WO2018025769A1 - 磁気ディスク基板用アルミニウム合金板及びその製造方法、並びに磁気ディスク - Google Patents
磁気ディスク基板用アルミニウム合金板及びその製造方法、並びに磁気ディスク Download PDFInfo
- Publication number
- WO2018025769A1 WO2018025769A1 PCT/JP2017/027483 JP2017027483W WO2018025769A1 WO 2018025769 A1 WO2018025769 A1 WO 2018025769A1 JP 2017027483 W JP2017027483 W JP 2017027483W WO 2018025769 A1 WO2018025769 A1 WO 2018025769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- less
- plating
- magnetic disk
- mass
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73911—Inorganic substrates
- G11B5/73913—Composites or coated substrates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73911—Inorganic substrates
- G11B5/73917—Metallic substrates, i.e. elemental metal or metal alloy substrates
- G11B5/73919—Aluminium or titanium elemental or alloy substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/74—Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
- G11B5/82—Disk carriers
Definitions
- the present invention relates to an aluminum alloy plate for a magnetic disk substrate having excellent plating surface smoothness after formation of a plating layer, a method for producing the same, and a magnetic disk produced using the aluminum alloy plate.
- An aluminum alloy magnetic disk used for a storage device of a computer is manufactured from an aluminum alloy substrate having excellent plating properties and excellent mechanical properties and workability.
- an aluminum alloy substrate for example, JIS5086 alloy (Mg: 3.5 to 4.5 mass%, Fe ⁇ 0.50 mass%, Si ⁇ 0.40 mass%, Mn: 0.20 to 0.70 mass%, Cr : 0.05 to 0.25 mass%, Cu ⁇ 0.10 mass%, Ti ⁇ 0.15 mass%, Zn ⁇ 0.25 mass%, balance Al and unavoidable impurities), and Fe which is an impurity in JIS5086 alloy
- Examples thereof include aluminum alloy substrates that have improved plating properties by limiting the content of Si and the like to reduce the intermetallic compounds in the matrix, or by adding Cu or Zn.
- a general aluminum alloy magnetic disk is manufactured by first producing an annular aluminum alloy substrate, plating the annular aluminum alloy substrate, and then attaching a magnetic material to the surface of the substrate.
- a magnetic disk having an annular aluminum alloy substrate is manufactured by the following process. First, an aluminum alloy is cast, the ingot is hot-rolled, and then cold-rolled. In addition, it anneals as needed and produces a rolling material. Next, this rolled material is punched in an annular shape, and a plurality of punched annular aluminum alloy plates are laminated, and pressure annealing is performed to flatten by annealing while pressing from above and below, and then laminating By releasing the state, an annular aluminum alloy substrate is produced.
- the annular aluminum alloy substrate thus manufactured is subjected to cutting, grinding, degreasing, etching, zincate treatment (Zn substitution treatment) as a pretreatment, and then the annular aluminum alloy substrate subjected to the zincate treatment.
- a Ni—P plating layer which is a hard non-magnetic metal, is formed on the surface by electroless plating, and after polishing the surface of the Ni—P plating layer, a magnetic layer is formed by sputtering. Thus, a magnetic disk is manufactured.
- the cause of the pits in the plating layer is known to be due to a large depression existing on the surface of the aluminum alloy substrate. This large depression is caused by coarse non-metallic inclusions or intermetallic compounds existing on the substrate surface. It has been found that foreign matters fall off during grinding and pre-plating treatment.
- Patent Document 1 describes a method for increasing the cooling rate during solidification in casting to refine Al—Fe—Mn or Mg—Si based crystallized substances (intermetallic compounds).
- a molten metal using an aluminum ingot as a main raw material, but the aluminum ingot contains various impurity components, and in particular, chlorine (Cl ) Component is generally contained in an amount of about 0.0001% by mass. Further, in some cases, a chromium (Cr) raw material may be charged by adjusting the components in the molten metal. Generally contains about 0.03% by mass of Cr oxide.
- Patent Document 1 can make Al—Fe—Mn and Mg—Si based crystallized substances (intermetallic compounds) in the metal matrix fine, but contains the above-mentioned Cl component.
- a molten metal is produced using an aluminum ingot and a Cr raw material containing Cr oxide, the problem is that the surface of the magnetic disk cannot be formed sufficiently smoothly even if these crystallized substances are made fine.
- the slab manufactured in the casting process needs to be a thin slab having a thickness of 4 to 15 mm from the viewpoint of obtaining a rapid cooling effect. There were also restrictions on manufacturing conditions.
- the present invention has been made to solve the above problems, and is excellent in the smoothness of the plating surface after the formation of the plating layer, and can be manufactured at low cost, and a manufacturing method thereof, and aluminum.
- An object is to provide a magnetic disk manufactured using an alloy plate.
- the present inventors have focused on Cr oxide and chloride as inclusions, the relationship between the distribution state of these inclusions and the smoothness of the plating surface, and the formation of the inclusions. And research on the relationship between the manufacturing conditions. As a result, it has been found that the content of Cr and Cl, as well as the amount of Cr oxide and Cl in the raw material, have a great influence on the generation of Cr oxide and the smoothness of the ground surface and the smoothness of the plating surface. The present invention has been completed.
- the gist configuration of the present invention is as follows. (1) By mass, Mg: 3.0 to 8.0%, Cu: 0.002 to 0.150%, Zn: 0.05 to 0.60%, Fe: 0.001 to 0.060% Si: 0.001 to 0.060%, Be: 0.00001 to 0.00200%, Cr: 0.200% or less, Mn: 0.500% or less, and Cl: 0.00300% or less,
- the balance is a composition comprising Al and inevitable impurities, and the density of Cr oxide having the longest diameter of 3 to 10 ⁇ m observed in the metal structure is 1 or less per one side of the disk.
- Aluminum alloy plate for magnetic disk substrate is aluminum alloy plate for magnetic disk substrate.
- a melt adjusting step of adjusting the melt so as to have a composition of the aluminum alloy plate A casting process for casting the molten metal, a hot rolling process for hot rolling the cast ingot to obtain a hot rolled sheet, and a cold for cold rolling the hot rolled sheet to obtain a cold rolled sheet
- the molten metal adjusting step further adjusts the molten metal by further introducing a Cr raw material containing 0.50% by mass or less of Cr oxide.
- a method for producing an aluminum alloy plate. (6) A plated layer and a magnetic layer are provided on the surface of an annular aluminum alloy substrate produced using the aluminum alloy plate for a magnetic disk substrate described in any one of (1) to (3) above. A magnetic disk characterized by that.
- Mg 3.0 to 8.0%
- Cu 0.002 to 0.150%
- Zn 0.05 to 0.60%
- Fe 0.001 to 0 0.060%
- Si 0.001 to 0.060%
- Be 0.00001 to 0.00200%
- Cr 0.200% or less
- Mn 0.500% or less
- Cl 0.00300% or less.
- the remaining density of the Cr oxide having the longest diameter of 3 to 10 ⁇ m observed in the metal structure is 1 or less per one side of the disk.
- An aluminum alloy plate for a magnetic disk substrate having the above characteristics can be manufactured at a low cost by charging an aluminum ingot and adjusting the molten metal.
- a large capacity and high density magnetic disk is provided by forming a plating layer and a magnetic layer on the surface of an annular aluminum alloy substrate produced using the aluminum alloy plate. be able to.
- a series of steps for producing an aluminum alloy plate according to the present invention a series of steps for producing an aluminum alloy substrate using the aluminum alloy plate, and a series of steps for producing a magnetic disk using the aluminum alloy substrate. It is the flow figure shown connected.
- the aluminum alloy plate for a magnetic disk substrate according to the present invention is, in mass%, Mg: 3.0 to 8.0%, Cu: 0.002 to 0.150%, Zn: 0.05 to 0.60%, Fe : 0.001 to 0.060%, Si: 0.001 to 0.060%, Be: 0.00001 to 0.00200%, Cr: 0.200% or less, Mn: 0.500% or less, and Cl:
- the existence density of Cr oxide having a longest diameter of 3 to 10 ⁇ m, which is observed in the metal structure, has a composition composed of 0.00300% or less, the balance being Al and inevitable impurities, and is observed per one side of the disk. 1 or less.
- the chemical composition of the aluminum alloy plate for a magnetic disk substrate according to the present invention and the reasons for limiting the Cr oxide in the metal structure will be shown.
- the unit of element content in the chemical composition is “% by mass”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
- Mg is an element mainly having an effect of improving the strength of the aluminum alloy plate. Further, since the zincate film at the time of the zincate treatment is uniformly, thinly and densely adhered, the smoothness of the plating surface made of Ni—P is improved in the base treatment step which is the next step of the zincate treatment step. However, if the Mg content is less than 3.0%, the strength is insufficient, and further, the zincate film produced by the zincate treatment becomes non-uniform, and the adhesion and smoothness of the plating decrease.
- the Mg content exceeds 8.0%, a coarse Al—Mg intermetallic compound is generated, and the intermetallic compound drops off during etching, zincate treatment, cutting and grinding. A dimple is generated and the smoothness of the plating surface is reduced. Therefore, the Mg content is set to 3.0 to 8.0%.
- the Mg content is preferably 3.5 to 7.0% in view of the balance between strength and manufacturability.
- Cu is an element that has the effect of reducing the amount of dissolved Al during the zincate treatment, and depositing the zincate film uniformly, thinly and densely. Due to such an effect, the smoothness of the plating surface made of Ni—P is improved in the base treatment process which is the next process of the zincate treatment process.
- the Cu content is less than 0.002%, the above effects cannot be sufficiently obtained.
- the Cu content exceeds 0.150%, a coarse Al—Cu—Mg—Zn intermetallic compound is generated, During etching, zincate treatment, cutting or grinding, the intermetallic compound is dropped and a large depression is generated, which reduces the smoothness of the plating surface.
- the Cu content exceeds 0.150%, the corrosion resistance of the material itself is lowered, so that the zincate film produced by the zincate treatment becomes non-uniform, and the adhesion and smoothness of the plating are lowered. Therefore, the Cu content is set to 0.002 to 0.150%.
- the Cu content is preferably 0.002 to 0.100%.
- ⁇ Zn 0.05 to 0.60%> Zn, like Cu, reduces the amount of Al dissolved at the time of the zincate treatment, and since the zincate film is uniformly, thinly and densely attached, in the ground treatment step which is the next step of the zincate treatment step, The smoothness of the plating surface made of Ni—P is improved.
