JP6662098B2 - 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板 - Google Patents

熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
JP6662098B2
JP6662098B2 JP2016034369A JP2016034369A JP6662098B2 JP 6662098 B2 JP6662098 B2 JP 6662098B2 JP 2016034369 A JP2016034369 A JP 2016034369A JP 2016034369 A JP2016034369 A JP 2016034369A JP 6662098 B2 JP6662098 B2 JP 6662098B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
resin composition
thermosetting resin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016034369A
Other languages
English (en)
Other versions
JP2017149859A (ja
Inventor
真 柳田
真 柳田
芳克 白男川
芳克 白男川
圭祐 串田
圭祐 串田
辰徳 金子
辰徳 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016034369A priority Critical patent/JP6662098B2/ja
Publication of JP2017149859A publication Critical patent/JP2017149859A/ja
Application granted granted Critical
Publication of JP6662098B2 publication Critical patent/JP6662098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、電子機器等の材料として好適な熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板に関する。
熱硬化性樹脂は、その特有な架橋構造が高い耐熱性及び寸法安定性を発現するため、電子部品等の高い信頼性を要求される分野において広く使われている。特に銅張積層板及び層間絶縁材料においては、近年の配線の高密度化への要求から、微細配線形成のための高い銅箔接着性が必要とされる。
携帯電話に代表される移動体通信機器、基地局装置、サーバー及びルーター等のネットワーク関連電子機器、並びに大型コンピュータ等では、低損失かつ高速で、大容量の情報を伝送及び処理することが要求されている。大容量の情報を伝送及び処理する場合、電気信号が高周波数の方が、高速に伝送及び処理することができる。ところが、電気信号は、基本的に高周波になればなるほど減衰しやすくなり、より短い伝送距離で出力が弱くなりやすく、損失が大きくなりやすいという性質を有する。したがって、上述の低損失かつ高速通信の要求を満たすためには、機器に搭載された伝送及び処理を行うプリント配線板自体の特性において、誘電特性(比誘電率、誘電正接)、特に高周波帯域での比誘電率及び誘電正接を低減させることが求められている。
従来、低損失で情報を伝送し得るプリント配線板を得るために、比誘電率及び誘電正接が低いフッ素系樹脂を使用した基板材料が使用されてきた。しかしながら、フッ素系樹脂は一般に溶融温度及び溶融粘度が高く、その流動性が比較的低いため、プレス成形時に高温高圧条件を設定する必要があるという問題点がある。しかも、上記の通信機器、ネットワーク関連電子機器及び大型コンピュータ等に使用される高多層のプリント配線板用に使用するには、加工性、寸法安定性及び金属めっきとの接着性が不充分であるという問題点がある。
そこで、高周波用プリント配線板用途に対応する、フッ素系樹脂に替わる熱硬化性樹脂材料が研究されている。例えば、エポキシ樹脂を含有した樹脂組成物(特許文献1参照)、ポリフェニレンエーテルとビスマレイミドとを含有した樹脂組成物(特許文献2参照)、スチレン−ブタジエン共重合体又はポリスチレンと、トリアリルシアヌレート又はトリアリルイソシアヌレートとを含有した樹脂組成物(例えば、特許文献3及び4参照)等が提案されている。
さらには、ポリフェニレンエーテルと不飽和カルボン酸又は不飽和酸無水物との反応生成物と、多官能性マレイミド等とを含有した樹脂組成物(例えば、特許文献5参照)等が提案されている。
特開昭58−069046号公報 特開昭56−133355号公報 特開昭61−286130号公報 特開平03−275760号公報 特開平06−179734号公報
しかしながら、特許文献1、2又は5に記載された樹脂組成物では、極性の高いエポキシ樹脂の影響によって硬化後の誘電特性に劣り、高周波用途には不向きであった。
特許文献3又は4に記載された樹脂組成物では、比誘電率がやや高いという傾向が見られた。
さらに、特許文献5に記載された樹脂組成物では、極性の高い不飽和カルボン酸及び不飽和無水物による変性の影響により、変性前のポリフェニレンエーテルを用いた場合よりも誘電特性が悪化するという問題があり、銅箔との接着性を高めるべくして極性基の多い化合物を用いると、誘電特性が低下することがわかった。
そこで、本発明の課題は、銅箔との高接着性、優れた誘電特性、高ガラス転移温度、低熱膨張係数、及び良好な成形性を達成し得る熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意研究した結果、(A)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、(B)ジヒドロベンゾオキサジン環を有する化合物、及び(C)マレイミド化合物、を含有してなる熱硬化性樹脂組成物が、上記の課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。
本発明は、下記[1]〜[13]に関する。
[1](A)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
(B)ジヒドロベンゾオキサジン環を有する化合物、及び
(C)マレイミド化合物、
を含有してなる熱硬化性樹脂組成物。
[2]前記(B)成分が、下記一般式(B)で表される化合物を含む、上記[1]に記載の熱硬化性樹脂組成物。

(式中、RB1は、炭素数1〜6のアルキル基、炭素数4〜8のシクロアルキル基、若しくは炭素数6〜14のアリール基であるか、又は、炭素数1〜3のアルキル基及び炭素数1〜3のアルコキシル基からなる群から選択される少なくとも1つの有機基で置換された炭素数6〜14のアリール基である。)
[3]前記(A)成分が、下記一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位と下記式(A−ii)で表される無水マレイン酸に由来する構造単位とを有する共重合樹脂である、上記[1]又は[2]に記載の熱硬化性樹脂組成物。

(式中、RA1は、水素原子又は炭素数1〜5のアルキル基であり、RA2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRA2は同一であってもよいし、異なっていてもよい。)
[4]前記(A)成分において、芳香族ビニル化合物に由来する構造単位の、無水マレイン酸に由来する構造単位に対する含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が2〜9である、上記[1]〜[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]前記(C)成分が、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物である、上記[1]〜[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記(C)成分が、下記一般式(c1−1)又は(c1−2)で表されるマレイミド化合物(c1)が、酸性置換基を有するモノアミン化合物(c2)で変性されたマレイミド化合物である、上記[1]〜[5]のいずれかに記載の熱硬化性樹脂組成物。

(式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。)
[7]前記酸性置換基を有するモノアミン化合物(c2)が下記一般式(c2−1)で表される、上記[6]に記載の熱硬化性樹脂組成物。

(式中、RC4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。)
[8]前記(C)成分が、下記一般式(C−1)又は下記一般式(C−2)で表される化合物を含む、上記[1]〜[7]のいずれかに記載の熱硬化性樹脂組成物。

(式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。
C4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。)
[9]さらに、(D)水添スチレン系熱可塑性エラストマーを含有する、上記[1]〜[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]さらに、(E)ラジカル反応開始剤、(F)硬化促進剤、(G)難燃剤及び(H)無機充填材からなる群から選択される少なくとも1種を含有してなる、上記[1]〜[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]上記[1]〜[10]のいずれかに記載の熱硬化性樹脂組成物を含有してなるプリプレグ。
[12]上記[11]に記載のプリプレグと銅箔とを積層してなる銅張積層板。
[13]上記[12]に記載の銅張積層板を用いてなるプリント配線板。
本発明により、銅箔との高接着性、高耐熱性、優れた誘電特性、高ガラス転移温度、低熱膨張係数、及び良好な成形性を達成し得る熱硬化性樹脂組成物を提供することができる。該熱硬化性樹脂組成物は、有機溶剤に対する溶解性にも優れている。また、該熱硬化性樹脂組成物を含有してなるプリプレグ、該プリプレグと銅箔とを積層してなる銅張積層板、及び該銅張積層板を用いてなるプリント配線板を提供することができる。
以下、本発明について詳細に説明する。
[熱硬化性樹脂組成物]
本発明の熱硬化性樹脂組成物は、
(A)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
(B)ジヒドロベンゾオキサジン環を有する化合物、及び
(C)マレイミド化合物、
を含有してなる熱硬化性樹脂組成物である。
以下、本発明の熱硬化性樹脂組成物が含有する各成分について詳細に説明する。
<(A)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂>
(A)成分は、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂[以下、共重合樹脂(A)と称することがある]である。該(A)成分により、特に誘電特性が向上する。
該芳香族ビニル化合物としては、例えば、スチレン、1−メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらの中でも、スチレンが好ましい。
(A)成分としては、特に、下記一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位と下記式(A−ii)で表される無水マレイン酸に由来する構造単位とを有する共重合樹脂が好ましい。

