2、さらに好ましくは1である。
A5が示す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
A5が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
uは0〜4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは0〜3の整数、より好ましくは0〜2の整数、さらに好ましくは0又は1、特に好ましくは0である。
モノアミン化合物(a2)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、より好ましくは下記一般式(a2−2)又は(a2−3)で表されるモノアミン化合物であり、さらに好ましくは下記一般式(a2−2)で表されるモノアミン化合物である。但し、一般式(a2−2)及び(a2−3)中のRA4、RA5及びuは、一般式(a2−1)中のものと同じであり、好ましいものも同じである。
モノアミン化合物(a2)としては、例えば、o−アミノフェノール、m−アミノフェノール、p−アミノフェノール、o−アミノ安息香酸、m−アミノ安息香酸、p−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリン等の、酸性置換基を有するモノアミン化合物が挙げられる。
さらに、モノアミン化合物(a2)としては、アニリン、o−メチルアニリン、m−メチルアニリン、p−メチルアニリン、o−エチルアニリン、m−エチルアニリン、p−エチルアニリン、o−ビニルアニリン、m−ビニルアニリン、p−ビニルアニリン、o−アリルアニリン、m−アリルアニリン、p−アリルアニリン等の、酸性置換基を有さないモノアミン化合物も挙げられる。
これらの中でも、酸性置換基を有するモノアミン化合物が好ましく、溶解性及び反応性の観点からは、m−アミノフェノール、p−アミノフェノール、p−アミノ安息香酸、3,5−ジヒドロキシアニリンが好ましく、耐熱性の観点からは、o−アミノフェノール、m−アミノフェノール、p−アミノフェノールが好ましく、誘電特性、低熱膨張性及び製造コストも考慮すると、p−アミノフェノールがより好ましい。
モノアミン化合物(a2)は1種を単独で使用してもよいし、2種以上を併用してもよい。
(ジアミン化合物(a3))
ジアミン化合物(a3)は、少なくとも2個のベンゼン環を有するジアミン化合物が好ましく、2つのアミノ基の間に少なくとも2個のベンゼン環を直鎖状に有するジアミン化合物がより好ましく、下記一般式(a3−1)で示されるジアミン化合物がさらに好ましい。

(式中、XA2は、炭素数1〜3の脂肪族炭化水素基又はエーテル結合であり。RA6及びRA7は、各々独立に、炭素数1〜5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を表す。v及びwは、各々独立に、0〜4の整数である。)
A2が表す炭素数1〜3の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、プロピリデン基等が挙げられる。
A2としては、メチレン基が好ましい。
A6及びRA7が表す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
ジアミン化合物(a3)を酸性置換基を有する化合物とする場合、RA6及びRA7は、水酸基、カルボキシ基又はスルホン酸基である。
v及びwは、好ましくは0〜2の整数、より好ましくは0又は1である。ジアミン化合物(a3)が酸性置換基を有さない化合物である場合、v及びwは、好ましくは0である。
ジアミン化合物(a3)としては、具体的には、例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルプロパン、2,2’−ビス[4,4’−ジアミノジフェニル]プロパン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルエタン、3,3’−ジエチル−4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルチオエーテル、3,3’−ジヒドロキシ−4,4’−ジアミノジフェニルメタン、2,2’,6,6’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、3,3’−ジブロモ−4,4’−ジアミノジフェニルメタン、2,2’,6,6’−テトラメチルクロロ−4,4’−ジアミノジフェニルメタン、2,2’,6,6’−テトラブロモ−4,4’−ジアミノジフェニルメタン等が挙げられる。これらの中でも、安価であるという観点から、4,4’−ジアミノジフェニルメタン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタンが好ましく、溶剤への溶解性の観点から、4,4’−ジアミノジフェニルメタンがより好ましい。
マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、好ましくは有機溶媒の存在下、反応温度70〜200℃で0.1〜10時間反応させることにより実施することが好ましい。
反応温度は、より好ましくは70〜160℃、さらに好ましくは70〜130℃、特に好ましくは80〜120℃である。
反応時間は、より好ましくは1〜6時間、さらに好ましくは1〜4時間である。
(マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の使用量)
マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応において、三者の使用量は、モノアミン化合物(a2)及びジアミン化合物(a3)が有する第1級アミノ基当量[−NH基当量と記す]の総和と、マレイミド化合物(a1)のマレイミド基当量との関係が、下記式を満たすことが好ましい。
0.1≦〔マレイミド基当量〕/〔−NH基当量の総和〕≦10
〔マレイミド基当量〕/〔−NH基当量の総和〕を0.1以上とすることにより、ゲル化及び耐熱性が低下することがなく、また、10以下とすることにより、有機溶媒への溶解性、金属箔接着性及び耐熱性が低下することがないため、好ましい。
同様の観点から、より好ましくは、
1≦〔マレイミド基当量〕/〔−NH基当量の総和〕≦9 を満たし、
より好ましくは、
2≦〔マレイミド基当量〕/〔−NH基当量の総和〕≦8 を満たす。
(有機溶媒)
前述の通り、マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、有機溶媒中で行うことが好ましい。
有機溶媒としては、当該反応に悪影響を及ぼさない限り特に制限はない。例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒を包含する窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を包含する硫黄原子含有溶媒;酢酸エチル、γ−ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、エステル系溶媒が好ましく、低毒性であるという観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトンがより好ましく、揮発性が高く、プリプレグの製造時に残溶剤として残り難いことも考慮すると、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドがさらに好ましく、ジメチルアセトアミドが特に好ましい。
有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
有機溶媒の使用量に特に制限はないが、溶解性及び反応効率の観点から、マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の合計100質量部に対して、好ましくは25〜1000質量部、より好ましくは40〜700質量部、さらに好ましくは60〜250質量部となるようにすればよい。マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の合計100質量部に対して25質量部以上とすることによって溶解性を確保し易くなり、1000質量部以下とすることによって、反応効率の大幅な低下を抑制し易い。
(反応触媒)
マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、必要に応じて、反応触媒の存在下に実施してもよい。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン系触媒;メチルイミダゾール、フェニルイミダゾール等のイミダゾール系触媒;トリフェニルホスフィン等のリン系触媒などが挙げられる。
反応触媒は1種を単独で使用してもよいし、2種以上を併用してもよい。
反応触媒の使用量に特に制限はないが、マレイミド化合物(a1)とモノアミン化合物(a2)の質量の総和100質量部に対して、好ましくは0.001〜5質量部である。
<(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂>
(B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(以下、単にエポキシ樹脂(B)と称することがある)としては、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等が挙げられる。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
エポキシ樹脂(B)は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニルアラルキルフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールアルキルフェノール共重合ノボラック型エポキシ樹脂、ナフトールアラルキルクレゾール共重合ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;ナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などに分類される。
これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましく、低熱膨張性及び高ガラス転移温度の観点から、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂がより好ましく、クレゾールノボラック型エポキシ樹脂がさらに好ましい。
エポキシ樹脂(B)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
エポキシ樹脂(B)のエポキシ当量は、好ましくは100〜500g/eq、より好ましくは120〜400g/eq、さらに好ましくは140〜300g/eq、特に好ましくは170〜240g/eqである。
ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JIS K 7236に規定された方法に従って測定することができる。具体的には、株式会社三菱化学アナリテック製の自動滴定装置「GT−200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
エポキシ樹脂(B)の市販品としては、クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N−673」(DIC株式会社製、エポキシ当量;205〜215g/eq)、ナフタレン型エポキシ樹脂「HP−4032」(三菱化学株式会社製、エポキシ当量;152g/eq)、ビフェニル型エポキシ樹脂「YX−4000」(三菱化学株式会社製、エポキシ当量;186g/eq)、ジシクロペンタジエン型エポキシ樹脂「HP−7200H」(DIC株式会社製、エポキシ当量;280g/eq)等が挙げられる。なお、エポキシ当量は、その商品の製造会社のカタログに記載された値である。
<(C)特定の共重合樹脂>
(C)成分は、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂(以下、共重合樹脂(C)と称することがある)である。芳香族ビニル化合物としては、例えば、スチレン、1−メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらの中でも、スチレンが好ましい。
(C)成分としては、下記一般式(C−i)で表される構造単位と下記式(C−ii)で表される構造単位とを有する共重合樹脂が好ましい。