- the Zn content is less than 0.05%, the above effects cannot be sufficiently obtained.
- the Zn content exceeds 0.60%, a coarse Al—Cu—Mg—Zn-based intermetallic compound is generated, During etching, zincate treatment, cutting or grinding, the intermetallic compound is dropped and a large depression is generated, which reduces the smoothness of the plating surface.
- the Zn content exceeds 0.60%, the workability and corrosion resistance of the material itself are lowered, so the zincate film produced by the zincate treatment becomes non-uniform, and the adhesion and smoothness of the plating are lowered. . Therefore, the Zn content is 0.05 to 0.60%, preferably 0.05 to 0.50%.
- Fe hardly dissolves in the aluminum base material and exists in the aluminum ingot as an Al—Fe intermetallic compound. Since this Al—Fe intermetallic compound becomes a defect on the ground surface, it is not preferable that Fe be contained in the aluminum alloy. However, removing Fe to less than 0.001% results in refining aluminum ingots with high purity, resulting in high costs.
- the Fe content exceeds 0.060%, a coarse Al—Fe based intermetallic compound is formed, and this coarse Al—Fe based metal is produced during etching, zincate treatment, cutting and grinding. The intercalation compound falls off and a large depression is generated, and the smoothness of the plating surface is lowered. Therefore, the Fe content is set to 0.001 to 0.060%, preferably 0.001 to 0.025%.
- Si combines with Mg, which is an essential element of the aluminum alloy plate of the present invention, to produce a Mg—Si intermetallic compound that becomes a defect on the ground surface, it is not preferable that Si be contained in the aluminum alloy. .
- Si exists as an inevitable impurity in the aluminum ingot.
- an aluminum ingot having a high purity, for example, a purity of 99.9% or more is used.
- Such an ingot also contains Si. For this reason, removing the Si component from the aluminum ingot so that the Si content is less than 0.001% results in refining the aluminum ingot to high purity, resulting in high costs.
- the Si content is 0.001 to 0.060%, preferably 0.001 to 0.025%.
- ⁇ Be 0.00001 to 0.00200%> An aluminum alloy containing Mg is generally added with a small amount of Be in order to suppress molten metal oxidation of Mg during casting. If the Be content is less than 0.00001%, the corrosion resistance of the material itself is lowered, so that the zincate film produced by the zincate treatment becomes non-uniform, and pits are generated after the plating treatment, thereby reducing the smoothness. On the other hand, if the Be content exceeds 0.00200%, a thick Al—Mg—Be-based oxide is formed during heating after grinding, so that pits are generated during the plating process, and the smoothness of the plating surface is reduced. . Therefore, the Be content is 0.00001 to 0.00200%, preferably 0.00010 to 0.00025%.
- Cl is an element that easily binds to Mg, which is an essential element of the present invention, and some of them exist as Mg-Cl inclusions.
- Cl inclusions dissolve in the plating solution, and Al Since the recesses are formed in the matrix, pits are frequently generated on the plating surface, and the smoothness of the plating surface is lowered, the Cl content is set to 0.00300% or less.
- the Cl content in the aluminum alloy substrate is measured by glow discharge mass spectrometry (GDMS).
- the measurement by GDMS can be performed by using, for example, a VG9000 type manufactured by VG / ELEMENTAL as a measuring device under the condition of an acceleration voltage of 8 kV.
- the aluminum alloy plate of the present invention contains Mg, Cu, Zn, Fe, Si, Be and Cl as essential components, but if necessary, Cr: 0.010 to 0.200% and Mn : 0.010 to 0.500% can be contained.
- ⁇ Cr: 0.010 to 0.200%> Cr produces a fine intermetallic compound during casting, but part of it is an element that contributes to strength improvement by solid solution in the matrix. In addition, it has the effect of improving the machinability and grindability, further refining the recrystallized structure to improve the adhesion of the plating layer, and remarkably suppressing the occurrence of plating pits. In order to exert such an effect, it is necessary to make the Cr content 0.010% or more. However, if the Cr content exceeds 0.200%, an excess amount is crystallized during casting, and a coarse Al—Cr intermetallic compound is likely to be formed, and during etching, zincate treatment, cutting and grinding processing.
- the intermetallic compound tends to fall off and sometimes generate large depressions that cause plating pits.
- the Cr content increases, the influence of Cr oxide mixed from the Cr raw material cannot be ignored. If a large amount of Cr oxide is present in the material, the Cr oxide will drop off during etching, zincate treatment, cutting or grinding, and a large dent will be generated, reducing the smoothness of the plating surface. Therefore, the Cr content is 0.010 to 0.200%, preferably 0.010 to 0.100%.
- Mn produces a fine intermetallic compound during casting, but part of it is an element that contributes to improving the strength by dissolving in the matrix. Moreover, it has the effect of improving the machinability and grindability, further reducing the recrystallized structure, improving the adhesion of the plating layer, and further suppressing the occurrence of plating pits. In order to exert such an effect, it is necessary to make the Cr content 0.010% or more. However, if the Mn content exceeds 0.500%, excess Al is crystallized during casting, and at the same time coarse Al-Mn intermetallic compounds are likely to be formed.
- the Mn content is 0.010 to 0.500%, preferably 0.010 to 0.100%.
- Al and inevitable impurities In addition to the above elements, there are Al and inevitable impurities.
- “inevitable impurities” include, for example, Ga. These unavoidable impurities, if the content of each element is 0.05% or less and the total content is 0.15% or less, the characteristics of the aluminum alloy plate according to the present invention may be impaired. Absent.
- the density of Cr oxides observed in the metal (aluminum alloy) structure is determined as the disk density. No more than one per side.
- the Cr oxide defined in the present invention refers to an inclusion that can be confirmed to contain chromium (Cr) and oxygen (O) by WDS analysis of an electron beam microanalyzer (EPMA).
- the longest diameter refers to a point on a contour line and a point on the contour line in a planar image of Cr oxide obtained by analysis with a wavelength dispersive X-ray spectrometer (WDS) of an electron beam microanalyzer (EPMA).
- WDS wavelength dispersive X-ray spectrometer
- one side of the area of the disc for example, about 2 3000mm when a 2.5 inch disk, if a 3.5-inch disks is about 2 6500 mm.
- the density of Cr oxide having the longest diameter of 3 to 10 ⁇ m is set to 1 or less per one side of the disk, thereby generating large dents and grinding scratches on the substrate surface during grinding and pre-plating treatment. And a smooth plating surface can be obtained.
- Cr oxide is present on the substrate surface, grinding flaws are generated in a wide range starting from the inclusions during grinding, so that the dispersion state of the inclusions can be visually confirmed.
- the longest diameter of the Cr oxide existing in the aluminum alloy plate is 3 to 10 ⁇ m, the size of the dents and grinding scratches due to the inclusions has some influence on the generation of plating pits.
- the existence density of the Cr oxide having the longest diameter exceeding 10 ⁇ m does not exist on the surface of the disk, that is, 0 per one side of the disk.
- the existence density of the Cr oxide having the longest diameter of 3 to 10 ⁇ m is 1 or less per one surface of the disk, but optimally, it is not present on the surface of the disk, that is, per one surface of the disk 0.
- Steps 1 to 5 are a series of steps until an aluminum alloy plate is manufactured
- Steps 6 to 11 are a series of steps until a magnetic disk is manufactured using the manufactured aluminum alloy plate. It is.
- Step 1 Adjusting a molten metal blended in an aluminum alloy having a desired composition in a melting furnace (for example, blended in a composition shown in Table 1 described later) Then, hot water is transferred to a holding furnace. Further, the molten metal is held at a predetermined temperature for a predetermined time in a holding furnace.
- Step 2 Cast the mixed aluminum alloy melt.
- Step 3 The cast ingot is chamfered and subjected to a homogenization process (the homogenization process is not essential in the present invention and is an appropriate process).
- Step 4 The ingot that has been chamfered or homogenized is hot-rolled to obtain a hot-rolled sheet.
- Step 5 Cold rolling the hot rolled sheet to produce an aluminum alloy sheet as a cold rolled sheet.
- annealing is performed before or during cold rolling (annealing is not essential in the present invention, and is a treatment that is appropriately performed).
- Step 6 An aluminum alloy plate is punched into an annular shape to produce a disc blank.
- Step 7 Flatten the disc blank by pressure annealing.
- Step 8 The flattened disk blank is subjected to cutting, grinding, and heat treatment to obtain an aluminum alloy substrate for a magnetic disk.
- Step 9 Degreasing, etching, and zincate treatment (Zn substitution treatment) are performed on the surface of the aluminum alloy substrate for magnetic disk.
- Step 10 The surface of the zinc alloy-treated aluminum alloy substrate is ground-treated, and a plating layer (for example, a Ni—P plating layer) is formed on this surface.
- Step 11 A magnetic body (magnetic layer) is deposited and formed on the surface of the plating layer formed by the base treatment to produce a magnetic disk.
- the aluminum alloy plate for magnetic disk substrate of the present invention is manufactured by steps 1 to 5 described above. That is, in the molten metal adjusting step (step 1), the molten aluminum alloy adjusted to have the composition of the aluminum alloy sheet of the present invention is heated and held in a holding furnace so as not to be cooled and solidified before being cast. Thereafter, in the casting process (step 2), casting is performed according to a conventional method such as a semi-continuous casting (DC casting) method, and the obtained ingot is subjected to a homogenization treatment (step 3) as necessary.
- a conventional method such as a semi-continuous casting (DC casting) method
- step 4 the cast ingot is hot rolled to form a hot rolled plate, and then in the cold rolling step (step 5), the hot rolled plate is cold rolled and cold rolled.
- An aluminum alloy plate is manufactured as the plate.
- Step 1 (melt adjustment process)
- the molten aluminum alloy adjusted to have the composition of the aluminum alloy sheet to be manufactured is heated and held in a holding furnace so as not to be cooled and solidified before being cast.
- degassing treatment and filtration treatment in-line according to a conventional method before casting.
- the in-line degassing apparatus a commercially available apparatus such as SNIF or ALPUR may be used. These apparatuses rotate a bladed rotating body at a high speed while blowing argon gas or the like into the molten metal, and supply the gas as fine bubbles into the molten metal.
- dehydrogenation gas and inclusions can be removed in-line in a short time.
