WO2018062518A1 - 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 - Google Patents

電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 Download PDF

Info

Publication number
WO2018062518A1
WO2018062518A1 PCT/JP2017/035579 JP2017035579W WO2018062518A1 WO 2018062518 A1 WO2018062518 A1 WO 2018062518A1 JP 2017035579 W JP2017035579 W JP 2017035579W WO 2018062518 A1 WO2018062518 A1 WO 2018062518A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge transport
transport layer
photosensitive member
electrophotographic photosensitive
parts
Prior art date
Application number
PCT/JP2017/035579
Other languages
English (en)
French (fr)
Inventor
章照 藤井
由香 長尾
渉 宮下
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201780060056.8A priority Critical patent/CN109791383B/zh
Priority to JP2018542953A priority patent/JP7092033B2/ja
Publication of WO2018062518A1 publication Critical patent/WO2018062518A1/ja
Priority to US16/368,121 priority patent/US10599057B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/056Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0596Macromolecular compounds characterised by their physical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061443Amines arylamine diamine benzidine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • G03G5/061473Amines arylamine alkenylarylamine plural alkenyl groups linked directly to the same aryl group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06149Amines enamine

Definitions

  • the present invention relates to an electrophotographic photosensitive member having excellent wear resistance, electrical characteristics, and adhesiveness, and an electrophotographic photosensitive member cartridge and an image forming apparatus provided with the electrophotographic photosensitive member.
  • Electrophotographic technology is widely used as copiers, printers, and printing machines because high-quality images can be obtained immediately.
  • electrophotographic photoreceptors hereinafter simply referred to as “photoreceptors” as appropriate
  • photosensitivity using organic photoconductive materials that have the advantage of being non-polluting and easy to form and manufacture.
  • the body is widely used.
  • the photoreceptor When the guaranteed number of image forming apparatuses is large, the photoreceptor is also required to have high repeated durability. In order not to change the image quality over a long period of time, there is a need to reduce the abrasion of the photosensitive layer and prevent the accumulation of surface deposits.
  • a curable protective layer When a curable protective layer is provided, the wearability is improved, but the surface is not refaced due to surface wear, so the corona product, developer, paper dust and other deposits cannot be cleaned and remain and accumulate. Easy to do.
  • a dedicated production facility is required, such as deterioration of the coating solution (insufficient storage stability), deterioration of electrical properties due to functional groups contributing to curing, etc. The reality is that it is difficult to use other than high-end models.
  • the charge transport layer is composed of a plurality of layers, and the charge transport layer closer to the support has wear resistance.
  • electric characteristics, adhesiveness, etc. are emphasized without seeking, and wear resistance is given to the charge transport layer which is the outermost layer.
  • binder resins that constitute a charge transport layer and are excellent in wear resistance are often inferior in electrical properties and adhesiveness, and thus many ideas have been disclosed that such functional separation is effective. .
  • Patent Document 1 discloses an idea of containing inorganic particles only in the first charge transport layer which is the outermost layer.
  • Patent Document 2 discloses an example in which a high molecular weight binder resin is used only for the first charge transport layer which is the outermost layer.
  • Patent Document 3 discloses a technique for increasing the hardness and elastic deformation rate of the first charge transport layer that is the outermost layer.
  • Patent Document 4 discloses a technique in which a polyester resin having a specific structural unit is used for the first charge transport layer that is the outermost layer.
  • Patent Document 5 by using a copolymer resin in which a plurality of charge transport layers have units different from each other, the first charge transport layer that is the outermost layer has excellent scratch resistance, and the first charge transport layer A technique is disclosed in which the second charge transport layer in contact with the transport layer is a layer having excellent potential stability and gas resistance. Also, in Patent Document 6, unlike Patent Documents 1 to 5, a higher charge binder resin is used for the second charge transport layer in contact with the first charge transport layer which is the outermost layer, and wear easily. A technique for suppressing long-term image quality degradation by increasing the film thickness at both ends is disclosed.
  • the wear resistance is improved only in the first charge transport layer which is the outermost layer among the plurality of charge transport layers.
  • the charge transport layer is a single layer, which is significantly more resistant than the case where the charge transport layer is devised to improve the wear resistance. It has been found that the wearability may be inferior.
  • a binder resin that is inferior in wear resistance is used for the second charge transport layer that is in contact with the first charge transport layer that is the outermost layer, the tendency to be inferior in wear resistance is significant. It was found that the wear resistance of the transport layer was also impaired.
  • the factor is not certain, for example, even when a binder resin having a high elastic deformation rate is used for the first charge transport layer which is the outermost layer, the second charge transport layer in contact with the first charge transport layer is low. If a binder resin having an elastic deformation rate is used, the elastic deformation rate of the charge transport layer as a whole is influenced by the plastic deformation of the second charge transport layer, and is not increased.
  • An object of the present invention is to provide an electrophotographic photosensitive member having a transport layer, and an electrophotographic photosensitive member cartridge and an image forming apparatus including the electrophotographic photosensitive member.
  • the present inventors have found that in an electrophotographic photoreceptor having at least two charge transport layers, the elastic deformation rate of the binder resin contained in the first charge transport layer that is the outermost layer, By setting the elastic deformation rate of the binder resin contained in the second charge transport layer in contact with the first charge transport layer so as to satisfy a predetermined relationship, sufficient wear resistance indispensable for long life use is obtained.
  • the inventors have found that it is possible to provide an electrophotographic photoreceptor excellent in electrical characteristics and adhesiveness, and have completed the present invention described below.
  • An electrophotographic photosensitive member having a conductive support and at least a charge generation layer and a charge transport layer on the conductive support, wherein the charge transport layer is a first charge that is an outermost layer.
  • the content of the charge transport material ⁇ with respect to 100 parts by mass of the binder resin A is such that the charge transport material ⁇ with respect to 100 parts by mass of the binder resin B in the second charge transport layer.
  • An electrophotographic photosensitive member cartridge comprising: a cleaning device; and at least one device selected from the group consisting of a fixing device that fixes the transferred toner to a print medium.
  • the electrophotographic photosensitive member according to any one of [1] to [9], a charging device for charging the electrophotographic photosensitive member, and exposing the charged electrophotographic photosensitive member to form an electrostatic latent image.
  • An image forming apparatus comprising: an exposure apparatus for forming; and a developing apparatus for developing the electrostatic latent image formed on the electrophotographic photosensitive member.
  • an electrophotographic photosensitive member an electrophotographic photosensitive member cartridge, and an image forming apparatus that have sufficient wear resistance indispensable for long-life use and are excellent in electrical characteristics and adhesiveness.
  • FIG. 1 is a schematic diagram showing a main configuration of an embodiment of an image forming apparatus according to the present invention.
  • FIG. 2 is a graph showing a load curve with respect to the indentation depth in the measurement of the elastic deformation rate of the binder resin, and shows a method for calculating the elastic deformation rate.
  • the configuration of the electrophotographic photoreceptor according to the present invention will be described below.
  • the electrophotographic photosensitive member of the present invention has a conductive support, and has a laminated structure having at least a charge generation layer and a charge transport layer in this order on the conductive support.
  • An undercoat layer may be provided between the conductive support and the charge generation layer as necessary.
  • ⁇ Conductive support> There are no particular restrictions on the conductive support, but for example, metal materials such as aluminum, aluminum alloys, stainless steel, copper and nickel, and conductive powders such as metal, carbon and tin oxide can be added to make the conductive material conductive.
  • Mainly used are resin, glass, paper, or the like obtained by depositing or applying a conductive material such as applied resin material, aluminum, nickel, or ITO (indium tin oxide) on the surface thereof. These may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and arbitrary ratios.
  • the form of the conductive support may be a drum, sheet, belt or the like. Furthermore, a conductive material having an appropriate resistance value may be used on a conductive support made of a metal material in order to control conductivity and surface properties and to cover defects.
  • a metal material such as an aluminum alloy
  • it may be used after forming an anodized film.
  • an anodized film it is desirable to perform a sealing treatment by a known method.
  • the surface of the conductive support may be smooth, or may be roughened by using a special cutting method or by performing a polishing process. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the conductive support. In order to reduce the cost, it is possible to use the drawing tube as it is without performing the cutting process.
  • An undercoat layer (also called a blocking layer, a conductive layer or an intermediate layer depending on the function) is provided between the conductive support and the charge generation layer described later for the purpose of improving adhesiveness and blocking properties. ) May be provided.
  • the undercoat layer a resin or a resin in which particles such as a metal oxide are dispersed is used.
  • the undercoat layer may be a single layer or a plurality of layers.
  • metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate. One kind of these particles may be used alone, or a plurality of kinds of particles may be mixed and used. Among these metal oxide particles, titanium oxide and / or aluminum oxide particles are preferable, and titanium oxide particles are particularly preferable.
  • the surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • any of rutile, anatase, brookite, and amorphous can be used. Moreover, the thing of the several crystal state may be contained.
  • the average primary particle size is preferably 10 nm or more and 100 nm or less, particularly preferably 10 nm or more and 50 nm or less, from the viewpoint of characteristics and liquid stability.
  • This average primary particle size can be obtained from a TEM photograph or the like.
  • the undercoat layer is preferably formed by dispersing metal oxide particles in a binder resin.
  • the binder resin used for the undercoat layer is epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, polyimide resin, chloride resin.
  • the organic zirconium compound alkoxide compounds, titanyl chelate compounds, organic titanyl compounds such as titanium alkoxide compounds include known binder resins such as a silane coupling agent.
  • the use ratio of the inorganic particles used in the undercoat layer to the binder resin can be arbitrarily selected.
  • the binder resin is usually 10% by mass or more, It is preferable to use in the range of 500 mass% or less.
  • the thickness of the undercoat layer is arbitrary as long as the effects of the present invention are not significantly impaired, but the viewpoint of improving the electrical characteristics, strong exposure characteristics, image characteristics, repeat characteristics, and coating properties during production of the electrophotographic photosensitive member. Therefore, it is usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less.
  • a known antioxidant or the like may be mixed in the undercoat layer. Further, for the purpose of preventing image defects, pigment particles, resin particles and the like may be included.
  • the charge generation layer contains a charge generation material and usually contains a binder resin and other components used as necessary.
  • a charge generation layer is prepared by, for example, preparing a coating solution by dissolving or dispersing a charge generation material and a binder resin in a solvent or a dispersion medium, and forming the coating solution on a conductive support (if an undercoat layer is provided, It can be obtained by coating and drying on a pulling layer.
  • Examples of the charge generation material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred.
  • organic pigments include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. .
  • phthalocyanine pigments or azo pigments are particularly preferable.
  • fine particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.
  • a phthalocyanine pigment as a charge generating material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, Those having each crystal form of coordinated phthalocyanines such as hydroxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used.
  • titanyl phthalocyanines also known as: oxy
  • X-type X-type
  • ⁇ -type metal-free phthalocyanine A-type (also known as ⁇ -type)
  • B-type also known as ⁇ -type
  • D-type also known as Y-type
  • Titanium phthalocyanine vanadyl phthalocyanine, chloroindium phthalocyanine, hydroxyindium phthalocyanine, chlorogallium phthalocyanine such as type II, hydroxygallium phthalocyanine such as type V, ⁇ -oxo-gallium phthalocyanine dimer such as type G and type I, type II ⁇ -oxo-aluminum phthalocyanine dimers such as are preferred.
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • powder X-ray diffraction angle 2 ⁇ ⁇ 0.2 °
  • Hydroxygallium phthalocyanine having no peak at 2 °, a clear peak at 28.1 °, and a full width at half maximum W of 25.9 ° of 0.1 ° ⁇ W ⁇ 0.4 ° G-type ⁇ -oxo-gallium phthalocyanine dimer and the like are particularly preferable.
  • the phthalocyanine compound a single compound may be used, or several mixed or mixed crystals may be used.
  • the mixed state in the phthalocyanine compound or crystal state here, those obtained by mixing the respective constituent elements later may be used, or the mixed state in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, crystallization, etc. It may be the one that gave rise to.
  • acid paste treatment, grinding treatment, solvent treatment and the like are known.
  • two types of crystals are mixed, mechanically ground and made amorphous, and then a specific crystal state is obtained by solvent treatment. The method of converting into is mentioned.
  • an azo pigment when used as a charge generation material, various known azo pigments can be used as long as they have sensitivity to a light source for light input. Trisazo pigments are preferably used.
  • the organic pigments exemplified above are used as the charge generating substance, one kind may be used alone, or two or more kinds of pigments may be mixed and used. In this case, it is preferable to use a combination of two or more kinds of charge generating materials having spectral sensitivity characteristics in different spectral regions of the visible region and the near red region. Among them, a disazo pigment, a trisazo pigment and a phthalocyanine pigment are preferably used in combination. More preferred.