(式中、RA1は、水素原子又は炭素数1〜5のアルキル基であり、RA2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRA2は同一であってもよいし、異なっていてもよい。)
A1及びRA2が示す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
A2が示す炭素数2〜5のアルケニル基としては、例えば、アリル基、クロチル基等が挙げられる。該アルケニル基としては、好ましくは炭素数3〜5のアルケニル基、より好ましくは炭素数3又は4のアルケニル基である。
A2が示す炭素数6〜20のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6〜12のアリール基、より好ましくは6〜10のアリール基である。
xは、好ましくは0又は1、より好ましくは0である。
一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位においては、RA1が水素原子であり、且つxが0である下記式(A−i−1)で表される構造単位が好ましい。
共重合樹脂(A)中における、芳香族ビニル化合物に由来する構造単位の、無水マレイン酸に由来する構造単位に対する含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)は、好ましくは2〜9、より好ましくは4〜9、さらに好ましくは6〜9である。また、前記式(A−ii)で表される無水マレイン酸に由来する構造単位に対する前記一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位の含有比率[(A−i)/(A−ii)](モル比)も同様に、好ましくは2〜9、より好ましくは4〜9、さらに好ましくは6〜9である。当該含有比率が2以上であれば、誘電特性及び耐熱性の改善効果が十分となる傾向にあり、9以下であれば、相容性が良好となる傾向にある。
共重合樹脂(A)中における、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との合計含有量、及び、一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位と式(A−ii)で表される無水マレイン酸に由来する構造単位との合計含有量は、それぞれ、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは実質的に100質量%である。
共重合樹脂(A)の重量平均分子量(Mw)は、好ましくは5,000〜18,000、より好ましくは6,000〜17,000、さらに好ましくは8,000〜16,000、特に好ましくは10,000〜16,000、最も好ましくは12,000〜16,000である。なお、本明細書における重量平均分子量はいずれも、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)で測定された値である。
なお、エポキシ樹脂を低誘電率化する手法としては、スチレンと無水マレイン酸の共重合樹脂を用いる方法があるが、この方法をプリント配線板用材料に応用すると、基材への含浸性及び銅箔との接着性が不十分となることより、一般的に避けられる傾向にある。そのため、前記共重合樹脂(A)を用いることも避けられがちであるが、本発明は、前記共重合樹脂(A)を用いながらも、(B)成分及び(C)成分を共に含有させることにより、誘電特性を優れたものとしながらも、銅箔との接着性を高めることに成功し、さらには、誘電特性、ガラス転移温度、熱膨張係数及び成形性にも優れる熱硬化性樹脂組成物となることが判明して成し遂げられたものである。
(共重合樹脂(A)の製造方法)
共重合樹脂(A)は、芳香族ビニル化合物と無水マレイン酸とを共重合することにより製造することができる。
芳香族ビニル化合物としては、前述の通り、スチレン、1−メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
さらに、前記芳香族ビニル化合物及び無水マレイン酸以外にも、各種の重合可能な成分を共重合させてもよい。各種の重合可能な成分としては、例えば、エチレン、プロピレン、ブタジエン、イソブチレン、アクリロニトリル等のビニル化合物;メチルアクリレート、メチルメタクリレート等の(メタ)アクリロイル基を有する化合物などが挙げられる。
また、上記共重合によって得られた共重合体に、フリーデル・クラフツ反応、又はリチウム等の金属系触媒を用いた反応を通じて、アリル基等のアルケニル基、(メタ)アクリロイル基、水酸基などの置換基(一般式(A−i)中のRA2に相当する。)を導入してもよい。
共重合樹脂(A)としては、市販品を用いることもでき、市販品としては、例えば、「SMA(登録商標)EF30」(スチレン/無水マレイン酸=3、Mw=9,500)、「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000)、「SMA(登録商標)EF60」(スチレン/無水マレイン酸=6、Mw=11,500)、「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400)[以上、サートマー社製]等が挙げられる。これらの中でも、「SMA(登録商標)EF80」が好ましい。
<(B)ジヒドロベンゾオキサジン環を有する化合物>
(B)成分は、ジヒドロベンゾオキサジン環を有する化合物[以下、ジヒドロベンゾオキサジン環を有する化合物(B)と称することがある]である。該(B)成分により、誘電特性を維持したまま銅箔との接着性を向上させる効果が発現する。銅箔との接着性を向上させるためには、例えばフェノール樹脂等を用いることもできるが、その場合、誘電特性が悪化する傾向にある。しかし、本発明で用いる(B)成分であれば、前述のとおり、そのような問題を生じずに銅箔との接着性を向上させることができる。
ジヒドロベンゾオキサジン環を有する化合物(B)は、加熱により開環重合反応を起こし、揮発分を発生させることなくフェノール性水酸基を生成しながら架橋構造を形成する。このことが、本発明の熱硬化性樹脂組成物の誘電特性を維持しながら銅箔との接着性を高める効果、及び高ガラス転移温度を得ることにつながっているものと推測する。
ジヒドロベンゾオキサジン環を有する化合物(B)は、ジヒドロベンゾオキサジン環を有していれば特に制限はないが、好ましくはジヒドロベンゾオキサジン環を1〜3つ有している化合物であり、より好ましくはジヒドロベンゾオキサジン環を1つ又は2つ有している化合物であり、より好ましくはジヒドロベンゾオキサジン環を1つ有している化合物である。
(B)成分としては、具体的には、下記一般式(B)で表される化合物を含むことが好ましく、下記一般式(B)で表される化合物を80質量%以上含むことがより好ましく、下記一般式(B)で表される化合物を90質量%以上含むことがより好ましく、下記一般式(B)で表される化合物を実質的に100質量%含むことがさらに好ましい。
一般式(B)で表される化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。

(式中、RB1は、炭素数1〜6のアルキル基、炭素数4〜8のシクロアルキル基、若しくは炭素数6〜14のアリール基であるか、又は、炭素数1〜3のアルキル基及び炭素数1〜3のアルコキシル基からなる群から選択される少なくとも1つの有機基で置換された炭素数6〜14のアリール基である。)
前記一般式(B)中、RB1が示す炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
B1が示す炭素数4〜8のシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。該シクロアルキル基としては、好ましくは炭素数5〜8のシクロアルキル基である。
B1が示す炭素数6〜14のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基、アントリル基等が挙げられる。該アリール基としては、好ましくは炭素数6〜10のアリール基であり、より好ましくはフェニル基である。
B1が示す、炭素数1〜3のアルキル基及び炭素数1〜3のアルコキシル基からなる群から選択される少なくとも1つの有機基で置換された炭素数6〜14のアリール基としては、例えば、トシル基、ジメチルフェニル基、メトキシフェニル基、ジメトキシフェニル基、エトキシフェニル基、ジエトキシフェニル基、n−プロポキシフェニル基、イソプロポキシフェニル基等が挙げられる。
以上の中でも、RB1としては、炭素数6〜14のアリール基、又は、炭素数1〜3のアルキル基及び炭素数1〜3のアルコキシル基からなる群から選択される少なくとも1つの有機基で置換された炭素数6〜14のアリール基が好ましく、炭素数6〜14のアリール基がより好ましい。
(ジヒドロベンゾオキサジン環を有する化合物(B)の製造方法)
ジヒドロベンゾオキサジン環を有する化合物(B)の製造方法に特に制限はないが、例えば、(b1)オルト位の少なくとも一方に水素原子が結合しているフェノール性水酸基を有する化合物[以下、フェノール性水酸基を有する化合物(b1)と略称することがある]、(b2)第一級アミン[以下、第一級アミン(b2)と称する]及び(b3)ホルムアルデヒド[以下、ホルムアルデヒド(b3)と称する]の反応によって製造することができる。フェノール性水酸基を有する化合物(b1)がフェノールである場合、以下の反応式で示される。

