WO2018043228A1 - スイッチング電源装置および半導体装置 - Google Patents

スイッチング電源装置および半導体装置 Download PDF

Info

Publication number
WO2018043228A1
WO2018043228A1 PCT/JP2017/030032 JP2017030032W WO2018043228A1 WO 2018043228 A1 WO2018043228 A1 WO 2018043228A1 JP 2017030032 W JP2017030032 W JP 2017030032W WO 2018043228 A1 WO2018043228 A1 WO 2018043228A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
frequency
modulation
control
signal
Prior art date
Application number
PCT/JP2017/030032
Other languages
English (en)
French (fr)
Inventor
健介 高橋
隆司 佐治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018537172A priority Critical patent/JP6778267B2/ja
Priority to CN201780051572.4A priority patent/CN109643957B/zh
Publication of WO2018043228A1 publication Critical patent/WO2018043228A1/ja
Priority to US16/282,723 priority patent/US10630187B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to a switching power supply device having a frequency jitter (frequency modulation) control function having a high noise reduction effect of a switching power supply including frequency change control, and a semiconductor device constituting the switching power supply device.
  • Switching power supplies are widely used in electronic devices such as home appliances and office equipment for the purpose of improving power conversion efficiency and downsizing.
  • the switching power supply device uses a switching operation by a semiconductor switching element or the like to control an output voltage and supply power to a load.
  • PWM Pulse Width Modulation
  • control is an example of frequency fixed control for controlling at a constant switching frequency regardless of the size of the output load.
  • PFM Pulse Frequency Modulation
  • control is available as frequency change control for changing the switching frequency in accordance with the size of the output load in order to improve the efficiency of the standby state of the switching power supply or light load.
  • the switching power supply disclosed in Patent Document 1 increases the amplitude of the modulation signal when the change in the switching frequency due to the feedback signal control in PFM control is applied to cancel the change in the switching frequency due to the modulation signal. By setting, it is possible to prevent a decrease in the frequency jitter modulation effect and to effectively reduce noise.
  • the feedback signal controls the turn-on timing of the switching element in the PFM control
  • the modulation signal controls the turn-off timing of the switching element
  • the feedback signal and the modulation signal are configured to be controlled separately.
  • JP 2014-204544 A Japanese Patent No. 5899504
  • the turn-on timing modulation is performed in the PWM control and the turn-off timing modulation is performed in the PFM control.
  • the stability of the control switching is not specified.
  • the control tends to become unstable.
  • the present disclosure is intended to solve the above-described problems and to provide a switching power supply device having a frequency jitter control function with a high noise reduction effect of a composite control switching power supply including frequency change control and frequency fixed control.
  • a switching power supply device includes an energy conversion circuit to which a DC input voltage is input, and rectifies and smoothes a voltage output from the energy conversion circuit to output an output voltage to a load.
  • An output state detection circuit that generates an output state signal indicating a load state of a load, and the switching control circuit controls the turn-on timing of the switching element according to the output state signal to switch the switching element.
  • Change the first switching frequency which is the frequency Frequency change control mode
  • a switching frequency of the switching element is set to a constant second switching frequency with respect to the output state signal, and a fixed frequency control for controlling the turn-off timing of the switching element according to the output state signal Switching control according to the output state signal, and in the frequency change control mode, the turn-off timing of the switching element is modulated by the first modulation signal so that the first switching frequency is modulated and controlled.
  • Performing a first modulation control to control, in the frequency fixed control mode, performing a second modulation control to modulate the second switching frequency with a second modulation signal, and from the frequency change control mode to the frequency Execute in frequency change control mode when switching to fixed control mode
  • the first modulation control is continuously executed even when the frequency fixed control mode is entered, or the second modulation control mode is executed in the frequency fixed control mode when switching from the frequency fixed control mode to the frequency change control mode. At least one of the modulation control is executed continuously even when the frequency change control mode is entered.
  • the switching power supply device According to the switching power supply device according to the present disclosure, there is no significant decrease in the modulation effect in both the frequency change control and the frequency fixed control, and the frequency dispersion can be effectively performed. Further, switching between the frequency change control and the frequency fixed control is possible. Stable operation is possible at the boundary.
  • the switching control circuit may gradually decrease the modulation amplitude of the first modulation control before switching to the frequency fixed control mode when the frequency change control mode is switched to the frequency fixed control mode, or the frequency When switching from the fixed control mode to the frequency change control mode, at least one of gradually decreasing the modulation amplitude of the second modulation control before switching to the frequency change control mode may be executed.
  • the modulation amplitude is gradually reduced when switching between the frequency change control and the frequency fixed control, so that stable operation is possible at the switching boundary.
  • the switching control circuit compares the turn-on timing of the switching element modulated and controlled according to the second modulation signal with the turn-on timing set in the frequency change control mode, and at the later turn-on timing.
  • the turn-on of the switching element may be controlled.
  • the second modulation amplitude can be gradually reduced with a simple circuit, and stable operation can be performed at the switching boundary.
  • the switching control circuit compares the turn-off timing of the switching element modulated and controlled according to the first modulation signal with the turn-off timing set in the frequency fixed control mode, and at the later turn-off timing.
  • the turn-off of the switching element may be controlled.
  • the first modulation amplitude can be gradually reduced with a simple circuit, and stable operation can be performed at the switching boundary.
  • the switching control circuit may gradually decrease the modulation amplitude of the first modulation control when the frequency change control mode is switched to the frequency fixed control mode after the frequency fixed control mode is entered, or the frequency At the time of switching from the fixed control mode to the frequency change control mode, at least one of gradually decreasing the modulation amplitude of the second modulation control after the frequency change control mode is entered may be executed.
  • the modulation amplitude is gradually reduced when switching between the frequency change control and the frequency fixed control, so that stable operation is possible at the switching boundary.
  • the switching control circuit may perform modulation control of the first switching frequency with the second modulation signal over the entire section operated in the frequency change control mode.
  • the switching power supply device it is possible to enhance the modulation effect in the frequency change control region and effectively disperse the frequency. Furthermore, the first modulation amplitude can be reduced, and the control stability can be improved.
  • the modulation amplitude may be set larger as the switching frequency of the switching element becomes higher.
  • the switching power supply device it is possible to enhance the modulation effect in the frequency change control region and effectively disperse the frequency. Furthermore, the first modulation amplitude can be reduced, and the control stability can be improved.
  • the switching control circuit may control the turn-off timing of the switching element in the frequency change control mode to be constant regardless of the output state signal.
  • the switching power supply device According to the switching power supply device according to the present disclosure, it is possible to improve the control stability against the output load fluctuation in the frequency change control region.
  • the switching control circuit may change the turn-off timing of the switching element in the frequency change control mode according to the output state signal.
  • the switching power supply device According to the switching power supply device according to the present disclosure, it is possible to increase the control response speed with respect to the output load fluctuation in the frequency change control region.
  • the switching control circuit may delay the turn-off timing of the switching element as the first switching frequency in the frequency change control mode increases.
  • the switching power supply device According to the switching power supply device according to the present disclosure, it is possible to increase the control response speed with respect to the output load fluctuation in the frequency change control region.
  • the switching control circuit may be a semiconductor device formed as an integrated circuit on a semiconductor substrate.
  • the number of filter parts of the switching power supply device can be significantly reduced, and the switching power supply device can be easily reduced in size and weight and cost.
  • a switching power supply having a frequency jitter control function capable of stable operation at the control switching boundary can be realized by continuously executing the control after the frequency change control and the frequency fixed control are switched.
  • FIG. 1 is a circuit diagram illustrating a configuration example of the switching power supply according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of the feedback signal control circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of the modulation signal generating circuit according to the first embodiment.
  • FIG. 4 is a circuit diagram showing one configuration of the low-frequency oscillator according to the first embodiment.
  • FIG. 5 is a circuit diagram showing one configuration of the PFM control circuit according to the first embodiment.
  • FIG. 6 is a circuit diagram showing one configuration of the PFM control current generating circuit according to the first embodiment.
  • FIG. 7 is a circuit diagram showing one configuration of the minimum current selection circuit according to the first embodiment.
  • FIG. 1 is a circuit diagram illustrating a configuration example of the switching power supply according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of the feedback signal control circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration of the modul
  • FIG. 8 is a circuit diagram showing one configuration of the reference circuit according to the first embodiment.
  • FIG. 9 is a diagram showing a relationship example between the switching frequency for the output state signal and the drain current peak value that can be passed through the switching element in the semiconductor device according to the first embodiment.
  • FIG. 10 is a diagram illustrating a relationship example of the switching frequency of the power supply with respect to the load in the switching power supply apparatus according to the first embodiment.
  • FIG. 11 is a circuit diagram illustrating a configuration example of the switching power supply according to the second embodiment.
  • FIG. 12 is a circuit diagram showing one configuration of the PFM control circuit according to the second embodiment.
  • FIG. 13 is a circuit diagram showing one configuration of the PFM control current generating circuit according to the second embodiment.
  • FIG. 14 is a circuit diagram showing one configuration of the reference circuit according to the second embodiment.
  • FIG. 15 is a diagram illustrating a relationship example between the switching frequency for the output state signal and the drain current peak value that can be passed through the switching element in the semiconductor device according to the second embodiment.
  • FIG. 16 is a circuit diagram showing one configuration of the PFM control current generating circuit according to the third embodiment.
  • FIG. 17 is a diagram illustrating a relationship example between the switching frequency for the output state signal and the drain current peak value that can be passed through the switching element in the semiconductor device according to the third embodiment.
  • FIG. 18 is a circuit diagram showing one configuration of the PFM control current generating circuit according to the fourth embodiment.
  • FIG. 19 is a circuit diagram showing one configuration of the minimum current selection circuit according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating a relationship example between the switching frequency for the output state signal and the drain current peak value that can be passed through the switching element in the semiconductor device according to the fourth embodiment.
  • FIG. 21 is a circuit diagram showing one configuration of the reference circuit according to the fifth embodiment.
  • FIG. 22 is a diagram illustrating a relationship example between the switching frequency for the output state signal and the drain current peak value that can be passed through the switching element in the semiconductor device according to the fifth embodiment.
  • FIG. 23 is a circuit diagram illustrating a configuration example of a switching power supply device according to a comparative reference example.
  • FIG. 23 shows a configuration example of a switching power supply device including a semiconductor device having a PFM control circuit according to a comparative reference example.
  • both the feedback signal V_EAO of the feedback signal control circuit 11 and the modulation signal I_Jitter of the modulation signal generation circuit 12 are input to the PFM control circuit 13e that determines the ON timing of the switching element 2.
  • a feedback signal V_EAO that changes according to the load 7 and a modulation signal I_Jitter that gives a periodic fluctuation signal with a constant amplitude regardless of the state of the load 7 are both supplied to the PFM control circuit 13e that determines the turn-on timing of the switching element 2.
  • the load 7 fluctuates due to the input / output ripple of the switching power supply, etc.
  • the feedback signal and the modulation signal are contributed so as to cancel each other and the modulation effect is canceled.
  • the effect of modulation cannot be obtained, or the noise terminal noise of the power supply may deteriorate due to modulation below the setting.
  • Patent Document 1 and Patent Document 2 disclose conventional techniques for improving these problems.
  • the switching power supply disclosed in Patent Document 1 increases the amplitude of the modulation signal when the change in the switching frequency due to the feedback signal control in PFM control is applied to cancel the change in the switching frequency due to the modulation signal. By setting, it is possible to prevent a decrease in the frequency jitter modulation effect and to effectively reduce noise.
  • the feedback signal controls the turn-on timing of the switching element in the PFM control
  • the modulation signal controls the turn-off timing of the switching element
  • the feedback signal and the modulation signal are configured to be controlled separately.
  • the turn-on timing modulation is performed in the PWM control and the turn-off timing modulation is performed in the PFM control.
  • the stability of the control switching is not specified.
  • the control tends to become unstable.
  • This disclosure solves the above-described problems and provides a switching power supply device having a frequency jitter control function with a high noise reduction effect of a composite control switching power supply including frequency change control and frequency fixed control.
  • FIG. 1 is a circuit diagram showing a configuration of a switching power supply device including the semiconductor device for switching control according to the first embodiment.
  • a transformer 1 has a primary winding 1a, a secondary winding 1b, and an auxiliary winding 1c, and the polarities of the primary winding 1a and the secondary winding 1b are reversed.
  • This switching power supply device is a flyback type.
  • the switching element 2 which comprises a part of switching control circuit 3 is connected to the primary winding 1a.
  • the switching operation of the switching element 2 is controlled by changing the voltage applied to the control electrode (gate) of the switching element 2.
  • the secondary winding 1b is connected to an output rectifying / smoothing circuit 6 composed of a rectifying diode 6a and a smoothing capacitor 6b, and an AC voltage induced in the secondary winding 1b by the switching operation of the switching element 2 is output to the secondary winding 1b.
  • the output DC voltage Vout is generated by rectifying and smoothing by the rectifying and smoothing circuit 6 and supplied to the load 7.
  • the switching control circuit 3 including the switching element 2 is integrated on the same semiconductor substrate to constitute one semiconductor device.
  • the switching element 2 is composed of a power MOSFET or the like.
  • the portion excluding the switching element 2 and the switching element 2 need not be provided on the same semiconductor substrate.
  • an output terminal for outputting a control signal from the semiconductor substrate on which the portion excluding the switching element 2 in the switching control circuit 3 is disposed is provided, and the switching element 2 disposed on the other semiconductor substrate. You may make it connect to the gate of this.
  • the switching control circuit 3 has four terminals, a DRAIN terminal, an FB terminal, a VCC terminal, and a GND terminal, as external input / output terminals. Also, for example, the switching element 2, the regulator 8, the start / stop circuit 10, the feedback signal control circuit 11, the modulation signal generation circuit 12, the PFM control circuit 13, the reference circuit 14, the on-time blanking pulse generation circuit 17, and the drain current detection
  • the circuit 21 is configured.
  • the DRAIN terminal is a terminal connected to the connection point between the primary winding 1a of the transformer 1 and the switching element 2, that is, the drain of the switching element 2.
  • the switching element 2 may be a power switching element different from the power MOSFET.
  • IGBT insulated gate bipolar transistor
  • the VCC terminal is a terminal for connecting the output of the rectifying / smoothing circuit 4 composed of the rectifying diode 4 a and the smoothing capacitor 4 b connected to the auxiliary winding 1 c of the transformer 1 and the regulator 8 built in the switching control circuit 3.
  • the FB terminal is a terminal for inputting an output state signal (for example, a feedback signal such as a current by a photocoupler) output from the output state detection circuit 5 to the feedback signal control circuit 11 of the switching control circuit 3.
  • an output state signal for example, a feedback signal such as a current by a photocoupler
  • the switching control circuit 3 instead of inputting the output state signal to the FB terminal, the switching control circuit 3 from the auxiliary power supply voltage VCC obtained by rectifying and smoothing the AC voltage generated in the auxiliary winding 1c of the transformer 1 through the output state detecting circuit 5 is used.
  • the feedback signal control circuit 11 may be input.
  • the GND terminal is a terminal that connects the source of the switching element 2 and the GND that is the potential reference of the switching control circuit 3 to the ground level, and is connected to the low potential side terminal of the two terminals to which the input DC voltage Vin is applied. ing.
  • the regulator 8 is connected to the DRAIN terminal, the VCC terminal, the start / stop circuit 10, the smoothing capacitor 9, and the internal circuit voltage source VDD of the switching control circuit 3.
  • the regulator 8 cuts the starting current.
  • the VCC terminal voltage corresponds to the voltage obtained by rectifying and smoothing the voltage of the auxiliary winding 1c of the transformer 1, that is, the charging voltage of the smoothing capacitor 4b.
  • the VCC terminal voltage drops to the stop voltage of the switching control circuit 3
  • current is supplied from the DRAIN terminal to the VCC terminal as before the start, and the VCC terminal voltage rises again.
  • the internal circuit voltage source VDD is controlled by the regulator 8 so as to be a constant voltage.
  • the start / stop circuit 10 monitors the VCC terminal voltage, and controls the start and stop of the switching element 2 according to the magnitude of the VCC terminal voltage.
  • an H level is output to one of the NAND circuits 19, and when the VCC terminal voltage decreases to the stop voltage, an L level is output.
