WO2018095052A1 - Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de fabrication et pile rechargeable au lithium-ion - Google Patents

Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de fabrication et pile rechargeable au lithium-ion Download PDF

Info

Publication number
WO2018095052A1
WO2018095052A1 PCT/CN2017/092976 CN2017092976W WO2018095052A1 WO 2018095052 A1 WO2018095052 A1 WO 2018095052A1 CN 2017092976 W CN2017092976 W CN 2017092976W WO 2018095052 A1 WO2018095052 A1 WO 2018095052A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cobalt
doped
solution
lithium cobaltate
Prior art date
Application number
PCT/CN2017/092976
Other languages
English (en)
Chinese (zh)
Inventor
雷丹
李阳兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018095052A1 publication Critical patent/WO2018095052A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • lithium-ion batteries have been widely used in various electronic devices (such as mobile phones and tablet computers). As people's performance requirements for electronic devices continue to increase, the energy density of lithium-ion batteries has also been raised.
  • the volumetric energy density of the battery discharge capacity ⁇ discharge voltage platform ⁇ compaction density. Increasing the charge cut-off voltage of the positive electrode material can increase the discharge capacity and the discharge voltage platform, thereby increasing the energy density thereof.
  • lithium ions in LiCoO 2 are decomposed to form Li 1-x CoO 2 ( 0 ⁇ x ⁇ 0.5), and when the charging voltage is increased to 4.4 V or more, LiCoO 2 is present.
  • lithium cobalt battery cathode material lithium cobaltate (150 mAh ⁇ g -1 ) is much lower than its theoretical capacity (274 mAh ⁇ g -1 ).
  • the cathode material comprises a doped lithium cobaltate matrix and a surface coating thereof, wherein the doped lithium cobaltate matrix has the formula LiCo 1-x M x O 2 and M is selected from the group consisting of Mg, Al, Ni, Ca, Zr, Cr, Ti, Cu, Zn, Y, Ce, MO, Nb, V; the coating may be Co 3 (PO 4 ) 2 , AlPO 4 , Mn 3 (PO 4 ) 2 , phosphates such as FePO 4 , Ni 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 .
  • the positive electrode material has higher specific capacity and good cycle stability under high voltage conditions.
  • the positive electrode material doped with the element described above can stabilize the role of the lithium cobaltate layer structure in a high voltage use environment, but has a limited effect on the stable structure because the positive electrode material cannot be excellent. Buffering or releasing stress caused by changes in lattice constant during charge and discharge;
  • the first aspect of the embodiments of the present invention provides a positive electrode of a lithium ion battery having good cycle performance, high capacitance, and good buffering or releasing stress caused by changes in lattice constant during charge and discharge. material.
  • the present invention discloses a lithium cobaltate cathode material, the lithium cobaltate cathode material comprising a doped lithium cobaltate substrate and a surface coating layer; wherein the surface coating layer is coated on the a surface of the doped lithium cobaltate substrate;
  • the substance constituting the doped lithium cobaltate matrix has a general formula of Li 1+z Co 1-xy Ma x Mb y O 2 ; wherein 0 ⁇ x ⁇ 0.01, 0 ⁇ y ⁇ 0.01, -0.05 ⁇ z ⁇ 0.08; wherein, said Ma is a doped constant valence element; said Ma is at least one of Al, Ga, Hf, Mg, Sn, Zn, Zr; wherein said Mb is a doped variable price An element; the Mb is at least one of Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr.
  • the substance constituting the surface coating layer has a general formula of Li ⁇ 1 Mc ⁇ 2 O ⁇ 3 ; wherein, Mc is at least one of Cr, Co, Ni, Cu, Mn, and P.
  • Mc is at least one of Cr, Co, Ni, Cu, Mn, and P.
  • x can It is 0.004 or 0.003 or 0.005 or 0.0001.
  • y can be 0.005 or 0.008 or 0.001.
  • z can be 0.01 or 0.02;
  • the cobalt source and the compound containing the constant valence element Ma are disposed as an aqueous solution, and the aqueous solution is mixed with the complex solution and the precipitant solution to cause the aqueous solution to react with the complex solution and the precipitant solution to obtain a solution.
  • a potassium or hydroxide of a cobalt-doped cobalt wherein the Ma is at least one of Al, Ga, Hf, Mg, Sn, Zn, Zr;
  • the lithium source, the compound containing the element Mc, and the obtained high-voltage lithium cobaltate co-doped with Ma and Mb are mixed and sintered at a temperature of 850 to 1050 ° C for 8 to 16 hours to obtain the lithium cobaltate positive electrode.
  • the last step of the second aspect is to be treated by solid phase coating.
  • a third aspect of the invention discloses a method for preparing another lithium cobaltate cathode material, the method comprising:
  • the cobalt source and the compound containing the constant valence element Ma are disposed as an aqueous solution, and the aqueous solution is mixed with the complex solution and the precipitant solution to cause the aqueous solution to react with the complex solution and the precipitant solution to obtain a solution.
  • a potassium or hydroxide of a cobalt-doped cobalt wherein the Ma is at least one of Al, Ga, Hf, Mg, Sn, Zn, Zr;
  • the obtained cobalt-doped cobalt carbonate or hydroxide is sintered at a temperature of 900 to 1000 ° C to obtain a Ma-doped precursor Co 3 O 4 , wherein the sintering time is 4 to 10 h. ;
  • the lithium source, the compound containing the element Mc, and the obtained high-voltage lithium cobaltate co-doped with Ma and Mb are mixed and sintered at a temperature of 850 to 1050 ° C for 8 to 16 hours to obtain the lithium cobaltate positive electrode.
  • the last step of the third aspect can be replaced by a high-voltage lithium cobaltate matrix co-doped with a lithium source and a compound containing element Mc and a obtained Ma and Mb by a liquid phase coating method.