(式中、RC1は、水素原子又は炭素数1〜5のアルキル基であり、RC2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
C1及びRC2が表す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
C2が表す炭素数2〜5のアルケニル基としては、例えば、アリル基、クロチル基等が挙げられる。該アルケニル基としては、好ましくは炭素数3〜5のアルケニル基、より好ましくは炭素数3又は4のアルケニル基である。
C2が表す炭素数6〜20のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6〜12のアリール基、より好ましくは6〜10のアリール基である。
xは、好ましくは0又は1、より好ましくは0である。
一般式(C−i)で表される構造単位においては、RC1が水素原子であり、xが0である下記一般式(C−i−1)で表される構造単位が好ましい。
共重合樹脂(C)中における、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)は、好ましくは2〜9、より好ましくは3〜8、さらに好ましくは3〜7である。また、前記式(C−ii)で表される構造単位に対する前記一般式(C−i)で表される構造単位の含有比率[(C−i)/(C−ii)](モル比)も同様に、好ましくは2〜9、より好ましくは3〜8、さらに好ましくは3〜7である。これらのモル比が2以上であれば、誘電特性の改善効果が十分となる傾向にあり、9以下であれば、相容性が良好となる傾向にある。
共重合樹脂(C)中における、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との合計含有量、及び、一般式(C−i)で表される構造単位と式(C−ii)で表される構造単位との合計含有量は、それぞれ、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは実質的に100質量%である。
共重合樹脂(C)の重量平均分子量(Mw)は、好ましくは5,000〜18,000、より好ましくは6,000〜17,000、さらに好ましくは8,000〜16,000、特に好ましくは8,000〜15,000、最も好ましくは9,000〜13,000である。
なお、スチレンと無水マレイン酸の共重合樹脂を用いることによりエポキシ樹脂を低誘電率化する手法は、プリント配線板用材料に適用すると基材への含浸性及び銅箔ピール強度が不十分となるため、一般的には避けられる傾向にある。そのため、前記共重合樹脂(C)を用いることも避けられがちであるが、本発明は、前記共重合樹脂(C)を用いながらも、前記(A)成分及び(B)成分と共に、後述する(D)成分をも含有させ、且つ各成分の含有量を特定比率とすることにより、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性に優れる熱硬化性樹脂組成物となることが判明して成し遂げられたものである。
(共重合樹脂(C)の製造方法)
共重合樹脂(C)は、芳香族ビニル化合物と無水マレイン酸とを共重合することにより製造することができる。
芳香族ビニル化合物としては、前述の通り、スチレン、1−メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
さらに、前記芳香族ビニル化合物及び無水マレイン酸以外にも、各種の重合可能な成分を共重合させてもよい。各種の重合可能な成分としては、例えば、エチレン、プロピレン、ブタジエン、イソブチレン、アクリロニトリル等のビニル化合物;メチルアクリレート、メチルメタクリレート等の(メタ)アクリロイル基を有する化合物などが挙げられる。
また、該芳香族ビニル化合物に、フリーデル・クラフツ反応、又はリチウム等の金属系触媒を用いた反応を通じて、アリル基、メタクリロイル基、アクリロイル基、ヒドロキシ基等の置換基を導入してもよい。
共重合樹脂(C)としては、市販品を用いることもでき、市販品としては、例えば、「SMA(登録商標)EF30」(スチレン/無水マレイン酸=3、Mw=9,500)、「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000)、「SMA(登録商標)EF60」(スチレン/無水マレイン酸=6、Mw=11,500)、「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400)[以上、サートマー社製]等が挙げられる。
<(D)アミノトリアジンフェノールノボラック樹脂>
(D)成分は、アミノトリアジンフェノールノボラック樹脂(以下、アミノトリアジンフェノールノボラック樹脂(D)と称することがある)である。
アミノトリアジンフェノールノボラック樹脂(D)は、アミノ基及びトリアジン骨格を有しているフェノールノボラック樹脂であれば特に制限はないが、下記一般式(D−1−1)又は下記式(D−1−2)で表される構造単位と、下記一般式(D−2)で表される構造単位とを有する樹脂であることが好ましい。当然のことながら、フェノール化合物に由来する構造単位をも有する。該フェノール化合物については後述する。