  • H level corresponds to a predetermined voltage level higher than 0V
  • L level corresponds to a predetermined voltage level of 0V or more lower than “H level”.
  • the feedback signal control circuit 11 receives the output state signal output from the output state detection circuit 5 through the FB terminal, and sets the current or switching frequency that flows through the switching element 2 so as to stabilize the output DC voltage Vout. .
  • FIG. 2 is a circuit diagram showing a configuration of the feedback signal control circuit 11 according to the first embodiment.
  • the feedback signal control circuit 11 includes P-type MOSFETs 73 and 74, N-type MOSFETs 75, 76, 77, and 79, constant voltage sources 78 and 82, a resistor 80, and an NPN bipolar transistor 81, and an N-type MOSFET 77, a resistor 80, and an NPN bipolar transistor.
  • the transistor 81 and the constant voltage source 82 constitute an IV converter.
  • the P-type MOSFETs 73 and 74, the N-type MOSFETs 75 and 79, and the N-type MOSFETs 76 and 77 are mirror circuits.
  • the voltage of the output V_EAO that has been voltage-converted by the IV converter is determined by the current flowing through the resistor 80 and changes according to the following equation (1).
  • V_EAO VR ⁇ Vbe ⁇ R ⁇ I (1)
  • V_EAO is the output voltage of the IV converter
  • VR is the constant voltage value of the constant voltage source 82
  • Vbe is the voltage between BE of the NPN bipolar transistor 81
  • R is the resistance value of the resistor 80
  • the output voltage V_EAO from the feedback signal control circuit 11 is input to the PFM control circuit 13 and the reference circuit 14, and the current flowing through the switching element 2 and the switching frequency are controlled.
  • the modulation signal generation circuit 12 inputs a current modulation signal I_jitter having a periodic current to the PFM control circuit 13 and the reference circuit 14, and controls turn-on timing modulation and turn-off timing modulation.
  • FIG. 3 is a circuit diagram showing one configuration of the modulation signal generation circuit 12 of the first embodiment.
  • the modulation signal generating circuit 12 converts the triangular wave voltage output from the low frequency oscillator 50 into a current by a VI converter composed of an NPN bipolar transistor 51, a resistor 52, and P-type MOSFETs 53 and 54, and a current modulation signal I_Jitter Output as. Further, a correction constant current source 55 is connected so that the average value of the current modulation signal is zero reference. Therefore, when the current modulation signal is positive with respect to the zero reference, a current flows so as to flow out from the I_Jitter output of the modulation signal generation circuit 12, and when the current modulation signal is negative with respect to the zero reference, the modulation signal is generated. A current flows so as to flow from the I_Jitter output of the circuit 12 to the constant current source 55.
  • FIG. 4 is a circuit diagram showing a configuration of the low-frequency oscillator 50 according to the first embodiment.
  • the low frequency oscillator 50 includes constant current sources 59, 60 and 61, P-type MOSFETs 62, 63 and 70, N-type MOSFETs 64 and 65, an inverter circuit 66, a capacitor 67, a resistor 68, and a comparator 69.
  • the N-type MOSFETs 64 and 65 are mirror circuits.
  • the P-type MOSFETs 63 and 70 are turned on.
  • the P-type MOSFET 62 is in an off state because an H level signal is input to the gate via the inverter circuit 66.
  • the P-type MOSFET 63 is on, the constant current I 0 from the constant current source 59 flows into the capacitor 67 via the P-type MOSFET 63.
  • the N-type MOSFETs 64 and 65 are mirror circuits, for example, when the mirror ratio of the mirror circuit is 1, the current flowing through the N-type MOSFET 65 is also I 0 .
  • the electric charge stored in the capacitor 67 is extracted by the constant current I 0 , and as a result, the voltage Vb at the point b decreases.
  • the output signal of the comparator 69 becomes L level again.
  • the output triangular wave voltage from the low-frequency oscillator 50 is changed to the first voltage value (I 1 ⁇ R0) and the second voltage value ((I 1 + I 2 ) ⁇ R0).
  • the voltage range (I 2 ⁇ R0) is continuously changed with the period TM.
  • the period TM of the low frequency oscillator 50 is preferably about 100 ⁇ s to several hundreds of ms.
  • the PFM control circuit 13 includes an oscillator 100 inside and outputs a clock signal Set for turning on the switching element 2.
  • FIG. 5 is a circuit diagram showing a configuration of the PFM control circuit 13 according to the first embodiment.
  • the PFM control circuit 13 includes an oscillator 100, a PFM control current generation circuit 200, and a pulse generator 300.
  • the oscillator 100 generates a frequency of the clock signal Set by a current signal I_OSC output from the PFM control current generation circuit 200. Adjust.
  • the oscillator 100 includes P-type MOSFETs 102 and 103, N-type MOSFETs 104 and 105, a capacitor 106, comparators 107 and 108, constant voltage sources 110 and 111, an RS flip-flop circuit 112, an inverter circuit 113, and an RS flip-flop circuit 112.
  • the capacitor 106 is charged / discharged according to the output state.
  • the set state is established.
  • the signal level of the output signal (Q) of the RS flip-flop circuit 112 becomes H level, the signal is passed through the inverter circuit 113.
  • the P-type MOSFET 102 is turned on, and the current I_OSC flows through the N-type MOSFET 104 via the P-type MOSFET 102. Since the N-type MOSFETs 104 and 105 are mirror circuits, for example, when the mirror ratio of the mirror circuit is 1, the current flowing through the N-type MOSFET 105 is also I_OSC.
  • the reset state is established, and when the signal level of the output signal (Q) of the RS flip-flop circuit 112 becomes low, the P-type MOSFET 103 is turned on.
  • the current I_OSC charges the capacitor 106 through the voltage Vc and increases the voltage Vc of the capacitor 106.
  • the comparator 107 detects that the rising voltage Vc of the capacitor 106 becomes equal to or higher than the voltage V1 of the constant voltage source 110, sets the RS flip-flop circuit 112, and starts discharging the capacitor 106.
  • the comparator 108 detects that the decreasing voltage Vc of the capacitor 106 becomes equal to or lower than the voltage V2 of the constant voltage source 111, resets the RS flip-flop circuit 112, and starts charging the capacitor 106.
  • the voltage Vc of the capacitor 106 is a triangular wave voltage signal with the voltage V1 and the voltage V2 as upper and lower limits.
  • FIG. 6 is a circuit diagram showing a configuration of the PFM control current generation circuit 200 according to the first embodiment.
  • the PFM control current generation circuit 200 includes a constant current source 201, P-type MOSFETs 202 and 203, an NPN bipolar transistor 204, a resistor 205, and a minimum current selection circuit 210.
  • the P-type MOSFETs 202 and 203, an NPN bipolar transistor 204, and a resistor 205 Constitutes a VI converter.
  • the VI converter converts the voltage signal V_EAO output from the feedback signal control circuit 11 into a current signal I_PFM and inputs the current signal I_PFM to the minimum current selection circuit 210. That is, the current signal I_PFM changes according to the output state signal.
  • the current modulation signal I_Jitter is superimposed on the constant current source 201 and input to the minimum current selection circuit 210 as the current signal I_PWM. Although the current signal I_PWM does not change according to the output state signal, the current modulation signal I_Jitter becomes a current signal that periodically changes with the current I_Max flowing through the constant current source 201 as a reference.
  • the minimum current selection circuit 210 compares the input current signal I_PFM with the current signal I_PWM, and outputs a small current as the current signal I_OSC.
  • the current signal I_OSC is input to the oscillator 100, and the clock signal Set corresponding to the output state signal is output from the oscillator 100 via the pulse generator 300.
  • FIG. 7 is a circuit diagram showing a configuration of the minimum current selection circuit 210.
  • the minimum current selection circuit 210 includes P-type MOSFETs 211, 212, 213, 214, 215 and 216 and N-type MOSFETs 217 and 218.
  • the P-type MOSFETs 212 and 213 and the N-type MOSFETs 217 and 218 are mirror circuits, for example, when the mirror ratio of the mirror circuit is 1, when the current signal I_PFM is smaller than the current signal I_PWM, P The current I_OSC flowing through the type MOSFET 213 is I_PFM.
  • the current flowing through the P-type MOSFETs 215 and 216 is limited to the current signal I_PWM by the mirror circuit of the P-type MOSFETs 214, 215, and 216. Therefore, when the current signal I_PFM is larger than the current signal I_PWM, the current I_OSC flowing through the N-type MOSFET 213 becomes the current signal I_PWM.
  • the smaller one of the current signal I_PWM and the current signal I_PFM is selected as the current signal I_OSC output from the minimum current selection circuit 210.
  • the RS flip-flop circuit 18 shown in FIG. 1 is set when the clock signal Set input to the set (S) rises. Further, when a reset signal is input to the reset (R) via the AND circuit 16, the reset state is entered.
  • the gate driver 20 generates a drive output signal for driving the gate of the switching element 2 based on the output signal from the NAND circuit 19. Specifically, when the voltage level of the drive output signal of the gate driver 20 becomes H level, the switching element 2 is turned on, and when it becomes L level, the switching element 2 is turned off.
  • the NAND circuit 19 generates a calculation signal indicating a result of calculating the output signal from the RS flip-flop circuit 18 and the output signal from the start / stop circuit 10.
  • the output signal from the start / stop circuit 10 is at H level, so one input signal of the NAND circuit 19 is at H level. Further, since the PFM control circuit 13 outputs the clock signal Set, an H level pulse signal is input to the set (S) of the RS flip-flop circuit 18, so that the output (Q) becomes the H level and the NAND. The other input signal of the circuit 19 is also input at the H level. At this time, since the output signal of the NAND circuit 19 becomes L level, the output signal of the gate driver 20 becomes H level, and the switching element 2 shifts to the turn-on state.
  • the drain current detection circuit 21 is connected to the DRAIN terminal, and detects the ON voltage determined by the product of the drain current flowing through the switching element 2 and the ON resistance of the switching element 2, whereby the drain current flowing through the switching element 2 is detected. A voltage signal proportional to the magnitude of the drain current is detected and output to the plus (+) side of the comparator 15.
  • a sense resistor may be provided at the source (ground side) of the switching element 2 (power MOSFET or the like) to detect a potential difference between the resistors and output the voltage signal to the plus (+) side of the comparator 15. .
  • a turn-off reference signal is input from the reference circuit 14 to the minus ( ⁇ ) side of the comparator 15.
  • the reference circuit 14 controls the turn-off of the switching element 2, the voltage signal V_IS obtained by resistance-dividing the VDD voltage stored in the smoothing capacitor 9 with the resistors 30 and 31, the voltage signal V_EAO corresponding to the output state signal,
  • a turn-off reference signal that is constituted by the modulation signal I_Jitter and determines the drain current value flowing in the switching element 2 is input to the minus ( ⁇ ) side of the comparator 15.
  • FIG. 8 is a circuit diagram showing one configuration of the reference circuit 14 according to the first embodiment.
  • the reference circuit 14 includes an operational amplifier 40, a resistor 41, a comparator 42, an inverter circuit 43, and N-type MOSFETs 44 and 45.
  • the input voltage signal V_IS is impedance-converted by the operational amplifier 40.
  • the voltage signal V_Jitter which is the sum of the potential difference generated when the current modulation signal I_Jitter flows from the modulation signal generation circuit 12 to the resistor 41 and the voltage signal V_IS, is the negative ( ⁇ ) side voltage of the comparator 42 and the N-type MOSFET 44. Input to the drain.
  • the voltage signal V_EAO output from the feedback signal control circuit 11 is input to the plus (+) side voltage of the comparator 42 and the drain of the N-type MOSFET 45, and the voltage signal V_EAO is obtained from the minus ( ⁇ ) side voltage signal V_Jitter.
  • the output signal of the comparator 42 becomes H level and the N-type MOSFET 45 is turned on, so that the voltage signal V_EAO is output as the turn-off reference signal. Further, the N-type MOSFET 44 is turned off via the inverter circuit 43.
  • the output signal of the comparator 42 becomes L level, and the N-type MOSFET 44 is turned on via the inverter circuit 43.
  • the voltage signal V_Jitter is output as a turn-off reference signal. Further, the N-type MOSFET 45 is turned off.
  • the larger one of the voltage signal V_EAO and the voltage signal V_jitter is input to the comparator 15 as a turn-off reference signal via the maximum voltage selection circuit, and is controlled as a reference voltage for determining the turn-off timing of the switching element 2.
  • the on-time blanking pulse generation circuit 17 shown in FIG. 1 provides a fixed blanking time after the turn-on signal is output to the switching element 2 by the gate driver 20, and erroneously generates a capacitive spike current due to the capacitance of the switching element 2 itself. I try not to detect it.
  • an ON-level blanking pulse generation circuit 17 After the blanking time is released, an ON-level blanking pulse generation circuit 17 outputs an H level signal to one of the input sides of the AND circuit 16.
  • the drain current is detected, and when the voltage signal proportional to the magnitude of the drain current is equal to the preset reference voltage, an H level signal is sent to one of the input sides of the AND circuit 16. Further, after the set blanking time by the on-time blanking pulse generation circuit 17, both the input signals of the AND circuit 16 become H level, so that the output signal from the AND circuit 16 becomes H level, and the RS flip-flop circuit 18 Is input to reset (R).
  • the output (Q) of the RS flip-flop circuit 18 is switched to L level, one input of the NAND circuit 19 is L level, the output of the NAND circuit 19 is H level, and the output signal of the gate driver 20 is L level.
  • the switching element 2 is turned off.
  • the switching operation of the switching element 2 is performed by the signal processing as described above.
  • the output state detection circuit 5 is constituted by, for example, a detection resistor, a Zener diode, a shunt regulator, etc., detects the voltage level of the output voltage Vout, and a photocoupler or the like so that the output voltage Vout is stabilized at a predetermined voltage.
  • the output state signal is output to the switching control circuit 3 via.
  • a flyback voltage generated in the auxiliary winding 1c of the transformer 1 may be used, or a VCC voltage that has been rectified and smoothed by the rectifier diode 4a and the smoothing capacitor 4b may be used. .
  • a commercial AC power supply is rectified by a rectifier such as a diode bridge and smoothed by an input capacitor to obtain a DC voltage Vin, and the primary winding of the transformer 1 for power conversion. Is given to line 1a.
  • the power is rectified and smoothed by a rectifier including a bridge diode and a smoothing capacitor, and converted to an input DC voltage Vin.
  • a rectifier including a bridge diode and a smoothing capacitor
  • This DC input voltage Vin is applied to the DRAIN terminal of the switching control circuit 3 via the primary winding 1a of the transformer 1, and is applied from the DRAIN terminal to the smoothing capacitor 4b connected to the VCC terminal via the regulator 8. Start-up charging current flows.
  • the internal circuit voltage source VDD is controlled by the regulator 8 so as to be a constant voltage.
  • the feedback signal control circuit 11 adjusts the current flowing through the switching element 2 or the switching frequency with the magnitude of this outflow current.
  • the switching control circuit 3 changes the output voltage Vout to a predetermined voltage while changing the current flowing through the switching element 2 or the switching frequency in accordance with the power supplied to the load 7 connected to the switching power supply device. Control to stabilize.
  • the switching control circuit 3 executes switching control between a frequency change control mode (PFM control) and a frequency fixed mode (PWM control) according to the output state signal.
  • PFM control frequency change control mode
  • PWM control frequency fixed mode
  • the frequency change control mode is a control mode in which the turn-on timing of the switching element 2 is controlled to change the first switching frequency, and is also called PFM control.
  • the frequency fixed control mode is a control mode in which the switching operation of the switching element 2 is set to a constant second switching frequency and the turn-off timing of the switching element 2 is controlled according to the output state signal, and is also referred to as PWM control.
  • the switching control circuit 3 executes first modulation control for controlling the turn-off timing of the switching element 2 with the first modulation signal so that the first switching frequency is modulation-controlled in the frequency change control mode.
  • the switching control circuit 3 executes second modulation control for modulating the second switching frequency with the second modulation signal in the frequency fixed control mode.
  • an output state signal is generated by the load 7 and the output state detection circuit 5 and is input to the feedback signal control circuit 11 so that the PFM control and the PWM control are switched according to the load state.
  • the frequency of the clock signal Set output from the PWM control circuit is a fixed value. (For example, 100 kHz), the current flowing through the switching element 2 is controlled so as to increase as the load increases by the output state signal from the output state detection circuit 5, that is, the current flowing out from the FB terminal.
  • the switching frequency in the PWM region is controlled so as to periodically modulate the turn-on timing
  • the drain current peak in the PFM region is controlled so as to periodically modulate the turn-off timing
  • the IV signal of the feedback signal control circuit 11 generates a voltage signal V_EAO corresponding to the output state signal
  • the PFM control current generation circuit 200 converts the voltage signal V_EAO into a current signal I_PFM, and the minimum current Input to the selection circuit 210.
  • the current modulation signal I_Jitter generated by the modulation signal generation circuit 12 is superimposed on the current I_MAX flowing through the constant current source 201 and input to the minimum current selection circuit 210 as the current signal I_PWM.
  • the current signal I_PWM does not change according to the output state signal, the current signal I_PWM becomes a current signal periodically changed with reference to I_Max by the current modulation signal I_Jitter.
  • the minimum current selection circuit 210 compares the current values of the input current signal I_PFM and the current signal I_PWM, and outputs the smaller one as the current signal I_OSC.
  • the current signal I_OSC is input to the oscillator 100 in the PFM control circuit 13, and the oscillator 100 outputs a clock signal Set corresponding to the output state signal via the pulse generator 300.
  • the voltage signal V_EAO decreases as the output state signal that flows out from the FB terminal increases, and the switching frequency of the switching element 2 decreases accordingly, and the output state signal that flows out of the FB terminal decreases. As the voltage signal V_EAO increases, the switching frequency of the switching element 2 increases accordingly.
  • the switching frequency of the switching element 2 is clamped by the minimum current selection circuit 210 at the switching frequency determined by the current signal I_PWM.
  • the switching control circuit 3 continuously executes the second modulation control executed in the frequency fixed control mode when the frequency changed control mode is switched from the frequency fixed control mode even when the frequency change control mode is entered.
  • the current signal I_PWM whose turn-on timing is periodically modulated and the current that changes according to the output state signal Since the switching frequency is determined by one of the minimum currents of the signal I_PFM, when the load 7 is reduced and the PWM control is switched to the PFM control, the turn-on timing modulation amplitude gradually decreases from the switching boundary B (PWM side).
  • the turn-on timing modulation amplitude becomes zero in the PFM control.
  • the switching control circuit 3 continuously executes the second modulation control executed in the frequency fixed control mode at the time of switching from the frequency fixed control mode to the frequency change control mode. Further, the switching control circuit 3 gradually increases the turn-on timing modulation amplitude in the second modulation control in a section including a time point when the fixed frequency control mode is switched to the frequency change control mode (for example, a section indicated by the switching boundary A and the switching boundary B). The turn-on timing modulation amplitude is made zero at the end of the interval.