- a ceramic tube filter, a ceramic foam filter, an alumina ball filter, or the like is used, and inclusions can be removed to some extent by a cake filtration mechanism or a filter medium filtration mechanism.
- the molten metal adjustment step is performed by charging an aluminum ingot with a chlorine (Cl) content regulated to 0.00300% by mass or less as an aluminum ingot as a main raw material.
- the Cr raw material is charged with a Cr raw material in which the content of Cr oxide is regulated to 0.50% by mass or less to adjust the molten metal.
- the present inventors examined the distribution state of the Cr oxide in the aluminum alloy structure, and all of the processes affect the distribution state of the Cr oxide.
- the condition has a great influence.
- an aluminum ingot which is a main raw material for producing a molten metal an aluminum ingot regulated at Cl: 0.00300 mass% or less is used.
- Cr When the Cr raw material is charged into the molten metal for component adjustment, the molten metal is adjusted by using the Cr raw material in which the Cr oxide amount is regulated to 0.50% by mass or less as the Cr raw material.
- the present inventors have found that an aluminum alloy plate having a density of Cr oxide observed in the chemical composition and metal structure can be produced, and has completed the present invention. .
- the reason for limiting these raw materials will be described.
- the Cl content in the aluminum ingot is 0.00300% by mass or less.
- the Cl content in the aluminum ingot exceeds 0.00300 mass%, the Cl content exceeds 0.00300 mass% when an aluminum alloy substrate for a magnetic disk is manufactured, and a Cl-based inclusion is present in the metal structure.
- the Cl content in the aluminum ingot is 0.00300% by mass or less, preferably 0.00200% or less. Note that removing the Cl content in the aluminum ingot to less than 0.00001 mass% leads to high manufacturing costs, so the lower limit of the Cl content in the aluminum ingot is about 0.00001%.
- the amount of Cr oxide in the material can be reduced by using a Cr raw material in which the amount of Cr oxide is regulated to 0.50% by mass or less.
- the amount of Cr oxide exceeds 0.50% by mass, a large amount of coarse Cr oxide is present in the material, and pits are generated during the plating treatment, thereby reducing the smoothness of the plating surface. Therefore, the amount of Cr oxide in the Cr raw material is 0.50 mass% or less, preferably 0.10 mass% or less.
- the Cr oxide is mixed as an impurity in the production of the Cr raw material. Cr is generally obtained by reducing Cr oxide with Al or the like.
- the method for quantifying the amount of Cr oxide is as follows. First, 2 g of a raw material is added to a solution in which hydrochloric acid and water are mixed at a ratio of 1: 1 to dissolve Cr. The solution is then filtered through a filter. Place the filter after filtration into a crucible and boil with a burner to ash the filter. A mixture of 0.5 g of sodium carbonate and 0.15 g of boric acid is added to the crucible and sprinkled with a burner. Place the crucible in an electric furnace, heat it, and let it cool. Add warm ultrapure water and hydrochloric acid (1: 1) to the crucible and heat. The solution in the crucible was filled in a volumetric flask, the amount of Cr was measured by ICP, and the amount of Cr oxide was calculated.
- Step 2 (Casting process) After the blended aluminum alloy melt is held in a holding furnace, casting is performed.
- Step 3 the cast ingot is chamfered and then homogenized as necessary.
- the homogenization treatment it is preferably carried out at 480 to 560 ° C. for 1 hour or longer, more preferably at 500 to 550 ° C. for 2 hours or longer. This is because if the treatment temperature is less than 480 ° C. or the treatment time is less than 1 hour, a sufficient homogenization effect may not be obtained. Moreover, it is because there exists a possibility that material may melt
- Step 4 (hot rolling process)
- the chamfered or homogenized ingot is hot-rolled to obtain a hot-rolled sheet.
- the thickness of the hot-rolled plate may be about 3.0 mm, for example.
- the hot rolling start temperature is preferably 300 to 500 ° C., more preferably 320 to 480 ° C.
- the hot rolling end temperature is preferably 260 to 400 ° C., more preferably 280 to 380 ° C. If the hot rolling start temperature is less than 300 ° C., the hot rolling processability cannot be ensured, and if it exceeds 500 ° C., the crystal grains become coarse and the adhesion of the plating may decrease.
- hot rolling end temperature is less than 260 ° C., the hot rolling processability cannot be ensured, and if it exceeds 400 ° C., the crystal grains are coarsened and the adhesion of plating may be lowered.
- hot rolling usually, an ingot is heated and held at a hot rolling start temperature for 0.5 to 10.0 hours, and then hot rolling is performed. In the case of performing a homogenization process, the heating and holding may be replaced by a homogenization process.
- Step 5 (cold rolling process)
- the hot-rolled sheet is cold-rolled to produce an aluminum alloy sheet as a cold-rolled sheet.
- annealing is performed before or during cold rolling.
- the thickness of the aluminum alloy plate (cold rolled plate) is preferably 0.4 to 2.0 mm, more preferably 0.6 to 2.0 mm. That is, after completion of hot rolling, the product is finished to a required product thickness by cold rolling.
- the conditions for cold rolling are not particularly limited, and may be determined according to the required product plate strength and plate thickness.
- the rolling rate is preferably 20 to 90%, more preferably 20 to 80%. Is more preferable.
- the rolling rate is less than 20%, the crystal grains may be coarsened by pressure flattening annealing, and the adhesion of the plating may be lowered. If the rolling rate exceeds 90%, the production time becomes longer and the productivity is lowered. May invite.
- an annealing treatment may be performed before cold rolling or in the middle of cold rolling.
- the annealing treatment is performed, for example, in batch type annealing, it is preferably performed at 300 to 430 ° C. for 0.1 to 10 hours, and at 300 to 380 ° C. for 1 to 5 hours. More preferred.
- the annealing temperature is less than 300 ° C. or when the annealing temperature is less than 0.1 hour, a sufficient annealing effect may not be obtained.
- the annealing temperature exceeds 430 ° C., the crystal grains become coarse and the adhesion of the plating may decrease, and when the annealing time exceeds 10 hours, the productivity decreases.
- the continuous annealing is preferably performed at 400 to 500 ° C. for 0 to 60 seconds and more preferably at 450 to 500 ° C. for 0 to 30 seconds.
- the annealing temperature is less than 400 ° C., a sufficient annealing effect may not be obtained.
- the annealing temperature exceeds 500 ° C., the crystal grains become coarse and the adhesion of the plating may be lowered.
- the annealing time exceeds 60 seconds, the crystal grains become coarse and the plating adheres. May decrease.
- the holding time in annealing “0 seconds” means that cooling is performed immediately after reaching a desired annealing temperature.
- the magnetic disk of the present invention is manufactured by steps 6 to 11 described above using the aluminum plywood after manufacturing an aluminum alloy plate by steps 1 to 5 described above. That is, this aluminum alloy plate is punched into an annular shape to produce a disc blank (step 6), the disc blank is flattened by pressure annealing (step 7), and the flattened disc blank is cut, ground, and heated.
- the aluminum alloy substrate for magnetic disk is processed (step 8), the surface of the aluminum alloy substrate is degreased, etched, and zincated (Zn substitution) (step 9), and the surface of the zinc alloy-treated aluminum alloy substrate is the base
- a plating layer for example, a Ni—P plating layer
- a magnetic material magnetic layer
- a magnetic disk is manufactured by forming (step 11).
- Step 6 disc blank production process
- the aluminum alloy plate produced in the above steps 1 to 5 is punched into an annular shape to produce a disc blank.
- Step 7 Pressure flattening process
- a plurality of punched annular aluminum alloy sheets are laminated and subjected to flattening by annealing in the atmosphere at 250 to 430 ° C. for 30 minutes or more while applying pressure from above and below. Perform pressure annealing. If the treatment temperature is less than 250 ° C. or the treatment time is less than 30 minutes, the planarization effect may not be obtained. If the treatment temperature exceeds 430 ° C., the crystal grains may become coarse and the adhesion of the plating may decrease.
- the pressurization is preferably performed under a pressure of 1.0 to 3.0 MPa.
- Step 8 cutting / grinding process and heat treatment process
- the flattened disk blank is subjected to cutting, grinding, and heat treatment to obtain an aluminum alloy substrate for a magnetic disk.
- the heat treatment it is preferably performed at 200 to 400 ° C. for 5 to 15 minutes, more preferably at 200 to 300 ° C. for 5 to 10 minutes.
- the heating temperature is less than 200 ° C. or when the heating temperature is less than 5 minutes, a sufficient strain removing effect may not be obtained.
- the heating temperature exceeds 400 ° C. or when the heating time exceeds 15 minutes the Al—Mg—Be-based oxide in the surface layer of the aluminum alloy substrate becomes thick, so that the Al—Mg— This is because the Be-based oxide remains without being completely removed and pits tend to occur frequently.
- Step 9 (zincate treatment process) Degreasing, etching, and zincate treatment (Zn substitution treatment) are sequentially performed on the surface of the aluminum alloy substrate.
- Degreasing is preferably performed using, for example, a commercially available AD-68F (manufactured by Uemura Kogyo Co., Ltd.) degreasing solution at a temperature of 40 to 70 ° C., a treatment time of 3 to 10 minutes, and a concentration of 200 to 800 mL / L. More preferably, it is carried out under conditions of 45 to 65 ° C., a treatment time of 4 to 8 minutes, and a concentration of 300 to 700 mL / L.
- AD-68F manufactured by Uemura Kogyo Co., Ltd.
- the temperature is less than 40 ° C.
- the treatment time is less than 3 minutes, or when the concentration is less than 200 mL / L
- a sufficient degreasing effect may not be obtained.
- the temperature exceeds 70 ° C.
- the treatment time exceeds 10 minutes, or when the concentration exceeds 800 mL / L
- the smoothness of the substrate surface is lowered, and pits are generated after the plating treatment, resulting in smoothness. May decrease.
- Etching is preferably performed using, for example, a commercially available AD-107F (manufactured by Uemura Kogyo) etching solution under the conditions of a temperature of 50 to 75 ° C., a treatment time of 0.5 to 5 minutes, and a concentration of 20 to 100 mL / L. More preferably, the temperature is 55 to 70 ° C., the treatment time is 0.5 to 3 minutes, and the concentration is 40 to 100 mL / L. When the temperature is less than 50 ° C., when the treatment time is less than 0.5 minutes, or when the concentration is less than 20 mL / L, a sufficient etching effect may not be obtained.