(式中、RD1は、−NH、炭素数1〜3のアルキル基、炭素数6〜20のアリール基又はカルボキシ基が置換した炭素数6〜20のアリール基である。)

(式中、RD2は、水素原子又はメチル基であり、RD3は、水素原子、メチル基又はフェニル基である。)
前記一般式(D−1−1)中のRD1が表す炭素数1〜3のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基が挙げられる。これらの中でも、メチル基が好ましい。
D1が表す炭素数6〜20のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6〜12のアリール基、より好ましくは6〜10のアリール基、さらに好ましくはフェニル基である。
以上の中でも、RD1としては、好ましくは−NH又は炭素数1〜3のアルキル基、フェニル基、より好ましくは−NHである。
前記一般式(D−2)中のRD2としては、好ましくは水素原子である。また、RD3としては、好ましくは水素原子である。
アミノトリアジンフェノールノボラック樹脂(D)は、前記一般式(D−1−1)又は前記式(D−1−2)で表される構造単位が、前記式(D−2)で表される構造単位を介して、フェノール化合物と結合した分子構造を有するものであるか、又は、前記一般式(D−1−1)又は前記式(D−1−2)で表される構造単位が、前記式(D−2)で表される構造単位を介して、フェノール化合物とアルデヒドとの縮合反応物と結合した分子構造を有するものであることが好ましい。
さらに好ましくは、アミノトリアジンフェノールノボラック樹脂(D)は、フェノール化合物と、アミノ基が置換したトリアジン化合物と、アルデヒド化合物とを反応させて得られるものである。
前記フェノール化合物としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−イソプロピルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−sec−ブチルフェノール、p−tert−ブチルフェノール、p−シクロヘキシルフェノール、p−クロロフェノール、o−ブロモフェノール、m−ブロモフェノール、p−ブロモフェノール等のフェノール化合物;α−ナフトール、β−ナフトール等のナフトール化合物;2,4−キシレノール、2,5−キシレノール、2,6−キシレノール等のキシレノール化合物;レゾルシノール、カテコール、ハイドロキノン、2,2−ビス(4’−ヒドロキシフェニル)プロパン、1,1’−ビス(ジヒドロキシフェニル)メタン、1,1’−ビス(ジヒドロキシナフチル)メタン、テトラメチルビフェノール、ビフェノール、ヘキサメチルビフェノール、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジオール化合物;トリスヒドロキシフェニルメタン等のトリオール化合物などが挙げられる。
これらの中でも、工業的な生産容易性の観点から、フェノール、o−クレゾール、m−クレゾール、ナフトール化合物、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,6−キシレノール、レゾルシノール、ハイドロキノン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレンが好ましく、さらに硬化性に優れる点も考慮すると、フェノール、o−クレゾールがより好ましい。
前記のアミノ基が置換したトリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、カルボキシフェニル−1,3,5−トリアジン−2,4−ジアミン、カルボキシナフチル−1,3,5−トリアジン−2,4−ジアミン、カルボキシビフェニル−1,3,5−トリアジン−2,4−ジアミン等が挙げられる。
これらの中でも、難燃性の観点から、メラミン、アセトグアナミン、ベンゾグアナミンが好ましく、また、耐熱性の観点から、カルボキシフェニル−1,3,5−トリアジン−2,4−ジアミンが好ましい。
前記アルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、クロトンアルデヒド等の脂肪族アルデヒド;ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、ビフェニルアルデヒド、ナフチルアルデヒド等の芳香族アルデヒド;サリチルアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド、2−ヒドロキシ−4−メチルベンズアルデヒド、2−ヒドロキシ−3,4−ジメチルベンズアルデヒド、4−ヒドロキシビフェニルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、5−ヒドロキシ−1−ナフトアルデヒド、6−ヒドロキシ−1−ナフトアルデヒド、7−ヒドロキシ−2−ナフトアルデヒド等のヒドロキシル基置換芳香族アルデヒドなどが挙げられる。
これらの中でも、工業的な供給安定性の観点、並びに耐熱性、難燃性及び誘電特性の観点からホルムアルデヒド、パラホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒドが好ましく、ホルムアルデヒド、パラホルムアルデヒドがより好ましい。
アミノトリアジンフェノールノボラック樹脂(D)は、フェノール化合物と、前記トリアジン化合物と、アルデヒド化合物とを反応させることにより製造されるが、当該反応は、無触媒又は触媒存在下で実施することができる。また、各原料の反応順序も特に制限はなく、フェノール化合物、アルデヒド化合物をまず反応させてから前記トリアジン化合物を加えてもよいし、アルデヒド化合物と前記トリアジン化合物とを反応させてからフェノール化合物を反応させてもよい。または、全ての原料を一度に混合して反応させてもよい。
当該反応において、フェノール化合物の使用量に対するアルデヒド化合物の使用量の比率(モル比)は特に限定されるものではないが、アルデヒド化合物/フェノール化合物が、好ましくは0.1〜1.1、より好ましくは0.2〜0.8である。
また、当該反応において、フェノール化合物の使用量に対する前記トリアジン化合物の使用量の比率(モル比)は、前記トリアジン化合物/フェノール化合物が、好ましくは0.03〜1.50、より好ましくは0.03〜0.50である。
また、当該反応において触媒を使用する場合、触媒としては、塩基性触媒又は酸触媒を用いることができる。
塩基性触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム等のアルカリ金属又はアルカリ土類金属の水酸化物;酸化ナトリウム、酸化カリウム、酸化バリウム等のアルカリ金属又はアルカリ土類金属の酸化物;アンモニア、第一級〜第三級アミン化合物、ヘキサメチレンテトラミン等の含窒素化合物;炭酸ナトリウムなどが挙げられる。
酸触媒としては、例えば、塩酸、硫酸、スルホン酸、燐酸等の無機酸;シュウ酸、酢酸等の有機酸;ルイス酸;酢酸亜鉛等の2価金属塩などが挙げられる。
塩基性触媒としては含窒素化合物が好ましく、第一級〜第三級アミン化合物がより好ましい。また、酸触媒としては有機酸が好ましい。
アミノトリアジンフェノールノボラック樹脂(D)の軟化点は、好ましくは75〜150℃、より好ましくは90〜135℃、さらに好ましくは110〜135℃である。軟化点がこの範囲であると、最終的に得られるリン原子含有フェノール樹脂の硬化物における難燃性と耐熱性とのバランスに優れる傾向にある。ここで、軟化点は、環球法(「JIS K7234−86」に準拠。)にて昇温速度5℃/分で測定した値である。
また、アミノトリアジンフェノールノボラック樹脂(D)の水酸基当量は、好ましくは70〜300g/eq、より好ましくは100〜250g/eq、さらに好ましくは100〜200g/eq、特に好ましくは100〜160g/eq、最も好ましくは110〜140g/eqである。
<(E)無機充填材>
熱硬化性樹脂組成物は、(E)成分として、無機充填材(以下、無機充填材(E)と称することがある)を含有してなるものであってもよい。無機充填材(E)は、熱膨張率を低下させる効果がある。
無機充填材としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、ホウ酸アルミニウム、炭化ケイ素、ガラス短繊維、ガラス微粉末、中空ガラス等が挙げられる。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。無機充填材は1種を単独で用いてもよく、2種以上を併用してもよい。
本発明においては、無機充填材(E)としてシリカを用いることが好ましく、シリカの中でも、アミノシラン系カップリング剤で処理されたシリカを用いることがより好ましい。
(アミノシラン系カップリング剤で処理されたシリカ)
アミノシラン系カップリング剤で処理されたシリカを熱硬化性樹脂組成物に含有させることにより、低熱膨張性が向上するという効果以外に、前記(A)〜(D)成分との密着性が向上することによりシリカの脱落が抑制されるため、過剰なデスミアによるレーザビア形状の変形等を抑制する効果が得られる。
アミノシラン系カップリング剤としては、具体的には、下記一般式(E−1)で表されるケイ素含有基と、アミノ基とを有するシランカップリング剤が好ましい。