(式中、RB1は前記定義の通りである。)
ジヒドロベンゾオキサジン環を有する化合物(B)の原料の1つである、フェノール性水酸基を有する化合物(b1)としては、例えば、フェノール類、多官能フェノール類、ビフェノール化合物、ビスフェノール類、トリスフェノール類、テトラフェノール類、フェノール樹脂等が挙げられる。これらの中でも、フェノール類が好ましく、フェノールがより好ましい。フェノール類としては、例えば、フェノール、2−メチルフェノール、4−メチルフェノール、2−エチルフェノール、3−メチル−4−イソプロピルフェノール等が挙げられる。
フェノール性水酸基を有する化合物(b1)は、1分子中にオルト位の少なくとも一方に水素が結合しているフェノール性水酸基を2つ以上有する化合物であってもよい。具体的には、多官能フェノール類としては、カテコール、レゾルシノール、ヒドロキノン等が挙げられる。ビスフェノール類としては、ビスフェノールA、ビスフェノールS、ビスフェノールF、ヘキサフルオロビスフェノールA等が挙げられる。トリスフェノール類としては、1,1,1−トリス(4−ヒドロキシフェニル)エタン等が挙げられる。
フェノール性水酸基を有する化合物(b1)は、1種を単独で使用してもよいし、2種以上を併用してもよいが、通常は、1種を単独で使用することが好ましい。
ジヒドロベンゾオキサジン環を有する化合物(B)の原料の1つである第一級アミン(b2)としては、例えば、メチルアミン、ブチルアミン、シクロヘキシルアミン等の脂肪族アミン;アニリン、置換アニリン、トルイジン、アニシジン等の芳香族アミンを用いることができる。これらの中でも、芳香族アミンが好ましく、アニリン、置換アニリンがより好ましく、アニリンがさらに好ましい。なお、置換アニリンとしては、例えば、2−メトキシアニリン、4−メトキシアニリン等が挙げられる。
第一級アミン(b2)は、1種を単独で使用してもよいし、2種以上を併用してもよいが、通常は、1種を単独で使用することが好ましい。
ジヒドロベンゾオキサジン環を有する化合物(B)の原料の1つであるホルムアルデヒド(b3)は、ホルマリン(ホルムアルデヒド水溶液)として用いることもできるし、また、固体状であるパラホルムアルデヒドとして用いることもできる。
ジヒドロベンゾオキサジン環を有する化合物(B)の製造に際し、各原料の使用量に特に制限はないが、フェノール性水酸基を有する化合物(b1)が有するフェノール性水酸基1モルに対して第一級アミン(b2)を0.5〜1モル、且つ、第一級アミン(b2)1モルに対してホルムアルデヒド(b3)を2モル以上用いることが好ましい。第一級アミン(b2)の使用量を前記のようにすることで、フェノール性水酸基を有する化合物(b1)のフェノール性水酸基の一部が未反応のまま残存し易くなり、接着性及びガラス転移温度が改善される傾向にある。
ジヒドロベンゾオキサジン環を有する化合物(B)のより具体的な製造方法としては、フェノール性水酸基を有する化合物(b1)と第一級アミン(b2)との混合物を、好ましくは70℃以上、より好ましくは70〜110℃に加熱したホルムアルデヒド(b3)中に添加し、好ましくは70〜110℃、より好ましくは90〜100℃で、好ましくは20分〜8時間、より好ましくは20分〜2時間反応させ、その後、120℃以下で減圧乾燥することにより、ジヒドロベンゾオキサジン環を有する化合物(B)を得ることができる。
また、原料の混合の手順は上記手順に限られず、第一級アミン(b2)を、フェノール性水酸基を有する化合物(b1)とホルムアルデヒド(b3)との混合物中に添加し、好ましくは70℃以上、より好ましくは70〜110℃で反応させてもよい。
ジヒドロベンゾオキサジン環を有する化合物(B)の製造方法は、溶媒の存在下に実施してもよい。該溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒などが挙げられる。
反応終了後、生成物を抽出等の有機合成化学において一般的に利用される手法で分離し、縮合水等の揮発成分を乾燥除去することにより、ジヒドロベンゾオキサジン環を有する化合物(B)が得られる。
<(C)マレイミド化合物>
(C)成分として、マレイミド化合物[以下、マレイミド化合物(C)と称する]を用いる。該(C)成分により、特に銅箔との接着性が向上する。マレイミド化合物(C)としては、1分子中に少なくとも2個のN−置換マレイミド基を有する化合物が好ましい。
マレイミド化合物(C)の重量平均分子量(Mw)は、有機溶媒への溶解性の観点及び機械強度の観点から、好ましくは400〜3,500、より好ましくは600〜1,000、さらに好ましくは650〜950である。
また、マレイミド化合物(C)は、熱硬化性樹脂組成物の硬化物の剛性及び機械強度の観点から、酸性置換基を有するものであることが好ましい。具体的には、マレイミド化合物(C)は、後述するマレイミド化合物(c1)が、酸性置換基を有するモノアミン化合物(c2)で変性されたマレイミド化合物であることが好ましい。
(マレイミド化合物(c1))
マレイミド化合物(c1)は、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物である。
マレイミド化合物(c1)としては、複数のマレイミド基のうちの任意の2個のマレイミド基の間に脂肪族炭化水素基を有するマレイミド化合物[以下、脂肪族炭化水素基含有マレイミドと称する]であるか、又は、複数のマレイミド基のうちの任意の2個のマレイミド基の間に芳香族炭化水素基を含有するマレイミド化合物[以下、芳香族炭化水素基含有マレイミドと称する]が挙げられる。これらの中でも、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、芳香族炭化水素基含有マレイミドが好ましい。芳香族炭化水素基含有マレイミドは、任意に選択した2つのマレイミド基の組み合わせのいずれかの間に芳香族炭化水素基を含有していればよい。
マレイミド化合物(c1)としては、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、1分子中に2個〜5個のN−置換マレイミド基を有するマレイミド化合物が好ましく、1分子中に2個のN−置換マレイミド基を有するマレイミド化合物がより好ましい。また、マレイミド化合物(c1)としては、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、下記一般式(c1−1)又は(c1−2)で表される芳香族炭化水素基含有マレイミドであることがより好ましく、下記一般式(c1−2)で表される芳香族炭化水素基含有マレイミドであることがさらに好ましい。
上記式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。
C1〜RC3が示す炭素数1〜5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該脂肪族炭化水素基としては、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、好ましくは炭素数1〜3の脂肪族炭化水素基であり、より好ましくはメチル基、エチル基である。
C1〜RC3が示すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
C1が示す炭素数1〜5のアルキレン基としては、例えば、メチレン基、1,2−ジメチレン基、1,3−トリメチレン基、1,4−テトラメチレン基、1,5−ペンタメチレン基等が挙げられる。該アルキレン基としては、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、好ましくは炭素数1〜3のアルキレン基であり、より好ましくはメチレン基である。
C1が示す炭素数2〜5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、イソプロピリデン基が好ましい。
C1としては、上記選択肢の中でも、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基が好ましく、炭素数1〜5のアルキレン基がより好ましい。さらに好ましいものは前述の通りである。
p、q及びrは、各々独立に、0〜4の整数であり、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、いずれも、好ましくは0〜2の整数、より好ましくは0又は1、さらに好ましくは0である。
マレイミド化合物(c1)としては、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(マレイミドメチル)シクロヘキサン等の脂肪族炭化水素基含有マレイミド;m−フェニレンビスマレイミド、N,N’−(2−メチル−1,3−フェニレン)ビスマレイミド、N,N’−(4−メチル−1,3−フェニレン)ビスマレイミド、N,N’−(1,4−フェニレン)ビスマレイミド、4,4’−ジフェニルメタンビスマレイミド、ビス(3−メチル−4−マレイミドフェニル)メタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(マレイミドメチル)シクロヘキサン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、4,4−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2,2’−ビス(4−マレイミドフェニル)ジスルフィド、ビス(4−マレイミドフェニル)ジスルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等の芳香族炭化水素基含有マレイミドが挙げられる。
これらの中でも、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点からは、4,4’−ジフェニルメタンビスマレイミド、m−フェニレンビスマレイミド、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)エーテルが好ましく、ビス(4−マレイミドフェニル)エーテルがより好ましい。
マレイミド化合物(c1)は1種を単独で使用してもよいし、2種以上を併用してもよいが、1種を単独で使用することが好ましい。
(酸性置換基を有するモノアミン化合物(c2))
酸性置換基を有するモノアミン化合物(c2)は、下記一般式(c2−1)で示されるモノアミン化合物であることが好ましい。
上記一般式(c2−1)中、RC4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。
C4が示す酸性置換基としては、溶解性及び反応性の観点から、好ましくは水酸基、カルボキシ基であり、耐熱性も考慮すると、より好ましくは水酸基である。
tは1〜5の整数であり、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、好ましくは1〜3の整数、より好ましくは1又は2、さらに好ましくは1である。
C5が示す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。
C5が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
uは0〜4の整数であり、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、好ましくは0〜3の整数、より好ましくは0〜2の整数、さらに好ましくは0又は1、特に好ましくは0である。
酸性置換基を有するモノアミン化合物(c2)としては、銅箔との接着性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の観点から、より好ましくは下記一般式(c2−2)又は(c2−3)で表されるモノアミン化合物であり、さらに好ましくは下記一般式(c2−2)で表されるモノアミン化合物である。但し、一般式(c2−2)及び(c2−3)中のRC4、RC5及びuは、一般式(c2−1)中のものと同じであり、好ましいものも同じである。