- AD-107F manufactured by Uemura Kogyo
- the zincate treatment is carried out, for example, using a commercially available AD-301F-3X (manufactured by Uemura Kogyo) zincate treatment solution, etc. under conditions of a temperature of 10 to 35 ° C., a treatment time of 0.1 to 5 minutes, and a concentration of 100 to 500 mL / L. It is more preferable to carry out the treatment under conditions of a temperature of 15 to 30 ° C., a treatment time of 0.1 to 2 minutes, and a concentration of 200 to 400 mL / L.
- AD-301F-3X manufactured by Uemura Kogyo
- the temperature is less than 10 ° C.
- the treatment time is less than 0.1 minutes, or when the concentration is less than 100 mL / L
- the zincate film becomes non-uniform, and conventional pits are generated after the plating process, resulting in smoothness. May decrease.
- the temperature exceeds 35 ° C. when the processing time exceeds 5 minutes, or when the concentration exceeds 500 mL / L, the zincate film becomes non-uniform, and conventional pits are generated after the plating process, resulting in smoothness. May decrease.
- Step 10 plating layer forming process
- the surface of the zinc alloy-treated aluminum alloy substrate is subjected to a base treatment, and electroless plating is performed on the surface as a base treatment to form a plating layer (for example, a Ni—P alloy plating layer). Further, the surface of the plating layer is polished.
- the electroless Ni—P alloy plating treatment uses, for example, a commercially available Nimuden HDX (manufactured by Uemura Kogyo) plating solution, etc. under conditions of a temperature of 80 to 95 ° C., a treatment time of 30 to 180 minutes, and a Ni concentration of 3 to 10 g / L.
- the treatment is preferably carried out, more preferably under the conditions of a temperature of 85 to 95 ° C., a treatment time of 60 to 120 minutes, and a Ni concentration of 4 to 9 g / L.
- a temperature 85 to 95 ° C.
- a treatment time 60 to 120 minutes
- a Ni concentration 4 to 9 g / L.
- the temperature is less than 80 ° C. or when the Ni concentration is less than 3 g / L
- the plating growth rate is slow, which may lead to a decrease in productivity.
- the treatment time is less than 30 minutes, many defects may occur on the plating surface, and the smoothness of the plating surface may deteriorate.
- the temperature exceeds 95 ° C. or when the Ni concentration exceeds 10 g / L
- productivity may be reduced.
- Step 11 magnetic layer forming step
- a magnetic body is deposited on the surface of the plated layer of the aluminum alloy substrate subjected to the ground treatment to produce a magnetic disk.
- Hot rolled sheets other than 7 were rolled to a final sheet thickness of 1.0 mm by cold rolling (rolling rate: 66.7%) without performing intermediate annealing to obtain cold rolled sheets (aluminum alloy sheets).
- Alloy No. of Example For the hot rolled sheet of No. 7, after first cold rolling (rolling rate 33.3%), using a batch annealing furnace, intermediate annealing is performed at 300 ° C. for 2 hours, Subsequently, it rolled to 1.0 mm of the final board thickness by the 2nd cold rolling (rolling rate 50.0%), and it was set as the cold rolled sheet (aluminum alloy sheet).
- an aluminum alloy plate was punched into an annular shape having an outer diameter of 96 mm and an inner diameter of 24 mm to produce a disk blank, and then this disk blank was subjected to pressure annealing at 340 ° C. for 4 hours. Thereafter, end face processing was performed to obtain an outer diameter of 95 mm and an inner diameter of 25 mm, and grinding (surface 10 ⁇ m grinding) was performed, followed by heat treatment at 300 ° C. for 10 minutes. Next, after degreasing for 5 minutes at 60 ° C. with AD-68F (manufactured by Uemura Kogyo), etching is performed for 1 minute at 65 ° C.
- AD-68F manufactured by Uemura Kogyo
- Existence density of Cr oxide The existence density of the Cr oxide having the longest diameter of 3 to 10 ⁇ m (the number per one disk surface) is obtained by visually inspecting the surface of the aluminum alloy plate (S1) after the grinding and heating process, and the observation image of EPMA and the WDS. While identifying the Cr oxide having the longest diameter of 3 to 10 ⁇ m by analysis (wavelength dispersive X-ray analysis), the number per one side of each disk was counted and converted to the existing density. When Cr oxide is present on the substrate surface, grinding flaws are generated in a wide range starting from the inclusions during grinding, so that the dispersion state of the inclusions can be visually confirmed. The abundance density is shown in Table 2.
- the alloy No. of the comparative example In contrast, the alloy No. of the comparative example. In any of 8-22, the smoothness of the plating surface is poor because either one of the chemical composition and the Cr oxide content is outside the scope of the present invention.
- alloy No. of the comparative example. No. 8 has a large amount of coarse Al—Mg-based intermetallic compounds due to the Mg content exceeding the proper range of the present invention, and these intermetallic compounds fall off during the pre-plating treatment and are large on the aluminum alloy plate surface. A dimple occurred. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 9 since the Cu content was too much beyond the proper range of the present invention, a large amount of coarse Al—Cu—Mg—Zn intermetallic compounds were produced, and these intermetallic compounds dropped off during the pre-plating treatment, and the aluminum alloy A large depression occurred on the surface of the plate. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 10 since the Zn content was too much beyond the proper range of the present invention, a large amount of coarse Al—Cu—Mg—Zn intermetallic compounds were produced, and these intermetallic compounds dropped off during the plating pretreatment, and the aluminum alloy A large depression occurred on the surface of the plate. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 11 has a large amount of coarse Al—Fe-based intermetallic compounds because the Fe content is too much larger than the appropriate range of the present invention, and these intermetallic compounds fall off in the pre-plating treatment and are large on the aluminum alloy plate surface. A dimple occurred. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 12 since the Si content was too much than the appropriate range of the present invention, a large amount of coarse Mg-Si intermetallic compounds were produced, and these intermetallic compounds dropped off during the plating pretreatment and were large on the aluminum alloy plate surface. A dimple occurred. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. 13 since the Be content was too much than the appropriate range of the present invention, a thick Al—Mg—Be-based oxide was formed by heating after grinding. As a result, many fine pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 14 since the Cr content was too much beyond the proper range of the present invention, a large amount of coarse Al—Cr intermetallic compound was produced, and this intermetallic compound dropped off during the plating pretreatment, and was large on the aluminum alloy plate surface. A dimple occurred. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 15 since the Mn content was too much than the appropriate range of the present invention, a large amount of coarse Al—Mn intermetallic compound was produced, and this intermetallic compound dropped off during the plating pretreatment, and was large on the aluminum alloy plate surface. A dimple occurred. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 16 contained a large amount of Mg—Cl compound because the Cl content was too much beyond the proper range of the present invention. As a result, many fine pits were generated on the plating surface, and the smoothness of the plating surface was poor. The zincate film became non-uniform because the Mg content was too low. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. 17 the zincate film was non-uniform because the Mg content was too much less than the appropriate range of the present invention. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. 18 since the Cu content was too much less than the proper range of the present invention, the zincate film became non-uniform. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. In No. 19 the zincate film became non-uniform because the Zn content was too much less than the appropriate range of the present invention. As a result, many pits were generated on the plating surface, and the smoothness of the plating surface was poor.
- Comparative alloy No. No. 21 is a substrate surface caused by these inclusions (Cr oxide) because the existence density of the Cr oxide having the longest diameter of 3 to 10 ⁇ m observed in the metal structure was as high as 3 per one side of the disk. As a result, large pits and grinding flaws occurred frequently, resulting in poor plating surface smoothness.
- Comparative alloy No. No. 22 shows that the existence density of the Cr oxide having the longest diameter of 3 to 10 ⁇ m observed in the metal structure was as high as 7 per one side of the disk, so that the substrate surface caused by these inclusions (Cr oxide) As a result, large pits and grinding flaws occurred frequently, resulting in poor plating surface smoothness.