(式中、RE1は、炭素数1〜3のアルキル基又は炭素数2〜4のアシル基である。yは、0〜3の整数である。)
E1が表す炭素数1〜3のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基が挙げられる。これらの中でも、メチル基が好ましい。
E1が表す炭素数2〜4のアシル基としては、アセチル基、プロピオニル基、アクリル基が挙げられる。これらの中でも、アセチル基が好ましい。
アミノシラン系カップリング剤は、アミノ基を1つ有していてもよいし、2つ有していてもよいし、3つ以上有していてもよいが、通常は、アミノ基を1つ又は2つ有する。
アミノ基を1つ有するアミノシラン系カップリング剤としては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−プロピニル[3−(トリメトキシシリル)プロピル]カルバメート等が挙げられるが、特にこれらに制限されるものではない。
アミノ基を2つ有するアミノシラン系カップリング剤としては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、1−[3−(トリメトキシシリル)プロピル]ウレア、1−[3−(トリエトキシシリル)プロピル]ウレア等が挙げられるが、特にこれらに制限されるものではない。
アミノシラン系カップリング剤で処理されたシリカと共に又はその代わりに、その他のカップリング剤で処理されたシリカを用いてもよい。その他のカップリング剤で処理されたシリカとしては、例えば、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、アルキニルシラン系カップリング剤、ハロアルキルシラン系カップリング剤、シロキサン系カップリング剤、ヒドロシラン系カップリング剤、シラザン系カップリング剤、アルコキシシラン系カップリング剤、クロロシラン系カップリング剤、(メタ)アクリルシラン系カップリング剤、アミノシラン系カップリング剤、イソシアヌレートシラン系カップリング剤、ウレイドシラン系カップリング剤、メルカプトシラン系カップリング剤、スルフィドシラン系カップリング剤又はイソシアネートシラン系カップリング剤等で処理されたシリカなどが挙げられる。
シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)が挙げられる。シリカは、低熱膨張性及び樹脂に充填した際の高流動性の観点から、溶融シリカが好ましい。
シリカの平均粒子径に特に制限はないが、0.1〜10μmが好ましく、0.1〜6μmがより好ましく、0.1〜3μmがさらに好ましい。シリカの平均粒子径を0.1μm以上にすることで、高充填した際の流動性を良好に保つことができ、また、10μm以下にすることで、粗大粒子の混入確率を減らして粗大粒子に起因する不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
また、シリカの比表面積は、好ましくは4cm/g以上、より好ましくは4〜9cm/g、さらに好ましくは5〜7cm/gである。
<(F)難燃剤>
本発明の熱硬化性樹脂組成物は、(F)成分として、難燃剤(以下、難燃剤(F)と称することがある)を含有してなるものであってもよい。ここで、前記アミノトリアジンフェノールノボラック樹脂(D)は、難燃剤としての効果も有するが、本発明においては、(F)成分は(D)成分を包含しないこととする。
難燃剤としては、例えば、臭素や塩素を含有する含ハロゲン系難燃剤;リン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。これらの中でも、リン系難燃剤が好ましい。
リン系難燃剤としては、無機系のリン系難燃剤と、有機系のリン系難燃剤がある。
無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物、リン含有フェノール樹脂等が挙げられる。これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩が好ましい。ここで、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましく、アルミニウム塩であることが好ましい。また、有機系のリン系難燃剤の中では、芳香族リン酸エステルがより好ましい。
芳香族リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、1,3−フェニレンビス(ジ−2,6−キシレニルホスフェート)、ビスフェノールA−ビス(ジフェニルホスフェート)、1,3−フェニレンビス(ジフェニルホスフェート)等が挙げられる。
1置換ホスホン酸ジエステルとしては、例えば、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1−ブテニル)等が挙げられる。
2置換ホスフィン酸エステルとしては、例えば、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル等が挙げられる。
2置換ホスフィン酸の金属塩としては、ジアルキルホスフィン酸の金属塩、ジアリルホスフィン酸の金属塩、ジビニルホスフィン酸の金属塩、ジアリールホスフィン酸の金属塩等が挙げられる。これら金属塩は、前述の通り、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましい。
有機系含窒素リン化合物としては、例えば、ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム等が挙げられる。
環状有機リン化合物としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5−ジヒドロキシフェニル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド等が挙げられる。
これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩及び環状有機リン化合物から選択される少なくとも1種類が好ましく、芳香族リン酸エステルがより好ましい。
また、前記芳香族リン酸エステルは、下記一般式(F−1)もしくは(F−2)で表される芳香族リン酸エステルであることが好ましく、前記2置換ホスフィン酸の金属塩は、下記一般式(F−3)で表される2置換ホスフィン酸の金属塩であることが好ましい。
(式中、RF1〜RF5は各々独立に、炭素数1〜5のアルキル基又はハロゲン原子である。e及びfは各々独立に0〜5の整数であり、g、h及びiは各々独立に0〜4の整数である。
F6及びRF7は各々独立に、炭素数1〜5のアルキル基又は炭素数6〜14のアリール基である。Mは、リチウム原子、ナトリウム原子、カリウム原子、カルシウム原子、マグネシウム原子、アルミニウム原子、チタン原子、亜鉛原子である。jは、1〜4の整数である。)
F1〜RF5が表す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。RF1〜RF5が表すハロゲン原子としては、フッ素原子等が挙げられる。
e及びfは、0〜2の整数が好ましく、2がより好ましい。g、h及びiは、0〜2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
F6及びRF7が表す炭素数1〜5のアルキル基としては、RF1〜RF5の場合と同じものが挙げられる。
F6及びRF7が表す炭素数6〜14のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基、アントリル基等が挙げられる。該芳香族炭化水素基としては、炭素数6〜10のアリール基が好ましい。
jは金属イオンの価数を表しており、つまり、Mの種類に対応して1〜4の範囲内で変化する。
Mとしては、アルミニウム原子が好ましい。なお、Mがアルミニウム原子である場合、jは3である。
(各成分の含有量)
熱硬化性樹脂組成物中、(A)〜(D)成分の含有量は、(A)〜(D)成分の総和100質量部に対して、(A)成分が15〜65質量部、(B)成分が15〜50質量部、(C)成分が10〜45質量部、(D)成分が2〜7質量部である。
(A)〜(D)成分の総和100質量部に対して(A)成分が15質量部以上であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性が得られる。一方、65質量部以下であることにより、熱硬化性樹脂組成物の流動性及び成形性が良好となる。
(A)〜(D)成分の総和100質量部に対して(B)成分が15質量部以上であることにより、高耐熱性、高ガラス転移温度及び低熱膨張性が得られる。一方、50質量部以下であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性となる。
(A)〜(D)成分の総和100質量部に対して(C)成分が10質量部以上であることにより、高耐熱性及び低比誘電率が得られる。一方、45質量部以下であることにより、高耐熱性、高金属箔接着性及び低熱膨張性が得られる。
(A)〜(D)成分の総和100質量部に対して(D)成分が2質量部以上であることにより、優れた低熱膨張性が得られ、一方、7質量部以下であることにより、低比誘電率、高金属箔接着性が得られ、且つ熱硬化性樹脂組成物の流動性及び成形性が良好となる。
熱硬化性樹脂組成物における(A)〜(D)成分の含有量を上記の範囲とすることで、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性に優れ、さらには耐電食性にも優れた、高信頼性を有する多層プリント配線板用の熱硬化性樹脂組成物が得られる。