  • the binder resin used for the charge generation layer is not particularly limited. Polyarylate resin, polycarbonate resin, polyester resin, modified ether-based polyester resin, phenoxy resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polystyrene resin, acrylic resin, methacrylic resin, polyacrylamide resin, polyamide resin, Polyvinyl pyridine resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, casein, vinyl chloride -Vinyl chloride-vinyl acetate copolymer such as vinyl acetate copolymer, hydroxy-modified vinyl chloride-vinyl acetate copolymer, carboxyl-modified vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer Polymers, styrene-butadiene copolymers,
  • the charge generation layer is prepared by dispersing a charge generation material in a solution obtained by dissolving the above-described binder resin in an organic solvent, and preparing a coating solution on the conductive support (providing an undercoat layer). In some cases, it is formed by coating (on the undercoat layer).
  • the compounding ratio (mass ratio) of the binder resin and the charge generation material is usually 10 parts by mass or more, preferably 30 parts by mass or more, with respect to 100 parts by mass of the binder resin. Usually, it is 1000 mass parts or less, Preferably it is the range of 500 mass parts or less. If the ratio of the charge generation material is too high, the stability of the coating solution may be reduced due to aggregation of the charge generation material. On the other hand, if the ratio of the charge generating substance is too low, the sensitivity as a photoreceptor may be reduced.
  • the thickness of the charge generation layer is usually 0.1 ⁇ m or more, preferably 0.15 ⁇ m or more, and is usually 10 ⁇ m or less, preferably 0.6 ⁇ m or less.
  • a known dispersion method such as a ball mill dispersion method, an attritor dispersion method, or a sand mill dispersion method can be used. At this time, it is effective to refine the particles to a particle size in the range of 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.15 ⁇ m or less.
  • Charge transport layer> There are at least two charge transport layers of the present invention.
  • the charge transport layer as the outermost layer is numbered, the charge transport layer as the outermost layer is defined as the first charge transport layer, and the charge transport layer in contact with the first charge transport layer is defined as the second charge transport layer.
  • the charge transport layer on the charge generation layer side that is in contact with the second charge transport layer is used as the third charge transport layer.
  • the number of charge transport layers is not particularly limited, but is usually 10 layers or less, preferably 5 layers or less, more preferably 3 layers or less, and most preferably 2 layers.
  • the first charge transport layer contains a charge transport material ⁇ having a molecular weight of 600 or more, a binder resin, and other components used as necessary.
  • the second and subsequent charge transport layers contain a binder resin. From the viewpoint of charge transportability, the second and subsequent charge transport layers preferably contain a charge transport material.
  • the binder resin contained in the first charge transport layer is called binder resin A
  • the binder resin contained in the second charge transport layer is called binder resin B.
  • the elastic deformation rate of the binder resin contained in the charge transport layer is determined using a Fischer microhardness meter FISCHERSCOPE HM2000 (a microhardness meter FISCHERSCOPE H100C successor having the same performance) at a temperature of 25 ° C. and a relative humidity. Measure in a 50% environment. For the measurement, a Vickers square pyramid diamond indenter having a facing angle of 136 ° is used. The measurement is performed under the following conditions, and the profile shown in FIG. 2 is obtained by continuously reading the load on the indenter and the indentation depth under the load, and plotting them on the Y-axis (load) and X-axis (indentation depth), respectively. To get. ⁇ Measurement conditions Maximum indentation load 5mN Time required for loading 10 seconds Time required for unloading 10 seconds
  • the elastic deformation rate is a value defined by the following formula, and is a ratio of work that the film performs by elasticity at the time of unloading with respect to the total work amount required for indentation.
  • Elastic deformation rate (%) (We / Wt) ⁇ 100
  • Wt (nJ) represents the total work amount, and represents the area surrounded by ABDA in FIG.
  • We (nJ) represents the work of elastic deformation, and indicates the area surrounded by CBDC in FIG.
  • the indentation depth at the time of measurement of the present application is about 1 ⁇ m.
  • the elastic deformation rate of the binder resin was measured using a thin film similar to the following charge transport layer, not the thin film of the binder resin alone. That is, 100 parts by mass of a binder resin, 40 parts by mass of a charge transport material represented by the following formula (1) and 0.05 part of silicone oil (trade name: KF96, manufactured by Shin-Etsu Silicone) were added to tetrahydrofuran / toluene (8/2 ( The coating solution dissolved in the mass ratio)) was coated on a glass substrate so that the film thickness after drying was 20 ⁇ m and dried to prepare a measurement sample. The said sample was measured with the above-mentioned measuring machine, and the value of the obtained elastic deformation rate was made into the elastic deformation rate of binder resin.
  • silicone oil trade name: KF96, manufactured by Shin-Etsu Silicone
  • the elastic deformation rate of the binder resin A of the first charge transport layer is T1 (%)
  • the elastic deformation rate of the binder resin B of the second charge transport layer is T2 (%).
  • the relationship ⁇ 0 ⁇ (T1-T2) ⁇ 4 ⁇ is satisfied. It is preferable that the relationship of ⁇ 0 ⁇ (T1-T2) ⁇ 3 ⁇ is satisfied from the viewpoint of the balance between adhesion and wear resistance, and that ⁇ 0 ⁇ (T1-T2) ⁇ 2 ⁇ is the effect of wear resistance. More preferable from the viewpoint of maximization. Within the above range, the wear resistance of the first charge transport layer is not impaired by the second charge transport layer, and adhesion can be secured.
  • T1 is not particularly limited, but is preferably 44% or more from the viewpoint of wear resistance, more preferably 45% or more, still more preferably 46% or more, and 49% or less from the viewpoint of adhesiveness. Is preferable, and 48% or less is more preferable.
  • the value of T2 is not particularly limited, but is preferably 43% or more from the viewpoint of wear resistance, more preferably 44% or more, while 47% or less is preferable from the viewpoint of adhesion, and 46% or less is more preferable. .
  • binder resins A and B include butadiene resins, styrene resins, vinyl acetate resins, vinyl chloride resins, acrylic ester resins, methacrylic ester resins, vinyl alcohol resins, and polymers of vinyl compounds such as ethyl vinyl ether. And copolymers, polyvinyl butyral resin, polyvinyl formal resin, partially modified polyvinyl acetal, polyamide resin, polyurethane resin, cellulose ester resin, phenoxy resin, silicone resin, silicone-alkyd resin, poly-N-vinylcarbazole resin, polycarbonate resin, A polyester resin is preferably used. Of these, polycarbonate resins and polyester resins are preferred.
  • Polyarylate resins which are names for polyester resins, especially wholly aromatic polyester resins, can increase the elastic deformation rate, and are particularly preferable from the viewpoint of mechanical properties such as wear resistance, scratch resistance, and filming resistance.
  • a polyester resin is superior to a polycarbonate resin from the viewpoint of mechanical properties, but is inferior to a polycarbonate resin from the viewpoint of electrical characteristics and light fatigue characteristics. This is thought to be due to the fact that the ester bond is more polar than the carbonate bond and has a strong acceptor property.
  • these resins may be used as a mixture of two or more thereof as long as the function is not impaired.
  • the content of the binder resin within the above-mentioned range of the preferred elastic deformation rate is preferably 50% or more, more preferably 70% or more, and 90% or more. Most preferably.
  • a polyester resin is obtained by polycondensing a polyhydric alcohol component and a polyvalent carboxylic acid component such as a carboxylic acid, a carboxylic acid anhydride, or a carboxylic acid ester as a raw material monomer.
  • polyhydric alcohol component examples include polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, polyoxyethylene (2.2) -2,2-bis (4-hydroxyphenyl) propane Bisphenol A alkylene (2 to 3 carbon atoms) oxide (average addition mole number 1 to 10) adduct, ethylene glycol, propylene glycol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, hydrogenated bisphenol A, Examples thereof include sorbitol or their adducts of alkylene (2 to 3 carbon atoms) oxide (average added mole number of 1 to 10), aromatic bisphenol, and the like, and those containing one or more of these are preferable.
  • polyvalent carboxylic acid component examples include dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid and maleic acid, alkyl groups having 1 to 20 carbon atoms such as dodecenyl succinic acid and octyl succinic acid, or 2 to 2 carbon atoms. Succinic acid, trimellitic acid, pyromellitic acid substituted with 20 alkenyl groups, anhydrides of these acids and alkyl (carbon number 1 to 3) esters of these acids, and the like. What is contained is preferable.
  • dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid and maleic acid
  • alkyl groups having 1 to 20 carbon atoms such as dodecenyl succinic acid and octyl succinic acid, or 2 to 2 carbon atoms.
  • polyester resins a wholly aromatic polyester resin (polyarylate resin) having a structural unit represented by the following formula (2) is preferable.
  • Ar 1 to Ar 4 each independently represent an arylene group which may have a substituent
  • X represents a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • s represents an integer of 0 or more and 2 or less.
  • Y represents a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • the carbon number of the arylene group representing Ar 1 to Ar 4 is usually 6 or more, and usually 20 or less, preferably 10 or less, more preferably 6. If the number of carbon atoms is too large, the production cost increases and the electrical characteristics may deteriorate.
  • Ar 1 to Ar 4 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthylene group, anthrylene group, phenanthrylene group and the like.
  • the arylene group is preferably a 1,4-phenylene group from the viewpoint of electrical characteristics.
  • An arylene group may be used individually by 1 type, and may be used 2 or more types by arbitrary ratios and combinations.
  • Examples of the substituent that Ar 1 to Ar 4 may have include an alkyl group, an aryl group, a halogen atom, and an alkoxy group.
  • the alkyl group is preferably a methyl group, an ethyl group, a propyl group, or an isopropyl group, considering the mechanical properties as a binder resin for the charge transport layer and the solubility in the coating solution for forming the charge transport layer.
  • the group is preferably a phenyl group or a naphthyl group
  • the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • the alkoxy group is preferably a methoxy group, an ethoxy group, a propoxy group or a butoxy group.
  • carbon number of the alkyl group is usually 1 or more, and is usually 10 or less, preferably 8 or less, more preferably 2 or less.
  • Ar 3 and Ar 4 each independently preferably has a substituent number of 0 or more and 2 or less, more preferably has a substituent from the viewpoint of adhesiveness, and among them, a substituent from the viewpoint of wear resistance.
  • the number of is particularly preferably 1.
  • an alkyl group is preferable and a methyl group is particularly preferable.
  • Ar 1 and Ar 2 each independently preferably have 0 or more and 2 or less substituents, and more preferably have no substituents from the viewpoint of wear resistance.
  • Y is a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • alkylene group —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, and cyclohexylene are preferable, and —CH 2 —, —CH (CH 3 ) —, — C (CH 3 ) 2 —, 1,4-cyclohexylene, particularly preferably —CH 2 —, —CH (CH 3 ) —.
  • X is a single bond, an oxygen atom, a sulfur atom, or an alkylene group.
  • X is preferably an oxygen atom.
  • s is particularly preferably 1.
  • dicarboxylic acid residues when s is 1 include diphenyl ether-2,2′-dicarboxylic acid residues, diphenyl ether-2,3′-dicarboxylic acid residues, and diphenyl ether-2,4′-dicarboxylic acid. Residues, diphenyl ether-3,3′-dicarboxylic acid residues, diphenyl ether-3,4′-dicarboxylic acid residues, diphenyl ether-4,4′-dicarboxylic acid residues and the like.
  • diphenyl ether-2,2′-dicarboxylic acid residue diphenyl ether-2,4′-dicarboxylic acid residue
  • diphenyl ether-4,4′-dicarboxylic acid Residues are more preferred, and diphenyl ether-4,4′-dicarboxylic acid residues are particularly preferred.
  • the viscosity average molecular weight of the polyester resin used in the present invention is arbitrary as long as the effect of the present invention is not significantly impaired, but is preferably 20,000 or more, more preferably 30,000 or more, and the upper limit thereof is Preferably it is 80,000 or less, more preferably 70,000 or less. If the value of the viscosity average molecular weight is too small, the mechanical strength of the polyester resin may be insufficient. If it is too large, the viscosity of the coating solution for forming the charge generation layer or the charge transport layer is too high and the productivity is low. May be reduced.
  • a viscosity average molecular weight can be measured by the method as described in an Example using an Ubbelohde type capillary viscometer etc., for example.
  • Polycarbonate resin is produced by a solvent method such as interfacial method (interfacial polycondensation method) or solution method in which bisphenols and phosgene are reacted in solution, and polycondensation of bisphenol and carbonic acid diester by transesterification.
  • interfacial method interfacial polycondensation method
  • solution method in which bisphenols and phosgene are reacted in solution
  • polycondensation of bisphenol and carbonic acid diester by transesterification The thing by the melting method to make it react is known.
  • the polycarbonate resin produced by the interfacial method can be made high in molecular weight, purified by liquid-liquid washing, and applicable to various types of bisphenol. It has been.
  • phosgene is used as a raw material, so there is a concern about safety.
  • polycarbonate resin by the melting method there are restrictions on the types of bisphenol that can be polymerized, it is difficult to increase the molecular weight, and it is difficult to remove impurities by washing. On the other hand, phosgene is not used in the polymerization process. There is a merit, and use examination is also made for electrophotographic photoreceptor applications.
  • one or a mixture of two or more polycarbonate resins obtained by copolymerizing known bisphenols may be used.
  • a polycarbonate resin containing a structural unit represented by the following formula (3) is preferably used from the viewpoints of electrical characteristics, surface hardness, elastic deformation rate, and adhesiveness.
  • the polycarbonate resin used in the present invention may be a homopolymer consisting of a single unit represented by the above formula (3), but may be used by block copolymerization or random copolymerization with other bisphenol units. Examples of bisphenol units that may be copolymerized are shown below.
  • the ratio of the above formula (3) is preferably 50% by mass or more, and more preferably 60% by mass or more.
  • the preferred range of the viscosity average molecular weight of the polycarbonate resin used in the present invention is the same as that of the polyester resin.
  • the binder resin contained in the charge transport layer of the present invention is not particularly limited as long as both binder resins A and B are within the above elastic deformation rate range, but electrical characteristics, abrasion resistance, filming resistance, adhesion From the viewpoint of property, it is preferable that the binder resin A of the first charge transport layer and the binder resin B of the second charge transport layer have different monomer units. It is more preferable that the binder resin A of the first charge transport layer is a polyarylate resin from the viewpoint of coexistence of electrical characteristics, wear resistance, and adhesiveness. Moreover, it is more preferable that the binder resin B of the second charge transport layer is a polycarbonate resin from the viewpoint of coexistence of electrical characteristics, wear resistance, and adhesiveness.