- the aluminum alloy plate for a magnetic disk substrate according to the present invention is controlled in the number of Cr oxides having a longest diameter of 3 ⁇ m or more when performing processing such as grinding and plating pretreatment. It has the effect of suppressing the occurrence of dents and grinding flaws, and can provide excellent plating surface smoothness. By using such an aluminum alloy plate, a large capacity and high density magnetic disk can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
めっき層形成後のめっき表面平滑性に優れ、しかも低コストで製造可能な磁気ディスク基板用アルミニウム合金板等を提供する。 本発明の磁気ディスク基板用アルミニウム合金板は、質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下である。
Description
本発明は、めっき層形成後のめっき表面平滑性に優れた磁気ディスク基板用アルミニウム合金板及びその製造方法、並びにアルミニウム合金板を用いて作製した磁気ディスクに関する。
コンピュータの記憶装置に用いられるアルミニウム合金製磁気ディスクは、良好なめっき性を有するとともに機械的特性や加工性が優れたアルミニウム合金基板から製造されている。このようなアルミニウム合金基板としては、例えばJIS5086合金(Mg:3.5~4.5mass%、Fe≦0.50mass%、Si≦0.40mass%、Mn:0.20~0.70mass%、Cr:0.05~0.25mass%、Cu≦0.10mass%、Ti≦0.15mass%、Zn≦0.25mass%、残部Al及び不可避的不純物からなる)や、JIS5086合金中の不純物であるFe、Si等の含有量を制限してマトリックス中の金属間化合物を小さくすること、或いは、CuやZnを添加することによって、めっき性を改善したアルミニウム合金基板等が挙げられる。
一般的なアルミニウム合金製磁気ディスクは、まず、円環状アルミニウム合金基板を作製し、この円環状アルミニウム合金基板にめっきを施し、次いで、この基板表面に磁性体を付着させることにより製造される。
一般に、円環状アルミニウム合金基板を有する磁気ディスクは、以下の工程により製造される。まず、アルミニウム合金を鋳造し、その鋳塊を熱間圧延し、次いで冷間圧延を施す。なお、必要に応じて焼鈍を施して圧延材を作製する。次に、この圧延材を円環状に打抜き、打ち抜いた円環状アルミニウム合金板の複数枚を積層した状態にして、上下から加圧しつつ焼鈍を施して平坦化する加圧焼鈍を行い、その後、積層状態を解除することにより、円環状アルミニウム合金基板が作製される。
このようにして作製された円環状アルミニウム合金基板に、前処理として切削加工、研削加工、脱脂、エッチング、ジンケート処理(Zn置換処理)を施し、次いで、ジンケート処理を施した円環状アルミニウム合金基板の表面上に、下地処理として硬質非磁性金属であるNi-Pめっき層を無電解めっき法により形成し、このNi-Pめっき層の表面にポリッシングを施した後に、磁性層をスパッタリング法により形成して磁気ディスクが製造される。
ところで、近年、磁気ディスクには、マルチメディア等のニーズから大容量化及び高密度化が求められており、近い将来には、面記録密度2Tb/in2が達成されようとしている。そして、磁気ディスクの記録密度の向上には、データ読み取り時にエラーの原因となる磁気ディスク表面の平滑性が必要とされ、磁気ディスク表面を平滑にするには、めっき層に発生しやすいピット(孔)をより少なくして、めっき層の表面を平滑に形成することが望ましいとされている。
めっき層におけるピットの発生原因としては、アルミニウム合金基板表面に存在する大きな窪みが一因として知られており、この大きな窪みは、基板表面に存在する粗大な非金属介在物や金属間化合物などの異物が研削加工やめっき前処理時に脱落して、発生することが判明している。
このような実情から、近年ではアルミニウム合金基板に存在する異物の低減が強く望まれ、検討がなされている。特許文献1には、鋳造における凝固時の冷却速度を高めてAl-Fe-Mn系やMg-Si系の晶出物(金属間化合物)を微細化する方法が記載されている。
ところで、アルミニウム合金板を製造する際、アルミニウム地金を主原料として溶湯を調整するのが一般的であるが、アルミニウム地金には、種々の不純物成分を含有しており、なかでも塩素(Cl)成分は、通常0.0001質量%程度含有しているのが一般的であり、さらに、溶湯中の成分調整でクロム(Cr)原料を装入する場合もあるが、かかる場合、Cr原料には、通常0.03質量%程度のCr酸化物を含有しているのが一般的である。
特許文献1に記載の方法は、金属マトリックス中のAl-Fe-Mn系やMg-Si系の晶出物(金属間化合物)を微細にすることは可能であるが、上述したCl成分含有のアルミニウム地金と、Cr酸化物含有のCr原料とを使用して溶湯を作製する場合、これらの晶出物を微細にしても、磁気ディスクの表面を十分に平滑に形成することができないという問題があり、加えて、前記晶出物を微細にするための製造条件として、鋳造工程で製造されるスラブを、急冷効果を得る観点から、板厚が4~15mmの薄スラブとする必要があり、製造条件の制約もあった。
本発明は、上記問題点を解決すべくなされたもので、めっき層形成後のめっき表面平滑性に優れ、しかも低コストで製造可能な磁気ディスク基板用アルミニウム合金板、及びその製造方法、並びにアルミニウム合金板を用いて作製した磁気ディスクの提供を目的とする。
本発明者らは上記問題点の解決のために、介在物としてCr酸化物と塩化物に注目し、これらの介在物の分布状態とめっき表面の平滑性の関係、ならびに、前記介在物の生成と製造条件の関係について鋭意調査研究した。その結果、CrとClの含有量、ならびに、原料中のCr酸化物量やCl含有量が、Cr酸化物の生成や研削面の平滑性及びめっき表面の平滑性に大きな影響を与えることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨構成は以下のとおりである。
(1)質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下であることを特徴とする磁気ディスク基板用アルミニウム合金板。
(2)Cr:0.010~0.200質量%、Mn:0.010~0.500質量%のうち1種又は2種を含有することを特徴とする上記(1)に記載の磁気ディスク基板用アルミニウム合金板。
(3)Be:0.00001~0.00025質量%を含有することを特徴とする上記(1)又は(2)に記載の磁気ディスク基板用アルミニウム合金板。
(4)上記(1)~(3)のいずれか1項に記載の磁気ディスク基板用アルミニウム合金板の製造方法において、前記アルミニウム合金板の組成になるように溶湯を調整する溶湯調整工程と、前記溶湯を鋳造する鋳造工程と、鋳造した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、前記熱間圧延板を冷間圧延して冷間圧延板とする冷間圧延工程とを含み、前記溶湯調整工程が、Cl:0.00300質量%以下を含有するアルミニウム地金を装入して溶湯を調整することを特徴とする磁気ディスク基板用アルミニウム合金板の製造方法。
(5)前記溶湯調整工程が、Cr酸化物:0.50質量%以下を含有するCr原料をさらに装入して溶湯を調整することを特徴とする上記(4)に記載の磁気ディスク基板用アルミニウム合金板の製造方法。
(6)上記(1)~(3)のいずれか1項に記載される磁気ディスク基板用アルミニウム合金板を用いて作製した円環状のアルミニウム合金基板の表面上に、めっき層と磁性層を有することを特徴とする磁気ディスク。
(1)質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下であることを特徴とする磁気ディスク基板用アルミニウム合金板。
(2)Cr:0.010~0.200質量%、Mn:0.010~0.500質量%のうち1種又は2種を含有することを特徴とする上記(1)に記載の磁気ディスク基板用アルミニウム合金板。
(3)Be:0.00001~0.00025質量%を含有することを特徴とする上記(1)又は(2)に記載の磁気ディスク基板用アルミニウム合金板。
(4)上記(1)~(3)のいずれか1項に記載の磁気ディスク基板用アルミニウム合金板の製造方法において、前記アルミニウム合金板の組成になるように溶湯を調整する溶湯調整工程と、前記溶湯を鋳造する鋳造工程と、鋳造した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、前記熱間圧延板を冷間圧延して冷間圧延板とする冷間圧延工程とを含み、前記溶湯調整工程が、Cl:0.00300質量%以下を含有するアルミニウム地金を装入して溶湯を調整することを特徴とする磁気ディスク基板用アルミニウム合金板の製造方法。
(5)前記溶湯調整工程が、Cr酸化物:0.50質量%以下を含有するCr原料をさらに装入して溶湯を調整することを特徴とする上記(4)に記載の磁気ディスク基板用アルミニウム合金板の製造方法。
(6)上記(1)~(3)のいずれか1項に記載される磁気ディスク基板用アルミニウム合金板を用いて作製した円環状のアルミニウム合金基板の表面上に、めっき層と磁性層を有することを特徴とする磁気ディスク。
本発明によれば、質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度を、ディスクの片面当たり1個以下とすることによって、めっき層形成後のめっき表面平滑性に優れた磁気ディスク基板用アルミニウム合金板の提供が可能になった。
また、本発明によれば、前記アルミニウム合金板の組成になるように溶湯を調整する溶湯調整工程と、前記溶湯を鋳造する鋳造工程と、鋳造した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、前記熱間圧延板を冷間圧延して冷間圧延板とする冷間圧延工程とを含み、前記溶湯調整工程が、Cl:0.00300質量%以下を含有するアルミニウム地金を装入して溶湯を調整することによって、上記の特性を具備する磁気ディスク基板用アルミニウム合金板を、低コストで製造することができる。
さらに、本発明によれば、前記アルミニウム合金板を用いて作製した円環状のアルミニウム合金基板の表面上に、めっき層と磁性層を形成することで、大容量及び高密度の磁気ディスクを提供することができる。
次に、本発明の好適な実施形態について説明する。
本発明に従う磁気ディスク基板用アルミニウム合金板は、質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下である。
本発明に従う磁気ディスク基板用アルミニウム合金板は、質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下である。
以下、本発明に従う磁気ディスク基板用アルミニウム合金板の化学組成および金属組織中のCr酸化物の限定理由を示す。なお、化学組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
(I)化学組成
<Mg:3.0~8.0%>
Mgは、主としてアルミニウム合金板の強度を向上させる効果を有する元素である。また、ジンケート処理時のジンケート皮膜を均一に、薄く、かつ、緻密に付着させるので、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Mg含有量が3.0%未満では、強度が不十分であり、更に、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下するためである。一方、Mg含有量が8.0%を超えると、粗大なAl-Mg系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Mg含有量は3.0~8.0%とする。なお、Mg含有量は、強度と製造性との兼合いから、3.5~7.0%とするのが好ましい。