本発明の熱硬化性樹脂組成物に(E)成分を含有させる場合、その含有量は、(A)〜(D)成分の総和100質量部に対して、好ましくは20〜80質量部、より好ましくは25〜75質量部、さらに好ましくは30〜70質量部である。(A)〜(D)成分の総和100質量部に対して(E)成分が20質量部以上であることにより、優れた低熱膨張性が得られる傾向にあり、一方、80質量部以下であることにより、低比誘電率、高金属箔接着性が得られ、且つ熱硬化性樹脂組成物の流動性及び成形性が良好となる傾向にある。
また、本発明の熱硬化性樹脂組成物に(F)成分を含有させる場合、その含有量は、難燃性の観点から、(A)〜(D)成分の総和100質量部に対して、好ましくは0.1〜20質量部、より好ましくは0.5〜10質量部である。特に、(F)成分としてリン系難燃剤を用いる場合、難燃性の観点から、(A)〜(D)成分の総和100質量部に対して、リン原子含有率が0.1〜3質量部となる量が好ましく、0.2〜3質量部となる量がより好ましく、0.5〜3質量部となる量がさらに好ましい。
(その他の成分)
本発明の熱硬化性樹脂組成物には、本発明の効果を損なわない範囲で必要に応じて、添加剤及び有機溶剤等のその他の成分を含有させることができる。これらは1種を単独で含有させてもよいし、2種以上を含有させてもよい。
(添加剤)
添加剤としては、例えば、硬化剤、硬化促進剤、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填剤等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
(有機溶剤)
本発明の熱硬化性樹脂組成物には、希釈することによって取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶剤を含有させてもよい。本明細書では、有機溶剤を含有させた熱硬化性樹脂組成物を、樹脂ワニスと称することがある。
該有機溶剤としては、特に制限されないが、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド及びN−メチルピロリドン等のアミド系溶剤を含む、窒素原子含有溶剤;ジメチルスルホキシド等のスルホキシド系溶剤を含む硫黄原子含有溶剤;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等のエステル系溶剤などが挙げられる。
これらの中でも、溶解性の観点から、アルコール系溶剤、ケトン系溶剤、窒素原子含有溶剤が好ましく、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテルがより好ましく、メチルエチルケトン、メチルイソブチルケトンがさらに好ましく、メチルエチルケトンが特に好ましい。
有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
本発明の熱硬化性樹脂組成物における有機溶剤の含有量は、熱硬化性樹脂組成物の取り扱いが容易になる程度に適宜調整すればよく、また、樹脂ワニスの塗工性が良好となる範囲であれば特に制限はないが、熱硬化性樹脂組成物由来の固形分濃度(有機溶剤以外の成分の濃度)が好ましくは30〜90質量%、より好ましくは40〜80質量%、さらに好ましくは50〜80質量%となるようにする。
[プリプレグ]
本発明は、前記熱硬化性樹脂組成物を用いて形成されるプリプレグをも提供する。
本発明のプリプレグは、前記熱硬化性樹脂組成物をシート状補強基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。
プリプレグのシート状補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。シート状補強基材の材質としては、紙、コットンリンターのような天然繊維;ガラス繊維及びアスベスト等の無機物繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン及びアクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混沙したもの等が挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
これらのシート状補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途や性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
熱硬化性樹脂組成物をシート状補強基材に含浸又は塗工させる方法としては、次のホットメルト法又はソルベント法が好ましい。
ホットメルト法は、熱硬化性樹脂組成物に有機溶剤を含有させず、(1)該組成物との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする方法、又は(2)ダイコーターによりシート状補強基材に直接塗工する方法である。
一方、ソルベント法は、熱硬化性樹脂組成物に有機溶剤を含有させてワニスを調製し、該ワニスにシート状補強基材を浸漬して、ワニスをシート状補強基材に含浸させ、その後、乾燥させる方法である。
シート状補強基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性及び加工性の観点から好ましい。熱硬化性樹脂組成物を基材に含浸又は塗工した後、通常、好ましくは100〜200℃の温度で1〜30分加熱乾燥して半硬化(Bステージ化)させることにより、本発明のプリプレグを得ることができる。
得られるプリプレグは、1枚を用いるか、又は必要に応じて好ましくは2〜20枚を重ね合わせて用いる。
[積層板]
本発明の積層板は、前記プリプレグを用いて形成されたものである。例えば、前記プリプレグを1枚用いるか又は必要に応じて2〜20枚重ね、その片面又は両面に金属箔を配置した構成で積層成形することにより製造することができる。なお、金属箔を配置した積層板を、金属張積層板と称することがある。
金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましく、銅、アミルニウムがより好ましく、銅がさらに好ましい。
積層板の成形条件としては、電気絶縁材料用積層板及び多層板の公知の成形手法を適用することができ、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間で成形することができる。
また、本発明のプリプレグと内層用プリント配線板とを組合せ、積層成形して、多層板を製造することもできる。
金属箔の厚みに特に制限はなく、プリント配線板の用途等により適宜選択できる。金属箔の厚みは、好ましくは0.5〜150μm、より好ましくは1〜100μm、さらに好ましくは5〜50μm、特に好ましくは5〜30μmである。
なお、金属箔にめっきをすることによりめっき層を形成することも好ましい。
めっき層の金属は、めっきに使用し得る金属であれば特に制限されない。めっき層の金属は、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金の中から選択されることが好ましい。
めっき方法としては特に制限はなく、公知の方法、例えば電解めっき法、無電解めっき法が利用できる。
[プリント配線板]
本発明は、前記プリプレグ又は前記積層板を用いて形成されるプリント配線板をも提供する。
本発明のプリント配線板は、金属張積層板の金属箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、金属箔表面にレジストパターンを形成後、エッチングにより不要部分の金属箔を除去し、レジストパターンを剥離後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを剥離することにより行うことができる。このようにして得られたプリント配線板の表面にさらに上記の金属張積層板を前記したのと同様の条件で積層し、さらに、上記と同様にして回路加工して多層プリント配線板とすることができる。この場合、必ずしもスルーホールを形成する必要はなく、バイアホールを形成してもよく、両方を形成することができる。このような多層化は必要枚数行われる。
次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。本発明に係る熱硬化性樹脂組成物を用いて、プリプレグ、さらに銅張積層板を作製し、作製された銅張積層板を評価した。評価方法を以下に示す。
[評価方法]
<1.耐熱性(リフローはんだ耐熱性)>
各例で作製した4層銅張積層板を用いて、最高到達温度を266℃とし、260℃以上の恒温槽環境下で30秒間4層銅張積層板を流すことを1サイクルとし、目視にて基板が膨れたと確認できるまでのサイクル数を求めた。サイクル数が多いほど、耐熱性に優れる。
<2.比誘電率(Dk)>
ネットワークアナライザ「8722C」(ヒューレットパッカード社製)を用い、トリプレート構造直線線路共振器法により、1GHzにおける両面銅張積層板の比誘電率の測定を実施した。試験片サイズは、200mm×50mm×厚さ0.8mmで、1枚の両面銅張積層板の片面の中心にエッチングにより幅1.0mmの直線線路(ライン長さ200mm)を形成し、裏面は全面に銅を残してグランド層とした。もう1枚の両面銅張積層板について、片面を全面エッチングし、裏面はグランド層とした。これら2枚の両面銅張積層板を、グランド層を外側にして重ね合わせ、ストリップ線路とした。測定は25℃で行った。