  • the kind of the charge transport material is not particularly limited, but for example, a carbazole derivative, a hydrazone compound, an aromatic amine derivative, an enamine derivative, a butadiene derivative, and a material in which a plurality of these derivatives are bonded is preferable. Any one of these charge transport materials may be used alone, or a plurality of types may be used in any combination.
  • the molecular weight of the charge transport material ⁇ used for the first charge transport layer is 600 or more. Preferably it is 680 or more, More preferably, it is 720 or more, More preferably, it is 750 or more. Further, it is usually 1000 or less from the viewpoint of solubility and wear resistance. Within the above range, it is preferable from the viewpoint that desired electric characteristics can be easily expressed in a small amount and the elastic deformation rate of the charge transport layer is difficult to be reduced.
  • the second and subsequent charge transport layers preferably contain a charge transport material.
  • the second charge transport layer contains the charge transport material ⁇ .
  • the molecular weight of the charge transport material is not particularly limited, but is usually 300 or more, preferably 400 or more, more preferably 500 or more, still more preferably 600 or more, more preferably 680 or more, particularly preferably. Is 720 or more, most preferably 750 or more. Further, it is usually 1000 or less from the viewpoint of solubility and wear resistance. Within the above range, it is preferable from the viewpoint that desired electric characteristics can be easily expressed in a small amount and the elastic deformation rate of the charge transport layer is difficult to be reduced. For example, it is more preferable that at least one of the charge transport materials ⁇ contained in the second charge transport layer is a charge transport material ⁇ having a molecular weight of 600 or more.
  • the molecular weight of the charge transport material ⁇ included in the first charge transport layer is preferably equal to or higher than the molecular weight of the charge transport material ⁇ included in the second charge transport layer. Satisfying such a condition is advantageous from the viewpoint of balance between wear resistance and electrical characteristics while suppressing costs.
  • Examples of preferable charge transport materials contained in the first charge transport layer and the second and subsequent charge transport layers are shown in Table 1.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • the absolute value of the difference in ionization potential is 0.2 eV or less from the viewpoint of matching with the charge transport material ⁇ used for the first charge transport layer. Preferably, it is 0.1 eV or less.
  • the same charge transport material may be used for the first charge transport layer and the second charge transport layer. In that case, the charge transport material ⁇ used for the first charge transport layer is preferably less than the charge transport material ⁇ used for the second charge transport layer from the viewpoint of wear resistance.
  • the content of the charge transport material ⁇ with respect to 100 parts by mass of the binder resin A in the first charge transport layer is equal to or less than the content of the charge transport material substance ⁇ with respect to 100 parts by mass of the binder resin B in the second charge transport layer. It is preferable. Even when different charge transporting materials are used for the first and second charge transporting layers, it is preferable that the content of the charge transporting material has the above-described relationship because high friction resistance can be obtained.
  • the content of the charge transport material ⁇ is preferably 10 parts by mass or more and 40 parts by mass or less, and 15 parts by mass or more with respect to 100 parts by mass of the binder resin A. Is more preferable, and more preferably 30 parts by mass or less.
  • the content of the charge transport material ⁇ is preferably 40 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin B. More preferably, it is more than 90 parts by mass.
  • the total thickness of the charge transport layer is not particularly limited depending on the setting of the image forming apparatus, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, from the viewpoint of long life, image stability, and charging stability.
  • the range is 50 ⁇ m or less, preferably 45 ⁇ m or less, and more preferably 30 ⁇ m or less. From the viewpoint of increasing the resolution, 25 ⁇ m or less is particularly suitable.
  • the relative film thickness ratio of the first and second charge transport layers is not particularly limited depending on the setting of the lifetime of the image forming apparatus, but the film thickness of the first charge transport layer: the film of the second charge transport layer
  • the thickness is preferably 10:90 to 70:30, more preferably 15:85 to 50:50.
  • antioxidants for the charge generation layer and the charge transport layer, well-known antioxidants, plasticizers, and ultraviolet absorbers are used for the purpose of improving film forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, and the like.
  • additives such as an electron-withdrawing compound, a leveling agent, and a visible light blocking agent may be contained.
  • a coating solution obtained by dissolving or dispersing a substance to be contained in a solvent (solvent or dispersion medium) is dip coated, ring coated, spray coated, or nozzle coated on a conductive support. It is formed by repeating a coating / drying step for each layer in order by a known method such as bar coating, roll coating, blade coating or the like.
  • solvent or dispersion medium used for the preparation of the coating solution, but specific examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, tetrahydrofuran, 1,4-dioxane, dimethoxyethane and the like.
  • esters such as methyl formate and ethyl acetate, ketones such as acetone, methyl ethyl ketone, cyclohexanone and 4-methoxy-4-methyl-2-pentanone, aromatic hydrocarbons such as benzene, toluene and xylene, dichloromethane, Chlorinated hydrocarbons such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, Diethyl Min, triethanolamine, ethylenediamine, nitrogen-containing compounds such as triethylenediamine, acetonitrile, N- methylpyrrolidone, N, N- dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide and the like
  • the amount of the solvent or dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriate so that the physical properties such as solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust. In order to form a laminate of two or more charge transport layers of the present invention, it is preferable not to erode the second charge transport layer when forming the first charge transport layer, and when forming the first charge transport layer, It is preferable to use ring coating or spray coating.
  • the coating liquid is preferably dried at room temperature, and then dried by heating in a temperature range of usually 30 ° C. or higher and 200 ° C. or lower for 1 minute to 2 hours, either statically or under ventilation. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.
  • the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further includes a transfer device 5, a cleaning device 6 and / or a cleaning device as required.
  • a fixing device 7 is provided.
  • the electrophotographic photoreceptor 1 is not particularly limited as long as it is the above-described electrophotographic photoreceptor of the present invention, but in FIG. 1, as an example, a drum in which the above-described photosensitive layer is formed on the surface of a cylindrical conductive support.
  • the photoconductor is shown.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photoreceptor 1.
  • the charging device 2 charges the electrophotographic photosensitive member 1 and uniformly charges the surface of the electrophotographic photosensitive member 1 to a predetermined potential.
  • Examples of a general charging device include a non-contact corona charging device such as corotron and scorotron, or a contact type charging device (direct type charging device) that charges a charged member by bringing a charged member into contact with the surface of the photoreceptor.
  • Examples of the contact charging device include a charging roller and a charging brush.
  • a roller-type charging device (charging roller) is shown as an example of the charging device 2.
  • the charging roller is manufactured by integrally molding an additive such as a resin and a plasticizer with a metal shaft, and may take a laminated structure as necessary.
  • a voltage applied at the time of charging it is possible to use only a DC voltage, or an AC superimposed on a DC.
  • the exposure device 3 is not particularly limited as long as it can expose the electrophotographic photosensitive member 1 charged by the charging device 2 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photosensitive member 1.
  • There is no. Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He—Ne lasers, LEDs, and the like.
  • exposure may be performed by a photoreceptor internal exposure method.
  • the light used for the exposure is arbitrary. For example, if exposure is performed with monochromatic light having a wavelength of 780 nm, monochromatic light with a wavelength of 600 nm to 700 nm slightly shorter, monochromatic light with a wavelength of 380 nm to 500 nm, or the like. Good.
  • the developing device 4 forms an electrostatic latent image formed on the electrophotographic photosensitive member.
  • the toner T supplied by the supply roller 43 is thinned by a regulating member (developing blade) 45 and rubbed to a predetermined polarity (here, the same polarity as the charging potential of the photosensitive member 1 and positive polarity). It is charged, conveyed while being carried on the developing roller 44, and brought into contact with the surface of the photoreceptor 1.
  • a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoreceptor 1.
  • the type of toner T is arbitrary, and in addition to powdered toner, polymerized toner using suspension polymerization method, emulsion polymerization method, or the like can be used.
  • a toner having a small particle diameter of about 4 to 8 ⁇ m is preferable, and the toner particle shape varies from a nearly spherical shape to a non-spherical shape such as a potato shape.
  • the polymerized toner is excellent in charging uniformity and transferability and is suitably used for high image quality.
  • the transfer device 5 transfers the toner image formed by the developing device onto the recording paper P.
  • the type of the transfer device 5 is not particularly limited, and an apparatus using an arbitrary system such as an electrostatic transfer method such as corona transfer, roller transfer, or belt transfer, a pressure transfer method, or an adhesive transfer method can be used.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like disposed to face the electrophotographic photosensitive member 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 onto a recording paper (paper, print medium) P. To do.
  • the toner T remaining on the photosensitive surface of the photoreceptor 1 without being transferred by the cleaning device 6 is removed.
  • Arbitrary cleaning apparatuses such as a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner, can be used.
  • the cleaning device 6 is for scraping off residual toner adhering to the photoreceptor 1 with a cleaning member and collecting the residual toner. However, when there is little or almost no toner remaining on the surface of the photoreceptor 1, the cleaning device 6 may not be provided.
  • an image is recorded as follows. That is, first, the surface (photosensitive surface) of the photoreceptor 1 is charged to a predetermined potential by the charging device 2. At this time, charging may be performed with a DC voltage, or charging may be performed by superimposing an AC voltage on the DC voltage. Subsequently, the photosensitive surface of the charged photoreceptor 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. The developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photoreceptor 1.
  • the developing device 4 thins the toner T supplied by the supply roller 43 with a regulating member (developing blade) 45 and has a predetermined polarity (here, the same polarity as the charging potential of the photoreceptor 1), and the positive polarity. ) And is carried while being carried on the developing roller 44 and brought into contact with the surface of the photoreceptor 1.
  • a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoreceptor 1. This toner image is transferred onto the recording paper P by the transfer device 5.
  • toner remaining on the photosensitive surface of the photoreceptor 1 without being transferred is removed by the cleaning device 6.
  • the final image is obtained by passing the fixing device 7 and thermally fixing the toner image onto the recording paper P.
  • the image forming apparatus may be configured to perform, for example, a static elimination process.
  • the neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, an LED, or the like is used as the neutralizing device.
  • the light used in the static elimination process is often light having an exposure energy that is at least three times that of the exposure light. From the viewpoint of miniaturization and energy saving, it is preferable not to have a static elimination step.
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a pre-exposure process, an auxiliary charging process, or the like, or may be configured to perform offset printing.
  • a full-color tandem system configuration using toner may be used.
  • the electrophotographic photosensitive member 1 is combined with one or more devices selected from the group consisting of a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, a cleaning device 6 and a fixing device 7. It may be configured as an integral type cartridge (hereinafter referred to as “electrophotographic photosensitive member cartridge” as appropriate), and the electrophotographic photosensitive member cartridge may be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. .
  • Example 1 ⁇ Manufacture of coating liquid for undercoat layer formation> Rutile type titanium oxide having an average primary particle diameter of 40 nm (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were mixed using a Henschel mixer.
  • the surface-treated titanium oxide obtained by mixing was dispersed by a ball mill in a mixed solvent having a mass ratio of methanol / 1-propanol of 7/3 to obtain a surface-treated titanium oxide dispersed slurry.
  • the dispersion slurry, a mixed solvent of methanol / 1-propanol / toluene, and ⁇ -caprolactam [compound represented by the following formula (A)] / bis (4-amino-3-methylcyclohexyl) methane [the following formula (B ) / Hexamethylenediamine [compound represented by the following formula (C)] / decamethylene dicarboxylic acid [compound represented by the following formula (D)] / octadecamethylene dicarboxylic acid [following formula ( The compound represented by E)] has a composition molar ratio of 60% / 15% / 5% / 15% / 5% and is agitated and mixed with pellets of copolymerized polyamide to dissolve the polyamide pellets.
  • the mass ratio of methanol / 1-propanol / toluene is 7/1/2, and the surface-treated titanium oxide / copolymerized polyamide. Containing in a weight ratio 3/1, to prepare a coating liquid for forming an undercoat layer having a solid concentration of 18.0 mass%.
  • ⁇ -type (also known as B-type) oxytitanium phthalocyanine and 280 parts of 1,2-dimethoxyethane were mixed as a charge generation material, and pulverized and dispersed in a sand grind mill for 1 hour.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC1) (viscosity average molecular weight 80,000) having the following repeating structural units, 60 parts of the compound represented by CT-7 as a charge transport material, and antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), 1 part tribenzylamine, and 0.05 part silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.), a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio))
  • PC1 viscosity average molecular weight 80,000
  • antioxidant Ciba Specialty Chemicals
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.
  • a second charge transport layer forming coating solution was prepared by dissolving in 660 parts.
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE1) (viscosity average molecular weight 65,000) having the following repeating structural units, 20 parts of the compound represented by CT-7 as a charge transport material, and antioxidant (Ciba Specialty) as an additive Chemicals, trade name Irganox 1076) 2 parts, tribenzylamine 0.5 parts, and silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone) 0.05 parts, tetrahydrofuran / toluene (8/2 (mass ratio)) was dissolved in 600 parts of the above mixed solvent to prepare a first charge transport layer forming coating solution.