  • the voltage signal V_EAO and the current modulation signal I_Jitter from the modulation signal generation circuit 12 are also input to the reference circuit 14 to control the turn-off timing of the switching element 2.
  • the switching control circuit 3 continuously executes the first modulation control executed in the frequency change control mode when the frequency change control mode is switched to the frequency fixed control mode even when the frequency change control mode is entered.
  • the turn-off timing that is, the drain current peak, gradually decreases the turn-off timing modulation from the switching boundary A (PFM side), and exits the switching boundary B (PWM side).
  • the switching control circuit 3 continuously executes the first modulation control executed in the frequency change control mode at the time of switching from the frequency change control mode to the frequency fixed control mode. Further, the switching control circuit 3 gradually increases the turn-off timing modulation amplitude in the first modulation control in a section including a time point when the frequency change control mode is switched to the fixed frequency control mode (for example, a section indicated by the switching boundary A and the switching boundary B). The turn-off timing modulation amplitude is made zero at the end of the interval.
  • the turn-off timing modulation is continuously executed, and the turn-on timing modulation amplitude is continuously and gradually reduced, so that a stable operation can be performed at the switching boundary.
  • FIG. 10 shows a relationship diagram of the switching frequency in the actual power supply operation with respect to the load of the switching power supply apparatus in the first embodiment.
  • FIG. 10 shows actual switching frequency and modulation amplitude including feedback response control as a switching power supply.
  • the drain current peak of the switching element 2 periodically fluctuates, and the fluctuation of the periodic power supply amount to the load 7 is detected by the output state detection circuit 5, and the feedback signal control circuit 11 and The switching frequency of the actual power supply operation is periodically changed by the PFM control circuit 13.
  • the modulation amplitude is gradually decreased at the control switching boundary, thereby enabling continuous switching frequency change at the control switching boundary.
  • the switching power supply apparatus includes both turn-on timing modulation and turn-off timing modulation, and performs PFM control by executing turn-off timing modulation in the PFM control region and turn-on timing modulation in the PWM control region.
  • PFM control performs PFM control by executing turn-off timing modulation in the PFM control region and turn-on timing modulation in the PWM control region.
  • the stable operation at the boundary can be realized by continuously executing at least one modulation means near the switching boundary.
  • the PFM control described in the first embodiment is not necessarily required as long as the switching frequency changes according to the load.
  • quasi-resonant control or PFM control with a fixed duty or time is applicable.
  • voltage mode PWM control may also be used.
  • constant voltage control in which the output voltage Vout of the load 7 is stabilized at a predetermined voltage
  • combination control with constant current control or the like that is stabilized at a predetermined current may be performed.
  • the light load side may be PWM control and the heavy load side may be PFM control.
  • the PFM control current generation circuit 200 is not the minimum current selection circuit but the maximum current selection circuit.
  • the reference circuit 14 is not a maximum voltage selection circuit but a minimum voltage selection circuit.
  • the comparator 42 of the reference circuit 14 may have hysteresis for preventing erroneous detection and stabilizing the operation.
  • the current is drawn from the FB terminal, but it may be controlled by injecting a current into the FB terminal. Further, the output state signal may be detected not from the secondary output voltage Vout but from the voltage at the auxiliary winding 1c of the transformer 1 or the VCC terminal after rectification and smoothing.
  • flyback type switching power supply device has been described, a configuration with different topologies such as a forward type or a step-down chopper type may be used.
  • turn-on timing modulation and turn-off timing modulation do not have to be synchronized.
  • the turn-on timing modulation and the turn-off timing modulation share the current modulation signal I_Jitter from the modulation signal generation circuit 12, but generate different current modulation signals from different modulation signal generation circuits, etc. It is good also as a structure which controls these independently.
  • a minimum switching frequency in the PFM control area may be set so that the switching frequency does not enter the audible area.
  • PWM control may be provided again to adjust the power supplied to the load 7 by reducing the drain current peak. Or you may make it transfer to intermittent oscillation (burst) control etc.
  • the switching frequency and the drain current peak are clamped to the maximum switching frequency and the minimum drain current peak value near the boundary with respect to the change of the output state signal.
  • the turn-on timing modulation is configured such that each modulation amount is substantially gradually reduced to zero near the switching boundary between PWM control and PFM control.
  • PWM control is performed.
  • a switching power supply device configured to detect switching between PFM control and PFM control and gradually decrease modulation from the switching boundary will be described.
  • the description which overlaps with Embodiment 1 is abbreviate
  • FIG. 11 is a circuit diagram showing a configuration of a switching power supply device including the semiconductor device for switching control according to the second embodiment. Compared to FIG. 1 showing the switching power supply device of the first embodiment, a difference is that the voltage signal V_IS in the switching control circuit 3a is inputted to the PFM control circuit 13a.
  • FIG. 12 is a circuit diagram showing a PFM control circuit 13a which is a configuration example of the PFM control circuit 13 of the switching power supply device according to the second embodiment. Compared to FIG. 5 showing the PFM control circuit 13 of the first embodiment, the PFM control current generation circuit 200a is different.
  • FIG. 13 is a circuit diagram showing a PFM control current generation circuit 200a which is an example of the configuration of the PFM control current generation circuit 200 in the PFM control circuit 13 of the switching power supply device according to the first embodiment.
  • a constant current source 301 an NPN bipolar transistor 302, a resistor 303, a voltage subtraction circuit 304, and a modulation amplitude adjustment circuit 305 are added.
  • the current modulation signal I_Jitter is not superimposed on the current I_MAX flowing through the constant current source 201 but is input to the modulation amplitude adjustment circuit 305.
  • the voltage subtracting circuit 304 generates a differential voltage obtained by subtracting the voltage signal V_EAO from the voltage signal V_IS, is input to the base of the NPN bipolar transistor 302, and is converted into a current value by the VI converter. .
  • a constant current source 301 is connected to the collector of the NPN bipolar transistor 302.
  • the output voltage of the voltage subtraction circuit 304 becomes zero or less, and the NPN bipolar transistor 302 is turned off. Therefore, the current flowing through the resistor 303 becomes substantially zero, and the constant current source 301 is directly input to the modulation amplitude adjusting circuit 305 as the current signal I_Ref1.
  • the voltage signal V_IS is larger than the voltage signal V_EAO. Therefore, as the voltage signal V_EAO is smaller, the output voltage of the voltage subtraction circuit 304 is larger. That is, in the PFM region, the current flowing through the resistor 303 increases as the switching frequency decreases, and the current signal I_ref1 becomes zero when the current exceeds the current from the constant current source 301.
  • the modulation amplitude adjustment circuit 305 generates a current signal I_Jit1 in which the amplitude of the current modulation signal I_Jitter changes in proportion to the current signal I_Ref1, and superimposes it on the output of the minimum current selection circuit 210.
  • the modulation amplitude adjustment circuit 305 is configured by, for example, a multiplication / division circuit based on the current modulation signal I_Jitter and the current signal I_Ref1, and the voltage signal V_EAO becomes large so that the current flowing through the resistor 303 is zero, that is, the constant current source 301. Is the current signal I_Ref1 as it is, a value equal to the current modulation signal I_Jitter is output as the current signal I_Jit1.
  • FIG. 14 is a circuit diagram showing a reference circuit 14a, which is a configuration example of the reference circuit 14 of the switching power supply device according to the first embodiment.
  • the voltage subtraction circuit 404 generates a differential voltage obtained by subtracting the voltage signal V_IS from the voltage signal V_EAO, is input to the base of the NPN bipolar transistor 402, and is converted into a current value by the VI converter.
  • the A constant current source 401 is connected to the collector of the NPN bipolar transistor 402.
  • the output voltage of the voltage subtraction circuit 404 becomes zero or less, and the NPN bipolar transistor 402 is turned off. Therefore, the current flowing through the resistor 403 becomes substantially zero, and the current from the constant current source 401 is input to the modulation amplitude adjustment circuit 405 as it is as the current signal I_Ref2.
  • the voltage signal V_IS is smaller than the voltage signal V_EAO. Therefore, as the voltage signal V_EAO increases, the output voltage of the voltage subtraction circuit 404 increases. That is, in the PWM region, as the drain current peak increases, the current flowing through the resistor 403 increases. When the current exceeds the current from the constant current source 401, the current signal I_ref2 becomes zero.
  • the modulation amplitude adjustment circuit 405 generates a current signal I_Jit2 in which the amplitude of the current modulation signal I_Jitter changes in proportion to the current signal I_Ref2, and superimposes it on the resistor 41.
  • the modulation amplitude adjustment circuit 405 includes, for example, a multiplication / division circuit based on the current modulation signal I_Jitter and the current signal I_Ref2, and the voltage signal V_EAO becomes small and the current flowing through the resistor 403 is zero, that is, the constant current source 401. Is the current signal I_Ref2 as it is, a value equal to the current modulation signal I_Jitter is output as the current signal I_Jit2.
  • the switching power supply according to the second embodiment gradually decreases the amplitudes of the turn-on timing modulation and the turn-off timing modulation after switching between the PFM control and the PWM control, the operation at the boundary is easily stabilized.
  • the starting point of the amplitude decrease of the turn-on timing modulation and the turn-off timing modulation is the switching boundary between the PFM control and the PWM control, but it may be near the switching boundary.
  • the modulation amplitude may be configured to discretely become zero after exceeding the switching boundary between PFM control and PWM control.
  • the turn-on timing modulation of the switching frequency is configured to gradually decrease from the switching boundary between PWM control and PFM control or near the boundary to become substantially zero.
  • a switching power supply device in which turn-on timing modulation works in all operation regions of PFM control will be described.
  • the description which overlaps with Embodiment 1 and 2 is abbreviate
  • FIG. 16 is a circuit diagram showing a PFM control current generation circuit 200b, which is a configuration example of the PFM control current generation circuit 200 in the PFM control circuit 13 of the switching power supply device according to the third embodiment. Compared with FIG. 6 showing the PFM control current generation circuit 200 of the first embodiment, the place where the current modulation signal I_Jitter is superimposed is different.
  • the current modulation signal I_Jitter is not superimposed on the constant current source 201 but is superimposed on the output side of the minimum current selection circuit 210.
  • the switching frequency of the oscillator 100 is subjected to turn-on timing modulation in all operating sections of the PFM control region.
  • the switching power supply according to Embodiment 3 does not switch the turn-on timing modulation at the boundary between the PFM control and the PWM control, so that the operation at the boundary is easily stabilized.
  • the modulation effect of the switching frequency is higher when the turn-on timing modulation and the turn-off timing modulation are added than when only the turn-off timing modulation is used.
  • the third embodiment can set the modulation amplitude of the turn-off timing to be small, and can improve the control stability of the switching power supply.
  • the reference circuit 14 described in the first embodiment is used.
  • the reference circuit 14a described in the second embodiment may be used.
  • the turn-on timing modulation of the switching frequency is configured to gradually decrease from the vicinity of the switching boundary between the PWM control and the PFM control to substantially zero, but in the fourth embodiment, A switching power supply device in which the switching frequency of the oscillator 100 performs turn-on timing modulation in all the operation regions of PFM control and the turn-on timing modulation amplitude changes according to the switching frequency of PFM control will be described.
  • the description which overlaps with Embodiment 1 is abbreviate
  • FIG. 18 is a circuit diagram showing a PFM control current generation circuit 200c, which is a configuration example of the PFM control current generation circuit 200 in the PFM control circuit 13 of the switching power supply device according to the fourth embodiment.
  • the place where the current modulation signal I_Jitter is superimposed is different.
  • the current modulation signal I_Jitter is not superimposed on the constant current source 201 but is input to the minimum current selection circuit 210c.
  • FIG. 19 is a circuit diagram showing a minimum current selection circuit 210c, which is a configuration example of the minimum current selection circuit 210 of the switching power supply device according to the fourth embodiment.
  • the minimum current selection circuit 210c of FIG. 19 is added with P-type MOSFETs 219 and 220, a modulation amplitude adjustment circuit 505, and a current modulation signal I_Jitter, compared to FIG. 7 showing the minimum current selection circuit 210 of the first embodiment. The point is different.
  • the minimum current selection circuit 210c generates a current signal I_Ref3 that is proportional to the current signal I_Ref4 flowing through the P-type MOSFET 216, and inputs the current signal I_Ref3 to the modulation amplitude adjustment circuit 505.
  • the modulation amplitude adjustment circuit 505 generates a current signal I_Jit3 that changes in proportion to the current signal I_Ref3, and superimposes the current modulation signal I_Jitter on the output of the current signal I_OSC. Unlike the current modulation signal I_Jitter, the current signal I_Jit3 signal is controlled such that the modulation amplitude changes according to the switching frequency. Therefore, the sum of the current signal I_ref4 and the current signal I_Jit3 is output as the current signal I_OSC.
  • the switching frequency performs the turn-on timing modulation in all the operation regions of the PFM control, and the turn-on timing modulation amplitude changes according to the switching frequency of the PFM control.
  • the switching power supply according to the fourth embodiment does not switch the turn-on timing modulation at the boundary between the PFM control and the PWM control as in the third embodiment, the operation at the boundary is likely to be stable.
  • the modulation effect of the switching frequency is higher when the turn-on timing modulation and the turn-off timing modulation are added than when only the turn-off timing modulation is used.
  • the third embodiment can set the modulation amplitude of the turn-off timing to be small, and can improve the control stability of the switching power supply.
  • the fourth embodiment by changing the turn-on timing modulation amplitude according to the switching frequency, the effects of both the turn-on timing modulation and the turn-on timing modulation by the modulation amplitude change are combined with the output state signal change.
  • the modulation effect is higher than in the first, second, and third embodiments.
  • the turn-on timing modulation amplitude is changed according to the switching frequency.
  • the turn-off timing modulation amplitude may be changed according to the drain current peak.
  • the turn-off timing in the PFM control region does not change depending on the output state signal, but is determined from the voltage signal V_Jitter in which the periodic current modulation signal I_Jitter is superimposed on the voltage signal V_IS.
  • Embodiment 5 a switching power supply device in which the turn-off timing changes in accordance with an output state signal in addition to periodic modulation will be described.
  • the description which overlaps with Embodiment 1 is abbreviate
  • FIG. 21 is a circuit diagram showing a reference circuit 14d which is a configuration example of the reference circuit 14 of the switching power supply device according to the fifth embodiment.
  • P-type MOSFETs 500, 501, 508 and 509, NPN bipolar transistors 502 and 510, resistors 503, 511 and 512, N-type MOSFETs 504, 505a The difference is that 506 and 507 and an operational amplifier 513 are added. Further, the means for generating the V_Jitter signal input to the minus ( ⁇ ) side of the comparator 42 is different.
  • the P-type MOSFETs 500 and 501, the P-type MOSFETs 508 and 509, the N-type MOSFETs 504 and 505a, and the N-type MOSFETs 506 and 507 are, for example, mirror circuits with a mirror ratio of 1.
  • the P-type MOSFETs 500 and 501, the NPN bipolar transistor 502, and the resistor 503 constitute a VI converter
  • the P-type MOSFETs 508 and 509, the NPN bipolar transistor 510, and the resistor 511 constitute a VI converter.
  • a current subtracting circuit is constituted by the N-type MOSFETs 504, 505a, 506 and 507.
  • the current subtracting circuit generates a current value obtained by subtracting a current signal proportional to the voltage signal V_EAO from a current signal proportional to the voltage signal V_IS.
  • the voltage signal V_IS is larger than the voltage signal V_EAO. Therefore, the smaller the voltage signal V_EAO is, the larger the output current of the current subtraction circuit, that is, the current I_Dif flowing through the N-type MOSFET 507 is.
  • the voltage signal V_IS is impedance-converted by the operational amplifier 40, and the operational amplifier 513 is used as the voltage signal VIS_EAO which is the difference between the voltage generated by the I_Dif changing according to feedback flowing through the resistor 41 and the voltage of the voltage signal V_IS. Is input to the positive (+) side voltage.
  • the voltage signal VIS_EAO is impedance-converted by the operational amplifier 513, and the voltage signal VIS_EAO_Jitter, which is the sum of the voltage generated when the current modulation signal I_Jitter flows through the resistor 512 as a current and the voltage of the voltage signal VIS_EAO, is The negative ( ⁇ ) side voltage and the drain of the N-type MOSFET 44 are input.
  • the turn-off timing in the PFM region is controlled so that the drain current peak decreases as the switching frequency decreases in addition to the periodic modulation.
  • the switching power supply according to the fifth embodiment can increase the response speed with respect to the load fluctuation in the PFM control region by changing the turn-off timing in the PFM control according to the switching frequency.
  • the reference circuit 14 described in the first embodiment is used.
  • the reference circuit 14a described in the second embodiment may be used.
  • the switching power supply device and the semiconductor device include both turn-on timing modulation and turn-off timing modulation in a switching power supply device that performs frequency change control, and performs turn-off timing modulation in the PFM control region and turn-on timing modulation in the PWM control region.
  • frequency jitter control works in all operation regions from PFM control to PWM control, and noise terminal noise can be reduced by effective frequency dispersion.
  • the stable operation at the boundary can be realized by continuously executing at least one modulation means near the switching boundary.
  • the switching power supply device and the semiconductor device of the present disclosure can be used for a switching power supply device such as an AC-DC converter, a DC-DC converter, and an external AC adapter incorporated in various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