比誘電率が小さいほど好ましい。
<3.金属箔接着性(銅箔ピール強度)>
金属箔接着性は、銅箔ピール強度によって評価した。各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、オートグラフ「AG−100C」(株式会社島津製作所製)を用いて銅箔のピール強度を測定した。値が大きいほど、金属箔接着性に優れることを示す。
<4.ガラス転移温度(Tg)>
各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用い、評価基板の面方向(Z方向)の30〜260℃における熱膨張特性を観察し、膨張量の変曲点をガラス転移温度とした。
<5.低熱膨張性>
各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用いて、評価基板の面方向の熱膨張率(線膨張率)を測定した。尚、試料が有する熱歪みの影響を除去するため、昇温−冷却サイクルを2回繰り返し、2回目の温度変位チャートの、30℃〜260℃の熱膨張率[ppm/℃]を測定し、低熱膨張性の指標とした。値が小さいほど、低熱膨張性に優れている。なお、表中には、Tg以下における熱膨張率とTg以上における熱膨張率とに分けて記載した。
測定条件 1st Run:室温→210℃(昇温速度10℃/min)
nd Run:0℃→270℃(昇温速度10℃/min)
銅張積層板は、さらなる薄型化が望まれており、これに併せて銅張積層板を構成するプリプレグの薄型化も検討されている。薄型化されたプリプレグは、反りやすくなるため、熱処理時におけるプリプレグの反りが小さいことが望まれる。反りを小さくするためには、基材の面方向の熱膨張率が小さいことが有効である。
<6.めっき付き回り性(レーザ加工性)>
各例で作製した4層銅張積層板に対して、レーザマシン「LC−2F21B/2C」(日立ビアメカニクス株式会社製)を用いて、目標穴径80μm、ガウシアン、サイクルモードにより、銅ダイレクト法、パルス幅15μs×1回、7μs×4回を行い、レーザ穴明けを実施した。
得られたレーザ穴明け基板に関して、膨潤液「スウェリングディップセキュリガントP」(アトテックジャパン株式会社製)を70℃、5分、粗化液「ドージングセキュリガントP500J」(アトテックジャパン株式会社製)を70℃、9分、中和液「リダクションコンディショナーセキュリガントP500」(アトテックジャパン株式会社製)を40℃、5分を使用し、デスミア処理を実施した。この後、無電解めっき液「プリガントMSK−DK」(アトテックジャパン株式会社製)を30℃、20分、電気めっき液「カパラシドHL」(アトテックジャパン株式会社製)を24℃、2A/dm、2時間を実施し、レーザ加工基板にめっきを施した。
得られたレーザ穴明け基板の断面観察を実施し、めっきの付き回り性を確認した。めっきの付き回り性の評価方法として、レーザ穴上部のめっき厚みとレーザ穴底部のめっき厚みの差が、レーザ穴上部のめっき厚みの10%以内であることが付き回り性として好ましいことから、100穴中における、この範囲に含まれる穴の存在割合(%)を求めた。
<7.成形性>
各例で作製した4層銅張積層板について、外層銅を除去した後、樹脂の埋め込み性として、340×500mmの面内中における、ボイド及びかすれの有無を目視によって確認し、成形性の指標とした。ボイド及びかすれが無いことが成形性として良好であることを示す。
<8.耐電食性>
各例で作製した両面銅張積層板に、壁間距離(穴の側壁間の最短距離)350μm、穴径0.4mmで表裏の回路を電気的に接続した回路パターンを作製し、温度85℃、相対湿度85%の恒温恒湿槽中にて、この回路間に直流100Vの電圧を印加し、導通破壊が発生するまでの時間を測定した。なお、1000時間後にも導通破壊が発生しなかった場合には、「≧1000」と表記した。
以下、実施例及び比較例で使用した各成分について説明する。
(A)成分:下記製造例1で製造した溶液を用いた。
[製造例1]
温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’−ジアミノジフェニルメタン19.2g、ビス(4−マレイミドフェニル)メタン174.0g、p−アミノフェノール6.6g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN−置換マレイミド基とを有するマレイミド化合物(A)(Mw=1379)のジメチルアセトアミド溶液を得、(A)成分として用いた。
なお、上記重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A−2500、A−5000、F−1、F−2、F−4、F−10、F−20、F−40)[東ソー株式会社製]を用いて3次式で近似した。GPCの条件は、以下に示す。
装置:(ポンプ:L−6200型[株式会社日立ハイテクノロジーズ製])、
(検出器:L−3300型RI[株式会社日立ハイテクノロジーズ製])、
(カラムオーブン:L−655A−52[株式会社日立ハイテクノロジーズ製])
カラム;TSKgel SuperHZ2000+TSKgel SuperHZ2300(すべて東ソー株式会社製)
カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:20mg/5mL
注入量:10μL
流量:0.5mL/分
測定温度:40℃
(B)成分:クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N−673」(DIC株式会社製)
(C)成分:「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000、サートマー社製)
(D)成分:アミノトリアジンフェノールノボラック樹脂「PHENOLITE(登録商標)LA−7054」(DIC株式会社製、軟化点121℃、水酸基当量125g/eq)
(E)成分:
「Megasil 525 ARI」(アミノシラン系カップリング剤により処理された溶融シリカ、平均粒子径:1.9μm、比表面積5.8m/g、シベルコ・ジャパン株式会社製)
(F)成分:「PX−200」(芳香族リン酸エステル(下記構造式参照)、大八化学工業株式会社製)
[実施例1〜10、比較例1〜8]
上記に示した各成分を下記表1〜4の通りに配合(但し、溶液の場合は固形分換算量を示す。)し、さらに溶液の不揮発分が65〜75質量%になるようにメチルエチルケトンを追加し、各実施例及び各比較例の熱硬化性樹脂組成物を調製した。
得られた各熱硬化性樹脂組成物をIPC規格#3313のガラスクロス(0.1mm)に含浸させ、160℃で4分間乾燥してプリプレグを得た。
このプリプレグ8枚を重ねたものの両面に18μmの銅箔「3EC−VLP−18」(三井金属株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.8mm(プリプレグ8枚分)の両面銅張積層板を作製し、該銅張積層板を用いて、前記方法に従って、比誘電率、金属箔接着性、ガラス転移温度(Tg)、低熱膨張性及び耐電食性について測定及び評価した。
一方で、前記プリプレグ1枚を使用し、両面に18μmの銅箔「YGP−18」(日本電解株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.1mm(プリプレグ1枚分)の両面銅張積層板を作製した後、両銅箔面に内層密着処理(「BF処理液」(日立化成株式会社製)を使用。)を施し、厚さ0.05mmのプリプレグを1枚ずつ重ね両面に18μmの銅箔「YGP−18」(日本電解株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形して4層銅張積層板を作製した。該4層銅張積層板を用いて、前記方法に従って、耐熱性、めっき付き回り性及び成形性の評価を実施した。
結果を表1〜4に示す。
実施例では、リフローはんだ耐熱性が耐熱要求レベル以上の10サイクル以上を達成し、低比誘電率、高金属箔接着性及び高ガラス転移温度が得られ、且つ低熱膨張性を示した。また、壁面からのガラスクロスの飛び出しや、適度な粗化形状を有すことから、良好なめっき付き回り性を有していることを確認した。成形性においても、樹脂の埋め込み性は良好であり、かすれ及びボイド等の異常は確認されなかった。さらに、耐電食性にも優れていた。
一方、(A)成分の含有量が10質量部である比較例1は、耐熱性、比誘電率、ガラス転移温度、熱膨張率の結果が不十分であり、また、(A)成分の含有量が70質量部である比較例2は、熱硬化性樹脂組成物の高粘度化により成形性が十分ではない。(B)成分の含有量が10質量部である比較例3は、耐熱性の低下が著しく、ガラス転移温度は低下し、さらにガラス転移温度(Tg)より高温での熱膨張率が高まり、(B)成分の含有量が60質量部である比較例4では、耐熱性の低下が著しく、ガラス転移温度は低下し、さらに比誘電率及び熱膨張率が高まった。(C)成分の含有量が5質量部である比較例5は、耐熱性の低下が起こり、且つ比誘電率が高まり、(C)成分の含有量が50質量部である比較例6は、耐熱性及び金属箔接着性の低下が顕著となり、熱膨張率も高まった。(D)成分の含有量が1質量部である比較例7は、金属箔接着性が低下し、(D)成分の含有量が10質量部である比較例8は、耐熱性が低下した。
本発明の熱硬化性樹脂組成物を用いて形成されるプリプレグ及び該プリプレグを用いて形成された積層板は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性、さらには耐電食性にも優れるため、電子機器用のプリント配線板として有用である。