  • the mixture is sintered at a temperature of 850 to 1050 ° C for 8 to 16 hours to obtain a lithium cobaltate cathode material doped with surface coating and co-modified (also referred to as doping and surface coating).
  • a lithium cobaltate cathode material doped with surface coating and co-modified (also referred to as doping and surface coating).
  • Co-modified structurally stable high voltage lithium cobaltate cathode material Co-modified structurally stable high voltage lithium cobaltate cathode material).
  • the aqueous solution is mixed with the complex solution and the precipitant solution, so that the aqueous solution and the complex solution and the precipitant solution are Reaction crystallization to obtain the carbonate or hydroxide of the Ma-doped cobalt includes:
  • the aqueous solution containing Co ions and the constant-valent element Ma ions is mixed with the precipitating agent solution by means of cocurrent flow control; wherein the flow rate of the parallel flow control does not exceed 200 L/h, the stirring speed does not exceed 200 rpm, and the crystallization temperature does not exceed 100. °C.
  • the cobalt source is at least one of cobalt acetate, cobalt oxalate, cobalt nitrate, cobalt sulfate, and cobalt chloride;
  • the compound is at least one of nitrate, oxalate, acetate, fluoride, chloride, and sulfate containing Ma; the concentration of Co ion in the aqueous solution containing Co ion and the constant-valent element Ma ion is 0.5 to 2.0.
  • a fourth aspect of the invention discloses a lithium ion battery comprising a positive electrode sheet, a negative electrode sheet, an electrolyte solution and a separator disposed between the positive and negative electrode sheets, wherein the positive electrode sheet includes a positive electrode current collector and a distribution The positive electrode active material layer on the positive electrode current collector, wherein the positive electrode active material layer uses the lithium cobaltate positive electrode material according to any one of the first aspect or the first aspect of the first aspect as the positive electrode active material.
  • the active capacity of the lithium cobaltate cathode material is greater than 190 mAh/g.
  • a fifth aspect of the invention discloses an electronic device comprising the lithium ion battery of the fourth aspect.
  • the constant valence element replaces the cobalt site by substitution doping, and replaces the cobalt ion to ensure that the skeleton-cobalt site of the layered structure is not distorted by oxidation, and can stabilize the layered structure of the lithium cobaltate positive electrode material under high voltage use. Stability; in addition, the variable element is doped through the gap and filled into the gap between lithium, cobalt and oxygen ions. In the charging process, not only the oxidation in the oxidizing atmosphere takes precedence over Co 3+ , but also the Co 3+ oxidation can be delayed.
  • the present invention combines the principle and process of phase transition of a lithium cobaltate layer structure in a high voltage scene, fully exerts the advantages of each doping element, and significantly improves the overall performance of the cathode material.
  • FIG. 1 is a schematic view showing a lattice structure of a layered lithium cobalt oxide provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of phase transition of lithium cobaltate during charging
  • 3 is a schematic diagram of phase transition of lithium cobaltate during charging
  • 5a is a SEM (scanning electron microscope) diagram of a lithium cobaltate cathode material according to an embodiment of the present invention.
  • Figure 5b is a cross-sectional view of a lithium cobaltate positive electrode material particle
  • FIG. 6 is a particle size distribution of a lithium cobaltate cathode material according to an embodiment of the present invention.
  • FIG. 7 is a first charge and discharge curve of a lithium cobaltate cathode material according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a lithium ion battery including a lithium cobaltate cathode material according to an embodiment of the present invention.
  • this FIG. 1 is a lattice structure of layered lithium cobaltate.
  • the oxygen ions form a close-packed layer; the cobalt layer and the lithium layer are alternately distributed on both sides of the oxygen layer, and the lithium octahedron and the cobalt octahedron pile are shared by the boundary. Stacked, in ABCABC cubic close packing structure. Due to the pursuit of high energy density, the charging cut-off voltage of lithium cobaltate operation has been continuously improved, from 4.2V, 4.35V, to today's 4.4V.
  • the lithium cobalt oxide discharge capacity can be increased by about 10%, and the discharge voltage platform is increased by about 0.02V.
  • the cut-off voltage is increased (especially above 4.3V)
  • the structure of the layered lithium cobaltate is unstable (the change in lithium concentration causes a structural change, causing stress to cause microcracks) and surface instability (and The electrolyte reacts to cause dissolution of the cobalt), causing collapse of the lattice structure and irreversible phase transition.
  • the lithium ions on the surface of the lithium cobaltate particles are first removed to form an empty octahedron, so that adjacent lithium ions can be sequentially diffused and extracted; in the different layers inside the particles, the main conduction path of the lithium ions is the grain boundary; In the interlayer, lithium ions are mainly conducted between the octahedrons between the layers.
  • FIG. 2 depicts the specific phase change process, which is described below:
  • This transformation is caused by the realignment of lithium ions in the lithium layer, which corresponds to the voltage platform of 4.08V and 4.15V.
  • the CoO 2 structure produced by the phase change can be seen in Figure 3(c). After multiple charge and discharge, the LixCoO 2 layer begins to crack (Fig. 3(d)), and many broken crystal particles appear on the side close to the electrolyte (Fig. 3(e)), which is due to the cobalt layer in contact with the electrolyte. Decomposition, caused by the collapse of the crystal lattice.
  • the key to the development of high-voltage lithium cobaltate cathode material is to solve the frequent phase transition process of the layered structure of lithium cobalt oxide and the damage of the stress generated during the phase transition process in the high voltage and deep delithiation state; And in the deep delithiation state, the strong oxidizing property of the tetravalent cobalt ion in the lithium cobaltate to the carbonate solvent and the dissolution of the cobalt ion in the electrolyte are solved. Therefore, the development of high-voltage lithium cobaltate cathode materials has become one of the development trends of current batteries.