スイッチング電源装置は、ターンオンタイミング変調機能とターンオフタイミング変調機能の両方を備え、PFM制御領域ではターンオフタイミング変調を、PWM制御領域ではターンオンタイミング変調を実行し、さらに少なくとも一方の変調手段をPFM制御とPWM制御が切り替わった後も連続して実行することにより、周波数ジッター制御の変調効果の著しい低下がなく、制御切り替え境界での安定動作を実現できる。

Description

スイッチング電源装置および半導体装置
 本開示は、周波数変化制御を含むスイッチング電源のノイズ低減効果の高い周波数ジッター(周波数変調)制御機能を備えたスイッチング電源装置およびそれを構成する半導体装置に関する。
 家電製品や事務機器等の電子機器には、電力変換効率の向上や小型化等の目的から、スイッチング電源装置が広く用いられている。スイッチング電源装置は、半導体のスイッチング素子などによるスイッチング動作を利用して出力電圧などを制御し、負荷に電力を供給する。
 出力負荷の大きさによらず一定のスイッチング周波数で制御する周波数固定制御として、例えば、PWM(Pulse Width Modulation)制御がある。
 このようなスイッチング電源装置において、スイッチング周波数が固定化されることでスイッチング素子を流れる高周波電流のスペクトル成分が、当該スイッチング周波数およびその高調波成分に偏ってしまい、高調波の伝導ノイズが発生しやすくなるという課題があった。伝導ノイズの課題は、フィルタ回路などの対ノイズ部品によって対策が可能となるが、電源の小型化やコストダウンの妨げになるため、制御の工夫による対策が求められる。一般的には、スイッチング素子をオン・オフ駆動するスイッチング周波数に一定幅の周期的な揺らぎを与える手法が用いられ、スイッチングに伴う高調波ノイズが周波数分散されることで雑音端子ノイズのアベレージ値が低減される。周波数に揺らぎを与えることから、周波数ジッター制御と呼ばれている。
 また、スイッチング電源の待機時や軽負荷の効率改善のため、出力負荷の大きさに応じてスイッチング周波数を変化させる周波数変化制御として、例えばPFM(Pulse Frequency Modulation)制御がある。
 PFM制御においても、入力電圧や出力負荷が一定の場合は、スイッチング周波数が固定化されることで高調波ノイズが課題となるため、周波数ジッター制御が必要とされる。
 特許文献1に開示されたスイッチング電源装置は、PFM制御においてフィードバック信号制御によるスイッチング周波数の変化分が、変調信号によるスイッチング周波数の変化分を打ち消すように作用される場合は、変調信号の振幅を大きく設定することで、周波数ジッター変調効果の低下を防ぐことができ、効果的にノイズ低減が可能となる。
 また、特許文献2に開示されたスイッチング電源装置は、PFM制御においてフィードバック信号はスイッチング素子のターンオンのタイミングを制御し、変調信号はスイッチング素子のターンオフのタイミングを制御し、フィードバック信号と変調信号を、それぞれ分離して入力制御するように構成したものである。この結果、フィードバック信号と変調信号が互いに打ち消し合うことがないため、周波数ジッター変調効果の低下を防ぐことができ、効果的にノイズ低減が可能となる。
特開2014-204544号公報 特許第5899504号公報
 特許文献1に開示されるような従来のスイッチング電源装置では、PFM制御領域においてはターンオンタイミング変調を大きくすることで周波数ジッター変調効果の低下を防ぐことが可能である。しかし、PFM制御とPWM制御の切り替えを行う複合制御の場合、PFM制御とPWM制御の境界で周波数ジッター変調振幅、つまり、ターンオンタイミング変調振幅を切り替えるため、負荷7の動作状態としてPFM制御とPWM制御の境界となる場合、制御が不安定になりやすい。境界での動作安定性のため、変調振幅の切り替え制御にヒステリシスを持たせることが開示されているが、PWM制御からPFM制御に切り替わった後の一部のPFM制御においては、変調効果が小さい領域が存在し、電源の雑音端子ノイズが悪化してしまう。
 また、特許文献2に開示されるような従来のスイッチング電源装置では、PWM制御ではターンオンタイミング変調、PFM制御ではターンオフタイミング変調が実行されるが、制御切り替えの安定性については明記されておらず、また、切り替え境界でターンオンタイミング変調とターンオフタイミング変調の2方式を同時に切り替える場合、制御が不安定になりやすい。
 本開示は、上記の課題を解決し、周波数変化制御と周波数固定制御を含む複合制御のスイッチング電源のノイズ低減効果の高い周波数ジッター制御機能を備えたスイッチング電源装置を提供することを目的とする。
 上記の課題を解決するために、本開示のスイッチング電源装置は、直流の入力電圧が入力されるエネルギー変換回路と、前記エネルギー変換回路から出力される電圧を整流平滑して負荷に出力電圧を出力する出力整流平滑回路と、前記エネルギー変換回路に接続され、前記入力電圧をスイッチングするスイッチング素子と、前記スイッチング素子のスイッチング動作を制御するスイッチング制御回路と、前記エネルギー変換回路から出力される電力に対する前記負荷の負荷状態を示す出力状態信号を生成する出力状態検出回路と、を有し、前記スイッチング制御回路は、前記出力状態信号に応じて前記スイッチング素子のターンオンタイミングを制御して前記スイッチング素子のスイッチング周波数である第1のスイッチング周波数を変化させる周波数変化制御モードと、前記スイッチング素子のスイッチング周波数を出力状態信号に対して一定の第2のスイッチング周波数に設定し、前記出力状態信号に応じて前記スイッチング素子のターンオフタイミングを制御する周波数固定制御モードと、を前記出力状態信号に応じて切り替え制御を実行し、前記周波数変化制御モードでは前記第1のスイッチング周波数が変調制御されるように前記スイッチング素子のターンオフタイミングを第1の変調信号で変調制御する第1の変調制御を実行し、前記周波数固定制御モードでは前記第2のスイッチング周波数を第2の変調信号で変調制御する第2の変調制御を実行し、前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに前記周波数変化制御モードで実行する前記第1の変調制御を前記周波数固定制御モードになっても連続して実行するか、前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに前記周波数固定制御モードで実行する前記第2の変調制御を前記周波数変化制御モードになっても連続して実行するか、の少なくとも一方を実行する。
 本開示に係るスイッチング電源装置によれば、周波数変化制御と周波数固定制御の両方で変調効果の著しい低下がなく、効果的に周波数分散させることができ、さらに、周波数変化制御と周波数固定制御の切り替え境界で安定動作が可能となる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに前記第1の変調制御の変調振幅を前記周波数固定制御モードに切り替わるまでに徐々に減少させるか、前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに前記第2の変調制御の変調振幅を前記周波数変化制御モードに切り替わるまでに徐々に減少させるか、の少なくとも一方を実行してもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御と周波数固定制御の切り替えのときに変調振幅を緩やかに減少させるため、切り替え境界で安定動作が可能となる。
 また、前記スイッチング制御回路は、前記第2の変調信号に応じて変調制御した前記スイッチング素子のターンオンタイミングと、前記周波数変化制御モードで設定するターンオンタイミングと、を比較し、遅い方のターンオンタイミングで前記スイッチング素子のターンオンが制御されてもよい。
 本開示に係るスイッチング電源装置によれば、簡素な回路で第2の変調振幅を緩やかに減少させることができ、切り替え境界で安定動作が可能となる。
 また、前記スイッチング制御回路は、前記第1の変調信号に応じて変調制御した前記スイッチング素子のターンオフタイミングと、前記周波数固定制御モードで設定するターンオフタイミングと、を比較し、遅い方のターンオフタイミングで前記スイッチング素子のターンオフが制御されてもよい。
 本開示に係るスイッチング電源装置によれば、簡素な回路で第1の変調振幅を緩やかに減少させることができ、切り替え境界で安定動作が可能となる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに前記第1の変調制御の変調振幅を前記周波数固定制御モードになってから徐々に減少させるか、前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに前記第2の変調制御の変調振幅を前記周波数変化制御モードになってから徐々に減少させるか、の少なくとも一方を実行してもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御と周波数固定制御の切り替えのときに変調振幅を緩やかに減少させるため、切り替え境界で安定動作が可能となる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードで動作させる区間の全域に渡って前記第1のスイッチング周波数を前記第2の変調信号で変調制御してもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御領域の変調効果を高め、効果的に周波数分散させることができる。さらに、前記第1の変調振幅の低減が可能となり、制御安定性を高めることができる。
 また、前記周波数変化制御モードで実行する前記第1のスイッチング周波数の前記第2の変調信号での変調制御は前記スイッチング素子の前記スイッチング周波数が高くなるほど変調振幅を大きく設定してもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御領域の変調効果を高め、効果的に周波数分散させることができる。さらに、前記第1の変調振幅の低減が可能となり、制御安定性を高めることができる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードにおける前記スイッチング素子のターンオフタイミングを前記出力状態信号によらず一定に制御してもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御領域での出力負荷変動に対する制御安定性を高めることができる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードにおける前記スイッチング素子のターンオフタイミングを前記出力状態信号に応じて変化させてもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御領域での出力負荷変動に対する制御応答速度を高めることができる。
 また、前記スイッチング制御回路は、前記周波数変化制御モードにおける前記第1のスイッチング周波数が高くなるほど、前記スイッチング素子のターンオフタイミングを遅くしてもよい。
 本開示に係るスイッチング電源装置によれば、周波数変化制御領域での出力負荷変動に対する制御応答速度を高めることができる。
 また、前記スイッチング制御回路を、半導体基板上に集積回路として形成した半導体装置であってもよい。
 本開示に係る半導体装置によれば、スイッチング電源装置のフィルタ部品点数を大幅に削減することができ、スイッチング電源装置の小型化および軽量化さらには低コスト化を容易に実現することができる。
 以上のように本開示によれば、ターンオンタイミング変調とターンオフタイミング変調の複合制御により、周波数変化制御と周波数固定制御の両方で効果的に周波数分散させることができ、さらに、各々の変調手段を、周波数変化制御と周波数固定制御が切り替わった後も連続して実行することで、制御切り替え境界で安定動作が可能な周波数ジッター制御機能を備えたスイッチング電源装置が実現できる。
図1は、実施の形態1に係るスイッチング電源装置の一構成例を示す回路図である。 図2は、実施の形態1に係るフィードバック信号制御回路の一構成を示す回路図である。 図3は、実施の形態1に係る変調信号発生回路の一構成を示す回路図である。 図4は、実施の形態1に係る低周波発振器の一構成を示す回路図である。 図5は、実施の形態1に係るPFM制御回路の一構成を示す回路図である。 図6は、実施の形態1に係るPFM制御用電流生成回路の一構成を示す回路図である。 図7は、実施の形態1に係る最小電流選択回路の一構成を示す回路図である。 図8は、実施の形態1に係る基準回路の一構成を示す回路図である。 図9は、実施の形態1に係る半導体装置における出力状態信号に対するスイッチング周波数とスイッチング素子に流すことのできるドレイン電流ピーク値との関係例を示す図である。 図10は、実施の形態1に係るスイッチング電源装置における負荷に対する電源のスイッチング周波数の関係例を示す図である。 図11は、実施の形態2に係るスイッチング電源装置の一構成例を示す回路図である。 図12は、実施の形態2に係るPFM制御回路の一構成を示す回路図である。 図13は、実施の形態2に係るPFM制御用電流生成回路の一構成を示す回路図である。 図14は、実施の形態2に係る基準回路の一構成を示す回路図である。 図15は、実施の形態2に係る半導体装置における出力状態信号に対するスイッチング周波数とスイッチング素子に流すことのできるドレイン電流ピーク値との関係例を示す図である。 図16は、実施の形態3に係るPFM制御用電流生成回路の一構成を示す回路図である。 図17は、実施の形態3に係る半導体装置における出力状態信号に対するスイッチング周波数とスイッチング素子に流すことのできるドレイン電流ピーク値との関係例を示す図である。 図18は、実施の形態4に係るPFM制御用電流生成回路の一構成を示す回路図である。 図19は、実施の形態4に係る最小電流選択回路の一構成を示す回路図である。 図20は、実施の形態4に係る半導体装置における出力状態信号に対するスイッチング周波数とスイッチング素子に流すことのできるドレイン電流ピーク値との関係例を示す図である。 図21は、実施の形態5に係る基準回路の一構成を示す回路図である。 図22は、実施の形態5に係る半導体装置における出力状態信号に対するスイッチング周波数とスイッチング素子に流すことのできるドレイン電流ピーク値との関係例を示す図である。 図23は、比較参照例に係るスイッチング電源装置の一構成例を示す回路図である。
 (本開示の基礎となった知見)
 本発明者らは、「背景技術」の欄において記載したスイッチング電源装置に関し、以下の問題が生じることを見出した。
 図23に、比較参照例に係るPFM制御回路を有する半導体装置を備えたスイッチング電源装置の一構成例を示す。
 図23に示すスイッチング電源装置は、フィードバック信号制御回路11のフィードバック信号V_EAOと変調信号発生回路12の変調信号I_Jitterの両方が、スイッチング素子2のオンタイミングを決めるPFM制御回路13eへ入力される。
 負荷7に応じて変化するフィードバック信号V_EAOと、負荷7の状態に関係なく一定振幅の周期的な揺らぎ信号を与える変調信号I_Jitterが、共に、スイッチング素子2のターンオンタイミングを決定するPFM制御回路13eに入力されるため、負荷7がスイッチング電源の入出力リップルなどの影響で変動している場合は、フィードバック信号と変調信号の各々の信号が相殺するように寄与され、変調効果が打ち消されるケースが発生し、変調の効果を得ることができない、もしくは設定以下の変調によって電源の雑音端子ノイズが悪化することがある。
 また、負荷7が一定の場合は、前述した変調信号によるスイッチング周波数の変化分を、フィードバック信号による周波数変化で打ち消すように作用され、周波数ジッター制御の変調効果が打ち消されてしまう。
 これらの課題を改善する従来の技術として、例えば特許文献1や特許文献2に開示されているものがある。
 特許文献1に開示されたスイッチング電源装置は、PFM制御においてフィードバック信号制御によるスイッチング周波数の変化分が、変調信号によるスイッチング周波数の変化分を打ち消すように作用される場合は、変調信号の振幅を大きく設定することで、周波数ジッター変調効果の低下を防ぐことができ、効果的にノイズ低減が可能となる。
 また、特許文献2に開示されたスイッチング電源装置は、PFM制御においてフィードバック信号はスイッチング素子のターンオンのタイミングを制御し、変調信号はスイッチング素子のターンオフのタイミングを制御し、フィードバック信号と変調信号を、それぞれ分離して入力制御するように構成したものである。この結果、フィードバック信号と変調信号が互いに打ち消し合うことがないため、周波数ジッター変調効果の低下を防ぐことができ、効果的にノイズ低減が可能となる。
 特許文献1に開示されるような従来のスイッチング電源装置では、PFM制御領域においてはターンオンタイミング変調を大きくすることで周波数ジッター変調効果の低下を防ぐことが可能である。しかし、PFM制御とPWM制御の切り替えを行う複合制御の場合、PFM制御とPWM制御の境界で周波数ジッター変調振幅、つまり、ターンオンタイミング変調振幅を切り替えるため、負荷7の動作状態としてPFM制御とPWM制御の境界となる場合、制御が不安定になりやすい。境界での動作安定性のため、変調振幅の切り替え制御にヒステリシスを持たせることが開示されているが、PWM制御からPFM制御に切り替わった後の一部のPFM制御においては、変調効果が小さい領域が存在し、電源の雑音端子ノイズが悪化してしまう。
 また、特許文献2に開示されるような従来のスイッチング電源装置では、PWM制御ではターンオンタイミング変調、PFM制御ではターンオフタイミング変調が実行されるが、制御切り替えの安定性については明記されておらず、また、切り替え境界でターンオンタイミング変調とターンオフタイミング変調の2方式を同時に切り替える場合、制御が不安定になりやすい。