Claims (12)

  1. (A)N−置換マレイミド基を有するマレイミド化合物15〜65質量部、
    (B)1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂15〜50質量部、
    (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂10〜45質量部、及び
    (D)アミノトリアジンフェノールノボラック樹脂2〜7質量部(但し、(A)〜(D)成分の総和は100質量部である。)
    を含有してなる熱硬化性樹脂組成物。
  2. 前記(C)成分が、下記一般式(C−i)で表される構造単位と下記式(C−ii)で表される構造単位とを有する共重合樹脂である、請求項1に記載の熱硬化性樹脂組成物。

    (式中、RC1は、水素原子又は炭素数1〜5のアルキル基であり、RC2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
  3. 前記一般式(C−i)中、RC1が水素原子であり、且つxが0である、請求項2に記載の熱硬化性樹脂組成物。
  4. 前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が2〜9である、請求項1に記載の熱硬化性樹脂組成物。
  5. 前記(A)成分が、さらに酸性置換基を有する、請求項1〜4のいずれか1項に記載の熱硬化性樹脂組成物。
  6. 前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂又はジシクロペンタジエン型エポキシ樹脂である、請求項1〜5のいずれか1項に記載の熱硬化性樹脂組成物。
  7. さらに(E)無機充填材を含有してなる、請求項1〜6のいずれか1項に記載の熱硬化性樹脂組成物。
  8. 前記(E)無機充填材が、アミノシラン系カップリング剤で処理されたシリカである、請求項7に記載の熱硬化性樹脂組成物。
  9. さらに(F)難燃剤を含有してなる、請求項1〜8のいずれか1項に記載の熱硬化性樹脂組成物。
  10. 請求項1〜9のいずれか1項に記載の熱硬化性樹脂組成物を用いて形成されるプリプレグ。
  11. 請求項10に記載のプリプレグと金属箔とを用いて形成される積層板。
  12. 請求項10に記載のプリプレグ又は請求項11に記載の積層板を用いて形成されるプリント配線板。
JP2015112008A 2015-06-02 2015-06-02 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 Active JP6676884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112008A JP6676884B2 (ja) 2015-06-02 2015-06-02 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015112008A JP6676884B2 (ja) 2015-06-02 2015-06-02 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板