  • PE1 viscosity average molecular weight 65,000
  • antioxidant Ciba Specialty
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone
  • the coating solution for forming the undercoat layer and the coating for forming the charge generation layer are prepared as described above.
  • the coating solution for forming the second charge transport layer and the coating solution for forming the second charge transport layer are sequentially applied and dried by a dip coating method, and the subbing layer, A generation layer and a second charge transport layer were formed.
  • the second charge transport layer was dried at 125 ° C. for 20 minutes.
  • the first charge transport layer forming coating solution prepared above is applied onto the second charge transport layer by a ring coating method, and the first film thickness is 10 ⁇ m after drying.
  • the charge transport layer was formed.
  • the first charge transport layer was dried at 125 ° C. for 20 minutes.
  • the obtained photoconductor is mounted on a photoconductor cartridge of a monochrome multifunction machine M4580 manufactured by Samsung Electronics (A4 paper, printing 47 sheets per minute, non-magnetic one-component polymerization toner, contact charging), temperature 25 ° C., relative humidity 50 %, 40000 sheets were continuously printed at a printing rate of 5%, and image evaluation and measurement of the amount of abrasion of the photosensitive layer (charge transport layer) (quantification of film thickness reduction amount) were carried out.
  • the amount of wear was measured by using an eddy current type film thickness meter, measuring at approximately equal intervals in the axial direction of the photosensitive member, measuring it on three axes different by 120 ° in the rotation direction, and calculating the average. .
  • Table 2 The results are shown in Table 2.
  • silicone oil trade name KF96 manufactured by Shin-Etsu Silicone Co., Ltd.
  • the elastic deformation rate of the sample was measured under an environment of a temperature of 25 ° C. and a relative humidity of 50% using a FischerSCOPE HM2000 manufactured by Fischer.
  • a Vickers square pyramid diamond indenter having a facing angle of 136 ° was used. Measurement conditions were set as follows. (Measurement condition) Maximum indentation load 5mN Time required for loading: 10 seconds Time required for unloading: 10 seconds
  • Example 2 In Example 1, a photoconductor was produced in the same manner as in Example 1 except that the production of the second charge transport layer forming coating solution and the production of the first charge transport layer forming coating solution were changed as follows. ,evaluated. The results are shown in Table 2.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC2) (viscosity average molecular weight 30,000) having the following repeating structural units, 60 parts of the compound represented by CT-5 as a charge transport material, and antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), and 0.05 part of silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.) are dissolved in 560 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PC2 polycarbonate resin
  • Irganox 1076 antioxidant
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE1) having the above repeating structural units (viscosity average molecular weight 65,000), 20 parts of the compound represented by CT-5 as a charge transport material, and antioxidant (Ciba Specialty) as an additive 2 parts by Chemicals, trade name Irganox 1076), and 0.05 part of silicone oil (Shin-Etsu Silicone, trade name: KF96) are dissolved in 600 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PE1 polyarylate resin having the above repeating structural units (viscosity average molecular weight 65,000)
  • antioxidant Ciba Specialty
  • silicone oil Shin-Etsu Silicone, trade name: KF96
  • Example 3 In Example 1, a photoconductor was produced in the same manner as in Example 1 except that the production of the second charge transport layer forming coating solution and the production of the first charge transport layer forming coating solution were changed as follows. ,evaluated. The results are shown in Table 2.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC3) (viscosity average molecular weight 50,000) having the following repeating structural unit, 60 parts of the compound represented by CT-5 as a charge transport material, and antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), and 0.05 part by silicone oil (trade name KF96 made by Shin-Etsu Silicone) are dissolved in 610 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PC3 viscosity average molecular weight 50,000
  • antioxidant Ciba Specialty Chemicals
  • silicone oil trade name KF96 made by Shin-Etsu Silicone
  • first charge transport layer forming coating solution 100 parts of a polyarylate resin (PE2) (viscosity average molecular weight 40,000) having the following repeating structural units, 20 parts of the compound represented by CT-5 as a charge transport material, and an antioxidant (Ciba Specialty) as an additive 2 parts by Chemicals, trade name Irganox 1076), and 0.05 part of silicone oil (Shin-Etsu Silicone, trade name: KF96) are dissolved in 600 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PE2 polyarylate resin
  • Irganox 1076 antioxidant
  • silicone oil Shin-Etsu Silicone, trade name: KF96
  • Example 4 In Example 1, a photoconductor was produced in the same manner as in Example 1 except that the production of the second charge transport layer forming coating solution and the production of the first charge transport layer forming coating solution were changed as follows. ,evaluated. The results are shown in Table 2.
  • Second charge transport layer forming coating solution 100 parts of a polycarbonate resin (PC3) having a repeating structural unit (viscosity average molecular weight of 50,000), 80 parts of a compound represented by the following CT-A as a charge transport material, and an antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), and 0.05 part by silicone oil (trade name KF96 made by Shin-Etsu Silicone) are dissolved in 610 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • a second coating solution for forming a charge transport layer was prepared.
  • an antioxidant trade name: Irganox 1076, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • silicone oil trade name: KF96, manufactured by Shin-Etsu Silicone
  • Example 5 In Example 3, a photoconductor was prepared and evaluated in the same manner as in Example 3 except that the production of the second coating solution for forming a charge transport layer was changed as follows. The results are shown in Table 2.
  • ⁇ Manufacture of second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC5) (viscosity average molecular weight 20,000) having the same repeating structural unit as PC1 and different molecular weights, 60 parts of the compound represented by CT-5 as a charge transport material, and additives 4 parts of an antioxidant (trade name: Irganox 1076, manufactured by Ciba Specialty Chemicals), 1 part of tribenzylamine, and 0.05 part of silicone oil (trade name: KF96, manufactured by Shin-Etsu Silicone) were added to tetrahydrofuran / toluene (8/2). (Mass ratio)) was dissolved in 560 parts of a mixed solvent to prepare a second charge transport layer forming coating solution.
  • PC5 viscosity average molecular weight 20,000
  • Example 6 In Example 1, a photoconductor was produced and evaluated in the same manner as in Example 1 except that the production of the first charge transport layer forming coating solution was changed as follows. The results are shown in Table 2.
  • ⁇ Manufacture of first charge transport layer forming coating solution 100 parts of the polyarylate resin (PE1) having the above repeating structural unit (viscosity average molecular weight 65,000), 20 parts of the compound represented by CT-4 as a charge transport material, and an antioxidant (Ciba Specialty) as an additive 2 parts by chemicals, trade name Irganox 1076), 0.5 part tribenzylamine, and 0.05 parts silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone), tetrahydrofuran / toluene (8/2 (mass ratio)) was dissolved in 600 parts of the above mixed solvent to prepare a first charge transport layer forming coating solution.
  • PE1 polyarylate resin having the above repeating structural unit (viscosity average molecular weight 65,000)
  • an antioxidant Ciba Specialty
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone
  • Example 1 In Example 1, the manufacture of the first charge transport layer forming coating solution was changed to the following, except that the second charge transport layer forming coating solution was not used and the second charge transport layer was not formed. Were produced and evaluated in the same manner as in Example 1. The results are shown in Table 2. The adhesion was remarkably inferior and all peeled off in a cross cut test.
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE1) having the above repeating structural unit (viscosity average molecular weight 65,000), 20 parts of the compound represented by CT-7 as a charge transport material, and antioxidant (Ciba Specialty) as an additive Chemicals, trade name Irganox 1076) 2 parts, tribenzylamine 0.5 parts, and silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone) 0.05 parts, tetrahydrofuran / toluene (8/2 (mass ratio)) was dissolved in 600 parts of the above mixed solvent to prepare a first charge transport layer forming coating solution.
  • PE1 polyarylate resin having the above repeating structural unit (viscosity average molecular weight 65,000)
  • antioxidant Ciba Specialty
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone
  • Example 3 a photoconductor was prepared and evaluated in the same manner as in Example 3 except that the production of the second coating solution for forming a charge transport layer was changed as follows. The results are shown in Table 2. Abrasion was worse compared to Example 3 using the same first charge transport layer.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC4) (viscosity average molecular weight 40,000) having the following repeating structural units, 80 parts of the compound represented by CT-5 as a charge transport material, and an antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), and 0.05 part of silicone oil (trade name: KF96, manufactured by Shin-Etsu Silicone) were dissolved in 600 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PC4 polycarbonate resin
  • Irganox 1076 antioxidant
  • silicone oil trade name: KF96, manufactured by Shin-Etsu Silicone
  • Example 3 In Example 1, a photoconductor was prepared in the same manner as in Example 1 except that the production of the second charge transport layer forming coating solution was changed to the following and the film thickness of the second charge transport layer was changed to 15 ⁇ m. ,evaluated. The results are shown in Table 2. In Comparative Example 3, the amount of wear increased compared to Example 1, and the wear resistance deteriorated.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC4) (viscosity average molecular weight 40,000) having the above repeating structural unit, 60 parts of the compound represented by CT-7 as a charge transport material, and antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), 1 part tribenzylamine, and 0.05 part silicone oil (trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.), a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio))
  • PC4 viscosity average molecular weight 40,000
  • antioxidant Ciba Specialty Chemicals
  • silicone oil trade name KF96, manufactured by Shin-Etsu Silicone Co., Ltd.
  • a second charge transport layer forming coating solution was prepared by dissolving in 600 parts.
  • Example 4 In Example 1, a photoconductor was produced in the same manner as in Example 1 except that the production of the second charge transport layer forming coating solution and the production of the first charge transport layer forming coating solution were changed as follows. ,evaluated. The results are shown in Table 2. Since the image density was low from the beginning, and the image density further decreased over time, the image test was stopped midway. When the surface potential was measured, it was found that the residual potential was remarkably high.
  • Second charge transport layer forming coating solution 100 parts of polycarbonate resin (PC4) (viscosity average molecular weight 40,000) having the above repeating structural units, 80 parts of the compound represented by CT-A as a charge transport material, and antioxidant (Ciba Specialty Chemicals) as an additive 4 parts by trade name, Irganox 1076), and 0.05 part of silicone oil (trade name: KF96, manufactured by Shin-Etsu Silicone) were dissolved in 600 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PC4 polycarbonate resin
  • Irganox 1076 antioxidant
  • silicone oil trade name: KF96, manufactured by Shin-Etsu Silicone
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE2) (viscosity average molecular weight 40,000) having the above repeating structural units, 20 parts of the compound represented by CT-A as a charge transport material, and antioxidant (Ciba Specialty) as an additive 2 parts by Chemicals, trade name Irganox 1076), and 0.05 part of silicone oil (Shin-Etsu Silicone, trade name: KF96) are dissolved in 600 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PE2 polyarylate resin
  • CT-A charge transport material
  • antioxidant Ciba Specialty
  • silicone oil Shin-Etsu Silicone, trade name: KF96
  • Comparative Example 5 In Comparative Example 4, a photoreceptor was prepared and evaluated in the same manner as in Comparative Example 4 except that the production of the first charge transport layer forming coating solution was changed as follows. The results are shown in Table 2. In Comparative Example 5, the image density was improved as compared with Comparative Example 4, but the amount of wear was much higher.
  • Example 6 a photoreceptor was prepared and evaluated in the same manner as in Example 4 except that the production of the first charge transport layer forming coating solution was changed as follows. The results are shown in Table 2. Since the image density was low from the beginning, and the image density further decreased over time, the image test was stopped midway. When the surface potential was measured, it was found that the residual potential was remarkably high.
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE2) (viscosity average molecular weight 40,000) having the above repeating structural units, 50 parts of the compound represented by CT-B as a charge transport material, and antioxidant (Ciba Specialty) as an additive 2 parts by Chemicals, trade name Irganox 1076) and 0.05 part of silicone oil (trade name KF96 by Shin-Etsu Silicone) are dissolved in 560 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PE2 polyarylate resin
  • CT-B charge transport material
  • antioxidant Ciba Specialty
  • silicone oil trade name KF96 by Shin-Etsu Silicone
  • Example 7 In Example 4, a photoreceptor was prepared and evaluated in the same manner as in Example 4 except that the production of the first charge transport layer forming coating solution was changed as follows. The results are shown in Table 2. Since the image density was low from the beginning, and the image density further decreased over time, the image test was stopped midway. When the surface potential was measured, it was found that the residual potential was remarkably high.
  • first charge transport layer forming coating solution 100 parts of polyarylate resin (PE2) (viscosity average molecular weight 40,000) having the above repeating structural units, 50 parts of the compound represented by CT-C as a charge transport material, and antioxidant (Ciba Specialty) as an additive 2 parts by Chemicals, trade name Irganox 1076) and 0.05 part of silicone oil (trade name KF96 by Shin-Etsu Silicone) are dissolved in 560 parts of a mixed solvent of tetrahydrofuran / toluene (8/2 (mass ratio)).
  • PE2 polyarylate resin
  • CT-C charge transport material
  • antioxidant Ciba Specialty
  • silicone oil trade name KF96 by Shin-Etsu Silicone
  • Photoconductor (Electrophotographic photoconductor) 2 Charging device (charging roller; charging unit) 3 Exposure equipment (exposure section) 4 Development device (development unit) DESCRIPTION OF SYMBOLS 5 Transfer device 6 Cleaning device 7 Fixing device 41 Developing tank 42 Agitator 43 Supply roller 44 Developing roller 45 Control member 71 Upper fixing member (fixing roller) 72 Lower fixing member (fixing roller) 73 Heating device T Toner P Recording paper (paper, print medium)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