 本開示は、上記の課題を解決し、周波数変化制御と周波数固定制御を含む複合制御のスイッチング電源のノイズ低減効果の高い周波数ジッター制御機能を備えたスイッチング電源装置を提供する。
 以下、本開示のスイッチング電源装置および半導体装置について図面を参照しながら説明する。但し、詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は当業者が本開示を十分に理解するためのものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 以下、実施の形態1に係るスイッチング電源装置および半導体装置について、図1~10を参照しながら具体的に説明する。
 図1は、本実施の形態1のスイッチング制御用半導体装置を備えたスイッチング電源装置の一構成を示す回路図である。
 図1において、トランス1は1次巻線1a、2次巻線1b、及び補助巻線1cを有し、1次巻線1aと2次巻線1bの極性は逆になっている。このスイッチング電源装置はフライバック型である。
 1次巻線1aには、スイッチング制御回路3の一部を構成するスイッチング素子2が接続されている。スイッチング素子2の制御電極(ゲート)に印加する電圧を変化させることにより、スイッチング素子2のスイッチング動作が制御される。
 2次巻線1bには、整流ダイオード6aと平滑コンデンサ6bで構成される出力整流平滑回路6が接続されており、スイッチング素子2のスイッチング動作により2次巻線1bに誘起した交流電圧をこの出力整流平滑回路6により整流平滑することによって出力直流電圧Voutが生成され、負荷7に供給印加される。
 スイッチング素子2を含むスイッチング制御回路3は、同一の半導体基板上に集積化され、1つの半導体装置を構成している。このスイッチング素子2は、パワーMOSFETなどから構成されている。
 なお、スイッチング制御回路3において、スイッチング素子2を除く部分とスイッチング素子2とは同一の半導体基板上に設けなくてもよい。例えば、スイッチング制御回路3におけるスイッチング素子2を除く部分が配置された一方の半導体基板に、当該部分から制御信号を出力するための出力端子を設け、他方の半導体基板上に配置されたスイッチング素子2のゲートに接続するようにしてもよい。
 スイッチング制御回路3は、外部入出力端子として、DRAIN端子、FB端子、VCC端子、及びGND端子の4つの端子を有している。また、例えば、スイッチング素子2、レギュレータ8、起動・停止回路10、フィードバック信号制御回路11、変調信号発生回路12、PFM制御回路13、基準回路14、オン時ブランキングパルス発生回路17、ドレイン電流検出回路21などから構成される。
 DRAIN端子は、トランス1の1次巻線1aとスイッチング素子2の接続点、すなわちスイッチング素子2のドレインに接続される端子である。
 なお、本開示において、スイッチング素子2は、パワーMOSFETとは異なるパワースイッチング用素子を用いても構わない。例えば、IGBT(絶縁ゲートバイポーラトランジスタ)を使用した場合は、ドレイン、ソースではなく、コレクタ、エミッタ、と表される。
 VCC端子は、トランス1の補助巻線1cに接続された整流ダイオード4aと平滑コンデンサ4bとで構成される整流平滑回路4の出力と、スイッチング制御回路3に内蔵されたレギュレータ8を接続する端子であり、スイッチング素子2のスイッチング動作により補助巻線1cに発生する交流電圧を整流平滑し、補助電源電圧VCCとしてスイッチング制御回路3に電力供給する端子である。
 FB端子は、出力状態検出回路5から出力される出力状態信号(例えば、フォトカプラによる電流などのフィードバック信号)をスイッチング制御回路3のフィードバック信号制御回路11に入力するための端子である。
 なお、ここで出力状態信号をFB端子に入力するのではなく、トランス1の補助巻線1cに発生する交流電圧を整流平滑した補助電源電圧VCCから出力状態検出回路5を介してスイッチング制御回路3のフィードバック信号制御回路11へ入力してもよい。
 GND端子は、スイッチング素子2のソースおよびスイッチング制御回路3の電位基準であるGNDを接地レベルと接続する端子であり、入力直流電圧Vinが印加される2端子のうち低電位側の端子に接続されている。
 レギュレータ8は、DRAIN端子、VCC端子、起動・停止回路10、平滑コンデンサ9およびスイッチング制御回路3の内部回路電圧源VDDに接続されている。
 スイッチング電源装置の起動時には、入力直流電圧Vinがトランス1の1次巻線1aを介してスイッチング素子2のDRAIN端子に印加されると、DRAIN端子からレギュレータ8を介して、平滑コンデンサ4bおよび9に起動電流が流れる。
 平滑コンデンサ4bおよび9が充電され、VCC端子電圧およびVDD電圧が上昇し、それぞれ起動電圧に達すると、レギュレータ8は起動電流をカットする。
 このとき、VCC端子電圧は、トランス1の補助巻線1cの電圧を整流し平滑して得られる電圧、即ち、平滑コンデンサ4bの充電電圧に相当する。また、VCC端子電圧がスイッチング制御回路3の停止電圧まで低下した場合は、起動前と同様に、DRAIN端子からVCC端子へ電流供給がなされ、再びVCC端子電圧は上昇する。内部回路電圧源VDDは、レギュレータ8により、一定電圧となるように制御されている。
 起動・停止回路10は、VCC端子電圧をモニターしており、VCC端子電圧の大きさによって、スイッチング素子2の起動および停止を制御している。VCC端子電圧が上記起動電圧に達すると、NAND回路19の一方にHレベルを出力し、VCC端子電圧が上記停止電圧まで低下すると、Lレベルを出力する。ここで、「Hレベル」とは、0Vよりも大きい所定の電圧レベルに相当し、「Lレベル」とは、「Hレベル」よりも小さい0V以上の所定の電圧レベルに相当する。
 フィードバック信号制御回路11は、出力状態検出回路5から出力される出力状態信号がFB端子を介して入力され、出力直流電圧Voutを一定に安定させるようスイッチング素子2に流れる電流またはスイッチング周波数を設定する。
 図2は、本実施の形態1のフィードバック信号制御回路11の一構成を示す回路図である。
 フィードバック信号制御回路11は、P型MOSFET73および74、N型MOSFET75、76、77および79、定電圧源78および82、抵抗80、NPNバイポーラトランジスタ81から構成され、N型MOSFET77、抵抗80、NPNバイポーラトランジスタ81、定電圧源82によってI-Vコンバータを構成している。また、P型MOSFET73と74、N型MOSFET75と79、N型MOSFET76と77はそれぞれミラー回路となっている。
 I-Vコンバータにより電圧変換された出力V_EAOの電圧は、抵抗80に流れる電流によって決定され、下記式(1)に従い変化する。
 V_EAO=VR-Vbe-R×I ・・・・(1)
 ここで、V_EAOは、I-Vコンバータの出力電圧、VRは、定電圧源82の定電圧値、Vbeは、NPNバイポーラトランジスタ81のB-E間電圧、Rは、抵抗80の抵抗値、Iは、抵抗Rに流れる電流である。
 式(1)からわかるように、抵抗Rに流れる電流Iが大きい程、出力電圧V_EAOが低下することがわかる。
 また、フィードバック信号制御回路11からの出力電圧V_EAOは、PFM制御回路13と基準回路14に入力され、スイッチング素子2に流れる電流およびスイッチング周波数が制御される。
 変調信号発生回路12は、周期的な電流の電流変調信号I_jitterをPFM制御回路13と基準回路14に入力し、ターンオンタイミング変調とターンオフタイミング変調を制御する。
 図3は、本実施の形態1の変調信号発生回路12の一構成を示す回路図である。
 変調信号発生回路12は、低周波発振器50からの出力である三角波電圧をNPNバイポーラトランジスタ51、抵抗52、P型MOSFET53および54から構成されるV-Iコンバータにより電流に変換し、電流変調信号I_Jitterとして出力する。また、電流変調信号の平均値がゼロ基準となるように、補正用の定電流源55が接続されている。したがって、ゼロ基準に対して電流変調信号が正の場合は、変調信号発生回路12のI_Jitter出力から流出するように電流が流れ、ゼロ基準に対して電流変調信号が負の場合は、変調信号発生回路12のI_Jitter出力から定電流源55へ流入するように電流が流れる。
 図4は、本実施の形態1の低周波発振器50の一構成を示す回路図である。
 低周波発振器50は、定電流源59、60および61、P型MOSFET62、63および70、N型MOSFET64および65、インバータ回路66、コンデンサ67、抵抗68、比較器69から構成される。また、N型MOSFET64と65はミラー回路となっている。なお、比較器69において、マイナス側のa点の電圧Vaは、抵抗68と定電流源60および61とで決定され、抵抗68の抵抗値R0、定電流源60および61の電流値をIおよびIとすると、P型MOSFET70がオフ時には、Va=I×R0となり、P型MOSFET70がオン時には、Va=(I+I)×R0となる。
 次に、図4に示す構成の低周波発振器50の動作について説明する。
 比較器69の出力信号がLレベルである時、P型MOSFET63および70がオン状態となる。またP型MOSFET62はインバータ回路66を介してHレベルの信号がゲートに入力されるため、オフ状態となっている。この時、比較器69のマイナス側の電圧Vaは、Va=(I+I)×R0となっている。また、P型MOSFET63がオン状態となっているため、定電流源59からの定電流IはP型MOSFET63を介してコンデンサ67に流れ込む。それに伴い比較器69のプラス側であるb点の電圧が上昇し、b点の電圧Vbがa点の電圧(I+I)×R0を超えると、比較器69の出力信号はHレベルに切り替わり、それに伴いP型MOSFET63および70がオフ状態となる。この時、比較器69のマイナス側の電圧Vaは、Va=I×R0へと切り替わる。
 またP型MOSFET62はインバータ回路66を介してLレベルの信号がゲートに入力され、オン状態に切り替わると、定電流源59からの定電流IはP型MOSFET62を介してN型MOSFET64に流れる。N型MOSFET64と65はミラー回路になっているため、例えばこのミラー回路のミラー比を1とすると、N型MOSFET65に流れる電流もIとなる。
 したがって、コンデンサ67に蓄えられた電荷は、この定電流Iにより引き抜かれ、結果としてb点の電圧Vbは低下する。b点の電圧Vbがa点の電圧I×Rまで低下すると、比較器69の出力信号は再びLレベルになる。
 以上のような動作を繰り返すことで、低周波発振器50からの出力三角波電圧は、第一の電圧値(I×R0)と第二の電圧値((I+I)×R0)までの電圧範囲(I×R0)を周期TMで連続的に変化することになる。
 なお、低周波発振器50の周期TMは約100μs乃至数100msが望ましい。
 PFM制御回路13は、内部に発振器100を備え、スイッチング素子2をターンオンさせるためのクロック信号Setを出力する。
 図5は、本実施の形態1のPFM制御回路13の一構成を示す回路図である。
 PFM制御回路13は、発振器100、PFM制御用電流生成回路200、およびパルス発生器300から構成され、発振器100は、PFM制御用電流生成回路200から出力される電流信号I_OSCによってクロック信号Setの周波数を調整する。
 発振器100は、P型MOSFET102および103、N型MOSFET104および105、コンデンサ106、比較器107および108、定電圧源110および111、RSフリップフロップ回路112、インバータ回路113から構成され、RSフリップフロップ回路112の出力状態に応じてコンデンサ106を充放電する。
 RSフリップフロップ回路112のセット(S)にHレベル信号が入力されるとセット状態となって、RSフリップフロップ回路112の出力信号(Q)の信号レベルがHレベルになると、インバータ回路113を介してP型MOSFET102をオンし、N型MOSFET104には、P型MOSFET102を介してI_OSCの電流が流れる。N型MOSFET104と105はミラー回路になっているため、例えばこのミラー回路のミラー比を1とすると、N型MOSFET105に流れる電流もI_OSCとなる。
 したがって、コンデンサ106に蓄えられた電荷は、この電流I_OSCによって放電されるため、コンデンサ106の電圧Vcは低下する。
 一方、RSフリップフロップ回路112のリセット(R)にハイ信号が入力されるとリセット状態となって、RSフリップフロップ回路112の出力信号(Q)の信号レベルがローレベルになると、P型MOSFET103を介して電流I_OSCがコンデンサ106を充電して、コンデンサ106の電圧Vcを上昇させる。
 比較器107は、上昇するコンデンサ106の電圧Vcが定電圧源110の電圧V1以上になったことを検出し、RSフリップフロップ回路112をセット状態にして、コンデンサ106の放電を開始させる。
 比較器108は、減少するコンデンサ106の電圧Vcが定電圧源111の電圧V2以下になったことを検出し、RSフリップフロップ回路112をリセット状態にして、コンデンサ106の充電を開始させる。
 したがって、コンデンサ106の電圧Vcは、電圧V1と電圧V2を上下限とする三角波の電圧信号となる。
 図6は、本実施の形態1のPFM制御用電流生成回路200の一構成を示す回路図である。
 PFM制御用電流生成回路200は、定電流源201、P型MOSFET202および203、NPNバイポーラトランジスタ204、抵抗205、最小電流選択回路210から構成され、P型MOSFET202および203、NPNバイポーラトランジスタ204、抵抗205によってV-Iコンバータを構成している。
 V-Iコンバータは、フィードバック信号制御回路11からの出力である電圧信号V_EAOを電流信号I_PFMに変換し、最小電流選択回路210に入力する。つまり、電流信号I_PFMは出力状態信号に応じて変化する。
 また、電流変調信号I_Jitterは、定電流源201に重畳され、電流信号I_PWMとして、最小電流選択回路210に入力される。電流信号I_PWMは出力状態信号に応じて変化しないが、電流変調信号I_Jitterによって、定電流源201に流れる電流I_Maxを基準として周期的に変化する電流信号となる。
 最小電流選択回路210は、入力された電流信号I_PFMと電流信号I_PWMを比較し、小さい電流を電流信号I_OSCとして出力する。
 この電流信号I_OSCが、発振器100に入力され、発振器100からはパルス発生器300を介して出力状態信号に応じたクロック信号Setが出力される。
 図7は、最小電流選択回路210の一構成を示す回路図である。
 最小電流選択回路210は、P型MOSFET211、212、213、214、215および216、N型MOSFET217および218から構成される。
 P型MOSFET212と213、N型MOSFET217と218はミラー回路となっているため、例えば、このミラー回路のミラー比を1とすると、電流信号I_PWMと比較して、電流信号I_PFMが小さい場合は、P型MOSFET213に流れる電流I_OSCは、I_PFMとなる。
 一方で、P型MOSFET214と215と216のミラー回路によって、P型MOSFET215および216に流れる電流は電流信号I_PWMに制限される。そのため、電流信号I_PWMと比較して、電流信号I_PFMが大きい場合は、N型MOSFET213に流れる電流I_OSCは、電流信号I_PWMとなる。
 以上のような動作によって、最小電流選択回路210から出力される電流信号I_OSCは、電流信号I_PWMと電流信号I_PFMのいずれか小さい方が選択される。
 図1に示すRSフリップフロップ回路18は、セット(S)に入力されるクロック信号Setが立ち上がるとセット状態になる。また、リセット(R)に、AND回路16を介してリセット信号が入力されるとリセット状態になる。
 ゲートドライバ20は、NAND回路19からの出力信号をもとに、スイッチング素子2のゲートを駆動する駆動出力信号を生成する。具体的には、ゲートドライバ20の駆動出力信号の電圧レベルがHレベルになると、スイッチング素子2をターンオンさせ、Lレベルになると、スイッチング素子2をターンオフさせる。
 NAND回路19は、RSフリップフロップ回路18からの出力信号と、起動・停止回路10からの出力信号とを演算した結果を示す演算信号を生成する。
 一旦起動状態になると、起動・停止回路10からの出力信号がHレベルとなるため、NAND回路19の一方の入力信号はHレベルとなっている。また、PFM制御回路13からクロック信号Setが出力されることで、RSフリップフロップ回路18のセット(S)にはHレベルのパルス信号が入力されるため、出力(Q)はHレベルとなり、NAND回路19のもう一方の入力信号もHレベルが入力される。この時、NAND回路19の出力信号はLレベルとなるため、ゲートドライバ20の出力信号はHレベルとなり、スイッチング素子2はターンオン状態に移行する。
 ドレイン電流検出回路21は、DRAIN端子に接続しており、スイッチング素子2に流れるドレイン電流とスイッチング素子2のオン抵抗との積で決まるオン電圧を検出することにより、スイッチング素子2に流れるドレイン電流を検出し、ドレイン電流の大きさに比例した電圧信号を生成し、比較器15のプラス(+)側に出力する。
 なお、スイッチング素子2(パワーMOSFETなど)のソース(接地側)にセンス抵抗を設けて、その抵抗の電位差を検出し、その電圧信号を比較器15のプラス(+)側に出力してもよい。
 また、比較器15のマイナス(-)側には、基準回路14からターンオフ基準信号が入力される。
 基準回路14は、スイッチング素子2のターンオフを制御するため、平滑コンデンサ9に蓄えられたVDD電圧を抵抗30および31で抵抗分割した電圧信号V_ISと、出力状態信号に応じた電圧信号V_EAOと、電流変調信号I_Jitterによって構成され、スイッチング素子2に流れるドレイン電流値を決めるターンオフ基準信号を比較器15のマイナス(-)側に入力する。
 図8は、本実施の形態1の基準回路14の一構成を示す回路図である。