<Mg:3.0~8.0%>
Mgは、主としてアルミニウム合金板の強度を向上させる効果を有する元素である。また、ジンケート処理時のジンケート皮膜を均一に、薄く、かつ、緻密に付着させるので、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Mg含有量が3.0%未満では、強度が不十分であり、更に、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下するためである。一方、Mg含有量が8.0%を超えると、粗大なAl-Mg系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Mg含有量は3.0~8.0%とする。なお、Mg含有量は、強度と製造性との兼合いから、3.5~7.0%とするのが好ましい。
<Cu:0.002~0.150%>
Cuは、ジンケート処理時においてAl溶解量を減少させ、また、ジンケート皮膜を均一に、薄く、かつ、緻密に付着させる効果を有する元素である。このような効果により、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Cu含有量が0.002%未満では、上記効果が十分に得られず、一方、0.150%を超えると、粗大なAl-Cu-Mg-Zn系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。更に、Cu含有量が0.150%を超える場合には、材料自体の耐食性を低下させるため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下する。従って、Cu含有量は0.002~0.150%とする。なお、Cu含有量は、0.002~0.100%であることが好ましい。
Cuは、ジンケート処理時においてAl溶解量を減少させ、また、ジンケート皮膜を均一に、薄く、かつ、緻密に付着させる効果を有する元素である。このような効果により、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Cu含有量が0.002%未満では、上記効果が十分に得られず、一方、0.150%を超えると、粗大なAl-Cu-Mg-Zn系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。更に、Cu含有量が0.150%を超える場合には、材料自体の耐食性を低下させるため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下する。従って、Cu含有量は0.002~0.150%とする。なお、Cu含有量は、0.002~0.100%であることが好ましい。
<Zn:0.05~0.60%>
Znは、Cuと同様に、ジンケート処理時のAl溶解量を減少させ、また、ジンケート皮膜を均一に、薄く、かつ、緻密に付着させるので、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Zn含有量が0.05%未満では、上記効果が十分に得られず、一方、0.60%を超えると、粗大なAl-Cu-Mg-Zn系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。更に、Zn含有量が0.60%を超える場合には、材料自体の加工性や耐食性を低下させるため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下する。従って、Zn含有量は0.05~0.60%とし、好ましくは0.05~0.50%とする。
Znは、Cuと同様に、ジンケート処理時のAl溶解量を減少させ、また、ジンケート皮膜を均一に、薄く、かつ、緻密に付着させるので、ジンケート処理工程の次工程である下地処理工程において、Ni-Pからなるめっき表面の平滑性が向上する。しかしながら、Zn含有量が0.05%未満では、上記効果が十分に得られず、一方、0.60%を超えると、粗大なAl-Cu-Mg-Zn系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。更に、Zn含有量が0.60%を超える場合には、材料自体の加工性や耐食性を低下させるため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっきの密着性や平滑性が低下する。従って、Zn含有量は0.05~0.60%とし、好ましくは0.05~0.50%とする。
<Fe:0.001~0.060%>
Feは、アルミニウム母材中には殆ど固溶せず、Al-Fe系金属間化合物としてアルミニウム地金中に存在する。このAl-Fe系金属間化合物は、研削面において欠陥となるため、アルミニウム合金中にFeが含有されることは好ましくない。しかしながら、Feを0.001%未満まで取り除くのは、アルミニウム地金を高純度に精錬することになりコスト高を招く。一方、Fe含有量が0.060%を超えると、粗大なAl-Fe系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、この粗大なAl-Fe系金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Feの含有量は0.001~0.060%とし、好ましくは0.001~0.025%とする。
Feは、アルミニウム母材中には殆ど固溶せず、Al-Fe系金属間化合物としてアルミニウム地金中に存在する。このAl-Fe系金属間化合物は、研削面において欠陥となるため、アルミニウム合金中にFeが含有されることは好ましくない。しかしながら、Feを0.001%未満まで取り除くのは、アルミニウム地金を高純度に精錬することになりコスト高を招く。一方、Fe含有量が0.060%を超えると、粗大なAl-Fe系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、この粗大なAl-Fe系金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Feの含有量は0.001~0.060%とし、好ましくは0.001~0.025%とする。
<Si:0.001~0.060%>
Siは、本発明のアルミニウム合金板の必須元素であるMgと結合し、研削面において欠陥となるMg-Si系金属間化合物を生成するため、アルミニウム合金中にSiが含有されることは好ましくない。しかしながら、Siはアルミニウム地金に不可避的不純物として存在する。アルミニウム合金を製造する際の溶湯調整工程では、純度の高い、例えば純度99.9%以上のアルミニウム地金を用いるが、このような地金にもSiが含有されている。このため、Si含有量が0.001%未満になるようにアルミニウム地金からSi成分を取り除くのは、アルミニウム地金を高純度に精錬することとなりコスト高を招く。一方、Si含有量が0.060%を超えると、粗大なMg-Si系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、この粗大なMg-Si系金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Si含有量は0.001~0.060%とし、好ましくは0.001~0.025%とする。
Siは、本発明のアルミニウム合金板の必須元素であるMgと結合し、研削面において欠陥となるMg-Si系金属間化合物を生成するため、アルミニウム合金中にSiが含有されることは好ましくない。しかしながら、Siはアルミニウム地金に不可避的不純物として存在する。アルミニウム合金を製造する際の溶湯調整工程では、純度の高い、例えば純度99.9%以上のアルミニウム地金を用いるが、このような地金にもSiが含有されている。このため、Si含有量が0.001%未満になるようにアルミニウム地金からSi成分を取り除くのは、アルミニウム地金を高純度に精錬することとなりコスト高を招く。一方、Si含有量が0.060%を超えると、粗大なMg-Si系金属間化合物が生成して、エッチング時、ジンケート処理時、切削や研削加工時において、この粗大なMg-Si系金属間化合物が脱落して大きな窪みが発生し、めっき表面の平滑性が低下する。従って、Si含有量は0.001~0.060%とし、好ましくは0.001~0.025%とする。
<Be:0.00001~0.00200%>
Mgを含有するアルミニウム合金は、一般にその鋳造時において、Mgの溶湯酸化を抑制するため微量のBeを添加する。Be含有量が0.00001%未満では、材料自体の耐食性が低下するため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっき処理後にピットが発生し平滑性が低下する。一方、Be含有量が0.00200%を超えると、研削後の加熱時に厚いAl-Mg-Be系酸化物が形成されるため、めっき処理時にピットが発生し、めっき表面の平滑性が低下する。従って、Be含有量は、0.00001~0.00200%とし、好ましくは0.00010~0.00025%とする。
Mgを含有するアルミニウム合金は、一般にその鋳造時において、Mgの溶湯酸化を抑制するため微量のBeを添加する。Be含有量が0.00001%未満では、材料自体の耐食性が低下するため、ジンケート処理により生成するジンケート皮膜が不均一となり、めっき処理後にピットが発生し平滑性が低下する。一方、Be含有量が0.00200%を超えると、研削後の加熱時に厚いAl-Mg-Be系酸化物が形成されるため、めっき処理時にピットが発生し、めっき表面の平滑性が低下する。従って、Be含有量は、0.00001~0.00200%とし、好ましくは0.00010~0.00025%とする。
<Cl:0.00300%以下>
Clは、本発明の必須元素であるMgと結合しやすい元素であり、一部はMg-Cl系介在物として存在し、めっき処理中にCl系介在物がめっき処理液中に溶解し、Alマトリックスに凹部が形成され、めっき表面にピットが多発し、めっき表面の平滑性が低下することから、Cl含有量は0.00300%以下とする。なお、アルミニウム合金基板中のCl含有量は、グロー放電質量分析法(GDMS)によって測定される。GDMSによる測定は、例えば測定装置としてVG・ELEMENTAL社のVG9000型を使用し、加速電圧8kVの条件によって行うことができる。
Clは、本発明の必須元素であるMgと結合しやすい元素であり、一部はMg-Cl系介在物として存在し、めっき処理中にCl系介在物がめっき処理液中に溶解し、Alマトリックスに凹部が形成され、めっき表面にピットが多発し、めっき表面の平滑性が低下することから、Cl含有量は0.00300%以下とする。なお、アルミニウム合金基板中のCl含有量は、グロー放電質量分析法(GDMS)によって測定される。GDMSによる測定は、例えば測定装置としてVG・ELEMENTAL社のVG9000型を使用し、加速電圧8kVの条件によって行うことができる。
本発明のアルミニウム合金板は、上述の通り、Mg、Cu、Zn、Fe、Si、BeおよびClを必須の含有成分とするが、必要に応じてCr:0.010~0.200%及びMn:0.010~0.500%を含有させることができる。
<Cr:0.010~0.200%>
Crは、鋳造時に微細な金属間化合物を生成するが、一部はマトリックスに固溶して強度向上に寄与する元素である。また、切削性と研削性を高め、更に再結晶組織を微細にしてめっき層の密着性を向上させ、めっきピットの発生を顕著に抑制する効果を有する。かかる効果を発揮させるには、Cr含有量を0.010%以上にすることが必要である。しかしながら、Cr含有量が0.200%を超えると、鋳造時に過剰分が晶出すると同時に粗大なAl-Cr系金属間化合物が生成しやすくなって、エッチング時、ジンケート処理時、切削や研削加工時において、この金属間化合物が脱落してめっきピットの原因となる大きな窪みを発生する傾向があるからである。また、Cr含有量が多くなると、Crの原料から混入するCr酸化物の影響が無視できなくなる。Cr酸化物が材料中に多量に存在すると、エッチング時、ジンケート処理時、切削や研削加工時において、Cr酸化物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。従って、Cr含有量は、0.010~0.200%とし、好ましくは0.010~0.100%とする。