  • the present invention proposes element doping of two forms of coexistence of lithium cobaltate: one is to substitute a constant-valent element by substitution, instead of cobalt ion, to ensure the skeleton-cobalt position of the layered structure- Oxidation and distortion; the other is to dope the valence element through the gap, filling the gap between lithium, cobalt and oxygen ions.
  • the valence element ions oxidize preferentially over Co 3+ , thereby delaying Co 3+ oxidation occurs, on the other hand, when Co 3+ changes in ionic radius due to oxidation, the valence ion also undergoes or has an ionic radius change, which improves lattice fit to alleviate or release the skeletal structure of the layered structure. The stress generated.
  • the lithium cobaltate particles it is proposed to coat the surface of the lithium cobaltate particles with a high-voltage positive electrode active material, and the material itself can maintain a stable structure in a high voltage scene, and as a coating, the lithium cobaltate substrate is separated from the electrolyte. It can form a stable cathode material/electrolyte interface, delay the oxidation and dissolution of Co, and stabilize the lithium cobaltate structure; these materials have the function of energy storage, without sacrificing the gram capacity of the cathode material, nor sacrificing Its energy density.
  • the present invention modifies lithium cobaltate from the aspects of doping and coating, thereby making the modified lithium cobaltate material. It can be cycled at 4.45V and above to meet battery requirements.
  • the ionic radius of Co 3+ is 0.0685 nm
  • the ionic radius of Li + is 0.090 nm
  • the ionic radius of O 2 ⁇ is 0.126 nm.
  • the doped constant valence element Ma can be selected from the following elements: Al (Al 3+ , 0.0675 nm), Ga (Ga 3+ , 0.076 nm) , Hf (Hf 4+ , 0.085 nm), Mg (Mg 2+ , 0.086 nm), Sn (Sn 4+ , 0.083 nm), Zn (Zn 2+ , 0.088 nm), Zr (Zr 4+ , 0.086 nm) Wait.
  • the ionic radius and valence state of these doping elements are close to Co 3+ , which can replace Co in the positive electrode material to improve the stability of the layered structure of the positive electrode material.
  • the doped variable element Mb can be selected from the following elements: Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr, and the like. These elements, in the valence state change, produce a change in ionic radius that matches the change in the radius of the cobalt ion, thereby releasing or mitigating the stress caused by the change in lattice size.
  • a positive electrode material Li 1+z Co 1-xy Ma x Mb y O 2 of a lithium cobaltate bulk phase is obtained (generally, 0 ⁇ x ⁇ 0.01, 0 ⁇ y ⁇ 0.01, - 0.05 ⁇ z ⁇ 0.08; preferably, 0.0005 ⁇ x ⁇ 0.005, 0.0005 ⁇ y ⁇ 0.005, -0.01 ⁇ z ⁇ 0.03)
  • Ma is a doped constant element Al, Ga, Hf, Mg
  • the doping is the substitution doping of the above element instead of the cobalt site
  • Mb is the doped variable element Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr
  • One or more of such doping is doped with a gap into which the above element enters the lithium cobaltate lattice gap.
  • the coating material used is a high voltage positive active material Li ⁇ 1 Mc ⁇ 2 O ⁇ 3 , wherein Mc is one or more of Cr, Co, Ni, Cu, Mn, P. , ⁇ 1, ⁇ 2, and ⁇ 3 may be any positive number, but need to satisfy the distribution of valence, and Mc may have various options.
  • the following table lists several possibilities for bulk-doped high-voltage lithium cobaltate matrix and cladding materials (but this patent is not limited to the possibilities shown in the table below), where the bulk phase is doped with a lithium cobaltate matrix and The coating material can be arbitrarily used by different processing processes to obtain a structurally stable high-voltage lithium cobaltate cathode material with bulk phase doping and surface coating co-modification.
  • Step (1) using a controlled crystallization method, a molar ratio, an appropriate amount of a cobalt source and a compound containing a constant valence element Ma, and an aqueous solution containing a Co ion and a constant valence element Ma ion, mixed with a complexing agent solution and a precipitating agent solution
  • the reaction is crystallized while stirring, and the pH of the reaction system is controlled to 6 to 12, and after crystallization, centrifugal filtration is performed to obtain a carbonate or hydroxide of a cobalt doped with a constant valence element Ma;
  • Step (2) molar ratio, taking an appropriate amount of the compound containing the variable element Mb and the cobalt carbonate or hydroxide doped with the constant-valent element Ma obtained after the step (1), and uniformly mixed, and placed in a horse boiling furnace or Temperature sintering is performed in a sintering furnace, and then the product is pulverized to obtain an oxide precursor of Co co-doped with Ma and Mb;
  • Step (4) using a solid phase coating synthesis method, a molar ratio, a lithium source and a compound containing the element Mc, and a lithium cobaltate positive electrode material substrate Li 1+z Co 1-xy Ma x obtained after the step (3) Mb y O 2 is stirred and mixed uniformly, and is sintered in a horse boiling furnace or a sintering furnace, and then the product is pulverized to obtain a structurally stable high-voltage lithium cobaltate cathode material ⁇ Li ⁇ 1 which is co-modified by bulk phase coating and surface coating.
  • Mc ⁇ 2 O ⁇ 3 ⁇ Li 1+z Co 1-xy Ma x Mb y O 2 (generally, 0 ⁇ 0.08, 0.92 ⁇ 1; preferably, 0 ⁇ 0.05, 0.95 ⁇ 1) .
  • High-voltage lithium cobaltate cathode material ⁇ Li ⁇ 1 Mc ⁇ 2 O ⁇ 3 ⁇ Li 1+z Co 1-xy Ma x Mb y O 2 (generally, 0 ⁇ 0.08, 0.92 ⁇ 1; preferably, 0 ⁇ ⁇ ⁇ 0.05, 0.95 ⁇ ⁇ ⁇ 1).