 基準回路14は、オペアンプ40、抵抗41、比較器42、インバータ回路43、N型MOSFET44および45から構成され、入力された電圧信号V_ISはオペアンプ40によってインピーダンス変換される。
 一方、変調信号発生回路12から電流変調信号I_Jitterが抵抗41に流れることによって発生する電位差と電圧信号V_ISの和である電圧信号V_Jitterは、比較器42のマイナス(-)側電圧およびN型MOSFET44のドレインに入力される。
 比較器42のプラス(+)側電圧およびN型MOSFET45のドレインには、フィードバック信号制御回路11から出力された電圧信号V_EAOが入力され、電圧信号V_EAOが、マイナス(-)側の電圧信号V_Jitterよりも大きくなると、比較器42の出力信号がHレベルとなり、N型MOSFET45がオン状態となることで、電圧信号V_EAOがターンオフ基準信号として出力される。また、N型MOSFET44は、インバータ回路43を介してオフ状態となる。
 一方で、電圧信号V_EAOが、マイナス(-)側の電圧信号V_Jitterよりも小さくなると、比較器42の出力信号がLレベルとなり、インバータ回路43を介してN型MOSFET44がオン状態となることで、電圧信号V_Jitterがターンオフ基準信号として出力される。また、N型MOSFET45はオフ状態となる。
 したがって、電圧信号V_EAOあるいは電圧信号V_jitterのいずれか大きい方が最大電圧選択回路を介してターンオフ基準信号として比較器15に入力され、スイッチング素子2のターンオフタイミングを決定する基準電圧として制御される。
 図1に示すオン時ブランキングパルス発生回路17は、ゲートドライバ20によるスイッチング素子2へのターンオン信号出力後、一定のブランキング時間を設け、スイッチング素子2自身の容量による容量性スパイク電流等を誤検出してしまわないようにしている。
 ブランキング時間解除後、オン時ブランキングパルス発生回路17からAND回路16の入力側の一方にHレベルの信号が出力される。
 スイッチング素子2がターンオン後に、ドレイン電流を検出し、ドレイン電流の大きさに比例した電圧信号とあらかじめ設定された基準電圧が等しくなった時に、AND回路16の入力側の一方へHレベルの信号を出力し、さらにオン時ブランキングパルス発生回路17による設定ブランキング時間後、AND回路16の入力信号は共にHレベルとなるため、AND回路16からの出力信号はHレベルとなり、RSフリップフロップ回路18のリセット(R)へ入力される。
 したがって、RSフリップフロップ回路18の出力(Q)は、Lレベルへと切り替わり、NAND回路19の一方の入力がLレベル、NAND回路19の出力がHレベル、ゲートドライバ20の出力信号がLレベルとなり、スイッチング素子2はターンオフ状態となる。
 以上のような信号処理により、スイッチング素子2のスイッチング動作が行なわれる。
 また、出力状態検出回路5は、例えば検出抵抗、ツェナーダイオード、シャントレギュレータなどで構成され、出力電圧Voutの電圧レベルを検出し、その出力電圧Voutが所定の電圧に安定するように、フォトカプラなどを介して出力状態信号をスイッチング制御回路3に出力する。
 なお、出力電圧Voutの検出には、トランス1の補助巻線1cに発生するフライバック電圧を利用してもよく、整流ダイオード4aおよび平滑コンデンサ4bによる整流平滑後のVCC電圧を利用してもよい。
 このスイッチング電源装置では、商用の交流電源が、ダイオードブリッジなどの整流器により整流されて、入力コンデンサにて平滑化されることにより、直流電圧Vinとされて、電力変換用のトランス1の1次巻線1aに与えられている。
 以上のように構成された図1に示すスイッチング電源装置およびスイッチング制御用半導体装置の動作を説明する。
 商用電源などの交流電源が入力されると、ブリッジダイオードや平滑コンデンサなどから構成される整流器により整流平滑され、入力直流電圧Vinに変換される。
 この直流入力電圧Vinは、トランス1の1次巻線1aを介して、スイッチング制御回路3のDRAIN端子に印加され、DRAIN端子からレギュレータ8を介して、VCC端子に接続されている平滑コンデンサ4bに起動用充電電流が流れる。
 VCC端子電圧が上昇し、起動・停止回路10で設定された起動電圧に達すると、スイッチング素子2のスイッチング制御が開始される。
 また、内部回路電圧源VDDは、レギュレータ8により、一定電圧となるように制御される。
 一旦、スイッチング素子2がターンオンすると、スイッチング素子2に電流が流れ、スイッチング素子2に流れる電流の大きさに応じた電圧信号が比較器15のプラス(+)側に入力される。
 オン時ブランキングパルス発生回路17によるブランキング時間後、ドレイン電流検出回路21からの出力信号が、比較器15のマイナス(-)側に入力されているあらかじめ設定された基準電圧以上に上昇すると、AND回路16には共にHレベルの信号が入力されるため、AND回路16からは、RSフリップフロップ回路18のリセット(R)にH信号を出力し、スイッチング素子2はターンオフする。
 スイッチング素子2がターンオフすると、スイッチング素子2のオン時間中にトランス1の1次巻線1aに電流が流れることによって蓄えられたエネルギーが2次巻線1bに伝達される。
 以上のようなスイッチング動作が繰り返されて、出力電圧Voutが上昇していくが、出力状態検出回路5で設定された電圧以上になると、出力状態検出回路5は、出力状態信号としてスイッチング制御回路3のFB端子から電流を流出するよう制御する。
 この流出電流の大きさで、フィードバック信号制御回路11は、スイッチング素子2を流れる電流またはスイッチング周波数を調整する。
 具体的には、スイッチング電源装置に接続される負荷7への電力供給が小さい軽負荷時には、スイッチング素子2を流れる電流またはスイッチング周波数を低く設定し、重負荷時には、スイッチング素子2を流れる電流またはスイッチング周波数を高く設定する。このように、スイッチング制御回路3は、スイッチング電源装置に接続される負荷7に供給される電力に応じて、スイッチング素子2を流れる電流またはスイッチング周波数を変化させながら、出力電圧Voutを所定の電圧に安定させるように制御を行う。
 次に、図9に示す出力状態信号に対する発振器100のスイッチング周波数とドレイン電流ピークの関係図を用いて、負荷7が変化したときの本実施の形態1におけるスイッチング電源装置の動作を説明する。
 スイッチング制御回路3は、出力状態信号に応じて周波数変化制御モード(PFM制御)と周波数固定モード(PWM制御)との切り替え制御を実行する。
 周波数変化制御モードは、スイッチング素子2のターンオンタイミングを制御し第1のスイッチング周波数を変化させる制御モードであり、PFM制御とも呼ぶ。
 周波数固定制御モードは、スイッチング素子2のスイッチング動作を一定の第2のスイッチング周波数に設定し、出力状態信号に応じてスイッチング素子2のターンオフタイミングを制御する制御モードであり、PWM制御とも呼ぶ。
 さらに、スイッチング制御回路3は、周波数変化制御モードでは第1のスイッチング周波数が変調制御されるようにスイッチング素子2のターンオフタイミングを第1の変調信号で制御する第1の変調制御を実行する。また、スイッチング制御回路3は、周波数固定制御モードでは第2のスイッチング周波数を第2の変調信号で変調制御する第2の変調制御を実行する。
 具体的には、負荷7および出力状態検出回路5により、出力状態信号が生成され、フィードバック信号制御回路11に入力されることで、負荷状態に応じてPFM制御とPWM制御が切り替わることとする。
 軽負荷ではPFM制御、重負荷ではPWM制御で動作するスイッチング電源において、負荷7が大きくなり、PFM制御からPWM制御に完全に切り替わると、PWM制御回路から出力されるクロック信号Setの周波数は固定値(例えば100kHz)に制御され、出力状態検出回路5からの出力状態信号によって、つまり、FB端子から流出する電流によって、スイッチング素子2に流れる電流は、負荷が大きくなればなるほど高くなるように制御される。
 さらに、PWM領域でのスイッチング周波数においては、ターンオンタイミングを周期的に変調するように制御され、PFM領域でのドレイン電流ピークにおいては、ターンオフタイミングを周期的に変調するように制御される。
 具体的には、フィードバック信号制御回路11のI-Vコンバータで出力状態信号に応じた電圧信号V_EAOを生成し、PFM制御用電流生成回路200で電圧信号V_EAOを電流信号I_PFMに変換し、最小電流選択回路210に入力する。
 また、変調信号発生回路12で生成された電流変調信号I_Jitterは、定電流源201に流れる電流I_MAXに重畳され、電流信号I_PWMとして、最小電流選択回路210に入力される。電流信号I_PWMは出力状態信号に応じて変化しないが、電流変調信号I_Jitterによって、I_Maxを基準として周期的に変化される電流信号となる。
 最小電流選択回路210は、入力された電流信号I_PFMと電流信号I_PWMの電流値を比較し、小さい方を電流信号I_OSCとして出力する。
 この電流信号I_OSCが、PFM制御回路13内の発振器100に入力され、発振器100からはパルス発生器300を介して出力状態信号に応じたクロック信号Setが出力される。
 つまり、FB端子から流出する電流である出力状態信号が大きくなるほど電圧信号V_EAOが低下し、それに伴いスイッチング素子2のスイッチング周波数が低下し、また、FB端子から流出する電流である出力状態信号が小さくなるほど電圧信号V_EAOが上昇し、それに伴いスイッチング素子2のスイッチング周波数が上昇する。
 さらに、スイッチング素子2のスイッチング周波数は、最小電流選択回路210によって電流信号I_PWMで決まるスイッチング周波数でクランプされる。
 これにより、スイッチング制御回路3は、周波数固定制御モードから周波数変化制御モードに切り替わるときに周波数固定制御モードで実行する第2の変調制御を周波数変化制御モードになっても連続して実行する。具体的には、図9に示す切り替え境界A(PFM側)と切り替え境界B(PWM側)においては、ターンオンタイミングが周期的に変調される電流信号I_PWMと、出力状態信号に応じて変化する電流信号I_PFMのいずれか最小の電流によって、スイッチング周波数が決定されるため、負荷7が小さくなり、PWM制御からPFM制御に切り替わるときに、切り替え境界B(PWM側)よりターンオンタイミング変調振幅が徐々に減少し、切り替え境界A(PFM側)を抜けてさらに負荷7が小さくなると、PFM制御においてターンオンタイミング変調振幅がゼロになる。言い換えれば、スイッチング制御回路3は、周波数固定制御モードから周波数変化制御モードに切り替わる時点では、周波数固定制御モードで実行する第2の変調制御を連続して実行する。さらに、スイッチング制御回路3は、周波数固定制御モードから周波数変化制御モードに切り替わる時点を含む区間(例えば、切り替え境界Aおよび切り替え境界Bで示す区間)で第2の変調制御におけるターンオンタイミング変調振幅を徐々に減少し、上記区間の終端でターンオンタイミング変調振幅をゼロにする。
 したがって、PWM制御からPFM制御に切り替わるときに、ターンオンタイミング変調を連続して実行し、さらにターンオンタイミング変調振幅を連続的に緩やかに低減させるため、切り替え境界で安定動作が可能となる。
 一方で、電圧信号V_EAOおよび変調信号発生回路12からの電流変調信号I_Jitterは基準回路14にも入力され、スイッチング素子2のターンオフタイミングを制御する。
 基準回路14において、電圧信号V_EAOあるいは電圧信号V_Jitterの電圧値のいずれか大きい方が、最大電圧選択回路を介してターンオフ基準信号として比較器15に入力され、スイッチング素子2のターンオフを制御する。これにより、スイッチング制御回路3は、周波数変化制御モードから周波数固定制御モードに切り替わるときに周波数変化制御モードで実行する第1の変調制御を周波数固定制御モードになっても連続して実行する。具体的には、前述したスイッチング周波数の制御と同様に、ターンオフタイミングつまりドレイン電流ピークについても、切り替え境界A(PFM側)よりターンオフタイミング変調が徐々に減少し、切り替え境界B(PWM側)を抜けてさらに負荷7が大きくなると、PWM制御においてターンオフタイミング変調振幅がゼロになる。言い換えれば、スイッチング制御回路3は、周波数変化制御モードから周波数固定制御モードに切り替わる時点で、周波数変化制御モードで実行する第1の変調制御を連続して実行する。さらに、スイッチング制御回路3は、周波数変化制御モードから周波数固定制御モードに切り替わる時点を含む区間(例えば、切り替え境界Aおよび切り替え境界Bで示す区間)で第1の変調制御におけるターンオフタイミング変調振幅を徐々に減少し、上記区間の終端でターンオフタイミング変調振幅をゼロにする。
 したがって、PFM制御からPWM制御に切り替わるときに、ターンオフタイミング変調を連続して実行し、さらにターンオンタイミング変調振幅を連続的に緩やかに低減させるため、切り替え境界で安定動作が可能となる。
 図10は、本実施の形態1におけるスイッチング電源装置の負荷に対する実際の電源動作でのスイッチング周波数の関係図を示したものである。図9のスイッチング制御回路3の動作に対して、図10はスイッチング電源としてのフィードバック応答制御が含まれた実際のスイッチング周波数と変調振幅を示している。
 PFM制御のターンオフタイミング変調により、スイッチング素子2のドレイン電流ピークが周期的に変動し、負荷7への周期的な電力供給量の変動を出力状態検出回路5で検出し、フィードバック信号制御回路11およびPFM制御回路13によって実際の電源動作のスイッチング周波数を周期的に変動させる。
 さらに、前述したターンオンタイミング変調とターンオフタイミング変調の複合制御において、制御切り替え境界で変調振幅を徐々に減少させることで、制御切り替え境界の連続的なスイッチング周波数変化が可能となる。
 以上より、本実施の形態1のスイッチング電源装置は、ターンオンタイミング変調とターンオフタイミング変調の両方を備え、PFM制御領域ではターンオフタイミング変調を、PWM制御領域ではターンオンタイミング変調を実行することで、PFM制御からPWM制御まで全ての動作領域で周波数ジッター制御の変調効果の低下がなく、効果的に周波数分散されることで雑音端子ノイズの低減が可能となる。さらにPFM制御とPWM制御が切り替わった後も、少なくとも一方の変調手段を切り替わり境界付近で連続して実行することにより、境界での安定動作を実現できる。
 なお、負荷に応じてスイッチング周波数が変化する制御であれば、本実施の形態1に記載のPFM制御である必要はない。例えば、擬似共振制御、または、デューティや時間を固定したPFM制御などが該当する。
 また、重負荷側は電流モードのPWM制御として説明しているが、電圧モードのPWM制御でも良い。また負荷7の出力電圧Voutが所定の電圧に安定するような定電圧制御ではなく、所定の電流に安定するような定電流制御等との組み合わせ制御としても良い。
 また、本実施の形態1とは逆に、軽負荷側はPWM制御、重負荷側はPFM制御としてもよい。その場合、PFM制御用電流生成回路200において、最小電流選択回路ではなく、最大電流選択回路とする方が望ましい。さらに、基準回路14において、最大電圧選択回路ではなく、最小電圧選択回路とする方が望ましい。
 また、基準回路14の比較器42は、誤検出防止や動作安定化のために、ヒステリシスを有していてもよい。
 また、出力状態検出回路5からの出力状態信号として、FB端子から電流を引き抜く構成としているが、FB端子に電流を注入して制御しても構わない。さらに出力状態信号を2次側出力電圧Voutから検出するのではなく、トランス1の補助巻線1cまたは整流平滑後のVCC端子の電圧から検出してもよい。
 また、フライバック型のスイッチング電源装置の構成について説明したが、フォワード型や降圧チョッパー型などトポロジーが異なる構成でもよい。
 また、ターンオンタイミング変調とターンオフタイミング変調は同期しなくてもよい。例えば、ターンオンタイミング変調とターンオフタイミング変調は、変調信号発生回路12からの電流変調信号I_Jitterを共用しているが、別々の変調信号発生回路などから別々の電流変調信号を生成し、それぞれのタイミング変調を独立して制御する構成としてもよい。
 また、PFM制御領域における最小スイッチング周波数を設定し、スイッチング周波数が可聴域に入ることを避けるようにしてもよい。さらに負荷が軽くなった場合は、再びPWM制御を設け、ドレイン電流ピークを低下させることで負荷7への供給電力の調整をしてもよい。あるいは間欠発振(バースト)制御などに移行させてもよい。
 (実施の形態2)
 次に、実施の形態2に係るスイッチング電源装置および半導体装置について、図11、図12、図13、図14および図15を参照しながら説明する。
 実施の形態1では、出力状態信号の変化に対して、スイッチング周波数とドレイン電流ピークは、境界付近で最大スイッチング周波数と最小ドレイン電流ピーク値にクランプされる構成となっているため、ターンオフタイミング変調およびターンオンタイミング変調は、PWM制御とPFM制御の切り替わり境界付近で、それぞれの変調量を実質的に徐々に減少してゼロになるような構成になっているが、本実施の形態2では、PWM制御とPFM制御の切り替わりを検出し、切り替わり境界から変調を徐々に減少するような構成のスイッチング電源装置について説明する。なお、実施の形態1と重複する説明は省略する。
 図11は、本実施の形態2のスイッチング制御用半導体装置を備えたスイッチング電源装置の一構成を示す回路図である。実施の形態1のスイッチング電源装置を示す図1と比較して、スイッチング制御回路3a内の電圧信号V_ISがPFM制御回路13aに入力されている点が異なる。
 図12は、本実施の形態2のスイッチング電源装置のPFM制御回路13の一構成例であるPFM制御回路13aを示す回路図である。実施の形態1のPFM制御回路13を示す図5と比較して、PFM制御用電流生成回路200aが異なる。