酸性置換基を有するモノアミン化合物(c2)としては、例えば、o−アミノフェノール、m−アミノフェノール、p−アミノフェノール、o−アミノ安息香酸、m−アミノ安息香酸、p−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリン等が挙げられる。これらの中でも、溶解性及び反応性の観点からは、m−アミノフェノール、p−アミノフェノール、p−アミノ安息香酸、3,5−ジヒドロキシアニリンが好ましく、耐熱性の観点からは、o−アミノフェノール、m−アミノフェノール、p−アミノフェノールが好ましく、誘電特性、熱膨張係数及び製造コストも考慮すると、p−アミノフェノールがより好ましい。
酸性置換基を有するモノアミン化合物(c2)は1種を単独で使用してもよいし、2種以上を併用してもよい。
マレイミド化合物(c1)と酸性置換基を有するモノアミン化合物(c2)の反応は、好ましくは後述の有機溶媒の存在下、反応温度50〜200℃で0.1〜10時間反応させることにより実施することが好ましい。
反応温度は、より好ましくは70〜200℃、さらに好ましくは70〜160℃、特に好ましくは70〜130℃、最も好ましくは80〜120℃である。反応時間は、より好ましくは1〜6時間、さらに好ましくは1〜4時間である。
マレイミド化合物(c1)と酸性置換基を有するモノアミン化合物(c2)の反応において、両者の使用量は、酸性置換基を有するモノアミン化合物(c2)が有する第1級アミノ基当量[−NH基当量と記す]と、マレイミド化合物(c1)のマレイミド基当量との関係が、下記式を満たすことが好ましい。
1.0<〔マレイミド基当量〕/〔−NH基当量〕≦10
〔マレイミド基当量〕/〔−NH基当量〕を0.1以上とすることにより、ゲル化し難く、且つ耐熱性が低下し難い傾向にあり、また、10以下とすることにより、有機溶媒への溶解性、銅箔との接着性及び耐熱性が低下し難い傾向にあるため、好ましい。
同様の観点から、より好ましくは、
2≦〔マレイミド基当量〕/〔−NH基当量〕≦10 を満たし、
より好ましくは、
3≦〔マレイミド基当量〕/〔−NH基当量〕≦9 を満たし、
さらに好ましくは、
5≦〔マレイミド基当量〕/〔−NH基当量〕≦9 を満たす。
マレイミド化合物(C)は、下記一般式(C−1)又は下記一般式(C−2)で表される化合物を含むことが好ましい。下記一般式(C−1)又は下記一般式(C−2)で表される化合物はいずれも、分子内に変性されていないマレイミド基を有する化合物である。
(式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。
C4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。)
各基については、それぞれ、前記一般式(c1−1)、(c1−2)又は(c2−1)中のものと同じであり、好ましいものも同じである。
(有機溶媒)
前述の通り、マレイミド化合物(c1)と酸性置換基を有するモノアミン化合物(c2)の反応は、有機溶媒中で行うことが好ましい。
該有機溶媒としては、当該反応に悪影響を及ぼさない限り特に制限はない。例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒を包含する窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を包含する硫黄原子含有溶媒;酢酸エチル、γ−ブチロラクトン等のエステル系溶媒などが挙げられる。
これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、窒素原子含有溶媒が好ましく、低毒性であるという観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテルがより好ましく、揮発性が高く、プリプレグの製造時に残溶剤として残り難いことも考慮すると、プロピレングリコールモノメチルエーテル、N,N−ジメチルアセトアミドがさらに好ましく、N,N−ジメチルアセトアミドが特に好ましい。
有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
有機溶媒の使用量に特に制限はないが、溶解性及び反応効率の観点から、マレイミド化合物(c1)及び酸性置換基を有するモノアミン化合物(c2)の合計100質量部に対して、好ましくは10〜1000質量部、より好ましくは40〜700質量部、さらに好ましくは50〜250質量部、特に好ましくは50〜150質量部となるようにすればよい。マレイミド化合物(c1)及び酸性置換基を有するモノアミン化合物(c2)の合計100質量部に対して10質量部以上とすることによって溶解性を確保し易くなる傾向があり、1000質量部以下とすることによって、反応効率の大幅な低下を抑制し易い傾向がある。
(反応触媒)
マレイミド化合物(c1)と酸性置換基を有するモノアミン化合物(c2)の反応は、必要に応じて、反応触媒の存在下に実施してもよい。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン系触媒;メチルイミダゾール、フェニルイミダゾール等のイミダゾール系触媒;トリフェニルホスフィン等のリン系触媒などが挙げられる。
反応触媒は1種を単独で使用してもよいし、2種以上を併用してもよい。
反応触媒を使用する場合、その使用量に特に制限はないが、マレイミド化合物(c1)と酸性置換基を有するモノアミン化合物(c2)の質量の総和100質量部に対して、好ましくは0.001〜5質量部である。
なお、特に反応触媒を使用しなくても十分に反応は進行する。
〔熱硬化性樹脂組成物中の(A)〜(C)成分の含有量〕
本発明の熱硬化性樹脂組成物は、前記(A)〜(C)成分を含有してなるものである。各成分の含有量(但し、各成分は必ずしもそのままの構造で熱硬化性樹脂組成物中に含有されているわけではなく、つまり反応している成分もあるが、ここでは便宜上、各成分の使用量を「含有量」と称する。)は、固形分換算の(A)〜(C)成分の質量の総和100質量部に対して、(A)成分は好ましくは5〜25質量部、より好ましくは10〜20質量部、(B)成分は好ましくは5〜30質量部、より好ましくは10〜30質量部、(C)成分は好ましくは45〜75質量部、より好ましくは60〜70質量部である。
固形分換算の(A)〜(C)成分の質量の総和100質量部に対して、(A)成分の含有量が5質量部以上であれば、誘電特性が良好となる傾向にあり、さらに溶解性が確保されて樹脂ワニス製作時に析出し難い傾向にある。また、25質量部以下であれば、未反応成分が残り難いため、銅箔との接着性の低下を抑制できる傾向にある。
固形分換算の(A)〜(C)成分の質量の総和100質量部に対して、(B)成分の含有量が5質量部以上であれば、銅箔との接着性が良好となる傾向にある。また、30質量部以下であれば、耐熱性が良好となる傾向にある。
固形分換算の(A)〜(C)成分の質量の総和100質量部に対して、(C)成分の含有量が45質量部以上であれば、耐熱性に優れる傾向にある。また、75質量部以下であれば、熱硬化性樹脂組成物の流動性及び成形性が良好となる傾向にある。
<その他の成分>
本発明の熱硬化性樹脂組成物は、前記(A)〜(C)成分以外のその他の成分を含有してなるものであってもよい。その他の成分としては、例えば、(D)水添スチレン系熱可塑性エラストマー、(E)ラジカル反応開始剤、(F)硬化促進剤、(G)難燃剤、(H)無機充填材、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填剤等が挙げられるが、特にこれらに制限されない。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
特に、本発明の熱硬化性樹脂組成物は、前記(A)〜(C)成分に加えて、さらに、(D)水添スチレン系熱可塑性エラストマー、(E)ラジカル反応開始剤、(F)硬化促進剤、(G)難燃剤及び(H)無機充填材からなる群から選択される少なくとも1種を含有してなるものであることが好ましい。
((D)水添スチレン系熱可塑性エラストマー)
水添スチレン系熱可塑性エラストマー[以下、水添スチレン系熱可塑性エラストマー(D)と称する]を含有させることにより、誘電特性をさらに向上させることができる。
水添スチレン系熱可塑性エラストマー(D)は、好ましくは、スチレン系化合物に由来する構造単位と共役ジエン化合物に由来する構造単位とを有する共重合体の水素添加物であり、より好ましくは、スチレン系化合物に由来する構造単位と共役ジエン化合物に由来する構造単位とを有するブロック共重合体の水素添加物である。該スチレン系化合物としては、例えば、スチレン、p−メチルスチレン等が挙げられる。該共役ジエン化合物としては、例えば、ブタジエン、イソプレン等が挙げられる。
水添スチレン系熱可塑性エラストマー(D)としては、具体的には、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物(SEBS)、スチレン−イソプレン−スチレンブロック共重合体の水素添加物(SEPS)、スチレン−(イソプレン/ブタジエン)−スチレンブロック共重合体の水素添加物(SEEPS)等が挙げられる。これらの中でも、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物(SEBS)が好ましい。
水添スチレン系熱可塑性エラストマー(D)において、スチレン系化合物に由来する構造単位の含有量は、好ましくは10〜70質量%、より好ましくは15〜70質量%、さらに好ましくは20〜70質量%、特に好ましくは20〜50質量%である。
水添スチレン系熱可塑性エラストマー(D)の重量平均分子量は、好ましくは5万〜100万であり、より好ましくは5万〜45万である。また、水添スチレン系熱可塑性エラストマー(D)の水素添加率は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。
水添スチレン系熱可塑性エラストマー(D)としては市販品を使用してもよく、市販品としては、例えば、「タフテック(登録商標)H1043」、「タフテック(登録商標)H1051」、「タフテック(登録商標)H1053」(以上、全て旭化成ケミカルズ株式会社製)等が挙げられる。
本発明の熱硬化性樹脂組成物が水添スチレン系熱可塑性エラストマー(D)を含有してなるものである場合、その含有量は、固形分換算の(A)〜(D)成分の質量の総和100質量部に対して、好ましくは0.1〜30質量部、より好ましくは1〜20質量部、さらに好ましくは3〜15質量部である。
((E)ラジカル反応開始剤)
ラジカル反応開始剤[以下、ラジカル反応開始剤(E)と称する]を含有させることにより、本発明の熱硬化性樹脂組成物の硬化反応が生じ易くなる。
ラジカル反応開始剤(E)は、金属張積層板又は多層プリント配線板を製造する際に熱硬化性樹脂組成物の硬化物の硬化反応を開始又は促進させる効果を有する。
ラジカル反応開始剤(E)としては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン、ジ−t−ブチルパーオキサイド等のジアルキルパーオキサイド系ラジカル反応開始剤;p−メンタハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド系ラジカル反応開始剤などが挙げられるが、特にこれらに限定されない。ラジカル反応開始剤(E)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