  • the cobalt source is one or more of cobalt acetate, cobalt oxalate, cobalt nitrate, cobalt sulfate, and cobalt chloride;
  • the compound containing the constant valence element Ma is one selected from the group consisting of nitrates, oxalates, acetates, fluorides, chlorides, sulfates, and the like containing Ma or a plurality of; more preferably one or more selected from the group consisting of sulfates, nitrates, and acetates of Ma, such as: aluminum oxalate, aluminum nitrate, magnesium oxalate, magnesium nitrate, zirconium oxalate, zirconium nitrate, zinc oxalate , zinc nitrate, gallium nitrate, gallium fluoride, tin sulfide, etc.;
  • the Co ion concentration in the aqueous solution containing the Co ion and the constant valence element Ma ion is 0.5-2.0 mol/L; more optionally, the Co ion and the constant-valent element Ma ion are included.
  • the concentration of Co ions in the aqueous solution is 0.8 to 1.5 mol/L.
  • the precipitant solution is a strong alkali solution, a carbonate solution, an oxalic acid or an oxalate solution.
  • the complexing agent solution is an ammonia water or an aminohydroxy acid salt solution.
  • the flow is controlled by the cocurrent flow control method; and the flow rate of the parallel flow control does not exceed 200 L/ h, the stirring speed does not exceed 200 rpm, and the crystallization temperature does not exceed 100 °C.
  • the crystallization is repeated for 4 to 8 times in a continuous reaction.
  • variable element Mb is one or more of Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr; and/or
  • the compound containing the variable-valent element Mb is one selected from the group consisting of oxides, hydroxides, carbonates, nitrates, oxalates, acetates, and the like containing Mb. Or more than one; more optionally selected from one or more of nitrates and acetates containing Mb, such as: nickel nitrate, nickel oxide, nickel hydroxide, nickel oxyhydroxide, nickel carbonate, nickel oxalate, manganese oxide , manganese carbonate, manganese oxalate, manganese nitrate, molybdenum oxide, molybdenum hydroxide, molybdenum carbonate, molybdenum oxalate, molybdenum nitrate, cerium oxide, cerium hydroxide, cerium oxalate, cerium nitrate, copper oxide, copper hydroxide, copper nitrate, acetic acid Copper, copper chloride, iron oxide, iron hydroxalate, iron hydrox
  • the lithium source is selected from the group consisting of lithium-containing compounds and compositions thereof, and may be selected from the group consisting of lithium hydroxide, lithium nitrate, lithium carbonate, lithium oxalate, lithium acetate, lithium oxide, and citric acid.
  • lithium hydroxide lithium hydroxide
  • lithium nitrate lithium carbonate
  • lithium oxalate lithium acetate
  • lithium oxide lithium oxide
  • citric acid citric acid
  • the temperature sintering temperature is 950 to 1100 ° C, and the sintering time is 8 to 16 h; more optionally, the temperature sintering temperature is 1020 to 1080 ° C, and the sintering time is 10 to 14 h.
  • the element Mc is one or more of Cr, Co, Ni, Cu, Mn, and P;
  • the compound containing the element Mc is one or more of an oxide, a hydroxide, a carbonate, a nitrate, an oxalate, an acetate, etc. containing Mc. ;
  • the constant-valent element and the cobalt source are uniformly distributed in the liquid system, so that the doping element is uniformly distributed, the reaction is complete, and the formed crystal structure is stable.
  • the precursor cobalt salt of the loose structure shrinks into a tightly fused and stabilized precursor Co 3 O 4 , which is a more stable valence element ion than the cobalt ion.
  • variable-valent element when the bulk-doped lithium cobaltate matrix is formed, it is more advantageous for the variable-valent element to enter the gap of the space formed by the lattice lithium ion, the cobalt ion and the oxygen ion, thereby better exerting the function of buffering or releasing stress.
  • Step (1) using a controlled crystallization method, a molar ratio, an appropriate amount of a cobalt source and a compound containing a constant valence element Ma, and an aqueous solution containing a Co ion and a constant valence element Ma ion, mixed with a complexing agent solution and a precipitating agent solution
  • the reaction is crystallized while stirring, and the pH of the reaction system is controlled to 6 to 12, and after crystallization, centrifugal filtration is performed to obtain a carbonate or hydroxide of a cobalt doped with a constant valence element Ma;
  • Step (2) temperature-decomposing the cobalt carbonate or hydroxide of the constant-valent element Ma doped after the step (1), and then pulverizing the decomposition product to obtain a precursor of the constant-doped element Ma doping Body Co 3 O 4 ; molar ratio, take an appropriate amount of the compound containing the variable element Mb, the constant-content element Ma-doped precursor Co 3 O 4 and the lithium source are stirred and mixed uniformly, and placed in a horse boiling furnace or a sintering furnace for temperature sintering.
  • the product is pulverized to obtain a matrix of lithium cobaltate cathode material Li 1+z Co 1-xy Ma x Mb y O 2 co-doped with Ma and Mb (generally, 0 ⁇ x ⁇ 0.01, 0 ⁇ y ⁇ 0.01 , -0.05 ⁇ z ⁇ 0.08; preferably, 0.0005 ⁇ x ⁇ 0.005, 0.0005 ⁇ y ⁇ 0.005, -0.01 ⁇ z ⁇ 0.03);
  • Step (3) using a solid phase coating synthesis method, a molar ratio, a lithium source and a compound containing the element Mc, and a lithium cobaltate cathode material substrate Li 1+z Co 1-xy Ma x obtained after the step (2) Mb y O 2 is stirred and mixed uniformly, and is sintered in a horse boiling furnace or a sintering furnace, and then the product is pulverized to obtain a structurally stable high-voltage lithium cobaltate cathode material ⁇ Li ⁇ 1 which is co-modified by bulk phase coating and surface coating.
  • Mc ⁇ 2 O ⁇ 3 ⁇ Li 1+z Co 1-xy Ma x Mb y O 2 (generally, 0 ⁇ 0.08, 0.92 ⁇ 1; preferably, 0 ⁇ 0.05, 0.95 ⁇ 1) .