Crは、鋳造時に微細な金属間化合物を生成するが、一部はマトリックスに固溶して強度向上に寄与する元素である。また、切削性と研削性を高め、更に再結晶組織を微細にしてめっき層の密着性を向上させ、めっきピットの発生を顕著に抑制する効果を有する。かかる効果を発揮させるには、Cr含有量を0.010%以上にすることが必要である。しかしながら、Cr含有量が0.200%を超えると、鋳造時に過剰分が晶出すると同時に粗大なAl-Cr系金属間化合物が生成しやすくなって、エッチング時、ジンケート処理時、切削や研削加工時において、この金属間化合物が脱落してめっきピットの原因となる大きな窪みを発生する傾向があるからである。また、Cr含有量が多くなると、Crの原料から混入するCr酸化物の影響が無視できなくなる。Cr酸化物が材料中に多量に存在すると、エッチング時、ジンケート処理時、切削や研削加工時において、Cr酸化物が脱落して大きな窪みが発生し、めっき表面の平滑性を低下させる。従って、Cr含有量は、0.010~0.200%とし、好ましくは0.010~0.100%とする。
<Mn:0.010~0.500%>
Mnは、鋳造時に微細な金属間化合物を生成するが、一部はマトリックスに固溶して強度向上に寄与する元素である。また、切削性と研削性を高め、更に再結晶組織を微細にしてめっき層の密着性を向上させめっきピットの発生をより一層抑制する効果を有する。かかる効果を発揮させるには、Cr含有量を0.010%以上にすることが必要である。しかしながら、Mnの含有量が0.500%を超えると、鋳造時に過剰分が晶出すると同時に粗大なAl-Mn系金属間化合物が生成しやすくなって、エッチング時、ジンケート処理時、切削や研削加工時において、この金属間化合物が脱落してめっきピットの原因となる大きな窪みを発生する傾向があるからである。従って、Mn含有量は、0.010~0.500%とし、好ましくは0.010~0.100%とする。
Mnは、鋳造時に微細な金属間化合物を生成するが、一部はマトリックスに固溶して強度向上に寄与する元素である。また、切削性と研削性を高め、更に再結晶組織を微細にしてめっき層の密着性を向上させめっきピットの発生をより一層抑制する効果を有する。かかる効果を発揮させるには、Cr含有量を0.010%以上にすることが必要である。しかしながら、Mnの含有量が0.500%を超えると、鋳造時に過剰分が晶出すると同時に粗大なAl-Mn系金属間化合物が生成しやすくなって、エッチング時、ジンケート処理時、切削や研削加工時において、この金属間化合物が脱落してめっきピットの原因となる大きな窪みを発生する傾向があるからである。従って、Mn含有量は、0.010~0.500%とし、好ましくは0.010~0.100%とする。
<残部:Alおよび不可避的不純物>
上記各元素の他は、Al及び不可避的不純物である。ここでいう「不可避的不純物」とは、例えばGa等が挙げられる。これらの不可避的不純物は、各々の元素の含有量が0.05%以下で、かつ、合計含有量が0.15%以下であれば、本発明に係るアルミニウム合金板としてその特性を損なうことはない。
上記各元素の他は、Al及び不可避的不純物である。ここでいう「不可避的不純物」とは、例えばGa等が挙げられる。これらの不可避的不純物は、各々の元素の含有量が0.05%以下で、かつ、合計含有量が0.15%以下であれば、本発明に係るアルミニウム合金板としてその特性を損なうことはない。
(II)金属(アルミニウム合金)組織中で観察されるCr酸化物の存在密度
本発明においては、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度を、ディスクの片面当たり1個以下とする。ここで、本発明で規定するCr酸化物とは、電子線マイクロアナライザ(EPMA)のWDS分析によりクロム(Cr)と酸素(O)を含有することが確認できる介在物をいう。また、本発明において最長径とは、電子線マイクロアナライザ(EPMA)の波長分散型X線分光器(WDS)による分析により得られるCr酸化物の平面画像において、まず、輪郭線上における一点と輪郭線上の他の点との距離の最大値を計測し、次に、この最大値を輪郭線上における全ての点について計測し、最後に、これら全最大値のうちから選択される最も大きなものをいう。さらに、ディスクの片面の面積は、例えば2.5インチディスクの場合には3000mm2程度、3.5インチディスクの場合には6500mm2程度である。
本発明においては、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度を、ディスクの片面当たり1個以下とする。ここで、本発明で規定するCr酸化物とは、電子線マイクロアナライザ(EPMA)のWDS分析によりクロム(Cr)と酸素(O)を含有することが確認できる介在物をいう。また、本発明において最長径とは、電子線マイクロアナライザ(EPMA)の波長分散型X線分光器(WDS)による分析により得られるCr酸化物の平面画像において、まず、輪郭線上における一点と輪郭線上の他の点との距離の最大値を計測し、次に、この最大値を輪郭線上における全ての点について計測し、最後に、これら全最大値のうちから選択される最も大きなものをいう。さらに、ディスクの片面の面積は、例えば2.5インチディスクの場合には3000mm2程度、3.5インチディスクの場合には6500mm2程度である。
アルミニウム合金板中において、3~10μmの最長径を有するCr酸化物の存在密度をディスクの片面当たり1個以下とすることにより、研削加工やめっき前処理時に基板表面に大きな窪みや研削傷の発生が少なくなり、平滑なめっき表面を得ることができる。Cr酸化物が基板表面に存在すると、研削加工時にこの介在物を起点に広範囲に研削傷が発生するため、この介在物の分散状態は目視で確認することができる。一方、アルミニウム合金板中に存在するCr酸化物の最長径が3~10μmの場合は、この介在物に起因する窪みや研削傷の大きさがめっきピットの発生に多少の影響を及ぼす。しかしながら、このような3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下であれば、ピットの発生に対する影響は無視することができる。なお、アルミニウム合金板中に存在するCr酸化物の最長径が3μm未満の場合には、この介在物により発生する窪みや研削傷の大きさは問題視されない。一方、最長径が10μmを超えるCr酸化物がディスクの表面に1個でも存在すると、この介在物に起因する基板表面での大きな窪みや研削傷が発生し、めっき表面の平滑性が低下することから、本発明では、最長径が10μmを超えるCr酸化物の存在密度は、ディスクの表面に存在しないこと、すなわちディスクの片面当たり0個であることが前提となる。また、本発明では、3~10μmの最長径を有するCr酸化物の存在密度は、ディスク1面当たり1個以下であるが、最適には、ディスクの表面に存在しないこと、すなわちディスクの片面当たり0個である。
(III)本発明の磁気ディスク基板用アルミニウム合金板および磁気ディスクの製造方法
次に、本発明の磁気ディスク基板用アルミニウム合金板および磁気ディスクの製造方法の好適な実施形態を以下で説明する。
先ず、アルミニウム合金板の製造工程から磁気ディスクの製造工程までの一連の工程を、図1に示す代表的な製造フローに従って説明する。ここで、ステップ1~5が、アルミニウム合金板を製造するまでの一連の工程であり、そして、ステップ6~11が、製造されたアルミニウム合金板を用いて磁気ディスクを製造するまでの一連の工程である。
次に、本発明の磁気ディスク基板用アルミニウム合金板および磁気ディスクの製造方法の好適な実施形態を以下で説明する。
先ず、アルミニウム合金板の製造工程から磁気ディスクの製造工程までの一連の工程を、図1に示す代表的な製造フローに従って説明する。ここで、ステップ1~5が、アルミニウム合金板を製造するまでの一連の工程であり、そして、ステップ6~11が、製造されたアルミニウム合金板を用いて磁気ディスクを製造するまでの一連の工程である。
1.アルミニウム合金板の製造工程から磁気ディスクの製造工程までの製造フロー
(1)ステップ1:溶解炉で所望組成のアルミニウム合金に配合した(例えば、後述の表1に示す組成に配合した)溶湯を調整し、保持炉に転湯する。更に、保持炉において、溶湯を所定温度で所定時間保持する。
(2)ステップ2:配合したアルミニウム合金溶湯を鋳造する。
(3)ステップ3:鋳造した鋳塊を面削し、均質化処理を施す(均質化処理は、本発明では必須ではなく、適宜施される処理である。)。
(4)ステップ4:面削した、又は、均質化処理した鋳塊を熱間圧延して熱間圧延板とする。
(5)ステップ5:熱間圧延板を冷間圧延して冷間圧延板として、アルミニウム合金板を製造する。なお、冷間圧延の前又は途中において焼鈍を施す(焼鈍は、本発明では必須ではなく、適宜施される処理である。)。
(6)ステップ6:アルミニウム合金板を円環状に打ち抜き、ディスクブランクを作製する。
(7)ステップ7:ディスクブランクを加圧焼鈍により平坦化する。
(8)ステップ8:平坦化したディスクブランクに切削加工、研削加工、加熱処理を施して磁気ディスク用アルミニウム合金基板とする。
(9)ステップ9:磁気ディスク用アルミニウム合金基板の表面に脱脂、エッチング、ジンケート処理(Zn置換処理)を施す。
(10)ステップ10:ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上にめっき層(例えばNi-Pめっき層)を形成する。
(11)ステップ11:下地処理によって形成しためっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成させて磁気ディスクを製造する。
(1)ステップ1:溶解炉で所望組成のアルミニウム合金に配合した(例えば、後述の表1に示す組成に配合した)溶湯を調整し、保持炉に転湯する。更に、保持炉において、溶湯を所定温度で所定時間保持する。
(2)ステップ2:配合したアルミニウム合金溶湯を鋳造する。
(3)ステップ3:鋳造した鋳塊を面削し、均質化処理を施す(均質化処理は、本発明では必須ではなく、適宜施される処理である。)。
(4)ステップ4:面削した、又は、均質化処理した鋳塊を熱間圧延して熱間圧延板とする。
(5)ステップ5:熱間圧延板を冷間圧延して冷間圧延板として、アルミニウム合金板を製造する。なお、冷間圧延の前又は途中において焼鈍を施す(焼鈍は、本発明では必須ではなく、適宜施される処理である。)。
(6)ステップ6:アルミニウム合金板を円環状に打ち抜き、ディスクブランクを作製する。
(7)ステップ7:ディスクブランクを加圧焼鈍により平坦化する。
(8)ステップ8:平坦化したディスクブランクに切削加工、研削加工、加熱処理を施して磁気ディスク用アルミニウム合金基板とする。
(9)ステップ9:磁気ディスク用アルミニウム合金基板の表面に脱脂、エッチング、ジンケート処理(Zn置換処理)を施す。
(10)ステップ10:ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上にめっき層(例えばNi-Pめっき層)を形成する。
(11)ステップ11:下地処理によって形成しためっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成させて磁気ディスクを製造する。
2.本発明の磁気ディスク基板用アルミニウム合金板の製造方法