本発明は長寿命化に不可欠な十分な耐摩耗性を発現させつつ、電気特性と接着性にも優れた電荷輸送層を有する電子写真感光体、並びに、前記電子写真感光体を備える電子写真感光体カートリッジ及び画像形成装置を提供することを目的とする。本発明は、少なくとも二層からなる電荷輸送層を有し、最外層である第1の電荷輸送層に含まれるバインダー樹脂の弾性変形率と、第2の電荷輸送層に含まれるバインダー樹脂の弾性変形率とが所定の関係を満たす電子写真感光体に関する。

Description

電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
 本発明は、優れた耐摩耗性、電気特性及び接着性を有する電子写真感光体、並びに、前記電子写真感光体を備える電子写真感光体カートリッジ及び画像形成装置に関する。
 電子写真技術は、即時的に高品質の画像が得られることなどから、複写機、プリンター、印刷機として広く使われている。電子写真技術の中核となる電子写真感光体(以下適宜単に「感光体」という)については、無公害で成膜、製造が容易である等の利点を有する有機系の光導電物質を使用した感光体が広く使用されている。
 画像形成装置の保証枚数が多い場合には、感光体にも高い繰り返し耐久性が求められる。長期に渡って画質が変化しないためには、感光層の摩耗性を減らし、かつ表面付着物の蓄積を防ぐ必要性が有る。硬化型の保護層を設けた場合には、摩耗性は改善される反面、表面の摩耗によるリフェースがなされないため、コロナ生成物や現像剤、紙粉等の付着物がクリーニングしきれず残存、蓄積し易い。また、硬化型の保護層を設ける場合には、専用の生産設備が必要であり、塗布液の劣化(保存安定性の不足)や、硬化に寄与する官能基による電気特性の悪化等もあり、ハイエンド機種以外には使用しにくいのが実情である。
 硬化型の保護層を設けずに耐久性を高めるためには、最外層である電荷輸送層の耐摩耗性を高めるのが一般的手法である。しかし、耐摩耗性は、必ずしも電荷輸送層の全膜厚分に求められていないとの観点から、電荷輸送層を複数の層として、支持体に近い側の電荷輸送層には耐摩耗性を求めずに電気特性や接着性等を重視し、最外層である電荷輸送層には耐摩耗性を重点的に付与するという考え方がある。一般的に、電荷輸送層を構成し、耐摩耗性に優れるバインダー樹脂は、電気特性と接着性に劣る場合が多いため、このような機能分離が有効とのアイデアが以前から多く開示されている。
 複数の電荷輸送層によって耐摩耗性を改良する案として、特許文献1には最外層である第1の電荷輸送層にのみ無機粒子を含有するアイデアが開示されている。また、特許文献2には、最外層である第1の電荷輸送層にのみ高分子量のバインダー樹脂を使用した例が開示されている。特許文献3には、最外層である第1の電荷輸送層の硬度、弾性変形率を高くする技術が開示されている。特許文献4には、最外層である第1の電荷輸送層に特定の構成単位を有するポリエステル樹脂を使用する技術が開示されている。特許文献5には、複数の電荷輸送層が互いに異なるユニットと共通するユニットを有する共重合樹脂を使用することで、最外層である第1の電荷輸送層は耐傷性に優れ、第1の電荷輸送層と接する第2の電荷輸送層は電位安定性と耐ガス性に優れた層とする技術が開示されている。また、特許文献6には、特許文献1~5と異なり、最外層である第1の電荷輸送層と接する第2の電荷輸送層に、より高分子量のバインダー樹脂を使用し、かつ摩耗し易い両端部の膜厚を大きくすることで、長期の画質劣化を抑制する技術が開示されている。
日本国特開平9-15878号公報 日本国特開平9-43887号公報 日本国特開2007-148380号公報 日本国特開平8-106166号公報 日本国特開2011-95649号公報 日本国特開2009-75246号公報
 しかしながら、発明者らの検討によれば、前記特許文献1~5に記載のように、複数の電荷輸送層のうち、単に最外層である第1の電荷輸送層にのみ耐摩耗性を向上させる工夫を施した場合、必ずしも所望の耐摩耗性が得られる訳ではなく、むしろ電荷輸送層が単層であり、該電荷輸送層に耐摩耗性向上の工夫を施した場合に比べ、大幅に耐摩耗性が劣る場合があることが分かった。特に、最外層である第1の電荷輸送層と接する第2の電荷輸送層に、耐摩耗性に劣るバインダー樹脂を使用した場合に耐摩耗性が劣る傾向が顕著であり、最外層側の電荷輸送層の耐摩耗性をも損ねてしまうことが分かった。
 その要因は定かではないが、例えば最外層である第1の電荷輸送層に高弾性変形率のバインダー樹脂を使用したとしても、当該第1の電荷輸送層と接する第2の電荷輸送層に低弾性変形率のバインダー樹脂を使用すると、電荷輸送層トータルとしての弾性変形率は第2の電荷輸送層の塑性変形の影響を受けるため、高くならないためと考えられる。
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、電子写真感光体の長寿命化に不可欠な十分な耐摩耗性を発現させつつ、電気特性と接着性にも優れた電荷輸送層を有する電子写真感光体、並びに、前記電子写真感光体を備える電子写真感光体カートリッジ及び画像形成装置を提供することにある。
 本発明者らは、鋭意検討を行った結果、少なくとも二層の電荷輸送層を有する電子写真感光体において、最外層である第1の電荷輸送層に含まれるバインダー樹脂の弾性変形率と、当該第1の電荷輸送層と接する第2の電荷輸送層に含まれるバインダー樹脂の弾性変形率とを所定の関係を満たすように設定することにより、ロングライフ使用に不可欠な十分な耐摩耗性を持ち、電気特性や接着性にも優れた電子写真感光体を提供することが可能であることを見出し、以下の本発明の完成に至った。
 すなわち、本発明の要旨は下記の[1]~[11]に存する。
[1] 導電性支持体と、前記導電性支持体上に少なくとも電荷発生層及び電荷輸送層と、を有する電子写真感光体であって、前記電荷輸送層は、最外層である第1の電荷輸送層、及び、前記第1の電荷輸送層と接する第2の電荷輸送層の少なくとも二層からなり、前記第1の電荷輸送層に含まれるバインダー樹脂Aの弾性変形率をT1(%)とし、前記第2の電荷輸送層に含まれるバインダー樹脂Bの弾性変形率をT2(%)としたとき、{0≦(T1-T2)≦4}の関係を満たし、前記第1の電荷輸送層が、分子量600以上の電荷輸送材料αを含有する電子写真感光体。
[2] 前記T1が44%以上49%以下である前記[1]に記載の電子写真感光体。
[3] 前記T2が43%以上47%以下である前記[1]または[2]に記載の電子写真感光体。
[4] 前記第2の電荷輸送層が電荷輸送材料βを含有する前記[1]乃至[3]の何れか一に記載の電子写真感光体。
[5] 前記電荷輸送材料βの少なくとも一つが、分子量600以上の電荷輸送材料γである前記[4]に記載の電子写真感光体。
[6] 前記第1の電荷輸送層において、前記バインダー樹脂A100質量部に対する前記電荷輸送材料αの含有量が10質量部以上40質量部以下である前記[1]乃至[5]の何れか一に記載の電子写真感光体。
[7] 前記第1の電荷輸送層における、前記バインダー樹脂A100質量部に対する前記電荷輸送材料αの含有量が、前記第2の電荷輸送層における、前記バインダー樹脂B100質量部に対する前記電荷輸送材料βの含有量以下である前記[4]乃至[6]の何れか一に記載の電子写真感光体。
[8] 前記バインダー樹脂Aと前記バインダー樹脂Bはそれぞれ異なるモノマーユニットを有する前記[1]乃至[7]の何れか一に記載の電子写真感光体。
[9] 前記バインダー樹脂Aがポリアリレート樹脂であり、前記バインダー樹脂Bがポリカーボネート樹脂である前記[1]乃至[8]の何れか一に記載の電子写真感光体。
[10] 前記[1]乃至[9]の何れか一に記載の電子写真感光体、ならびに、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置、現像されたトナーを転写する転写装置、前記電子写真感光体上の残トナーをクリーニングするクリーニング装置、及び転写された前記トナーを印刷媒体に定着させる定着装置からなる群から選ばれる少なくとも1つの装置、を備える電子写真感光体カートリッジ。
[11] 前記[1]乃至[9]の何れか一に記載の電子写真感光体、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置、を備える画像形成装置。
 本発明によれば、ロングライフ使用に不可欠な十分な耐摩耗性を持ち、電気特性や接着性にも優れた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置が得られる。
図1は、本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 図2は、バインダー樹脂の弾性変形率測定における、押込み深さに対する荷重曲線を示したグラフであり、弾性変形率の算出方法を示すものである。
 以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。本明細書において‘質量%’及び‘質量部’と、‘重量%’及び‘重量部’とはそれぞれ同義であり、単に‘部’とした場合には‘重量部’であることを意味する。
 ≪電子写真感光体≫
 以下に、本発明に係る電子写真感光体の構成について説明する。
 本発明の電子写真感光体は、導電性支持体を有し、前記導電性支持体上に、少なくとも電荷発生層と電荷輸送層とをこの順で有する積層型の構成を有する。導電性支持体と電荷発生層との間には、必要に応じて下引層を設けてもよい。
 <導電性支持体>
 導電性支持体については特に制限はないが、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫等の導電性粉体を添加して導電性を付与した樹脂材料、アルミニウム、ニッケル、ITO(酸化インジウム錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び任意の比率で併用してもよい。
 導電性支持体の形態としては、ドラム状、シート状、ベルト状等のものが用いられる。更には、金属材料の導電性支持体の上に、導電性・表面性等の制御や欠陥被覆のために、適当な抵抗値を有する導電性材料を塗布したものを用いてもよい。
 また、導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を形成してから用いてもよい。陽極酸化被膜を形成した場合には、公知の方法により封孔処理を施すのが望ましい。
 導電性支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、導電性支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも可能である。
 <下引き層>
 導電性支持体と後述する電荷発生層との間には、接着性・ブロッキング性等の改善のため、下引き層(その機能によってはブロッキング層、導電層又は中間層とも称されることもある)を設けてもよい。下引き層としては、樹脂又は樹脂に金属酸化物等の粒子を分散したもの等が用いられる。また、下引き層は、単一層からなるものであっても、複数層からなるものであってもかまわない。
 下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子等が挙げられる。これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、酸化チタン及び/又は酸化アルミニウムの粒子が好ましく、特に酸化チタンの粒子が好ましい。
 酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。
 金属酸化物粒子の粒径としては種々のものが利用できるが、中でも特性及び液の安定性の点から、その平均一次粒径は、10nm以上100nm以下が好ましく、特に10nm以上50nm以下が好ましい。この平均一次粒径は、TEM写真等から得ることができる。
 下引き層は、金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタンアルコキシド化合物等の有機チタニル化合物、シランカップリング剤等の公知のバインダー樹脂が挙げられる。これらは単独で用いてもよく、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。
 下引き層に用いられる無機粒子のバインダー樹脂に対する使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、バインダー樹脂に対して、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。
 下引き層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、電子写真感光体の電気特性、強露光特性、画像特性、繰り返し特性、及び製造時の塗布性を向上させる観点から、通常は0.01μm以上、好ましくは0.1μm以上であり、また、通常30μm以下、好ましくは20μm以下である。
 下引き層には、公知の酸化防止剤等を混合してもよい。また、画像欠陥防止等を目的として、顔料粒子、樹脂粒子等を含有させて用いてもよい。
 <電荷発生層>
 電荷発生層は、電荷発生材料を含有すると共に、通常はバインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷発生層は、例えば、電荷発生材料及びバインダー樹脂を溶媒又は分散媒に溶解又は分散して塗布液を作製し、これを導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることができる。
 電荷発生物質としては、セレニウム及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生物質として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種のバインダー樹脂で結着した分散層の形で使用する。
 電荷発生物質としてフタロシアニン顔料を使用する場合、具体的には、無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウム等の金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類等が使用される。特に、感度の高い結晶型であるX型、τ型の無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ-オキソ-ガリウムフタロシアニン二量体、II型等のμ-オキソ-アルミニウムフタロシアニン二量体が好適である。
 また、これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型のヒドロキシガリウムフタロシアニン、28.1゜に最も強いピークを有するヒドロキシガリウムフタロシアニン、又は26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが0.1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、G型μ-オキソ-ガリウムフタロシアニン二量体等が特に好ましい。
 フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態における混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、日本国特開平10-48859号公報記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。
 一方、電荷発生材料としてアゾ顔料を使用する場合には、光入力用光源に対して感度を有するものであれば従前公知の各種のアゾ顔料を使用することが可能であるが、各種のビスアゾ顔料、トリスアゾ顔料が好適に用いられる。
 電荷発生物質として、上記例示の有機顔料を用いる場合には、1種を単独で用いてもよいが、2種類以上の顔料を混合して用いてもよい。この場合、可視域と近赤域の異なるスペクトル領域で分光感度特性を有する2種類以上の電荷発生物質を組み合わせて用いることが好ましく、中でもジスアゾ顔料、トリスアゾ顔料とフタロシアニン顔料とを組み合わせて用いることがより好ましい。
 電荷発生層に用いるバインダー樹脂は特に制限されないが、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等の塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ-N-ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマー等が挙げられる。これらのバインダー樹脂は、何れか1種を単独で用いてもよく、2種類以上を任意の組み合わせで混合して用いてもよい。
 電荷発生層は、具体的には、上述のバインダー樹脂を有機溶剤に溶解した溶液に、電荷発生物質を分散させて塗布液を調製し、これを導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布することにより形成される。
 電荷発生層において、バインダー樹脂と電荷発生物質との配合比(質量比)は、バインダー樹脂100質量部に対して電荷発生物質が通常10質量部以上、好ましくは30質量部以上であり、また、通常1000質量部以下、好ましくは500質量部以下の範囲である。電荷発生物質の比率が高過ぎると、電荷発生物質の凝集等により塗布液の安定性が低下する虞がある。一方、電荷発生物質の比率が低過ぎると、感光体としての感度の低下を招く虞がある。
 電荷発生層の膜厚は通常0.1μm以上、好ましくは0.15μm以上であり、また、通常10μm以下、好ましくは0.6μm以下の範囲である。
 電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の公知の分散法を用いることができる。この際、粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の範囲の粒子サイズに微細化することが有効である。
 <電荷輸送層>
 本発明の電荷輸送層は、少なくとも2層存在する。以下、最外層である電荷輸送層から番号をつけ、最外層である電荷輸送層を第1の電荷輸送層とし、第1の電荷輸送層と接する電荷輸送層を第2の電荷輸送層とする。電荷輸送層が3層存在する場合、第2の電荷輸送層と接し、かつ電荷発生層側の電荷輸送層を第3の電荷輸送層とする。
 電荷輸送層の層数に特に制限はないが、通常10層以下、好ましくは5層以下、より好ましくは3層以下、最も好ましくは2層である。
 第1の電荷輸送層は、分子量が600以上の電荷輸送材料α及びバインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。第2以降の電荷輸送層はバインダー樹脂を含有する。電荷輸送性の観点から第2以降の電荷輸送層は電荷輸送材料を含有することが好ましい。
 なお、第1の電荷輸送層に含まれるバインダー樹脂をバインダー樹脂A、第2の電荷輸送層に含まれるバインダー樹脂をバインダー樹脂Bと称する。
 電荷輸送層に含まれるバインダー樹脂の弾性変形率は、Fischer社製微小硬度計FISCHERSCOPE HM2000(同社製微小硬度計FISCHERSCOPE H100C後継機であり、同等性能を有する)を用いて、温度25℃、相対湿度50%の環境下で測定する。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いる。測定は以下の条件で行い、圧子にかかる荷重とその荷重下における押込み深さとを連続的に読み取り、それぞれY軸(荷重)、X軸(押込み深さ)にプロットした図2に示すようなプロファイルを取得する。
・測定条件
 最大押込み加重 5mN
 負荷所要時間 10秒
 除荷所要時間 10秒
 上記の弾性変形率は下記式により定義される値であり、押込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
   弾性変形率(%)=(We/Wt)×100
 上記式中、Wt(nJ)は全仕事量を表し、図2中のA-B-D-Aで囲まれる面積を示す。We(nJ)は弾性変形仕事量を表し、図2中のC-B-D-Cで囲まれる面積を示す。
 弾性変形率が大きいほど、負荷に対する変形が残留しにくく、弾性変形率が100%の場合には変形が残らないことを意味する。なお、上記の測定条件においては、本願の測定時の押込み深さはおおむね1μm程度となる。
 なお、本発明において、バインダー樹脂の弾性変形率は、バインダー樹脂単独の薄膜ではなく、下記の電荷輸送層に類似した薄膜での測定値を使用した。すなわち、バインダー樹脂100質量部、下記式(1)で表される電荷輸送材料40質量部及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))に溶解させた塗布液を、ガラス基板上に乾燥後の膜厚が20μmになるように塗布、乾燥して測定サンプルを作製した。当該サンプルを、上述の測定機にて測定し、得られた弾性変形率の値を、バインダー樹脂の弾性変形率とした。