Publications (2)

Publication Number Publication Date
JP2016222838A true JP2016222838A (ja) 2016-12-28
JP6676884B2 JP6676884B2 (ja) 2020-04-08

Family

ID=57745658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112008A Active JP6676884B2 (ja) 2015-06-02 2015-06-02 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板

Country Status (1)

Country Link
JP (1) JP6676884B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181286A1 (ja) * 2017-03-30 2018-10-04 日立化成株式会社 プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
WO2022149277A1 (ja) * 2021-01-08 2022-07-14 昭和電工マテリアルズ株式会社 接着剤組成物、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2023063282A1 (ja) * 2021-10-15 2023-04-20 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置
WO2023063277A1 (ja) * 2021-10-15 2023-04-20 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074079A (ja) * 2007-08-31 2009-04-09 Sanyo Chem Ind Ltd プラスチック基材被覆金属膜用ハードコート組成物
JP2009155399A (ja) * 2007-12-25 2009-07-16 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2011052183A (ja) * 2009-09-04 2011-03-17 Hitachi Chem Co Ltd 熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074079A (ja) * 2007-08-31 2009-04-09 Sanyo Chem Ind Ltd プラスチック基材被覆金属膜用ハードコート組成物
JP2009155399A (ja) * 2007-12-25 2009-07-16 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2011052183A (ja) * 2009-09-04 2011-03-17 Hitachi Chem Co Ltd 熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181286A1 (ja) * 2017-03-30 2018-10-04 日立化成株式会社 プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JPWO2018181286A1 (ja) * 2017-03-30 2020-02-06 日立化成株式会社 プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP7120219B2 (ja) 2017-03-30 2022-08-17 昭和電工マテリアルズ株式会社 プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP7459900B2 (ja) 2017-03-30 2024-04-02 株式会社レゾナック プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
WO2022149277A1 (ja) * 2021-01-08 2022-07-14 昭和電工マテリアルズ株式会社 接着剤組成物、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2023063282A1 (ja) * 2021-10-15 2023-04-20 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置
WO2023063277A1 (ja) * 2021-10-15 2023-04-20 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置

Also Published As

Publication number Publication date
JP6676884B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
JP7459900B2 (ja) プリプレグの製造方法、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP6701630B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6801652B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6307236B2 (ja) 硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板材料
JP2015030776A (ja) 硬化性樹脂組成物、及び硬化物
JP6662098B2 (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板
JP2018165340A (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板、プリント配線板及び半導体パッケージ
JP6454416B2 (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板
JP6676884B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6402827B1 (ja) 熱硬化性樹脂組成物及びその製造方法、プリプレグ、積層板並びにプリント配線板
TWI814156B (zh) 預浸體、積層板及印刷線路板
JP2018012791A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2018095889A (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板
JP7452417B2 (ja) 樹脂ワニス、プリプレグ、積層板、プリント配線板及び半導体パッケージ
JP2016060840A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6676884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350