また、プレプリグとした時の成形性を高める観点から、半減期温度の異なるラジカル反応開始剤(E)を組み合わせることもできる。誘電特性及び熱膨張係数等の観点から、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン等のジアルキルパーオキサイド系ラジカル反応開始剤と、それらよりも高い反応開始温度をもったp−メンタハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド及びt−ヘキシルハイドロパーオキサイド等のハイドロパーオキサイド系ラジカル反応開始剤とから選ばれる1種以上のラジカル反応開始剤を用いることが好ましい。
本発明の熱硬化性樹脂組成物がラジカル反応開始剤(E)を含有してなるものである場合、その含有量は、固形分換算の(A)〜(D)成分の質量の総和100質量部に対して、好ましくは0.01〜5質量部、より好ましくは0.1〜3質量部である。
((F)硬化促進剤)
硬化促進剤[以下、硬化促進剤(F)と称する]を含有させることにより、本発明の熱硬化性樹脂組成物の硬化反応を促進させることができる。
硬化促進剤(F)としては、例えば、イミダゾール類及びその誘導体;ホスフィン類及びホスホニウム塩、第三級ホスフィンとキノン類との付加物等の有機リン系化合物;第二級アミン、第三級アミン、及び第四級アンモニウム塩などが挙げられる。硬化促進剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
硬化促進剤としては、例えば、銅箔との接着性及び難燃性の観点から、イミダゾール類及びその誘導体が好ましい。
硬化促進剤としては市販品を用いてもよい。市販品としては、例えば、イソシアネートマスクイミダゾール(第一工業製薬株式会社製、商品名:G−8009L)、テトラフェニルホスホニウムテトラ−p−トリルボレート(北興化学工業株式会社製、商品名:TPP−MK)、トリフェニルホスフィントリフェニルボラン(北興化学工業株式会社製、商品名:TPP−S)等が挙げられる。
本発明の熱硬化性樹脂組成物が硬化促進剤(F)を含有してなるものである場合、その含有量は、硬化促進効果及び保存安定性の観点から、固形分換算の(A)〜(D)成分の質量の総和100質量部に対して、好ましくは0.01〜3質量部、より好ましくは0.05〜1.5質量部、さらに好ましくは0.1〜0.8質量部である。
((G)難燃剤)
難燃剤[以下、難燃剤(G)と称する]を含有させることにより、本発明の熱硬化性樹脂組成物の難燃性が向上する。
難燃剤(G)としては、例えば、熱分解温度が300℃未満の水酸化アルミニウム及び水酸化マグネシウム等の金属水和物;臭素、塩素等を含有する含ハロゲン系難燃剤;リン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤;三酸化アンチモン、モリブデン酸亜鉛等の無機系難燃助剤などが挙げられる。これらの中でも、環境保護の観点から、含ハロゲン系難燃剤以外の難燃剤が好ましく、銅箔との接着性、弾性率、熱膨張係数等の低下が少なく、且つ高難燃性を付与する観点からは、リン系難燃剤がより好ましい。難燃剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
リン系難燃剤としては、無機系のリン系難燃剤と、有機系のリン系難燃剤がある。
無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物、リン含有フェノール樹脂等が挙げられる。これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩が好ましい。ここで、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましく、アルミニウム塩であることが好ましい。また、有機系のリン系難燃剤の中では、芳香族リン酸エステルがより好ましい。
芳香族リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、1,3−フェニレンビス(ジ−2,6−キシレニルホスフェート)、ビスフェノールA−ビス(ジフェニルホスフェート)、1,3−フェニレンビス(ジフェニルホスフェート)等が挙げられる。
1置換ホスホン酸ジエステルとしては、例えば、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1−ブテニル)等が挙げられる。
2置換ホスフィン酸エステルとしては、例えば、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル等が挙げられる。
2置換ホスフィン酸の金属塩としては、例えば、ジアルキルホスフィン酸の金属塩、ジアリルホスフィン酸の金属塩、ジビニルホスフィン酸の金属塩、ジアリールホスフィン酸の金属塩等が挙げられる。これら金属塩は、前述の通り、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましい。
有機系含窒素リン化合物としては、例えば、ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム等が挙げられる。
環状有機リン化合物としては、例えば、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5−ジヒドロキシフェニル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド等が挙げられる。
これらの中でも、誘電特性及びガラス転移温度の観点から、芳香族リン酸エステル、2置換ホスフィン酸の金属塩及び環状有機リン化合物から選択される少なくとも1種が好ましく、芳香族リン酸エステル及び2置換ホスフィン酸の金属塩から選択される少なくとも1種がより好ましい。
また、前記芳香族リン酸エステルは、誘電特性及びガラス転移温度の観点から、下記一般式(G−1)若しくは(G−2)で表される芳香族リン酸エステルであることが好ましく、前記2置換ホスフィン酸の金属塩は、下記一般式(G−3)で表される2置換ホスフィン酸の金属塩であることが好ましい。
(式中、RG1〜RG5は各々独立に、炭素数1〜5のアルキル基又はハロゲン原子である。e及びfは各々独立に0〜5の整数であり、g、h及びiは各々独立に0〜4の整数である。
G6及びRG7は各々独立に、炭素数1〜5のアルキル基又は炭素数6〜14のアリール基である。Mは、リチウム原子、ナトリウム原子、カリウム原子、カルシウム原子、マグネシウム原子、アルミニウム原子、チタン原子又は亜鉛原子である。jは、1〜4の整数である。)
G1〜RG5が示す炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1〜3のアルキル基である。RG1〜RG5が示すハロゲン原子としては、フッ素原子等が挙げられる。
e及びfは、0〜2の整数が好ましく、2がより好ましい。g、h及びiは、0〜2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
G6及びRG7が示す炭素数1〜5のアルキル基としては、RG1〜RG5の場合と同じものが挙げられる。
G6及びRG7が示す炭素数6〜14のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基、アントリル基等が挙げられる。該芳香族炭化水素基としては、炭素数6〜10のアリール基が好ましい。
jは金属イオンの価数を表しており、つまり、Mの種類に対応して1〜4の範囲内で変化する。
Mとしては、アルミニウム原子が好ましい。なお、Mがアルミニウム原子である場合、jは3である。
難燃剤(G)としては、市販品を用いてもよい。市販品としては、例えば、「PX−200」(1,3−フェニレンビス(ジ−2,6−キシレニルホスフェート)、リン含有量=9質量%、大八化学工業株式会社製)、「OP−935」(ジアルキルホスフィン酸アルミニウム塩、リン含有量=23.5質量%、クラリアント社製)等が挙げられる。
本発明の熱硬化性樹脂組成物が難燃剤(G)を含有してなるものである場合、その含有量は、難燃性の観点から、固形分換算の(A)〜(D)成分の質量の総和100質量部に対して、好ましくは0.01〜15質量部、より好ましくは0.1〜10質量部、さらに好ましくは1〜8質量部である。
((H)無機充填材)
無機充填材[以下、無機充填材(H)と称する]により、本発明の熱硬化性樹脂組成物の熱膨張係数を低減し、弾性率、耐熱性及び難燃性を向上させることができる。
無機充填材(H)としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、ホウ酸アルミニウム、炭化ケイ素、石英粉末、ガラス短繊維、ガラス微粉末、中空ガラス等が挙げられる。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。無機充填材(H)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、銅箔との接着性及び難燃性の観点からは、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましく、シリカがさらに好ましい。シリカとしては、破砕シリカ、フュームドシリカ、球状シリカが挙げられる。シリカは、熱膨張係数、及び熱硬化性樹脂組成物へ充填した際の流動性の観点から、球状シリカが好ましい。
シリカの平均粒子径に特に制限はないが、0.01〜30μmが好ましく、0.1〜10μmがより好ましく、0.3〜7μmがさらに好ましく、0.5〜6μmが特に好ましい。シリカの平均粒子径を0.01μm以上にすることで、高充填した際にも流動性を良好に保てる傾向にあり、また、30μm以下にすることで、粗大粒子の混入確率を減らして粗大粒子に起因する不良の発生を抑えることができる傾向にある。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
また、シリカの比表面積は、好ましくは4cm/g以上、より好ましくは4〜9cm/g、さらに好ましくは5〜7cm/gである。
無機充填材(H)としてカップリング剤で表面処理されたものを用いてもよい。つまり、直接、シリカ等の無機充填材(H)に乾式又は湿式で表面処理した後、配合時にそのまま又はスラリー化して用いる方法を採用することも好ましい。一方、(A)成分及び(B)成分を含む樹脂組成物中に表面未処理のシリカ等の無機充填材(H)を配合した後、表面処理剤を樹脂組成物中に添加する、いわゆるインテグラルブレンド処理方式を採用してもよい。
前記カップリング剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、アルキニルシラン系カップリング剤、ハロアルキルシラン系カップリング剤、シロキサン系カップリング剤、ヒドロシラン系カップリング剤、シラザン系カップリング剤、アルコキシシラン系カップリング剤、クロロシラン系カップリング剤、(メタ)アクリルシラン系カップリング剤、アミノシラン系カップリング剤、イソシアヌレートシラン系カップリング剤、ウレイドシラン系カップリング剤、メルカプトシラン系カップリング剤、スルフィドシラン系カップリング剤、イソシアネートシラン系カップリング剤等が挙げられる。これらの中でも、アミノシラン系カップリング剤が好ましい。
熱膨張係数の観点及び他の成分との密着性の観点からは、無機充填材(H)は、アミノシラン系カップリング剤で処理されたシリカであることが好ましく、アミノシラン系カップリング剤で処理された球状シリカであることがより好ましい。アミノシラン系カップリング剤で処理されたシリカを用いることにより、シリカの凝集等の欠陥を抑制できるだけでなく、樹脂成分の硬化性を向上しつつ、シリカと樹脂成分との反応性及び接着性を向上でき、誘電特性、低熱膨張係数及び耐熱性等の向上を図りつつ、プリント配線板製造工程で使用される各種酸性水溶液及び塩基性水溶液に対する耐薬液汚染性が向上する傾向にある。
アミノシラン系カップリング剤としては、具体的には、下記一般式(H−1)で表されるケイ素含有基と、アミノ基とを有するシランカップリング剤が好ましい。