 図13は、本実施の形態1のスイッチング電源装置のPFM制御回路13内のPFM制御用電流生成回路200の一構成例であるPFM制御用電流生成回路200aを示す回路図である。実施の形態1のPFM制御用電流生成回路200を示す図6と比較して、定電流源301、NPNバイポーラトランジスタ302、抵抗303、電圧減算回路304、変調振幅調整回路305が追加されており、電流変調信号I_Jitterが定電流源201に流れる電流I_MAXに重畳されるのではなく、変調振幅調整回路305に入力される。
 実施の形態2においては、電圧減算回路304によって、電圧信号V_ISから電圧信号V_EAOを差し引いた差分電圧を生成し、NPNバイポーラトランジスタ302のベースに入力され、V-Iコンバータで電流値に換算される。また、定電流源301がNPNバイポーラトランジスタ302のコレクタに接続される。
 PWM領域においては、電圧信号V_EAOと比較して電圧信号V_ISが小さくなるため、電圧減算回路304の出力電圧としてはゼロ以下となり、NPNバイポーラトランジスタ302はオフする。したがって、抵抗303に流れる電流は実質的にほぼゼロとなり、定電流源301がそのまま電流信号I_Ref1として、変調振幅調整回路305に入力される。
 一方で、PFM領域においては、電圧信号V_EAOと比較して電圧信号V_ISが大きくなるため、電圧信号V_EAOが小さくなるほど、電圧減算回路304の出力電圧が大きくなる。つまり、PFM領域においては、スイッチング周波数が小さくなるほど抵抗303に流れる電流が大きくなり、定電流源301による電流を上回ると、電流信号I_ref1はゼロとなる。
 変調振幅調整回路305は、電流変調信号I_Jitterの振幅が、電流信号I_Ref1に比例して変化する電流信号I_Jit1を生成し、最小電流選択回路210の出力に重畳する。
 変調振幅調整回路305は、例えば、電流変調信号I_Jitterと電流信号I_Ref1をベースとした乗除算回路などから構成され、電圧信号V_EAOが大きくなり、抵抗303に流れる電流がゼロ、つまり、定電流源301による電流がそのまま電流信号I_Ref1となる場合は、電流変調信号I_Jitterと等しい値が電流信号I_Jit1として出力される。
 電圧信号V_EAOが小さくなり、また、抵抗303に流れる電流が大きくなった場合は、定電流源301による電流を上回ると、電流信号I_ref1がゼロになり、電流信号I_Jit1もゼロとなる。
 このような制御により、図15に示す通り、PWM制御からPFM制御に切り替わった後は、出力状態信号に応じて徐々に振幅が小さくなるようなターンオンタイミング変調が実現できる。
 図14は、本実施の形態1のスイッチング電源装置の基準回路14の一構成例である基準回路14aを示す回路図である。実施の形態1の基準回路14を示す図8と比較して、オペアンプ40、抵抗41の接続箇所と、定電流源401、NPNバイポーラトランジスタ402、抵抗403、電圧減算回路404、変調振幅調整回路405が追加されている点が異なる。
 本実施の形態2においては、電圧減算回路404によって、電圧信号V_EAOから電圧信号V_ISを差し引いた差分電圧を生成し、NPNバイポーラトランジスタ402のベースに入力され、V-Iコンバータで電流値に換算される。また、定電流源401がNPNバイポーラトランジスタ402のコレクタに接続される。
 PFM領域においては、電圧信号V_EAOと比較して電圧信号V_ISが大きくなるため、電圧減算回路404の出力電圧としてはゼロ以下となり、NPNバイポーラトランジスタ402はオフする。したがって、抵抗403に流れる電流は実質的にほぼゼロとなり、定電流源401による電流がそのまま電流信号I_Ref2として、変調振幅調整回路405に入力される。
 一方で、PWM領域においては、電圧信号V_EAOと比較して電圧信号V_ISが小さくなるため、電圧信号V_EAOが大きくなるほど、電圧減算回路404の出力電圧が大きくなる。つまり、PWM領域においては、ドレイン電流ピークが大きくなるほど、抵抗403に流れる電流が大きくなり、定電流源401による電流を上回ると、電流信号I_ref2はゼロとなる。
 変調振幅調整回路405は、電流変調信号I_Jitterの振幅が、電流信号I_Ref2に比例して変化する電流信号I_Jit2を生成し、抵抗41に重畳する。
 変調振幅調整回路405は、例えば、電流変調信号I_Jitterと電流信号I_Ref2をベースとした乗除算回路などから構成され、電圧信号V_EAOが小さくなり、抵抗403に流れる電流がゼロ、つまり、定電流源401による電流がそのまま電流信号I_Ref2となる場合は、電流変調信号I_Jitterと等しい値が電流信号I_Jit2として出力される。
 電圧信号V_EAOが大きくなり、また、抵抗403に流れる電流が大きくなった場合は、定電流源401による電流を上回ると、電流信号I_ref2がゼロになり、電流信号I_Jit2もゼロとなる。
 このような制御により、図15に示す通り、PFM制御からPWM制御に切り替わった後は、出力状態信号に応じて徐々に振幅が小さくなるようなターンオフタイミング変調が実現できる。
 以上より、本実施の形態2に係るスイッチング電源装置は、PFM制御とPWM制御の切り替わり後にターンオンタイミング変調とターンオフタイミング変調の振幅を徐々に小さくするため、境界での動作が安定しやすい。
 また、ターンオンタイミング変調とターンオフタイミング変調の振幅低下の開始ポイントは、PFM制御とPWM制御の切り替わり境界としているが、切り替わり境界付近でもよい。
 また、変調振幅を連続的に小さくするのではなく、PFM制御とPWM制御の切り替わり境界を越えてから離散的にゼロになる構成でもよい。
 (実施の形態3)
 次に、実施の形態3に係るスイッチング電源装置および半導体装置について、図16と図17を参照しながら説明する。
 実施の形態1および2では、スイッチング周波数のターンオンタイミング変調は、PWM制御とPFM制御の切り替わり境界あるいは境界付近から徐々に減少して実質的にゼロにするような構成であったが、本実施の形態3では、PFM制御の全ての動作領域において、ターンオンタイミング変調が働くスイッチング電源装置について説明する。なお、実施の形態1および2と重複する説明は省略する。
 図16は、本実施の形態3のスイッチング電源装置のPFM制御回路13内のPFM制御用電流生成回路200の一構成例であるPFM制御用電流生成回路200bを示す回路図である。実施の形態1のPFM制御用電流生成回路200を示す図6と比較して、電流変調信号I_Jitterの重畳される箇所が異なる。
 本実施の形態3においては、電流変調信号I_Jitterは、定電流源201に重畳されず、最小電流選択回路210の出力側に重畳される。
 このような制御により、図17に示す通り、発振器100のスイッチング周波数はPFM制御領域の全ての動作区間において、ターンオンタイミング変調が働く。
 以上より、本実施の形態3に係るスイッチング電源装置は、PFM制御とPWM制御の境界でターンオンタイミング変調の切り替えがないため、境界での動作が安定しやすい。
 さらに、PFM領域における周波数変調は、ターンオフタイミング変調のみの場合よりも、ターンオンタイミング変調とターンオフタイミング変調の足し合わせの方が、スイッチング周波数の変調効果が高くなる。言い換えると、実施の形態1と同等の変調効果を得るにあたって、本実施の形態3はターンオフタイミングの変調振幅を小さく設定することが可能となり、スイッチング電源の制御安定性を高めることができる。
 なお、PFM制御とPWM制御の境界におけるターンオフ変調制御においては、実施の形態1に記載の基準回路14を使っているが、実施の形態2に記載の基準回路14aとしてもよい。
 (実施の形態4)
 次に、実施の形態4に係るスイッチング電源装置および半導体装置について、図18、図19および図20を参照しながら説明する。
 実施の形態1では、スイッチング周波数のターンオンタイミング変調は、PWM制御とPFM制御の切り替わり境界付近から徐々に減少して実質的にゼロにするような構成であったが、本実施の形態4では、発振器100のスイッチング周波数はPFM制御の全ての動作領域においてターンオンタイミング変調を実行しつつ、かつ、ターンオンタイミング変調振幅がPFM制御のスイッチング周波数に応じて変化するスイッチング電源装置について説明する。なお、実施の形態1と重複する説明は省略する。
 図18は、本実施の形態4のスイッチング電源装置のPFM制御回路13内のPFM制御用電流生成回路200の一構成例であるPFM制御用電流生成回路200cを示す回路図である。実施の形態1のPFM制御用電流生成回路200を示す図6と比較して、電流変調信号I_Jitterの重畳される箇所が異なる。本実施の形態4においては、電流変調信号I_Jitterは、定電流源201に重畳されず、最小電流選択回路210cに入力される。
 図19は、本実施の形態4のスイッチング電源装置の最小電流選択回路210の一構成例である最小電流選択回路210cを示す回路図である。図19の最小電流選択回路210cは、実施の形態1の最小電流選択回路210を示す図7と比較して、P型MOSFET219および220、変調振幅調整回路505、電流変調信号I_Jitterが追加されている点が異なる。
 最小電流選択回路210cは、P型MOSFET216を介して流れる電流信号I_Ref4に比例した電流信号I_Ref3を生成し、変調振幅調整回路505に入力する。
 変調振幅調整回路505は、電流変調信号I_Jitterを電流信号I_Ref3に比例して変化する電流信号I_Jit3を生成し、電流信号I_OSCの出力に重畳する。電流信号I_Jit3信号は、電流変調信号I_Jitterと異なり、変調振幅がスイッチング周波数に応じて変化するように制御される。したがって、電流信号I_ref4と電流信号I_Jit3の和が、電流信号I_OSCとして出力される。
 このような制御により、図20に示す通り、スイッチング周波数はPFM制御の全ての動作領域においてターンオンタイミング変調を実行しつつ、かつ、ターンオンタイミング変調振幅はPFM制御のスイッチング周波数に応じて変化する。
 以上より、本実施の形態4に係るスイッチング電源装置は、実施の形態3と同様に、PFM制御とPWM制御の境界でターンオンタイミング変調の切り替えがないため、境界での動作が安定しやすい。
 また、PFM領域における周波数変調は、ターンオフタイミング変調のみの場合よりも、ターンオンタイミング変調とターンオフタイミング変調の足し合わせの方が、スイッチング周波数の変調効果が高くなる。言い換えると、実施の形態1と同等の変調効果を得るにあたって、本実施の形態3はターンオフタイミングの変調振幅を小さく設定することが可能となり、スイッチング電源の制御安定性を高めることができる。
 さらに、本実施の形態4は、ターンオンタイミング変調振幅をスイッチング周波数に応じて変化させることで、出力状態信号変化に対してターンオンタイミング変調と変調振幅変化によるターンオンタイミング変調の両方の効果が合わさるため、実施の形態1、2、3と比較して変調効果が高くなる。
 なお、本実施の形態4では、ターンオンタイミング変調振幅をスイッチング周波数に応じて変化させているが、ターンオフタイミング変調振幅をドレイン電流ピークに応じて変化させる構成でもよい。
 (実施の形態5)
 次に、実施の形態5に係るスイッチング電源装置および半導体装置について、図21および図22を参照しながら説明する。
 実施の形態1では、PFM制御領域におけるターンオフタイミングは、出力状態信号に依存して変化せず、電圧信号V_ISに周期的な電流変調信号I_Jitterを重畳した電圧信号V_Jitterから決定された。
 本実施の形態5では、ターンオフタイミングは、周期的な変調に加え、出力状態信号に応じても変化するスイッチング電源装置について説明する。なお、実施の形態1と重複する説明は省略する。
 図21は、本実施の形態5のスイッチング電源装置の基準回路14の一構成例である基準回路14dを示す回路図である。実施の形態1の基準回路14を示す図8と比較して、P型MOSFET500、501、508および509と、NPNバイポーラトランジスタ502および510と、抵抗503、511、512と、N型MOSFET504、505a、506および507、オペアンプ513が追加されている点が異なる。さらに、比較器42のマイナス(-)側に入力されるV_Jitter信号の生成手段が異なる。
 また、P型MOSFET500と501、P型MOSFET508と509、N型MOSFET504と505a、N型MOSFET506と507は、例えばミラー比率1のミラー回路となっている。
 P型MOSFET500および501、NPNバイポーラトランジスタ502、抵抗503によって、V-Iコンバータを構成し、また、P型MOSFET508および509、NPNバイポーラトランジスタ510、抵抗511によって、V-Iコンバータを構成している。
 さらに、N型MOSFET504、505a、506および507によって電流減算回路を構成している。
 電流減算回路は、電圧信号V_ISに比例する電流信号から、電圧信号V_EAOに比例する電流信号を差し引いた電流値を生成する。
 PFM制御領域においては、電圧信号V_EAOと比較して電圧信号V_ISが大きくなるため、電圧信号V_EAOが小さくなるほど、電流減算回路の出力電流、つまり、N型MOSFET507に流れる電流I_Difが大きくなる。
 したがって、電圧信号V_ISはオペアンプ40によってインピーダンス変換され、フィードバックに応じて変化するI_Difが電流として抵抗41を流れることによって発生する電圧と電圧信号V_ISの電圧との差である電圧信号VIS_EAOとして、オペアンプ513のプラス(+)側電圧に入力される。さらに、電圧信号VIS_EAOは、オペアンプ513によってインピーダンス変換され、電流変調信号I_Jitterが電流として抵抗512を流れることによって発生する電圧と電圧信号VIS_EAOの電圧との和である電圧信号VIS_EAO_Jitterとして、比較器42のマイナス(-)側電圧およびN型MOSFET44のドレインに入力される。
 このような制御により、図22に示す通り、PFM領域におけるターンオフタイミングは、周期的な変調に加え、スイッチング周波数が低下するほどドレイン電流ピークが減少するように制御される。
 以上より、本実施の形態5に係るスイッチング電源装置は、PFM制御におけるターンオフタイミングをスイッチング周波数に応じて変化させることで、PFM制御領域での負荷変動に対する応答速度を高めることができる。
 なお、PFM制御とPWM制御の境界におけるターンオフ変調制御においては、実施の形態1に記載の基準回路14を使っているが、実施の形態2に記載の基準回路14aとしてもよい。
 以上、本出願において開示する技術を例示するため、実施の形態1~5として、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 なお、本開示における技術は、これらに限定されるものではなく、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、本開示における技術の趣旨を逸脱しない限り、当業者が思いつく各種変形を施したものや、複数の実施の形態における構成要素を組み合わせて構築される形態も、本開示における技術の範囲内に含まれる。
 本開示のスイッチング電源装置および半導体装置は、周波数変化制御を行うスイッチング電源装置において、ターンオンタイミング変調とターンオフタイミング変調の両方を備え、PFM制御領域ではターンオフタイミング変調を、PWM制御領域ではターンオンタイミング変調を実行することで、PFM制御からPWM制御まで全ての動作領域で周波数ジッター制御が働き、効果的に周波数分散されることで雑音端子ノイズの低減が可能となる。さらにPFM制御とPWM制御が切り替わった後も、少なくとも一方の変調手段を切り替わり境界付近で連続して実行することにより、境界での安定動作を実現できる。
 また、本開示のスイッチング電源装置および半導体装置は、各種電子機器に内蔵されたAC-DCコンバータやDC-DCコンバータ、外付けのACアダプタなどのスイッチング電源装置などに利用できる。
 1   トランス
 1a  1次巻線
 1b  2次巻線
 1c  補助巻線
 2   スイッチング素子
 3、3a、3e   スイッチング制御回路
 4   整流平滑回路
 4a、6a  整流ダイオード
 4b、6b、9  平滑コンデンサ
 5   出力状態検出回路
 6   出力整流平滑回路
 7   負荷
 8   レギュレータ
 10  起動・停止回路
 11  フィードバック信号制御回路
 12  変調信号発生回路
 13、13a、13e  PFM制御回路
 14、14a、14d、14e  基準回路
 15、42、69、107、108  比較器
 16  AND回路
 17  オン時ブランキングパルス発生回路
 18、112  RSフリップフロップ回路
 19  NAND回路
 20  ゲートドライバ
 21  ドレイン電流検出回路
 30、31、41、52、68、80、205、303、403、503、511、512  抵抗
 40、513  オペアンプ
 43、66、113、130、131、132、133  インバータ回路
 44、45、64、65、75、76、77、79、104、105、217、218、504、505a、506、507  N型MOSFET
 50  低周波発振器
 51、81、204、302、402、502、510  NPNバイポーラトランジスタ
 53、54、62、63、70、73、74、102、103、202、203、211、212、213、214、215、216、219、220、500、501、508、509  P型MOSFET 
 55、59、60、61、201、301、401  定電流源
 67、106  コンデンサ
 78、82、110、111  定電圧源
 100  発振器
 134  NOR回路
 200、200a、200b、200c  PFM制御用電流生成回路
 210、210c  最小電流選択回路
 300  パルス発生器
 304、404  電圧減算回路
 305、405、505  変調振幅調整回路