  • the constant valence element Ma is one or more of Al, Ga, Hf, Mg, Sn, Zn, and Zr;
  • the Co ion concentration in the aqueous solution containing the Co ion and the constant valence element Ma ion is 0.5-2.0 mol/L; more optionally, the Co ion and the constant-valent element Ma ion are included.
  • the concentration of Co ions in the aqueous solution is 0.8 to 1.5 mol/L.
  • the precipitant solution is a strong alkali solution, a carbonate solution, an oxalic acid or an oxalate solution.
  • the flow is controlled by the cocurrent flow control method; and the flow rate of the parallel flow control does not exceed 200 L/ h, the stirring speed does not exceed 200 rpm, and the crystallization temperature does not exceed 100 °C.
  • the crystallization is repeated for 4 to 8 times in a continuous reaction.
  • the compound containing the variable-valent element Mb is one selected from the group consisting of oxides, hydroxides, carbonates, nitrates, oxalates, acetates, and the like containing Mb. Or more than one; more optionally selected from one or more of nitrates and acetates containing Mb, such as: nickel nitrate, nickel oxide, nickel hydroxide, nickel oxyhydroxide, nickel carbonate, nickel oxalate, manganese oxide , manganese carbonate, manganese oxalate, manganese nitrate, molybdenum oxide, molybdenum hydroxide, molybdenum carbonate, molybdenum oxalate, molybdenum nitrate, cerium oxide, cerium hydroxide, cerium oxalate, cerium nitrate, copper oxide, copper hydroxide, copper nitrate, acetic acid Copper, copper chloride, iron oxide, iron hydroxalate, iron hydrox
  • the temperature sintering temperature is 800-1000 ° C, the sintering time is 4-10 h; more optionally, the temperature sintering temperature is 900-950 ° C, and the sintering time is 6-8 h.
  • the element Mc is one or more of Cr, Co, Ni, Cu, Mn, and P;
  • the compound containing the element Mc is one or more of an oxide, a hydroxide, a carbonate, a nitrate, an oxalate, an acetate, etc. containing Mc. ;
  • the temperature sintering temperature is 850 to 1050 ° C, and the sintering time is 8 to 16 hours; more optionally, the temperature sintering temperature is 900 to 1000 ° C, and the sintering time is 10 to 14 hours.
  • LiCo 0.996 Al 0.003 Ni 0.001 O 2 0.5:0.25:0.25:99.5
  • LiCo 0.996 Al 0.003 Ni 0.001 O 2 was stirred and mixed uniformly, placed in a horse boiling furnace at 950 ° C, and the sintering time was 12 h, and then the sintered product was pulverized to obtain a structurally stable high volume of body phase doping and surface coating co-modification.
  • a structurally stable high-voltage lithium cobaltate cathode material formed by doping Al, Cr and coated with LiNiPO 4 with lithium cobaltate, and having a molecular formula of 0.005LiNiPO 4 ⁇ 0.995Li 1.03 Co 0.995 Al 0.004 Cr 0.001 O 2
  • the preparation method comprises the following steps:
  • a structurally stable high-voltage lithium cobaltate cathode material which is doped with Al, Mn by lithium cobaltate and coated with Li 1.06 (Ni 0.425 Co 0.15 Mn 0.425 ) 0.94 O 2 , and has a molecular formula of 0.005Li 1.06 (Ni 0.425 Co 0.15 Mn 0.425 ) 0.94 O2 ⁇ 0.995Li 1.02 Co 0.994 Al 0.004 Mn 0.002 O 2 , the preparation method thereof comprises the following steps:
  • the Al-doped precursor cobalt salt obtained in the step (1) is subjected to pyrolysis at 900 ° C in a horse-boiling furnace, and the decomposition time is 6 h, and then the decomposition product is pulverized to obtain Al having uniform particle distribution.
  • a doped Co 3 O 4 precursor
  • the present invention combines the practical application of academia and industry to carry out intensive research, and proposes a structure-stabilized high-voltage lithium cobaltate cathode material doped and coated and modified by process improvement and preparation thereof.
  • the variable valence elements doped in the lithium cobaltate cathode material are Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr, and the immutable valence elements are Al, Ga, Hf, Mg, Sn, Zn, Zr.
  • the non-variable valence element replaces the cobalt site by substitution doping, instead of cobalt ion, to ensure that the skeleton-cobalt site of the layered structure is not distorted by oxidation, and the layered structure of the lithium cobaltate positive electrode material can be stabilized under high voltage use.
  • the variable valence element is doped through the gap and filled into the gap between lithium, cobalt and oxygen ions. In the charging process, not only in the oxidizing atmosphere, oxidation occurs in preference to Co 3+ , but Co 3+ can be delayed.
  • the invention combines the principle and process of phase transformation of a lithium cobaltate layer structure in a high voltage scene, fully exerts the advantages of each doping element, and significantly improves the comprehensive performance of the cathode material.
  • the surface of the doped lithium cobaltate substrate coated with the high voltage positive electrode active material is provided by the invention, and the coating layer itself has the advantages of stable structure and excellent cycle performance under high voltage, and after forming the cladding layer, on the one hand
  • the lithium cobaltate matrix is separated from the electrolyte to reduce the reaction area, increase the interface stability, and ensure that the lithium cobaltate matrix does not dissolve in the electrolyte under high voltage. Stabilizing the structure of lithium cobaltate, so that the activation energy is increased to suppress the phase transition; on the other hand, as a coating layer itself, it has the function of energy storage, and does not sacrifice the gram capacity of the positive electrode material while functioning as a stable structure.
  • the structurally stabilized lithium cobaltate cathode material prepared by the method of doping and surface coating co-modification by the method can significantly improve the cycle performance of the lithium cobaltate cathode material in a high voltage environment of 4.6V or higher, and is made of the cathode material.