(式中、RH1は、炭素数1〜3のアルキル基又は炭素数2〜4のアシル基である。zは、0〜2の整数である。)
H1が示す炭素数1〜3のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基が挙げられる。これらの中でも、メチル基が好ましい。
H1が示す炭素数2〜4のアシル基としては、アセチル基、プロピオニル基、アクリル基が挙げられる。これらの中でも、アセチル基が好ましい。
zは好ましくは0又は1であり、より好ましくは0である。
アミノシラン系カップリング剤は、アミノ基を1つ有していてもよいし、2つ有していてもよいし、3つ以上有していてもよいが、通常は、アミノ基を1つ又は2つ有する。
アミノ基を1つ有するアミノシラン系カップリング剤としては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−トリメトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミンとその部分加水分解物、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミンとその部分加水分解物、2−プロピニル[3−(トリメトキシシリル)プロピル]カルバメート等が挙げられるが、特にこれらに制限されるものではない。
アミノ基を2つ有するアミノシラン系カップリング剤としては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、1−[3−(トリメトキシシリル)プロピル]ウレア、1−[3−(トリエトキシシリル)プロピル]ウレア等が挙げられるが、特にこれらに制限されるものではない。
アミノシラン系カップリング剤としては、樹脂組成物中へのシリカ等の無機充填材(H)の分散性、並びに無機充填材(H)と樹脂成分との反応性及び接着性の観点から、下記式(H1)で表されるN−フェニル−3−アミノプロピルトリメトキシシランが特に好ましい。
本発明の熱硬化性樹脂組成物が無機充填材(H)を含有する場合、その含有量は、難燃性の観点から、固形分換算の(A)〜(D)成分の質量の総和100質量部に対して、好ましくは20〜110質量部、より好ましくは20〜80質量部、さらに好ましくは30〜80質量部、特に好ましくは30〜70質量部、最も好ましくは40〜70質量部である。
(有機溶剤)
本発明の熱硬化性樹脂組成物には、希釈することによって取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶剤を含有させてもよい。本明細書では、有機溶剤を含有させた熱硬化性樹脂組成物を、樹脂ワニスと称することがある。
該有機溶剤としては、特に制限されないが、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤;ジメチルスルホキシド等の硫黄原子含有溶剤;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、γ−ブチロラクトン等のエステル系溶剤などが挙げられる。
これらの中でも、溶解性の観点から、アルコール系溶剤、ケトン系溶剤、芳香族系溶剤、窒素原子含有溶剤が好ましく、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテル、γ−ブチロラクトン、トルエン、ジメチルホルムアミド、N,N−ジメチルアセトアミドがより好ましく、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、トルエン、N,N−ジメチルアセトアミドがさらに好ましく、メチルイソブチルケトン、トルエン、N,N−ジメチルアセトアミドが特に好ましい。
有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。有機溶剤を併用する場合には、特に、ケトン系溶剤と芳香族系溶剤の併用が好ましく、メチルイソブチルケトンとトルエンの併用がより好ましい。
本発明の熱硬化性樹脂組成物における有機溶剤の含有量は、熱硬化性樹脂組成物の取り扱いが容易になる程度に適宜調整すればよく、また、樹脂ワニスの塗工性が良好となる範囲であれば特に制限はないが、熱硬化性樹脂組成物の固形分濃度(有機溶剤以外の成分の濃度)が好ましくは30〜90質量%、より好ましくは40〜80質量%、さらに好ましくは50〜80質量%となるようにする。
(熱硬化性樹脂組成物の物性及び特性)
本発明の熱硬化性樹脂組成物は、銅箔との接着性及び誘電特性に優れ、高ガラス転移温度、低熱膨張係数を有し、且つ成形性に優れる。また、該熱硬化性樹脂組成物は、有機溶剤に対する溶解性にも優れている。
本発明の熱硬化性樹脂組成物の銅箔との接着性については、実施例に記載の方法によって測定した銅箔のピール強度でいうと、0.50kN/m以上であり、詳細には0.60kN/m以上、より詳細には0.60〜0.80kN/mの範囲にある。
本発明の熱硬化性樹脂組成物の誘電特性は、実施例に記載の方法によって測定した比誘電率でいうと、4.0以下であり、詳細には3.95以下であり、より詳細には3.80〜3.95の範囲にある。また、実施例に記載の方法によって測定した誘電正接は、0.0070以下であり、詳細には0.0063以下であり、より詳細には0.0045〜0.0063の範囲にある。
本発明の熱硬化性樹脂組成物のガラス転移温度は、実施例に記載の方法によって測定すると、170℃以上であり、詳細には175℃以上であり、より詳細には175〜186℃の範囲にある。
本発明の熱硬化性樹脂組成物の熱膨張係数は、実施例に記載の方法によって測定すると、48ppm/℃以下であり、詳細には42〜47.5ppm/℃の範囲にある。好ましくは48ppm/℃以下であり、より好ましくは40〜48ppm/℃である。
[プリプレグ]
本発明は、前記熱硬化性樹脂組成物を含有してなるプリプレグをも提供する。
本発明のプリプレグは、前記熱硬化性樹脂組成物をシート状補強基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。
プリプレグのシート状補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。シート状補強基材の材質としては、紙、コットンリンターのような天然繊維;ガラス繊維及びアスベスト等の無機物繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、ポリテトラフルオロエチレン及びアクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混沙したもの等が挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
これらのシート状補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途や性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
熱硬化性樹脂組成物をシート状補強基材に含浸又は塗工させる方法としては、次のホットメルト法又はソルベント法が好ましい。
ホットメルト法は、熱硬化性樹脂組成物に有機溶剤を含有させず、(1)該組成物との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする方法、又は(2)ダイコーターによりシート状補強基材に直接塗工する方法である。
一方、ソルベント法は、熱硬化性樹脂組成物に有機溶剤を含有させて樹脂ワニスを調製し、該樹脂ワニスにシート状補強基材を浸漬して、樹脂ワニスをシート状補強基材に含浸させ、その後、乾燥させる方法である。
シート状補強基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性及び加工性の観点から好ましい。熱硬化性樹脂組成物を基材に含浸又は塗工した後、通常、好ましくは100〜200℃の温度で1〜30分加熱乾燥して半硬化(Bステージ化)させることにより、本発明のプリプレグを得ることができる。
得られるプリプレグは、1枚を用いるか、又は必要に応じて好ましくは2〜20枚を重ね合わせて用いる。
[銅張積層板]
本発明の銅張積層板は、前記プリプレグと銅箔とを積層してなるものである。例えば、前記プリプレグを1枚用いるか又は必要に応じて2〜20枚重ね、その片面又は両面に銅箔を配置した構成で積層成形することにより製造することができる。
銅張積層板の成形条件としては、電気絶縁材料用積層板及び多層板の公知の成形手法を適用することができ、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間で成形することができる。
また、本発明のプリプレグと内層用プリント配線板とを組合せ、積層成形して、多層板を製造することもできる。
銅箔の厚みに特に制限はなく、プリント配線板の用途等により適宜選択できる。銅箔の厚みは、好ましくは0.5〜150μm、より好ましくは1〜100μm、さらに好ましくは5〜50μm、特に好ましくは5〜30μmである。
なお、銅箔にめっきをすることによりめっき層を形成することも好ましい。
めっき層の金属は、めっきに使用し得る金属であれば特に制限されない。めっき層の金属は、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金の中から選択されることが好ましい。
めっき方法としては特に制限はなく、公知の方法、例えば電解めっき法、無電解めっき法が利用できる。
[プリント配線板]