Claims (11)

  1.  直流の入力電圧が入力されるエネルギー変換回路と、
     前記エネルギー変換回路から出力される電圧を整流平滑して負荷に出力電圧を出力する出力整流平滑回路と、
     前記エネルギー変換回路に接続され、前記入力電圧をスイッチングするスイッチング素子と、
     前記スイッチング素子のスイッチング動作を制御するスイッチング制御回路と、
     前記エネルギー変換回路から出力される電力に対する前記負荷の負荷状態を示す出力状態信号を生成する出力状態検出回路と、を有し、
     前記スイッチング制御回路は、
     前記出力状態信号に応じて前記スイッチング素子のターンオンタイミングを制御して前記スイッチング素子のスイッチング周波数である第1のスイッチング周波数を変化させる周波数変化制御モードと、
     前記スイッチング素子のスイッチング周波数を出力状態信号に対して一定の第2のスイッチング周波数に設定し、
     前記出力状態信号に応じて前記スイッチング素子のターンオフタイミングを制御する周波数固定制御モードと、を
     前記出力状態信号に応じて切り替え制御を実行し、
     前記周波数変化制御モードでは前記第1のスイッチング周波数が変調制御されるように前記スイッチング素子のターンオフタイミングを第1の変調信号で変調制御する第1の変調制御を実行し、
     前記周波数固定制御モードでは前記第2のスイッチング周波数を第2の変調信号で変調制御する第2の変調制御を実行し、
     前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに前記周波数変化制御モードで実行する前記第1の変調制御を前記周波数固定制御モードになっても連続して実行するか、
     前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに前記周波数固定制御モードで実行する前記第2の変調制御を前記周波数変化制御モードになっても連続して実行するか、
     の少なくとも一方を実行する
    スイッチング電源装置。
  2.  前記スイッチング制御回路は、
     前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに
     前記第1の変調制御の変調振幅を前記周波数固定制御モードに切り替わるまでに徐々に減少させるか、
     前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに
     前記第2の変調制御の変調振幅を前記周波数変化制御モードに切り替わるまでに徐々に減少させるか、
     の少なくとも一方を実行する
    請求項1に記載のスイッチング電源装置。
  3.  前記スイッチング制御回路は、
     前記第2の変調信号に応じて変調制御した前記スイッチング素子のターンオンタイミングと、
     前記周波数変化制御モードで設定するターンオンタイミングと、を比較し、
     遅い方のターンオンタイミングで前記スイッチング素子のターンオンを制御する
    請求項1に記載のスイッチング電源装置。
  4.  前記スイッチング制御回路は、
     前記第1の変調信号に応じて変調制御した前記スイッチング素子のターンオフタイミングと、
     前記周波数固定制御モードで設定するターンオフタイミングと、を比較し、
     遅い方のターンオフタイミングで前記スイッチング素子のターンオフを制御する
    請求項1に記載のスイッチング電源装置。
  5.  前記スイッチング制御回路は、
     前記周波数変化制御モードから前記周波数固定制御モードに切り替わるときに
     前記第1の変調制御の変調振幅を前記周波数固定制御モードになってから徐々に減少させるか、
     前記周波数固定制御モードから前記周波数変化制御モードに切り替わるときに
     前記第2の変調制御の変調振幅を前記周波数変化制御モードになってから徐々に減少させるか、
     の少なくとも一方を実行する
    請求項1に記載のスイッチング電源装置。
  6.  前記スイッチング制御回路は、
     前記周波数変化制御モードで動作させる区間の全域に渡って
     前記第1のスイッチング周波数を前記第2の変調信号で変調制御する
    請求項1に記載のスイッチング電源装置。
  7.  前記周波数変化制御モードで実行する
     前記第1のスイッチング周波数の前記第2の変調信号での変調制御は
     前記スイッチング素子の前記スイッチング周波数が高くなるほど変調振幅が大きく設定される
    請求項6に記載のスイッチング電源装置。
  8.  前記スイッチング制御回路は、
     前記周波数変化制御モードにおける
     前記スイッチング素子のターンオフタイミングを前記出力状態信号によらず一定に制御する
    請求項1に記載のスイッチング電源装置。
  9.  前記スイッチング制御回路は、
     前記周波数変化制御モードにおける
     前記スイッチング素子のターンオフタイミングを前記出力状態信号に応じて変化させる
    請求項1に記載のスイッチング電源装置。
  10.  前記スイッチング制御回路は、
     前記周波数変化制御モードにおける
     前記第1のスイッチング周波数が高くなるほど、前記スイッチング素子のターンオフタイミングを遅くする
    請求項9に記載のスイッチング電源装置。
  11.  請求項1から請求項10までのうちいずれか1つに記載のスイッチング電源装置において、
     前記スイッチング制御回路を、半導体基板上に集積回路として形成した
    スイッチング制御用の半導体装置。
PCT/JP2017/030032 2016-08-30 2017-08-23 スイッチング電源装置および半導体装置 WO2018043228A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018537172A JP6778267B2 (ja) 2016-08-30 2017-08-23 スイッチング電源装置および半導体装置
CN201780051572.4A CN109643957B (zh) 2016-08-30 2017-08-23 开关电源装置以及半导体装置
US16/282,723 US10630187B2 (en) 2016-08-30 2019-02-22 Switching power supply device and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168618 2016-08-30
JP2016-168618 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,723 Continuation US10630187B2 (en) 2016-08-30 2019-02-22 Switching power supply device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2018043228A1 true WO2018043228A1 (ja) 2018-03-08

Family

ID=61300914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030032 WO2018043228A1 (ja) 2016-08-30 2017-08-23 スイッチング電源装置および半導体装置

Country Status (4)

Country Link
US (1) US10630187B2 (ja)
JP (1) JP6778267B2 (ja)
CN (1) CN109643957B (ja)
WO (1) WO2018043228A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043227A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 スイッチング電源装置および半導体装置
US10199918B2 (en) * 2017-07-10 2019-02-05 Semiconductor Components Industries, Llc Method of forming a semiconductor device
JP6949618B2 (ja) * 2017-08-15 2021-10-13 キヤノン株式会社 電源装置及び画像形成装置
FR3087064B1 (fr) * 2018-10-09 2020-11-20 Stmicroelectronics Razvoj Polprevodnikov D O O Source d'alimentation a decoupage d'un lecteur du type communication en champ proche
CN110138230A (zh) * 2019-06-25 2019-08-16 西安特锐德智能充电科技有限公司 谐振电路控制方法、电源电路及充电桩
EP3761359A1 (en) * 2019-07-03 2021-01-06 Nexperia B.V. A lead frame assembly for a semiconductor device
US11108322B2 (en) * 2019-10-16 2021-08-31 Semiconductor Components Industries, Llc Dual-mode control of a switch mode power supply
KR20220043707A (ko) 2020-09-29 2022-04-05 삼성전자주식회사 무선 충전 시스템을 위한 새로운 pwm 방식
US11909321B2 (en) * 2020-12-15 2024-02-20 Rohm Co., Ltd. Power supply controller and insulated switching power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259599A (ja) * 2006-03-23 2007-10-04 Ricoh Co Ltd スイッチングレギュレータ
KR20110035443A (ko) * 2009-09-30 2011-04-06 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 구동방법
JP2011166917A (ja) * 2010-02-08 2011-08-25 Panasonic Corp スイッチング電源装置
JP2013038693A (ja) * 2011-08-10 2013-02-21 Denso Corp パルス発生回路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350487A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ブラシレスモータの制御装置
WO2004107546A1 (en) * 2003-05-06 2004-12-09 Semiconductor Components Industries L.L.C. Power factor correction circuit and method of varying switching frequency
JP4277628B2 (ja) 2003-08-28 2009-06-10 株式会社デンソー 車両用スイッチング電源装置
JP4461842B2 (ja) 2004-03-09 2010-05-12 株式会社デンソー スイッチングレギュレータ及びスイッチングレギュレータの制御方法
JP2008312359A (ja) 2007-06-15 2008-12-25 Panasonic Corp スイッチング電源装置、並びにレギュレーション回路
JP4979536B2 (ja) 2007-10-15 2012-07-18 パナソニック株式会社 スイッチング電源装置
JP5343341B2 (ja) 2007-10-18 2013-11-13 サンケン電気株式会社 スイッチング電源装置
JP5230181B2 (ja) * 2007-12-07 2013-07-10 パナソニック株式会社 エネルギー伝達装置およびエネルギー伝達制御用半導体装置
JP2010288334A (ja) * 2009-06-09 2010-12-24 Panasonic Corp スイッチング電源装置及び半導体装置
JP2011004550A (ja) * 2009-06-19 2011-01-06 Panasonic Corp スイッチング電源装置および半導体装置
WO2011158282A1 (ja) 2010-06-14 2011-12-22 パナソニック株式会社 スイッチング電源装置およびその制御用半導体装置
WO2011158284A1 (ja) * 2010-06-15 2011-12-22 パナソニック株式会社 スイッチング電源装置および半導体装置
KR101188014B1 (ko) * 2010-07-29 2012-10-05 성균관대학교산학협력단 태양광 발전시스템을 위한 플라이백 컨버터의 스위치 제어 장치 및 방법
JP5640830B2 (ja) 2011-03-10 2014-12-17 サンケン電気株式会社 スイッチング電源装置
JP5899504B2 (ja) 2011-11-28 2016-04-06 パナソニックIpマネジメント株式会社 スイッチング電源装置および半導体装置
CN102497103B (zh) * 2011-12-24 2014-03-19 西安启芯微电子有限公司 轻载高效率的dc-dc转换装置
WO2014006838A1 (ja) * 2012-07-06 2014-01-09 パナソニック株式会社 スイッチング電源装置および半導体装置
JP6015281B2 (ja) 2012-09-20 2016-10-26 富士電機株式会社 スイッチング電源装置
JP6131685B2 (ja) 2013-04-03 2017-05-24 富士電機株式会社 スイッチング電源装置
US9722490B2 (en) * 2013-09-05 2017-08-01 Intersil Americas LLC Smooth transition of a power supply from a first mode, such as a pulse-frequency-modulation (PFM) mode, to a second mode, such as a pulse-width-modulation (PWM) mode
US9509225B2 (en) * 2014-09-16 2016-11-29 Continental Automotive Systems, Inc. Efficient LLC resonant converter having variable frequency control and fixed frequency phase-shift PWM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259599A (ja) * 2006-03-23 2007-10-04 Ricoh Co Ltd スイッチングレギュレータ
KR20110035443A (ko) * 2009-09-30 2011-04-06 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 구동방법
JP2011166917A (ja) * 2010-02-08 2011-08-25 Panasonic Corp スイッチング電源装置
JP2013038693A (ja) * 2011-08-10 2013-02-21 Denso Corp パルス発生回路

Also Published As

Publication number Publication date
CN109643957A (zh) 2019-04-16
US10630187B2 (en) 2020-04-21
US20190190391A1 (en) 2019-06-20
CN109643957B (zh) 2020-12-11
JPWO2018043228A1 (ja) 2019-06-24
JP6778267B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
US10630188B2 (en) Switching power supply apparatus and semiconductor device
JP6778267B2 (ja) スイッチング電源装置および半導体装置
JP5341627B2 (ja) 半導体装置およびスイッチング電源装置
JP5230181B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US9812855B2 (en) Resonant converter and driving method thereof
US9647566B2 (en) Switching power supply apparatus
US20090201705A1 (en) Energy converting apparatus, and semiconductor device and switching control method used therein
JP5513778B2 (ja) スイッチング電源回路
JP2008312359A (ja) スイッチング電源装置、並びにレギュレーション回路
JP2010022121A (ja) スイッチング電源装置、およびスイッチング電源用半導体装置
US20110085356A1 (en) Switching element driving control circuit and switching power supply device
US20100033992A1 (en) Switching power supply controller and semiconductor device used for the same
JP2004040856A (ja) スイッチング電源装置
JP2009177954A (ja) 力率改善コンバータ
JP2017060271A (ja) スイッチング電源装置
JP2015126638A (ja) スイッチング電源装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP2008228417A (ja) Dc−dcコンバータ
JP4525311B2 (ja) スイッチング電源装置
JP4387244B2 (ja) スイッチング電源装置
JP2010057207A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846233

Country of ref document: EP

Kind code of ref document: A1