Figure JPOXMLDOC01-appb-C000001
 本発明の電子写真感光体において、第1の電荷輸送層のバインダー樹脂Aの弾性変形率をT1(%)、第2の電荷輸送層のバインダー樹脂Bの弾性変形率をT2(%)としたとき、{0≦(T1-T2)≦4}の関係を満たす。{0≦(T1-T2)≦3}の関係を満たすことが接着性と耐摩耗性のバランスの観点から好ましく、{0≦(T1-T2)≦2}であることが耐摩耗性の効果最大化の観点からより好ましい。上述の範囲であると、第1の電荷輸送層の耐摩耗性が、第2の電荷輸送層によって損なわれることなく、かつ接着性も確保できる。
 T1の値に特に制限はないが、耐摩耗性の観点から、44%以上であることが好ましく、45%以上がより好ましく、46%以上が更に好ましく、一方、接着性の観点から49%以下が好ましく、48%以下がより好ましい。
 また、T2の値に特に制限はないが、耐摩耗性の観点から43%以上が好ましく、44%以上がより好ましく、一方、接着性の観点から47%以下が好ましく、46%以下がより好ましい。
 具体的なバインダー樹脂A及びBの例としては、ブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコーン樹脂、シリコーン-アルキッド樹脂、ポリ-N-ビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂が好適に使用される。このうち、ポリカーボネート樹脂、ポリエステル樹脂が好ましい。
 ポリエステル樹脂、中でも全芳香族ポリエステル樹脂に対する呼称であるポリアリレート樹脂は、弾性変形率を高くすることが可能で、耐摩耗性、耐傷性、耐フィルミング性等の機械物性の観点から特に好ましい。
 一般に、ポリエステル樹脂は、機械物性の観点からはポリカーボネート樹脂より優れるものの、電気特性、光疲労特性の観点からはポリカーボネート樹脂に劣る。これは、エステル結合がカーボネート結合よりも極性が大きく、かつアクセプター性が強いことに起因すると考えられる。
 これらの樹脂は、その機能を損なわない範囲において、2種以上を混合して用いてもよい。2種以上のバインダー樹脂を混合する場合は、上述の好ましい弾性変形率の範囲内のバインダー樹脂の含有率が50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることが最も好ましい。
 まず、ポリエステル樹脂について説明する。一般に、ポリエステル樹脂は、原料モノマーとして、多価アルコール成分と、カルボン酸、カルボン酸無水物、カルボン酸エステル等の多価カルボン酸成分とを縮重合させて得られる。
 多価アルコール成分としては、ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレン(炭素数2~3)オキサイド(平均付加モル数1~10)付加物、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、水添ビスフェノールA、ソルビトール、又はそれらのアルキレン(炭素数2~3)オキサイド(平均付加モル数1~10)付加物、芳香族ビスフェノール等が挙げられ、これらの1種以上を含有するものが好ましい。
 また、多価カルボン酸成分としては、フタル酸、イソフタル酸、テレフタル酸、フマル酸、マレイン酸等のジカルボン酸、ドデセニルコハク酸、オクチルコハク酸等の炭素数1~20のアルキル基又は炭素数2~20のアルケニル基で置換されたコハク酸、トリメリット酸、ピロメリット酸、それらの酸の無水物及びそれらの酸のアルキル(炭素数1~3)エステル等が挙げられ、これらの1種以上を含有するものが好ましい。
 これらのポリエステル樹脂のうち、好ましいのは下記式(2)で示される構造単位を有する、全芳香族系のポリエステル樹脂(ポリアリレート樹脂)である。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Ar~Arはそれぞれ独立に置換基を有していてもよいアリーレン基を表し、Xは単結合、酸素原子、硫黄原子、又はアルキレン基を表す。sは0以上2以下の整数を表す。Yは、単結合、酸素原子、硫黄原子、又はアルキレン基を表す。
 Ar~Arを表すアリーレン基の炭素数は、通常6以上であり、また通常20以下、好ましくは10以下、より好ましくは6である。炭素数が多すぎる場合、製造コストが高くなり、電気特性も悪化する恐れがある。
 Ar~Arの具体例としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基等が挙げられる。中でも、アリーレン基としては、電気特性の観点から、1,4-フェニレン基が好ましい。アリーレン基は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
 また、Ar~Arの有していてもよい置換基としては、アルキル基、アリール基、ハロゲン原子、アルコキシ基等が挙げられる。中でも、電荷輸送層用のバインダー樹脂としての機械的特性と電荷輸送層形成用塗布液に対する溶解性とを勘案すれば、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、ハロゲン原子としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。なお、置換基がアルキル基である場合、そのアルキル基の炭素数は通常1以上であり、また、通常10以下、好ましくは8以下、より好ましくは2以下である。
 より詳しくは、Ar及びArは、それぞれ独立に置換基の数は0以上2以下が好ましく、接着性の観点から置換基を有することがより好ましく、中でも、耐摩耗性の観点から置換基の数は1であることが特に好ましい。また、置換基としてはアルキル基が好ましく、メチル基が特に好ましい。
 一方、Ar及びArは、それぞれ独立して、置換基の数は0以上2以下が好ましく、耐摩耗性の観点から置換基を有さないことがより好ましい。
 また、上記式(2)において、Yは、単結合、酸素原子、硫黄原子、又はアルキレン基である。アルキレン基としては、-CH-、-CH(CH)-、-C(CH-、シクロヘキシレンが好ましく、より好ましくは、-CH-、-CH(CH)-、-C(CH-、1,4-シクロヘキシレンであり、特に好ましくは-CH-、-CH(CH)-である。
 また、上記式(2)において、Xは単結合、酸素原子、硫黄原子、又はアルキレン基である。中でも、Xは、酸素原子であることが好ましい。その際、sは1であることが特に好ましい。
 sが1の場合に好ましいジカルボン酸残基の具体的としては、ジフェニルエーテル-2,2’-ジカルボン酸残基、ジフェニルエーテル-2,3’-ジカルボン酸残基、ジフェニルエーテル-2,4’-ジカルボン酸残基、ジフェニルエーテル-3,3’-ジカルボン酸残基、ジフェニルエーテル-3,4’-ジカルボン酸残基、ジフェニルエーテル-4,4’-ジカルボン酸残基等が挙げられる。これらの中でも、ジカルボン酸成分の製造の簡便性を考慮すれば、ジフェニルエーテル-2,2’-ジカルボン酸残基、ジフェニルエーテル-2,4’-ジカルボン酸残基、ジフェニルエーテル-4,4’-ジカルボン酸残基がより好ましく、ジフェニルエーテル-4,4’-ジカルボン酸残基が特に好ましい。
 sが0の場合のジカルボン酸残基の具体例としては、フタル酸残基、イソフタル酸残基、テレフタル酸残基、トルエン-2,5-ジカルボン酸残基、p-キシレン-2,5-ジカルボン酸残基、ナフタレン-1,4-ジカルボン酸残基、ナフタレン-2,3-ジカルボン酸残基、ナフタレン-2,6-ジカルボン酸残基、ビフェニル-2,2’-ジカルボン酸残基、ビフェニル-4,4’-ジカルボン酸残基が挙げられ、好ましくは、フタル酸残基、イソフタル酸残基、テレフタル酸残基、ナフタレン-1,4-ジカルボン酸残基、ナフタレン-2,6-ジカルボン酸残基、ビフェニル-2,2’-ジカルボン酸残基、ビフェニル-4,4’-ジカルボン酸残基であり、特に好ましくは、イソフタル酸残基、テレフタル酸残基であり、これらのジカルボン酸残基を複数組み合わせて用いることも可能である。
 イソフタル酸残基とテレフタル酸残基を組み合わせて用いる場合、イソフタル酸残基とテレフタル酸残基の比率は通常50:50であるが、任意に変更することができる。その場合、テレフタル酸残基の比率が高い程、電気特性の観点からは好ましい。
 本発明で用いられるポリエステル樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは20,000以上、より好ましくは30,000以上であり、また、その上限は、好ましくは80,000以下、より好ましくは70,000以下であることが望ましい。粘度平均分子量の値が小さすぎる場合、ポリエステル樹脂の機械的強度が不足する可能性があり、大きすぎる場合、電荷発生層や電荷輸送層形成のための塗布液の粘度が高すぎて生産性が低下する可能性がある。なお、粘度平均分子量は、例えばウベローデ型毛細管粘度計等を用いて、実施例に記載の方法で測定することができる。
 次に、ポリカーボネート樹脂について説明する。ポリカーボネート樹脂は、ビスフェノール類とホスゲンとを溶液中で反応させる、界面法(界面重縮合法)や溶液法のような溶剤法で製造されたもの、ビスフェノールと炭酸ジエステルとをエステル交換反応により重縮合反応させる溶融法によるものが知られている。
 このうち、界面法により製造されるポリカーボネート樹脂は、高分子量化が可能で、液-液洗浄による精製ができ、様々な種類のビスフェノールに適用可能であることから電子写真感光体用途には広く用いられている。界面法ではホスゲンを原料として使用するため、安全性面が懸念される。溶融法によるポリカーボネート樹脂に関しては、重合できるビスフェノールの種類に制限があり、高分子量化も難しく、洗浄による不純物の除去も困難である一方で、重合工程でホスゲンを使用しないことから、安全性面でメリットがあり、電子写真感光体用途でも使用検討がなされている。
 本発明の電子写真感光体には、公知のビスフェノールを単独あるいは2種以上共重合させたポリカーボネート樹脂を、1種あるいは2種以上混合して使用することができる。公知のビスフェノールの中でも、下記の式(3)で表される構造単位を含むポリカーボネート樹脂が、電気特性、表面硬度、弾性変形率、接着性の観点から好適に用いられる。
Figure JPOXMLDOC01-appb-C000003
 なお、本発明に使用されるポリカーボネート樹脂は、上記式(3)で表される単一ユニットからなるホモポリマーでもよいが、他のビスフェノールユニットとブロックあるいはランダムに共重合させて用いてもよい。共重合させてもよいビスフェノールユニットの例を、下記に示す。共重合比率は、上記式(3)の割合が50質量%以上であることが好ましく、より好ましくは60質量%以上である。
Figure JPOXMLDOC01-appb-C000004
 本発明で用いられるポリカーボネート樹脂の粘度平均分子量の好ましい範囲は、上記ポリエステル樹脂の場合と同様である。
 本発明の電荷輸送層に含まれるバインダー樹脂は、バインダー樹脂A、B共に、上述の弾性変形率の範囲内にあれば特に制限は無いが、電気特性、耐摩耗性、耐フィルミング性、接着性の観点からは、第1の電荷輸送層のバインダー樹脂Aと第2の電荷輸送層のバインダー樹脂Bがそれぞれ異なるモノマーユニットを有することが好ましい。第1の電荷輸送層のバインダー樹脂Aがポリアリレート樹脂であることが、電気特性、耐摩耗性及び接着性の両立の観点から、より好ましい。また、第2の電荷輸送層のバインダー樹脂Bがポリカーボネート樹脂であることが、電気特性、耐摩耗性及び接着性の両立の観点から、より好ましい。
 電荷輸送材料としては、その種類は特に制限されないが、例えば、カルバゾール誘導体、ヒドラゾン化合物、芳香族アミン誘導体、エナミン誘導体、ブタジエン誘導体及びこれらの誘導体が複数結合されたものが好ましい。これらの電荷輸送材料は、何れか1種を単独で用いてもよく、複数種のものを任意の組み合わせで併用してもよい。
 第1の電荷輸送層に用いる電荷輸送材料αの分子量は600以上である。好ましくは680以上、より好ましくは720以上、更に好ましくは750以上である。また溶解性や耐摩耗性の点から、通常1000以下である。上記の範囲内であると、少量で所望の電気特性を発現させ易く、かつ電荷輸送層の弾性変形率が低減しにくくなる点から好ましい。
 第2以降の電荷輸送層は電荷輸送材料を含有することが好ましい。例えば、第2の電荷輸送層が電荷輸送材料βを含有することが好ましい。
 電荷輸送材料を含有する場合は、電荷輸送材料の分子量に特に制限はないが、通常300以上、好ましくは400以上、より好ましくは500以上、更に好ましくは600以上、一層好ましくは680以上、特に好ましくは720以上、最も好ましくは750以上である。また溶解性や耐摩耗性の点から、通常1000以下である。上記の範囲内であると、少量で所望の電気特性を発現させ易く、かつ電荷輸送層の弾性変形率が低減しにくくなる点から好ましい。例えば、第2の電荷輸送層に含有される電荷輸送材料βの少なくとも一つは、分子量600以上の電荷輸送材料γであることがより好ましい。
 第1の電荷輸送層に含まれる電荷輸送材料αの分子量は、第2の電荷輸送層に含まれる電荷輸送材料βの分子量以上であることが好ましい。このような条件を満たすことにより、コストを抑えつつ、耐摩耗性、電気特性のバランスの観点から有利である。
 第1の電荷輸送層及び第2以降の電荷輸送層に含まれる好ましい電荷輸送材料の例を表-1に示す。なお、表-1において、Meはメチル基を表し、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 第2以降の電荷輸送層に用いる電荷輸送材料としては、第1の電荷輸送層に用いる電荷輸送材料αとのマッチングの観点から、イオン化電位の差の絶対値が0.2eV以下であることが好ましく、0.1eV以下であることがより好ましい。第1の電荷輸送層と第2の電荷輸送層に、同一の電荷輸送材料を使用してもよい。その場合、第1の電荷輸送層に用いる電荷輸送材料αの方が、第2の電荷輸送層に用いる電荷輸送材料βより少ないことが、耐摩耗性の観点から好ましい。つまり、第1の電荷輸送層における、バインダー樹脂A100質量部に対する電荷輸送材料αの含有量が、第2の電荷輸送層における、バインダー樹脂B100質量部に対する電荷輸送材料物質βの含有量以下であることが好ましい。なお、第1及び第2の電荷輸送層に異なる電荷輸送材料を使用した場合にも、電荷輸送材料の含有量を上述の関係とすることにより、高い耐摩擦性が得られるため好ましい。
 第1の電荷輸送層中では、耐摩耗性の観点から、バインダー樹脂A100質量部に対して電荷輸送材料αの含有量は10質量部以上40質量部以下であることが好ましく、15質量部以上がより好ましく、また、30質量部以下であることがより好ましい。
 第2の電荷輸送層中では、電気特性、接着性の観点から、バインダー樹脂B100質量部に対して電荷輸送材料βの含有量は、40質量部以上100質量部以下であることが好ましく、50質量部以上がより好ましく、また、90質量部以下であることがより好ましい。
 電荷輸送層の総膜厚は、画像形成装置の設定次第で特に制限はないが、長寿命、画像安定性、帯電安定性の観点から、通常5μm以上、好ましくは10μm以上であり、一方、通常50μm以下、好ましくは45μm以下、更に好ましくは30μm以下の範囲であり、高解像度化の観点からは25μm以下が特に好適である。
 第1及び第2の電荷輸送層の相対膜厚比に関しても、画像形成装置の寿命の設定次第で特に制限はないが、第1の電荷輸送層の膜厚:第2の電荷輸送層の膜厚は10:90~70:30であることが好ましく、15:85~50:50であることがより好ましい。
 <その他の添加物>
 電荷発生層及び電荷輸送層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤等の添加物を含有させてもよい。
 <各層の形成方法>
 電荷発生層及び電荷輸送層は、含有させる物質を溶剤(溶媒又は分散媒)に溶解又は分散させて得られた塗布液を、導電性支持体上に浸漬塗布、リング塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
 塗布液の作製に用いられる溶媒又は分散媒に特に制限は無いが、具体例としては、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4-メトキシ-4-メチル-2-ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせで併用してもよい。
 溶媒又は分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
 本発明の電荷輸送層を二層以上積層させて形成するためには、第1の電荷輸送層形成時に第2の電荷輸送層を侵食しないことが好ましく、第1の電荷輸送層形成時は、リング塗布、スプレー塗布を使用することが好ましい。
 塗布液の乾燥は、室温における乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行ってもよい。
 ≪画像形成装置≫
 次に、本発明の電子写真感光体を備えた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
 図1に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び/又は定着装置7が設けられる。
 電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
 帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。一般的な帯電装置としては、コロトロンやスコロトロン等の非接触のコロナ帯電装置、あるいは電圧印加された帯電部材を感光体表面に接触させて帯電させる接触型帯電装置(直接型帯電装置)が挙げられる。
 接触帯電装置の例としては、帯電ローラー、帯電ブラシ等が挙げられる。なお、図2では、帯電装置2の一例としてローラー型の帯電装置(帯電ローラー)を示している。通常帯電ローラーは樹脂、及び可塑剤等の添加剤を金属シャフトと一体成型して製造され、必要に応じて積層構造を取ることもある。なお、帯電時に印加する電圧としては、直流電圧のみ、又は直流に交流を重畳させて用いることもできる。
 露光装置3は、帯電装置2により帯電した電子写真感光体1に露光を行って電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe-Neレーザー等のレーザー、LED等が挙げられる。また、感光体内部露光方式によって露光を行うようにしてもよい。露光を行う際の光は任意であるが、例えば、波長が780nmの単色光、波長600nm~700nmのやや短波長寄りの単色光、波長380nm~500nmの短波長の単色光等で露光を行えばよい。
 現像装置4は、電子写真感光体上に形成された静電潜像を形成させる。例えば、供給ローラー43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、正極性)に摩擦帯電させ、現像ローラー44に担持しながら搬送して、感光体1の表面に接触させる。
 現像ローラー44に担持された帯電したトナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。
 トナーTの種類は任意であり、粉状トナーのほか、懸濁重合法や乳化重合法等を用いた重合トナー等を用いることができる。特に、重合トナーを用いる場合には径が4~8μm程度の小粒径のものが好ましく、また、トナーの粒子の形状も球形に近いものからポテト状のように球形から外れたものまで様々に使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化に好適に用いられる。
 転写装置5は、現像装置で形成されたトナー像を記録紙Pに転写する。転写装置5は、その種類に特に制限はなく、コロナ転写、ローラー転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用することができる。図1では、転写装置5が電子写真感光体1に対向して配置された転写チャージャー、転写ローラー、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙、印刷媒体)Pに転写するものである。
 クリーニング装置6では転写されずに感光体1の感光面に残留しているトナーTが除去される。クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナー等、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体1表面に残留するトナーが少ないか、ほとんど無い場合には、クリーニング装置6は無くても構わない。
 以上のように構成された画像形成装置(電子写真装置)では、次のようにして画像の記録が行われる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位に帯電される。この際、直流電圧により帯電させてもよく、直流電圧に交流電圧を重畳させて帯電させてもよい。