本発明は、前記銅張積層板を用いてなるプリント配線板をも提供する。
本発明のプリント配線板は、銅張積層板の金属箔に回路加工を施すことにより製造することができる。回路加工は、例えば、銅箔表面にレジストパターンを形成後、エッチングにより不要部分の銅箔を除去し、レジストパターンを剥離後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを剥離することにより行うことができる。このようにして得られたプリント配線板の表面にさらに上記の銅張積層板を前記したのと同様の条件で積層し、さらに、上記と同様にして回路加工して多層プリント配線板とすることができる。この場合、必ずしもスルーホールを形成する必要はなく、バイアホールを形成してもよく、両方を形成することができる。このような多層化は必要枚数行われる。
次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。本発明に係る熱硬化性樹脂組成物を用いて、プリプレグ、さらに銅張積層板を作製し、作製された銅張積層板を評価した。評価方法を以下に示す。
[評価方法]
<1.樹脂ワニス中の析出物の有無>
ナイロン製の#200篩い「N−NO.200HD」(株式会社NBCメッシュテック製)に、各例で作製した樹脂ワニスを通し、目視にて析出物の有無の確認をした。
<2.銅箔との接着性(銅箔ピール強度)>
各例で作製した銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、引張り試験機「Ez−Test」(株式会社島津製作所製)を用いて銅箔のピール強度を測定し、銅箔との接着性の指標とした。値が大きいほど、銅箔との接着性に優れることを示す。特に、0.50kN/m以上が好ましく、0.60kN/m以上がより好ましい。
<3.誘電特性(比誘電率Dk、誘電正接Df)>
各例で作製した銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた後、2mm×85mmに切断し、ネットワークアナライザ「E8364B」(Aglient Technologies社製)を用い、空洞共振器摂動法により、5GHzでの銅張積層板の比誘電率及び誘電正接を測定した。
比誘電率及び誘電正接が小さいほど好ましい。特に、比誘電率は4.0以下が好ましく、誘電正接は0.0070以下が好ましい。
<4.ガラス転移温度(Tg)>
各例で作製した銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用い、評価基板の面方向(Z方向)の25〜330℃(昇温速度:10℃/分)における熱膨張特性を観察し、膨張量の変曲点をガラス転移温度とした。
該ガラス転移温度は、170℃以上が好ましく、175℃以上がより好ましい。
<5.熱膨張係数>
各例で作製した銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用いて、評価基板の面方向(Z方向)の熱膨張係数(線膨張係数)を測定した。尚、試料が有する熱歪みの影響を除去するため、昇温−冷却サイクルを2回繰り返し、2回目の温度変位チャートの、30℃〜260℃の熱膨張係数[ppm/℃]を測定した。値が小さいほど好ましい。
測定条件 1st Run:室温→210℃(昇温速度10℃/min)
2nd Run:0℃→270℃(昇温速度10℃/min)
銅張積層板は、さらなる薄型化が望まれており、これに併せて銅張積層板を構成するプリプレグの薄型化も検討されている。薄型化されたプリプレグは、反りやすくなるため、熱処理時におけるプリプレグの反りが小さいことが望まれる。反りを小さくするためには、基材の面方向の熱膨張係数が小さいことが有効である。
該熱膨張係数は、特に、48ppm/℃以下であると好ましい。
<6.成形性>
銅厚18μm及び残銅率60%のパターンを作製した成形性確認用基板の両面に厚さ0.05mmのプリプレグを1枚ずつ重ね、さらに両面に18μmの銅箔「YGP−18」(日本電解株式会社製)を1枚ずつ重ね、温度200℃、圧力25kgf/cm(=2.45MPa)にて90分間加熱加圧成形して4層銅張積層板を作製した。この4層銅張積層板の外層銅を除去した後、樹脂の埋め込み性、ボイド、かすれ等を目視で確認した。樹脂の埋め込み性が良好で、ボイド及びかすれが無い場合に、成形性が良好であるとして評価した。ボイド又はかすれが有る場合には、その旨を示した。
以下、実施例及び比較例で使用した各成分について説明する。
(A)成分:
・「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400、サートマー社製)
(B)成分:下記製造例1に従って製造したジヒドロベンゾオキサジン環を有する化合物を用いた。
[製造例1]
フェノール1,000g(10.6mol)をメタノール920gへ加え、攪拌しながら溶解した。ここに、ホルムアルデヒド652kgを加えた。次いで、攪拌しながらアニリン930g(9.99mol)を1時間かけて滴下し、1時間後に78〜80℃になるようにした。還流下に7時間反応させた後、60mmHg(80hPa)で減圧濃縮を開始した。この減圧度を保ったまま濃縮を継続し、110℃になった時点で減圧度を90mmHg(120hPa)にした。留出液がなくなったことを確認した後、生成物をバットに取り出した。以上により、ジヒドロベンゾオキサジン環を有する化合物を得た。
(B)成分の比較用フェノール樹脂
・「KA−1165」(クレゾールノボラック樹脂、DIC株式会社製)
・「HP−350N」(フェノール樹脂、日立化成株式会社製)
(C)成分:下記製造例2に従って製造したマレイミド化合物を用いた。
[製造例2]
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、下記のビス(4−マレイミドフェニル)エーテル[(c1)成分]1,000g(2.90mol)、p−アミノフェノール(イハラケミカル工業株式会社製)[(c2)成分]80g(0.73mol)及びN,N−ジメチルアセトアミド850gを入れ(〔マレイミド基当量〕/〔−NH基当量〕=7.9)し、100℃で2時間反応させ、マレイミド化合物の溶液を得、マレイミド化合物(C)として用いた。
(D)成分:水添スチレン系熱可塑性エラストマー
・「タフテック(登録商標)H1053」(SEBS、スチレン含有量=29質量%、旭化成ケミカルズ株式会社製)
・「タフテック(登録商標)H1051」(SEBS、スチレン含有量=42質量%、旭化成ケミカルズ株式会社製)
・「タフテック(登録商標)H1043」(SEBS、スチレン含有量=67質量%、旭化成ケミカルズ株式会社製)
(E)成分:ラジカル反応開始剤
・「パーブチル(登録商標)P」(α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、日油株式会社製)
(F)成分:硬化促進剤
・「G−8009L」(イソシアネートマスクイミダゾール(ヘキサメチレンジイソシアネート樹脂と2−エチル−4−メチルイミダゾールの付加反応物)、第一工業製薬株式会社製)
(G)成分:難燃剤
・難燃剤1:「PX−200」(1,3−フェニレンビス(ジ−2,6−キシレニルホスフェート)、リン含有量=9質量%、大八化学工業株式会社製)
・難燃剤2:「OP−935」(ジアルキルホスフィン酸アルミニウム塩、リン含有量=23.5質量%、クラリアント社製)
(H)成分:無機充填材
・無機充填材1:「Megasil 525 ARI」(アミノシラン系カップリング剤により処理された球状シリカ、平均粒子径=1.9μm、比表面積=5.8m/g、シベルコ・ジャパン株式会社製)
・無機充填材2:「F05−30」(非処理の破砕シリカ、平均粒子径=4.2μm、比表面積=5.8m/g、福島窯業株式会社製)
[実施例1〜6、比較例1〜4]
上記に示した各成分を下記表1の通りに配合(単位:質量部。但し、溶液の場合は固形分換算量を示す。)し、さらに溶液の不揮発分が56質量%になるようにトルエン及びメチルエチルケトンを追加し、各実施例及び各比較例の熱硬化性樹脂組成物(樹脂ワニス)を調製した。該熱硬化性樹脂組成物を用いて、前記方法に従って析出物の有無を確認した。
得られた各熱硬化性樹脂組成物を厚さ0.1mmのEガラスクロス「#3313」(型番、日東紡積株式会社製)に含浸させ、140℃で5分間、加熱乾燥してプリプレグ(樹脂分:54±2質量%)を得た。
このプリプレグ8枚を重ねたものの両面に18μmの銅箔「3EC−VLP−18」(三井金属株式会社製)を重ね、温度200℃、圧力2.5MPaにて80分間加熱加圧成形し、厚さ0.8mm(プリプレグ8枚分)の両面銅張積層板を作製した。
こうして作製した銅張積層板又は樹脂板を用いて、前記方法に従って、銅箔との接着性、耐熱性、誘電特性、ガラス転移温度、熱膨張係数及び成形性の測定及び評価を実施した。結果を表1に示す。
表1から、実施例1〜6では銅箔との高い接着性を維持しつつ優れた誘電特性を示した。さらに、高ガラス転移温度を有し、熱膨張係数も低い。また、ボイド及びかすれ等の異常は確認されず、成形性も良好であることがわかる。有機溶剤に対する溶解性にも優れていた。
一方、(B)成分の代わりにフェノール樹脂を使用した比較例1〜4では、銅箔との接着性が低下し、誘電特性が悪化し、さらに、ガラス転移温度は低下し、熱膨張係数は高まり、成形性も低下した。
本発明の熱硬化性樹脂組成物及び該熱硬化性樹脂組成物を用いて形成されるプリプレグは、銅箔との高接着性、優れた誘電特性、高ガラス転移温度、低熱膨張係数、及び良好な成形性を有するため、電子機器用の銅張積層板及びプリント配線板として有用である。