  • Lithium-ion batteries have a wider range of applicability and increase the life of lithium-ion batteries.
  • the present invention is prepared by a liquid phase-solid phase method, combining the advantages of the two methods, uniformly dispersing doping elements in the material during the reaction, and the surface of the doped lithium cobaltate cathode material is subjected to high voltage positive electrode activity.
  • the material is evenly coated, which greatly increases the stability of the interface and stabilizes the lithium cobaltate layer structure.
  • the product prepared by the process has excellent crystal quality, high tap density, good processing performance, chemical composition close to the theoretical value, and excellent layered structure.
  • the present invention comprehensively considers the controlled crystallization method for preparing a substituted doped precursor and solid phase sintering to synthesize a high voltage lithium cobaltate product; the existing equipment can be used for large scale industrial production.
  • a structurally stable high voltage lithium cobaltate cathode material doped with a surface coating and a surface coating comprising a doped lithium cobaltate substrate and a surface coating Layer, its general chemical composition such as ⁇ Li ⁇ 1 Mc ⁇ 2 O ⁇ 3 ⁇ Li 1+z Co 1-xy Ma x Mb y O 2 (generally, 0 ⁇ 0.08, 0.92 ⁇ 1; 0 ⁇ x ⁇ 0.01 , 0 ⁇ y ⁇ 0.01, -0.05 ⁇ z ⁇ 0.08; ⁇ 1, ⁇ 2, and ⁇ 3 may be any positive number, but need to satisfy the distribution of valence).
  • the doped lithium cobaltate matrix has the formula Li 1+z Co 1-xy Ma x Mb y O 2 (generally, 0 ⁇ x ⁇ 0.01, 0 ⁇ y ⁇ 0.01, -0.05 ⁇ z ⁇ 0.08; Preferably, 0.0005 ⁇ x ⁇ 0.005, 0.0005 ⁇ y ⁇ 0.005, -0.01 ⁇ z ⁇ 0.03), Ma is one or more of the doped constant-valent elements Al, Ga, Hf, Mg, Sn, Zn, Zr Mb is one or more of the doped variable elements Ni, Mn, V, Mo, Nb, Cu, Fe, In, W, Cr.
  • the chemical composition of the surface coating layer is Li ⁇ 1 Mc ⁇ 2 O ⁇ 3 , wherein Mc is generally one or more of Cr, Co, Ni, Cu, Mn, P, and ⁇ 1, ⁇ 2 and ⁇ 3 may be any positive number. , but need to meet the distribution of valence.
  • the present invention also provides a lithium ion battery, as shown in FIG. 9, comprising a positive electrode sheet, a negative electrode sheet and a separator disposed between the positive and negative electrode sheets, and an electrolyte, wherein the positive electrode sheet includes a positive electrode current collector and a distribution
  • the positive electrode active material on the positive electrode current collector is made of the lithium cobaltate positive electrode material described above as a positive electrode active material.
  • the active capacity of such a lithium cobaltate material is greater than 190 mAh/g.
  • the present invention also provides an electronic device using the above lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un matériau d'électrode positive à base d'oxyde de cobalt et de lithium, ledit matériau étant une structure composite ayant un substrat d'oxyde de cobalt et de lithium dopé et un revêtement de surface ; la formule générale dudit substrat d'oxyde de cobalt et de lithium dopé est Li 1+zCo 1-x-yMa xMb yO 2, où 0 ≤ x ≤ 0,01, 0 ≤ y ≤ 0,01 et -0,05 ≤ z ≤ 0,08 ; Ma étant un élément à valence invariable dopé, de l'Al et/ou du Ga et/ou du Hf et/ou du Mg et/ou du Sn et/ou du Zn et/ou du Zr ; Mb étant un élément à valence variable dopé, du Ni et/ou du Mn et/ou du V et/ou du Mo et/ou du Nb et/ou du Cu et/ou du Fe et/ou du In et/ou du W et/ou du Cr ; la couche de revêtement de surface est un matériau d'électrode positive à haute tension (>4,5V). Au moyen d'un dopage de substitution de l'élément à valence variable, la distorsion résultant de la délithiation de la structure en couches est réduite au maximum ; l'élément à valence variable est dopé au moyen des espaces, et, pendant le processus de charge, l'oxydation du Co 3+ est reconnue et retardée. La couche de revêtement de surface du matériau d'électrode positive à haute tension présente une structure stable à des tensions supérieures ou égales à 4,5 V, et permet d'isoler une solution électrolytique et un substrat d'oxyde de cobalt et de lithium, réduisant ainsi les réactions secondaires entre les deux et inhibant la dissolution des métaux de transition, tout en fournissant de l'énergie électrochimique.