 続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行う。
 現像装置4は、供給ローラー43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、正極性)に摩擦帯電させ、現像ローラー44に担持しながら搬送して、感光体1の表面に接触させる。
 現像ローラー44に担持された帯電したトナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナー(残トナー)が、クリーニング装置6で除去される。
 トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
 なお、画像形成装置は、上述した構成に加え、例えば除電工程を行うことができる構成としてもよい。除電工程は、電子写真感光体に露光を行うことで電子写真感光体の除電を行う工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。小型化、省エネの観点からは、除電工程を有さないことが好ましい。
 また、画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行うことができる構成としたり、オフセット印刷を行う構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
 なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6及び定着装置7からなる群より選ばれる1つ又は2つ以上の装置と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱可能な構成にしてもよい。
 以下、実施例を示して本発明の実施の形態を更に具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。
 [実施例1]
 <下引き層形成用塗布液の製造>
 平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタンを、メタノール/1-プロパノールの質量比が7/3の混合溶媒中でボールミルにより分散させることにより、表面処理酸化チタンの分散スラリーとした。該分散スラリーと、メタノール/1-プロパノール/トルエンの混合溶媒及び、ε-カプロラクタム[下記式(A)で表される化合物]/ビス(4-アミノ-3-メチルシクロヘキシル)メタン[下記式(B)で表される化合物]/ヘキサメチレンジアミン[下記式(C)で表される化合物]/デカメチレンジカルボン酸[下記式(D)で表される化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表される化合物]の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行なうことにより、メタノール/1-プロパノール/トルエンの質量比が7/1/2で、表面処理酸化チタン/共重合ポリアミドを質量比3/1で含有する、固形分濃度18.0質量%の下引き層形成用塗布液を作製した。
Figure JPOXMLDOC01-appb-C000007
 <電荷発生層形成用塗布液の製造>
 まず、電荷発生物質として、α型(別称B型)オキシチタニウムフタロシアニン20部と1,2-ジメトキシエタン280部とを混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2-ジメトキシエタン255部と4-メトキシ-4-メチル-2-ペンタノン85部との混合液に溶解させて得られたバインダー液、及び1,2-ジメトキシエタン230部を混合して電荷発生層形成用塗布液を調製した。
 <第2の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリカーボネート樹脂(PC1)(粘度平均分子量80,000)100部、電荷輸送材料として前記CT-7で表される化合物60部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、トリベンジルアミン1部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒660部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000008
 <第1の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリアリレート樹脂(PE1)(粘度平均分子量65,000)100部、電荷輸送材料として前記CT-7で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、トリベンジルアミン0.5部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000009
 <感光体の製造>
 表面が粗切削仕上げされ、清浄に洗浄された外径30mm、長さ255mm、肉厚0.75mmのアルミニウム製シリンダー上に、上記で調製した下引き層形成用塗布液、電荷発生層形成用塗布液、第2の電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、0.13μm、0.4μm、20μmとなるように、下引き層、電荷発生層、第2の電荷輸送層を形成した。第2の電荷輸送層の乾燥は、125℃で20分間行なった。室温まで冷却後に、上記で調製した第1の電荷輸送層形成用塗布液をリング塗布法によって、第2の電荷輸送層の上に塗布し、乾燥後の膜厚が10μmとなるように第1の電荷輸送層を形成した。第1の電荷輸送層の乾燥は、125℃で20分間行なった。
<電気特性試験>
 電子写真学会測定標準に従って製造された電子写真特性評価装置(電子写真学会編「続電子写真技術の基礎と応用」、コロナ社、1996年11月15日発行、404-405頁記載)を使用し、上記感光体を、初期表面電位が約-700Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで780nmの単色光とし、0.6μJ/cm露光した際の表面電位(露光部電位;VLと称する)を求めた。露光から電位測定までの時間は、57ミリ秒とした。測定環境は25℃、50%RHで行なった。VLの絶対値が小さいほど、電気特性が良好であることを表す。結果を表-2に示す。
 <画像試験>
 得られた感光体を、Samsung Electronics社製モノクロ複合機 M4580(A4紙毎分47枚印刷、非磁性一成分重合トナー、接触帯電)の感光体カートリッジに搭載して、気温25℃、相対湿度50%下において、印字率5%で、40000枚の連続印字を行い、画像評価および感光層(電荷輸送層)の摩耗量測定(膜厚低減量の定量)を実施した。摩耗量測定は、渦電流方式の膜厚計を使用して、感光体の軸方向にほぼ等間隔に測定し、それを回転方向に120°異なる3軸で測定し、平均を取って算出した。結果を表-2に示す。
 <バインダー樹脂の弾性変形率測定>
 バインダー樹脂100質量部、下記式(1)で表される電荷輸送材料40質量部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05質量部を、テトラヒドロフラン/トルエン(8/2(質量比))に溶解させた塗布液を、ガラス基板上に乾燥後の膜厚が20μmになるように塗布、乾燥して測定サンプルを作製した。
Figure JPOXMLDOC01-appb-C000010
 当該サンプルにつき、Fischer社製微小硬度計FISCHERSCOPE HM2000を用いて、温度25℃、相対湿度50%の環境下で弾性変形率を測定した。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いた。測定条件は以下の通りに設定した。
(測定条件)
 最大押込み加重 5mN
 負荷所要時間 10秒
 除荷所要時間 10秒
 圧子にかかる荷重とその荷重下における押込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図2に示すようなプロファイルを取得し、下記式にて得られた弾性変形率の値を、バインダー樹脂の弾性変形率とした。
   弾性変形率(%)=(We/Wt)×100
 上記式中、Wtは全仕事量(nJ)を表し、図2中のA-B-D-Aで囲まれる面積を示し、Weは弾性変形仕事量(nJ)を表し、図2中のはC-B-D-Cで囲まれる面積を示す。
 得られた弾性変形率を表-2に示す。
 <接着性試験>
 電荷輸送層の接着性の評価は、JIS K5600:1999年に基づき、25マス(5×5マス)の碁盤目試験(カッターナイフ切り込み、テープ剥離法)により行った。結果は、下記の5段階で評価した。結果を表-2に示す。
 5: 剥れ無し
 4: 剥れ2箇所以内。許容できる。
 3: 剥れ3~5箇所。許容できる。
 2: 剥れ6~15箇所。許容できない。
 1: 剥れ16箇所以上。許容できない。
 [実施例2]
 実施例1において、第2の電荷輸送層形成用塗布液の製造及び第1の電荷輸送層形成用塗布液の製造を、それぞれ下記に変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。
 <第2の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリカーボネート樹脂(PC2)(粘度平均分子量30,000)100部、電荷輸送材料として前記CT-5で表される化合物60部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒560部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000011
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE1)(粘度平均分子量65,000)100部、電荷輸送材料として前記CT-5で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
 [実施例3]
 実施例1において、第2の電荷輸送層形成用塗布液の製造及び第1の電荷輸送層形成用塗布液の製造を、それぞれ下記に変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。
 <第2の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリカーボネート樹脂(PC3)(粘度平均分子量50,000)100部、電荷輸送材料として前記CT-5で表される化合物60部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒610部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000012
 <第1の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリアリレート樹脂(PE2)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-5で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000013
 [実施例4]
 実施例1において、第2の電荷輸送層形成用塗布液の製造及び第1の電荷輸送層形成用塗布液の製造を、それぞれ下記に変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。
 <第2の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリカーボネート樹脂(PC3)(粘度平均分子量50,000)100部、電荷輸送材料として下記CT-Aで表される化合物80部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒610部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000014
 <第1の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリアリレート樹脂(PE3)(粘度平均分子量40,000、テレフタル酸:イソフタル酸=45:55(モル比))100部、電荷輸送材料として前記CT-9で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒500部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000015
 [実施例5]
 実施例3において、第2の電荷輸送層形成用塗布液の製造を、下記に変更した以外は、実施例3と同様に感光体を作製、評価した。結果を表-2に示す。
 <第2の電荷輸送層形成用塗布液の製造>
 前記のPC1と同じ繰返し構造単位を有し、分子量の異なるポリカーボネート樹脂(PC5)(粘度平均分子量20,000)100部、電荷輸送材料として前記CT-5で表される化合物60部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、トリベンジルアミン1部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒560部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
 [実施例6]
 実施例1において、第1の電荷輸送層形成用塗布液の製造を、下記に変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE1)(粘度平均分子量65,000)100部、電荷輸送材料として前記CT-4で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、トリベンジルアミン0.5部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
 [比較例1]
 実施例1において、第1の電荷輸送層形成用塗布液の製造を下記に変更し、第2の電荷輸送層形成用塗布液を使用せず、第2の電荷輸送層を形成しなかった以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。接着性に著しく劣り、碁盤目試験で全て剥離した。
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE1)(粘度平均分子量65,000)100部、電荷輸送材料として前記CT-7で表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、トリベンジルアミン0.5部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
 [比較例2]
 実施例3において、第2の電荷輸送層形成用塗布液の製造を下記に変更した以外は、実施例3と同様に感光体を作製、評価した。結果を表-2に示す。摩耗性が、同じ第1の電荷輸送層を使用した実施例3と比べて悪化した。
 <第2の電荷輸送層形成用塗布液の製造>
 下記の繰返し構造単位を有するポリカーボネート樹脂(PC4)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-5で表される化合物80部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000016
 [比較例3]
 実施例1において、第2の電荷輸送層形成用塗布液の製造を下記に変更し、第2の電荷輸送層の膜厚を15μmに変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。比較例3は実施例1よりも摩耗量が増え、耐摩耗性が悪化した。
 <第2の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリカーボネート樹脂(PC4)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-7で表される化合物60部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、トリベンジルアミン1部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
 [比較例4]
 実施例1において、第2の電荷輸送層形成用塗布液の製造及び第1の電荷輸送層形成用塗布液の製造を、それぞれ下記に変更した以外は、実施例1と同様に感光体を作製、評価した。結果を表-2に示す。初期から画像濃度が低く、繰り返すうちに更に画像濃度が低くなったので、画像試験を中途で中止した。表面電位を測定したところ、残留電位が著しく高くなっていることが分かった。
 <第2の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリカーボネート樹脂(PC4)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-Aで表される化合物80部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)4部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第2の電荷輸送層形成用塗布液を調製した。
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE2)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-Aで表される化合物20部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒600部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
 [比較例5]
 比較例4において、第1の電荷輸送層形成用塗布液の製造を下記に変更した以外は、比較例4と同様に感光体を作製、評価した。結果を表-2に示す。比較例5は比較例4よりも、画像濃度は向上したが、摩耗量が非常に多くなった。
 [比較例6]
 実施例4において、第1の電荷輸送層形成用塗布液の製造を下記に変更した以外は、実施例4と同様に感光体を作製、評価した。結果を表-2に示す。初期から画像濃度が低く、繰り返すうちに更に画像濃度が低くなったので、画像試験を中途で中止した。表面電位を測定したところ、残留電位が著しく高くなっていることが分かった。
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE2)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-Bで表される化合物50部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒560部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000017
 [比較例7]
 実施例4において、第1の電荷輸送層形成用塗布液の製造を下記に変更した以外は、実施例4と同様に感光体を作製、評価した。結果を表-2に示す。初期から画像濃度が低く、繰り返すうちに更に画像濃度が低くなったので、画像試験を中途で中止した。表面電位を測定したところ、残留電位が著しく高くなっていることが分かった。
 <第1の電荷輸送層形成用塗布液の製造>
 前記の繰返し構造単位を有するポリアリレート樹脂(PE2)(粘度平均分子量40,000)100部、電荷輸送材料として前記CT-Cで表される化合物50部、添加剤として酸化防止剤(チバスペシャルティーケミカルズ社製、商品名Irganox1076)2部、及びシリコーンオイル(信越シリコーン社製:商品名 KF96)0.05部を、テトラヒドロフラン/トルエン(8/2(質量比))の混合溶媒560部に溶解させて第1の電荷輸送層形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-T000019
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年9月29日出願の日本特許出願(特願2016-191959)に基づくものであり、その内容はここに参照として取り込まれる。
 1  感光体(電子写真感光体)
 2  帯電装置(帯電ローラー;帯電部)
 3  露光装置(露光部)
 4  現像装置(現像部)
 5  転写装置
 6  クリーニング装置
 7  定着装置
 41 現像槽
 42 アジテータ
 43 供給ローラー
 44 現像ローラー
 45 規制部材
 71 上部定着部材(定着ローラー)
 72 下部定着部材(定着ローラー)
 73 加熱装置
 T  トナー
 P  記録紙(用紙、印刷媒体)