Claims (13)

  1. (A)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
    (B)ジヒドロベンゾオキサジン環を有する化合物、及び
    (C)マレイミド化合物、
    を含有してなる熱硬化性樹脂組成物であって、前記(B)成分が、下記一般式(B)で表される化合物を含む、熱硬化性樹脂組成物

    (式中、RB1は、炭素数1〜6のアルキル基、炭素数4〜8のシクロアルキル基、若しくは炭素数6〜14のアリール基であるか、又は、炭素数1〜3のアルキル基及び炭素数1〜3のアルコキシル基からなる群から選択される少なくとも1つの有機基で置換された炭素数6〜14のアリール基である。)
  2. 前記(B)成分が、前記一般式(B)で表される化合物を80質量%以上含む、請求項1に記載の熱硬化性樹脂組成物
  3. 前記(A)成分が、下記一般式(A−i)で表される芳香族ビニル化合物に由来する構造単位と下記式(A−ii)で表される無水マレイン酸に由来する構造単位とを有する共重合樹脂である、請求項1又は2に記載の熱硬化性樹脂組成物。

    (式中、RA1は、水素原子又は炭素数1〜5のアルキル基であり、RA2は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0〜3の整数である。但し、xが2又は3である場合、複数のRA2は同一であってもよいし、異なっていてもよい。)
  4. 前記(A)成分において、芳香族ビニル化合物に由来する構造単位の、無水マレイン酸に由来する構造単位に対する含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が2〜9である、請求項1〜3のいずれか1項に記載の熱硬化性樹脂組成物。
  5. 前記(C)成分が、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物である、請求項1〜4のいずれか1項に記載の熱硬化性樹脂組成物。
  6. 前記(C)成分が、下記一般式(c1−1)又は(c1−2)で表されるマレイミド化合物(c1)が、酸性置換基を有するモノアミン化合物(c2)で変性されたマレイミド化合物である、請求項1〜5のいずれか1項に記載の熱硬化性樹脂組成物。

    (式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。)
  7. 前記酸性置換基を有するモノアミン化合物(c2)が下記一般式(c2−1)で表される、請求項6に記載の熱硬化性樹脂組成物。

    (式中、RC4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。)
  8. 前記(C)成分が、下記一般式(C−1)又は下記一般式(C−2)で表される化合物を含む、請求項1〜7のいずれか1項に記載の熱硬化性樹脂組成物。

    (式中、RC1〜RC3は、各々独立に、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。XC1は、炭素数1〜5のアルキレン基、炭素数2〜5のアルキリデン基、−O−、−C(=O)−、−S−、−S−S−又はスルホニル基を示す。p、q及びrは、各々独立に、0〜4の整数である。
    C4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RC5は、炭素数1〜5のアルキル基又はハロゲン原子を示す。tは1〜5の整数、uは0〜4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2〜5の整数の場合、複数のRC4は同一であってもよいし、異なっていてもよい。また、uが2〜4の整数の場合、複数のRC5は同一であってもよいし、異なっていてもよい。)
  9. さらに、(D)水添スチレン系熱可塑性エラストマーを含有する、請求項1〜8のいずれか1項に記載の熱硬化性樹脂組成物。
  10. さらに、(E)ラジカル反応開始剤、(F)硬化促進剤、(G)難燃剤及び(H)無機充填材からなる群から選択される少なくとも1種を含有してなる、請求項1〜9のいずれか1項に記載の熱硬化性樹脂組成物。
  11. 請求項1〜10のいずれか1項に記載の熱硬化性樹脂組成物を含有してなるプリプレグ。
  12. 請求項11に記載のプリプレグと銅箔とを積層してなる銅張積層板。
  13. 請求項12に記載の銅張積層板を用いてなるプリント配線板。
JP2016034369A 2016-02-25 2016-02-25 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板 Active JP6662098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034369A JP6662098B2 (ja) 2016-02-25 2016-02-25 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034369A JP6662098B2 (ja) 2016-02-25 2016-02-25 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板

Publications (2)

Publication Number Publication Date
JP2017149859A JP2017149859A (ja) 2017-08-31
JP6662098B2 true JP6662098B2 (ja) 2020-03-11

Family

ID=59741425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034369A Active JP6662098B2 (ja) 2016-02-25 2016-02-25 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板

Country Status (1)

Country Link
JP (1) JP6662098B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081127B2 (ja) * 2017-12-05 2022-06-07 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP2019099710A (ja) * 2017-12-05 2019-06-24 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP7176186B2 (ja) * 2017-12-05 2022-11-22 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP7365574B2 (ja) * 2019-07-29 2023-10-20 三菱瓦斯化学株式会社 マレイミド化合物及びその製造方法、アミド酸化合物及びその製造方法、樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
JPWO2021149698A1 (ja) * 2020-01-22 2021-07-29
WO2024111669A1 (ja) * 2022-11-25 2024-05-30 株式会社レゾナック プリプレグ、積層板、プリント配線板及び半導体パッケージ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434240B2 (ja) * 2009-05-08 2014-03-05 日立化成株式会社 層間絶縁層用接着フィルム及び多層プリント配線板
CN103421273B (zh) * 2012-05-22 2016-02-10 中山台光电子材料有限公司 无卤素树脂组成物
JP6019883B2 (ja) * 2012-07-25 2016-11-02 日立化成株式会社 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及び多層プリント配線板
CN103265791B (zh) * 2013-05-29 2015-04-08 苏州生益科技有限公司 一种用于集成电路的热固性树脂组合物及使用其制作的半固化片及层压板
JP2015166431A (ja) * 2014-03-04 2015-09-24 日立化成株式会社 熱硬化性樹脂組成物、プリプレグ及び積層板

Also Published As

Publication number Publication date
JP2017149859A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6662098B2 (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板
JP6079930B2 (ja) N−置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
JP6589623B2 (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板及びプリント配線板
JP6822268B2 (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板、プリント配線板及び半導体パッケージ
US10093774B2 (en) Modified polyphenylene ether resin, method of making the same and resin composition
JP6216179B2 (ja) 硬化性樹脂組成物、及び硬化物
JP6896993B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6701630B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6801652B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6307236B2 (ja) 硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板材料
JP2023134512A (ja) プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法
JP7106819B2 (ja) 樹脂ワニス、樹脂組成物、プリプレグ、積層板、多層プリント配線板及び樹脂ワニスの保存方法
JP6454416B2 (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板
JP7108379B2 (ja) ポリ(ビニルベンジル)エーテル化合物、これを含む硬化性樹脂組成物及び硬化物
JP2019123769A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板及び高速通信対応モジュール
JP6676884B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2017066280A (ja) 熱硬化性樹脂組成物とその製造方法、並びに前記熱硬化性樹脂組成物を有するプリプレグ、金属張積層板、及び多層プリント配線板
JP6866575B2 (ja) 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、銅張積層板及びプリント配線板
KR101828762B1 (ko) 열 경화성 수지 조성물 및 그의 제조 방법, 프리프레그, 적층판 및 프린트 배선판
JP2021080459A (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6885001B2 (ja) プリプレグ、積層板及びプリント配線板
JP2004315705A (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP7363135B2 (ja) 熱硬化性樹脂組成物、プリプレグ、銅張積層板、プリント配線板及び半導体パッケージ
JP6221203B2 (ja) 樹脂組成物、これを用いたプリプレグ及び積層板
JP2018095889A (ja) 樹脂ワニス、プリプレグ、積層板及びプリント配線板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R151 Written notification of patent or utility model registration

Ref document number: 6662098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350