PCT/CN2017/092976 2016-11-28 2017-07-14 Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de fabrication et pile rechargeable au lithium-ion WO2018095052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611064960.XA CN108123109B (zh) 2016-11-28 2016-11-28 钴酸锂正极材料及其制备方法以及锂离子二次电池
CN201611064960.X 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018095052A1 true WO2018095052A1 (fr) 2018-05-31

Family

ID=62194693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092976 WO2018095052A1 (fr) 2016-11-28 2017-07-14 Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de fabrication et pile rechargeable au lithium-ion

Country Status (2)

Country Link
CN (1) CN108123109B (fr)
WO (1) WO2018095052A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537521A4 (fr) * 2016-11-28 2020-01-15 Huawei Technologies Co., Ltd. Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de préparation et batterie secondaire au lithium-ion
EP3599222A1 (fr) * 2018-07-26 2020-01-29 Ningde Amperex Technology Limited Oxyde métallique et son procédé de préparation
EP3578516A3 (fr) * 2018-05-18 2020-02-26 Ningde Amperex Technology Limited Matériau de cathode et batterie lithium-ion
CN111342038A (zh) * 2020-03-08 2020-06-26 南开大学 一种高电压钴酸锂复合正极材料及其制备方法与锂电池应用
CN111613782A (zh) * 2020-04-21 2020-09-01 浙江锋锂新能源科技有限公司 一种壳核结构三元正极材料及其制备方法和全固态电池
CN112490021A (zh) * 2020-11-23 2021-03-12 哈尔滨理工大学 一种钴掺杂氮化钨柔性复合电极材料及其制备方法
CN113809321A (zh) * 2021-09-15 2021-12-17 深圳石墨烯创新中心有限公司 一种铝、锆掺杂镍酸锂正极材料的前驱体的制备方法及其应用
CN114751465A (zh) * 2022-05-24 2022-07-15 荆门市格林美新材料有限公司 一种分阶段元素替代实现制备高Al均匀四氧化三钴方法
CN114790012A (zh) * 2022-04-22 2022-07-26 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用
CN115432742A (zh) * 2022-09-09 2022-12-06 浙江格派钴业新材料有限公司 一种复合前驱体材料的制备方法
CN116093298A (zh) * 2023-03-29 2023-05-09 江门市科恒实业股份有限公司 钴酸锂正极材料及其制备方法、锂离子电池和应用
CN116914128A (zh) * 2023-09-14 2023-10-20 山东华太新能源电池有限公司 一种海洋环境用高电压高稳定性钴酸锂正极材料及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585812A (zh) * 2018-11-13 2019-04-05 广东邦普循环科技有限公司 一种锂钴复合氧化物正极材料及其制备方法和应用
CN109635473B (zh) * 2018-12-19 2022-08-02 清华大学 一种启发式高通量材料仿真计算优化方法
CN109659542B (zh) * 2018-12-22 2021-08-27 中国科学院青岛生物能源与过程研究所 一种核壳结构的高电压钴酸锂正极材料及其制备方法
CN109860546B (zh) * 2019-01-10 2022-02-15 宁德新能源科技有限公司 正极材料和包含所述正极材料的电化学装置
CN112397766A (zh) * 2019-08-19 2021-02-23 珠海冠宇电池股份有限公司 一种高电压锂离子电池及其制备方法
CN110438449A (zh) * 2019-08-26 2019-11-12 贵州大学 一种钴酸锂复合薄膜电极及其制备方法
CN112447965B (zh) * 2019-09-02 2022-01-11 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN110518217B (zh) * 2019-09-03 2020-10-30 中伟新材料股份有限公司 一种梯度掺杂球形核壳钴酸锂材料、其前驱体以及两者的制备方法
CN111129450B (zh) * 2019-12-02 2023-09-29 华为技术有限公司 锂离子电池的正极材料及制备方法
CN111261858A (zh) * 2020-01-21 2020-06-09 西安电子科技大学 一种高电压锂离子电池正极材料及其制备方法
CN112713263B (zh) * 2020-12-14 2021-12-28 宁波维科新能源科技有限公司 一种偏磷酸盐包覆钴酸锂材料的制备方法及包含其的锂离子电池
CN112909231A (zh) * 2021-01-19 2021-06-04 华东师范大学 一种掺杂包覆复合改性钴酸锂lcmo@bt及其制备方法和应用
CN114141999A (zh) * 2021-10-26 2022-03-04 华中科技大学 耐高温高电压复合钴酸锂正极材料及其制备方法和应用
CN114243014A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用
CN114864900B (zh) * 2022-05-20 2024-04-09 广东邦普循环科技有限公司 一种高容量的铜掺杂钴酸锂正极材料及其制备方法和应用
CN115286046B (zh) * 2022-06-27 2023-07-07 广东邦普循环科技有限公司 掺杂铜的钴酸锂前驱体、正极材料及其制备方法和应用
CN115000391A (zh) * 2022-07-19 2022-09-02 东莞理工学院 一种正极材料及其制备方法和应用
CN115403080B (zh) * 2022-10-31 2023-03-24 宜宾锂宝新材料有限公司 一种单晶型镍钴铝锂氧化物正极材料及其制备方法
CN115893512A (zh) * 2022-11-23 2023-04-04 荆门市格林美新材料有限公司 一种掺杂型碳酸钴及其制备方法和应用
CN117977025A (zh) * 2024-04-01 2024-05-03 华中科技大学 氮掺杂的导电碳化钼草酸锂复合补锂剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339998A (zh) * 2010-07-21 2012-02-01 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其制备方法
CN103066261A (zh) * 2012-12-28 2013-04-24 龙能科技(苏州)有限公司 高容量高镍多元金属氧化物正极材料的合成方法
US8435676B2 (en) * 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
CN103247796A (zh) * 2013-05-14 2013-08-14 东莞新能源科技有限公司 锂离子电池用多晶相正极材料及其制备方法
CN103380529A (zh) * 2010-10-20 2013-10-30 科学与工业研究会 阴极材料和由其制成的锂离子电池
CN104577067A (zh) * 2015-01-11 2015-04-29 方美卿 一种氟化碳黑包覆的钴酸锂正极材料的制备方法
CN105958038A (zh) * 2016-07-11 2016-09-21 湖南美特新材料科技有限公司 一种可快充的长寿命高电压钴酸锂正极材料及制备方法
WO2016175426A1 (fr) * 2015-04-27 2016-11-03 동국대학교 산학협력단 Procédé de traitement de surface pour le dioxyde de cobalt et de lithium et batterie rechargeable au lithium comprenant ce dernier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319652A (ja) * 2000-05-11 2001-11-16 Sony Corp 正極活物質及び非水電解質電池、並びにそれらの製造方法
CN102544456B (zh) * 2010-12-14 2014-10-22 苏州大学 一种二次电池的正极材料及其制备方法以及正极和二次电池
CN104218218B (zh) * 2014-09-19 2016-04-06 山东齐星新材料科技有限公司 一种核壳结构的磷酸铁锰锂锂离子电池正极材料及其制备方法
CN105742622A (zh) * 2016-03-27 2016-07-06 华南理工大学 一种橄榄石型结构LiMPO4表面修饰层状富锂锰基正极材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435676B2 (en) * 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