Claims (11)

  1.  導電性支持体と、前記導電性支持体上に少なくとも電荷発生層及び電荷輸送層と、を有する電子写真感光体であって、
     前記電荷輸送層は、最外層である第1の電荷輸送層、及び、前記第1の電荷輸送層と接する第2の電荷輸送層の少なくとも二層からなり、
     前記第1の電荷輸送層に含まれるバインダー樹脂Aの弾性変形率をT1(%)とし、前記第2の電荷輸送層に含まれるバインダー樹脂Bの弾性変形率をT2(%)としたとき、{0≦(T1-T2)≦4}の関係を満たし、
     前記第1の電荷輸送層が、分子量600以上の電荷輸送材料αを含有する電子写真感光体。
  2.  前記T1が44%以上49%以下である請求項1に記載の電子写真感光体。
  3.  前記T2が43%以上47%以下である請求項1または2に記載の電子写真感光体。
  4.  前記第2の電荷輸送層が電荷輸送材料βを含有する請求項1乃至3の何れか一項に記載の電子写真感光体。
  5.  前記電荷輸送材料βの少なくとも一つが、分子量600以上の電荷輸送材料γである請求項4に記載の電子写真感光体。
  6.  前記第1の電荷輸送層において、前記バインダー樹脂A100質量部に対する前記電荷輸送材料αの含有量が10質量部以上40質量部以下である請求項1乃至5の何れか一項に記載の電子写真感光体。
  7.  前記第1の電荷輸送層における、前記バインダー樹脂A100質量部に対する前記電荷輸送材料αの含有量が、前記第2の電荷輸送層における、前記バインダー樹脂B100質量部に対する前記電荷輸送材料βの含有量以下である請求項4乃至6の何れか一項に記載の電子写真感光体。
  8.  前記バインダー樹脂Aと前記バインダー樹脂Bはそれぞれ異なるモノマーユニットを有する請求項1乃至7の何れか一項に記載の電子写真感光体。
  9.  前記バインダー樹脂Aがポリアリレート樹脂であり、前記バインダー樹脂Bがポリカーボネート樹脂である請求項1乃至8の何れか一項に記載の電子写真感光体。
  10.  請求項1乃至9の何れか一項に記載の電子写真感光体、ならびに、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置、現像されたトナーを転写する転写装置、前記電子写真感光体上の残トナーをクリーニングするクリーニング装置、及び転写された前記トナーを印刷媒体に定着させる定着装置からなる群から選ばれる少なくとも1つの装置、を備える電子写真感光体カートリッジ。
  11.  請求項1乃至9の何れか一項に記載の電子写真感光体、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光させて静電潜像を形成する露光装置、及び、前記電子写真感光体上に形成された前記静電潜像を現像する現像装置、を備える画像形成装置。
     
PCT/JP2017/035579 2016-09-29 2017-09-29 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 WO2018062518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780060056.8A CN109791383B (zh) 2016-09-29 2017-09-29 电子照相感光体、电子照相感光体盒及图像形成装置
JP2018542953A JP7092033B2 (ja) 2016-09-29 2017-09-29 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
US16/368,121 US10599057B2 (en) 2016-09-29 2019-03-28 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191959 2016-09-29
JP2016191959 2016-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,121 Continuation US10599057B2 (en) 2016-09-29 2019-03-28 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus

Publications (1)

Publication Number Publication Date
WO2018062518A1 true WO2018062518A1 (ja) 2018-04-05

Family

ID=61760845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035579 WO2018062518A1 (ja) 2016-09-29 2017-09-29 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Country Status (4)

Country Link
US (1) US10599057B2 (ja)
JP (1) JP7092033B2 (ja)
CN (1) CN109791383B (ja)
WO (1) WO2018062518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060663A (ja) * 2018-10-09 2020-04-16 富士電機株式会社 電子写真用感光体およびそれを搭載した電子写真装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098643A (ja) * 1998-09-18 2000-04-07 Konica Corp ベルト状電子写真感光体、画像形成方法及び画像形成装置
JP2004252066A (ja) * 2003-02-19 2004-09-09 Minolta Co Ltd 有機感光体
JP2005134709A (ja) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2011064904A (ja) * 2009-09-16 2011-03-31 Fuji Xerox Co Ltd 像保持体
JP2017156518A (ja) * 2016-03-01 2017-09-07 三菱ケミカル株式会社 シート状電子写真感光体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128872A (ja) * 1993-10-29 1995-05-19 Konica Corp 電子写真感光体とその製造法
JPH08106166A (ja) 1994-10-06 1996-04-23 Konica Corp 像保持部材、画像形成方法及び装置ユニット
JPH0943887A (ja) 1995-05-22 1997-02-14 Konica Corp 電子写真感光体、その製造方法、電子写真装置及び装置ユニット
JPH0915878A (ja) 1995-06-29 1997-01-17 Konica Corp 画像形成方法
DE60318155T2 (de) * 2002-07-15 2008-12-11 Canon K.K. Elektrophotografisches,photoempfindliches Element, Bildaufzeichnungsgerät, und Prozesskartusche
US7125633B2 (en) * 2002-12-16 2006-10-24 Xerox Corporation Imaging member having a dual charge transport layer
WO2005093520A1 (ja) 2004-03-26 2005-10-06 Canon Kabushiki Kaisha 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ および電子写真装置
JP2007102072A (ja) 2005-10-07 2007-04-19 Konica Minolta Business Technologies Inc 有機感光体、画像形成方法及び画像形成装置
JP2007108311A (ja) 2005-10-12 2007-04-26 Konica Minolta Business Technologies Inc 有機感光体、画像形成方法及び画像形成装置
JP4138832B2 (ja) 2005-11-07 2008-08-27 シャープ株式会社 電子写真感光体
JP2009075246A (ja) 2007-09-19 2009-04-09 Fuji Xerox Co Ltd 像保持体及び画像形成装置
JP5233225B2 (ja) * 2007-09-28 2013-07-10 コニカミノルタビジネステクノロジーズ株式会社 画像表示装置
JP2009186984A (ja) 2008-01-10 2009-08-20 Ricoh Co Ltd 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ
US20090185821A1 (en) 2008-01-10 2009-07-23 Ricoh Company, Ltd Electrophotographic photoreceptor, and image formihg appratus and process cartridge using same
US8007971B2 (en) * 2008-06-30 2011-08-30 Xerox Corporation Tris(enylaryl)amine containing photoconductors
JP5564811B2 (ja) 2009-03-24 2014-08-06 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2011095649A (ja) 2009-11-02 2011-05-12 Konica Minolta Business Technologies Inc 電子写真感光体と画像形成装置
JP2013213908A (ja) 2012-04-02 2013-10-17 Canon Inc 電子写真感光体、プロセスカートリッジ、および電子写真装置
JP2014016609A (ja) * 2012-06-14 2014-01-30 Mitsubishi Chemicals Corp 画像形成装置および電子写真感光体
KR20150040281A (ko) * 2012-07-31 2015-04-14 미쓰비시 가가꾸 가부시키가이샤 전자 사진 감광체, 전자 사진 감광체 카트리지, 화상 형성 장치, 및 트리아릴아민 화합물
JP6135369B2 (ja) * 2012-07-31 2017-05-31 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6481324B2 (ja) * 2013-12-13 2019-03-13 株式会社リコー 電子写真感光体、電子写真方法、電子写真装置及びプロセスカートリッジ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098643A (ja) * 1998-09-18 2000-04-07 Konica Corp ベルト状電子写真感光体、画像形成方法及び画像形成装置
JP2004252066A (ja) * 2003-02-19 2004-09-09 Minolta Co Ltd 有機感光体
JP2005134709A (ja) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2011064904A (ja) * 2009-09-16 2011-03-31 Fuji Xerox Co Ltd 像保持体
JP2017156518A (ja) * 2016-03-01 2017-09-07 三菱ケミカル株式会社 シート状電子写真感光体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060663A (ja) * 2018-10-09 2020-04-16 富士電機株式会社 電子写真用感光体およびそれを搭載した電子写真装置
JP7187958B2 (ja) 2018-10-09 2022-12-13 富士電機株式会社 電子写真用感光体およびそれを搭載した電子写真装置

Also Published As

Publication number Publication date
US20190219937A1 (en) 2019-07-18
CN109791383B (zh) 2022-11-22
US10599057B2 (en) 2020-03-24
JP7092033B2 (ja) 2022-06-28
JPWO2018062518A1 (ja) 2019-07-11
CN109791383A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
JP2014016609A (ja) 画像形成装置および電子写真感光体
WO2014021340A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
WO2014021341A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP2012123379A (ja) 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置
JP6160370B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP5768556B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP6060738B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP6160103B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2003307861A (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP7092033B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5482399B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5803743B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2016173401A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2014167555A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6447062B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP6331630B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2013097270A (ja) 電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP2017182063A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2014095867A (ja) 電子写真感光体及び画像形成装置
JP5556327B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5803744B2 (ja) 電荷輸送物質、電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP6102639B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP6307885B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5835105B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP2015017224A (ja) ポリアリレート樹脂、及びそれを用いた電子写真感光体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542953

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856465

Country of ref document: EP

Kind code of ref document: A1