CN102339998A (zh) * 2010-07-21 2012-02-01 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其制备方法
CN103380529A (zh) * 2010-10-20 2013-10-30 科学与工业研究会 阴极材料和由其制成的锂离子电池
CN103066261A (zh) * 2012-12-28 2013-04-24 龙能科技(苏州)有限公司 高容量高镍多元金属氧化物正极材料的合成方法
CN103247796A (zh) * 2013-05-14 2013-08-14 东莞新能源科技有限公司 锂离子电池用多晶相正极材料及其制备方法
CN104577067A (zh) * 2015-01-11 2015-04-29 方美卿 一种氟化碳黑包覆的钴酸锂正极材料的制备方法
WO2016175426A1 (fr) * 2015-04-27 2016-11-03 동국대학교 산학협력단 Procédé de traitement de surface pour le dioxyde de cobalt et de lithium et batterie rechargeable au lithium comprenant ce dernier
CN105958038A (zh) * 2016-07-11 2016-09-21 湖南美特新材料科技有限公司 一种可快充的长寿命高电压钴酸锂正极材料及制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790511B2 (en) 2016-11-28 2020-09-29 Huawei Technologies Co., Ltd. Lithium cobalt oxide positive electrode material, method for preparing same, and lithium-ion secondary battery
EP3537521A4 (fr) * 2016-11-28 2020-01-15 Huawei Technologies Co., Ltd. Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de préparation et batterie secondaire au lithium-ion
EP3578516A3 (fr) * 2018-05-18 2020-02-26 Ningde Amperex Technology Limited Matériau de cathode et batterie lithium-ion
EP3599222A1 (fr) * 2018-07-26 2020-01-29 Ningde Amperex Technology Limited Oxyde métallique et son procédé de préparation
US11081686B2 (en) 2018-07-26 2021-08-03 Ningde Amperex Technology Limited Metal oxide and method for preparing the same
CN111342038A (zh) * 2020-03-08 2020-06-26 南开大学 一种高电压钴酸锂复合正极材料及其制备方法与锂电池应用
CN111342038B (zh) * 2020-03-08 2023-03-17 南开大学 一种高电压钴酸锂复合正极材料及其制备方法与锂电池应用
CN111613782B (zh) * 2020-04-21 2022-09-20 浙江锋锂新能源科技有限公司 一种壳核结构三元正极材料及其制备方法和全固态电池
CN111613782A (zh) * 2020-04-21 2020-09-01 浙江锋锂新能源科技有限公司 一种壳核结构三元正极材料及其制备方法和全固态电池
CN112490021A (zh) * 2020-11-23 2021-03-12 哈尔滨理工大学 一种钴掺杂氮化钨柔性复合电极材料及其制备方法
CN113809321A (zh) * 2021-09-15 2021-12-17 深圳石墨烯创新中心有限公司 一种铝、锆掺杂镍酸锂正极材料的前驱体的制备方法及其应用
CN114790012A (zh) * 2022-04-22 2022-07-26 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用
CN114790012B (zh) * 2022-04-22 2024-04-16 格林美(无锡)能源材料有限公司 一种钴酸锂正极材料及其制备方法和应用
CN114751465A (zh) * 2022-05-24 2022-07-15 荆门市格林美新材料有限公司 一种分阶段元素替代实现制备高Al均匀四氧化三钴方法
CN114751465B (zh) * 2022-05-24 2023-06-27 荆门市格林美新材料有限公司 一种分阶段元素替代实现制备高Al均匀四氧化三钴方法
CN115432742A (zh) * 2022-09-09 2022-12-06 浙江格派钴业新材料有限公司 一种复合前驱体材料的制备方法
CN116093298A (zh) * 2023-03-29 2023-05-09 江门市科恒实业股份有限公司 钴酸锂正极材料及其制备方法、锂离子电池和应用
CN116093298B (zh) * 2023-03-29 2023-06-30 江门市科恒实业股份有限公司 钴酸锂正极材料及其制备方法、锂离子电池和应用
CN116914128A (zh) * 2023-09-14 2023-10-20 山东华太新能源电池有限公司 一种海洋环境用高电压高稳定性钴酸锂正极材料及其制备方法

Also Published As

Publication number Publication date
CN108123109B (zh) 2020-09-29
CN108123109A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2018095052A1 (fr) Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de fabrication et pile rechargeable au lithium-ion
US10790511B2 (en) Lithium cobalt oxide positive electrode material, method for preparing same, and lithium-ion secondary battery
JP7503863B2 (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
WO2018095053A1 (fr) Matériau d'électrode positive à base d'oxyde de cobalt et de lithium et son procédé de préparation et batterie secondaire au lithium-ion
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6217945B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
EP3444226A1 (fr) Matériau de cathode sphérique ou quasi-sphérique pour batterie lithium-ion et batterie lithium-ion
JP6044809B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
KR20170102293A (ko) 리튬 이온 배터리용 분급 구조를 갖는 다성분 재료, 이의 제조 방법, 리튬 이온 배터리 및 리튬 이온 배터리의 양극
JP5871187B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
KR102334909B1 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
US20220271283A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
JP7272134B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2023523668A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP7172301B2 (ja) 遷移金属複合水酸化物、遷移金属複合水酸化物の製造方法、リチウム遷移金属複合酸化物活物質及びリチウムイオン二次電池
JP7464102B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP2023509595A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP2023040082A (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
TW201737543A (zh) 非水電解質二次電池用正極活性物質顆粒及其製造方法以及非水電解質二次電池
JP7167540B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP7206819B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池
CN113443655A (zh) 一种层状复合氧化物包覆正极材料及其制备方法和应用
JP2023505185A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP2022520866A (ja) 正極活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873968

Country of ref document: EP

Kind code of ref document: A1