本発明の磁気ディスク基板用アルミニウム合金板は、上述したステップ1~5によって製造される。すなわち、溶湯調整工程(ステップ1)において、本発明のアルミニウム合金板の組成になるように調整されたアルミニウム合金溶湯を、鋳造されるまでに冷えて固まらないように保持炉で加熱・保持する。その後、鋳造工程(ステップ2)において、半連続鋳造(DC鋳造)法などの常法に従って鋳造し、得られた鋳塊に、必要に応じて均質化処理(ステップ3)を施した後に、熱間圧延工程(ステップ4)において、鋳造した鋳塊を熱間圧延して熱間圧延板とし、次いで、冷間圧延工程(ステップ5)において、熱間圧延板を冷間圧延して冷間圧延板としてアルミニウム合金板を製造する。以下、各工程に分けて詳細に説明する。
本発明の磁気ディスク基板用アルミニウム合金板は、上述したステップ1~5によって製造される。すなわち、溶湯調整工程(ステップ1)において、本発明のアルミニウム合金板の組成になるように調整されたアルミニウム合金溶湯を、鋳造されるまでに冷えて固まらないように保持炉で加熱・保持する。その後、鋳造工程(ステップ2)において、半連続鋳造(DC鋳造)法などの常法に従って鋳造し、得られた鋳塊に、必要に応じて均質化処理(ステップ3)を施した後に、熱間圧延工程(ステップ4)において、鋳造した鋳塊を熱間圧延して熱間圧延板とし、次いで、冷間圧延工程(ステップ5)において、熱間圧延板を冷間圧延して冷間圧延板としてアルミニウム合金板を製造する。以下、各工程に分けて詳細に説明する。
(1)ステップ1(溶湯調整工程)
溶湯調整工程(ステップ1)では、製造すべきアルミニウム合金板の組成になるように調整されたアルミニウム合金溶湯を、鋳造されるまでに冷えて固まらないように保持炉で加熱・保持する。保持炉で溶湯を保持した後、鋳造を行う前に脱ガス処理及び濾過処理を常法に従いインラインで行うことが好ましい。インライン脱ガス処理装置としては、SNIFやALPURなどの商標で市販されているものを使用すれば良い。これらの装置は、アルゴンガス等を溶湯に吹き込みながら、羽根付き回転体を高速で回転させてガスを微細な気泡として溶湯中に供給する。これにより、脱水素ガス及び介在物の除去がインラインで短時間に行える。インライン濾過処理としては、セラミックチューブフィルターやセラミックフォームフィルター、アルミナボールフィルター等が用いられ、ケーク濾過機構や濾材濾過機構により介在物をある程度除去することができる。
溶湯調整工程(ステップ1)では、製造すべきアルミニウム合金板の組成になるように調整されたアルミニウム合金溶湯を、鋳造されるまでに冷えて固まらないように保持炉で加熱・保持する。保持炉で溶湯を保持した後、鋳造を行う前に脱ガス処理及び濾過処理を常法に従いインラインで行うことが好ましい。インライン脱ガス処理装置としては、SNIFやALPURなどの商標で市販されているものを使用すれば良い。これらの装置は、アルゴンガス等を溶湯に吹き込みながら、羽根付き回転体を高速で回転させてガスを微細な気泡として溶湯中に供給する。これにより、脱水素ガス及び介在物の除去がインラインで短時間に行える。インライン濾過処理としては、セラミックチューブフィルターやセラミックフォームフィルター、アルミナボールフィルター等が用いられ、ケーク濾過機構や濾材濾過機構により介在物をある程度除去することができる。
本発明のアルミニウム合金板の製造方法は、特に溶湯調整工程が、主な原料であるアルミニウム地金として、塩素(Cl)含有量を0.00300質量%以下に規制したアルミニウム地金を装入し、また、Cr成分を調整する場合には、Cr原料として、Cr酸化物の含有量を0.50質量%以下に規制したCr原料を装入して溶湯を調整することにある。
本発明者らは、アルミニウム合金組織中のCr酸化物の分布状態を検討したところ、いずれの工程も、Cr酸化物の分布状態に少なからず影響を与えるが、特にステップ1における溶湯調整工程での条件が大きく影響を与えていること、具体的には溶湯を作製するための主原料であるアルミニウム地金として、Cl:0.00300質量%以下に規制したアルミニウム地金を用い、加えて、Cr成分調整のためにCr原料を溶湯中に装入される場合には、さらにCr原料として、Cr酸化物量を0.50質量%以下に規制したCr原料を用いて溶湯調整を行なうことによって、上述した化学組成および金属組織中で観察されるCr酸化物の存在密度となるアルミニウム合金板を製造できることを見出し、本発明を完成させるに至ったのである。以下、それら原料を限定した理由を説明する。
アルミニウム合金の溶湯を調整する段階において、アルミニウム地金中のCl含有量は0.00300質量%以下とする。アルミニウム地金中のCl含有量が0.00300質量%を超えると、磁気ディスク用アルミニウム合金基板を製造したときにCl含有量が0.00300質量%を超えるとともに、金属組織中にCl系介在物が形成されることにより、めっき処理時にピットが発生してめっき表面の平滑性が低下する。従って、アルミニウム地金中のCl含有量は0.00300質量%以下とし、好ましくは、0.00200%以下とする。なお、アルミニウム地金中のCl含有量を0.00001質量%未満に取り除くのは、製造コスト高を招くため、アルミニウム地金中のCl含有量の下限値は0.00001%程度とする。
アルミニウム合金の溶湯を調整する段階において、Cr酸化物量が0.50質量%以下に規制したCr原料を使用することで、材料中のCr酸化物量を低減することができる。Cr酸化物量が0.50質量%を超えると、粗大なCr酸化物量が材料中に多数存在し、めっき処理時にピットが発生してめっき表面の平滑性が低下する。従って、Cr原料中のCr酸化物量は0.50質量%以下とし、好ましくは0.10質量%以下とする。なお、Cr酸化物は、Cr原料の製造において不純物として混入するものである。Crは、一般的にCr酸化物をAl等で還元することで得られるが、Cr酸化物を全てCrに還元することは困難であるため、一部がCr酸化物として残存し、Cr原料中に含まれることになる。なお、Cr原料からCr酸化物を0.0001質量%未満に取り除くのは、製造コスト高を招くため、Cr原料中のCr酸化物量の下限値は0.0001%程度とする。
Cr酸化物量の定量方法は次の通りである。まず、塩酸と水とを1:1の割合で混合した溶液に原料2gを添加し、Crを溶解する。次に、その溶液を、フィルターでろ過する。ろ過後の フィルターをるつぼに入れ、バーナーであぶり、フィルターを灰化する。炭酸ナトリウム0.5gとホウ酸0.15gを混ぜ合わせたものをるつぼに添加し、バーナーであぶる。るつぼを電気炉に入れ、加熱し、放冷する。るつぼに、温めた超純水と塩酸(1:1)を添加し、加熱する。るつぼの中の溶液をポリメスフラスコに定容し、ICPでCr量を測定し、Cr酸化物量を算出した。
(2)ステップ2(鋳造工程)
配合したアルミニウム合金溶湯を保持炉で保持を行った後は鋳造を行う。
配合したアルミニウム合金溶湯を保持炉で保持を行った後は鋳造を行う。
(3)ステップ3(均質化処理工程)
次に、鋳造した鋳塊を面削し、その後、必要に応じて均質化処理を行う。均質化処理を実施する場合には、好ましくは480~560℃で1時間以上、より好ましくは500~550℃で2時間以上の条件で行うのが好ましい。処理温度が480℃未満の場合や、処理時間が1時間未満の場合には、十分な均質化効果が得られない場合があるからである。また、560℃を超える処理温度では、材料が溶解する虞があるからである。
次に、鋳造した鋳塊を面削し、その後、必要に応じて均質化処理を行う。均質化処理を実施する場合には、好ましくは480~560℃で1時間以上、より好ましくは500~550℃で2時間以上の条件で行うのが好ましい。処理温度が480℃未満の場合や、処理時間が1時間未満の場合には、十分な均質化効果が得られない場合があるからである。また、560℃を超える処理温度では、材料が溶解する虞があるからである。
(4)ステップ4(熱間圧延工程)
次に、面削した、又は、均質化処理した鋳塊を熱間圧延して熱間圧延板とする。ここで熱間圧延板の板厚としては、例えば3.0mm程度とすればよい。熱間圧延するに当たっては、特にその条件は限定されるものではないが、熱間圧延開始温度を300~500℃とするのが好ましく、320~480℃とするのがより好ましい。また、熱間圧延終了温度は260~400℃とするのが好ましく、280~380℃とするのがより好ましい。熱間圧延開始温度が300℃未満では熱間圧延加工性が確保できず、500℃を超えると結晶粒が粗大化し、めっきの密着性が低下する場合がある。熱間圧延終了温度が260℃未満では熱間圧延加工性が確保できず、400℃を超えると結晶粒が粗大化し、めっきの密着性が低下する場合がある。なお、熱間圧延では、通常、鋳塊を熱間圧延開始温度で0.5~10.0時間加熱保持した後に熱間圧延を行う。均質化処理を行う場合には、前記加熱保持を均質化処理で代替してもよい。
次に、面削した、又は、均質化処理した鋳塊を熱間圧延して熱間圧延板とする。ここで熱間圧延板の板厚としては、例えば3.0mm程度とすればよい。熱間圧延するに当たっては、特にその条件は限定されるものではないが、熱間圧延開始温度を300~500℃とするのが好ましく、320~480℃とするのがより好ましい。また、熱間圧延終了温度は260~400℃とするのが好ましく、280~380℃とするのがより好ましい。熱間圧延開始温度が300℃未満では熱間圧延加工性が確保できず、500℃を超えると結晶粒が粗大化し、めっきの密着性が低下する場合がある。熱間圧延終了温度が260℃未満では熱間圧延加工性が確保できず、400℃を超えると結晶粒が粗大化し、めっきの密着性が低下する場合がある。なお、熱間圧延では、通常、鋳塊を熱間圧延開始温度で0.5~10.0時間加熱保持した後に熱間圧延を行う。均質化処理を行う場合には、前記加熱保持を均質化処理で代替してもよい。
(5)ステップ5(冷間圧延工程)
次に、熱間圧延板を冷間圧延して冷間圧延板として、アルミニウム合金板を製造する。なお、冷間圧延の前又は途中において焼鈍を施す。アルミニウム合金板(冷間圧延板)の板厚としては、好ましくは0.4~2.0mm、より好ましくは0.6~2.0mmとする。すなわち、熱間圧延終了後は、冷間圧延によって所要の製品板厚に仕上げられる。冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めればよく、圧延率を20~90%とするのが好ましく、20~80%とするのがより好ましい。この圧延率が20%未満では加圧平坦化焼鈍で結晶粒が粗大化し、めっきの密着性が低下する場合があり、この圧延率が90%を超えると製造時間が長くなり生産性の低下を招く場合がある。
次に、熱間圧延板を冷間圧延して冷間圧延板として、アルミニウム合金板を製造する。なお、冷間圧延の前又は途中において焼鈍を施す。アルミニウム合金板(冷間圧延板)の板厚としては、好ましくは0.4~2.0mm、より好ましくは0.6~2.0mmとする。すなわち、熱間圧延終了後は、冷間圧延によって所要の製品板厚に仕上げられる。冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めればよく、圧延率を20~90%とするのが好ましく、20~80%とするのがより好ましい。この圧延率が20%未満では加圧平坦化焼鈍で結晶粒が粗大化し、めっきの密着性が低下する場合があり、この圧延率が90%を超えると製造時間が長くなり生産性の低下を招く場合がある。
冷間圧延において良好な加工性を確保するために、冷間圧延の前又は冷間圧延の途中において、焼鈍処理を施してもよい。焼鈍処理を実施する場合には、例えばバッチ式の焼鈍では、300~430℃で0.1~10時間の条件で行うのが好ましく、300~380℃で1~5時間の条件で行うのがより好ましい。焼鈍温度が300℃未満の場合や焼鈍温度が0.1時間未満の場合には、十分な焼鈍効果が得られないことがある。また、焼鈍温度が430℃を超える場合には、結晶粒が粗大化し、めっきの密着性が低下する場合があり、焼鈍時間が10時間を超える場合は生産性の低下を招く。一方、連続式の焼鈍では、400~500℃で0~60秒間保持の条件で行うのが好ましく、450~500℃で0~30秒間保持の条件で行うのがより好ましい。焼鈍温度が400℃未満の場合には、十分な焼鈍効果が得られないことがある。また、焼鈍温度が500℃を超える場合には、結晶粒が粗大化し、めっきの密着性が低下する場合があり、焼鈍時間が60秒を超える場合には、結晶粒が粗大化し、めっきの密着性が低下する場合がある。なお、焼鈍での保持時間が「0秒」とは、所望の焼鈍温度に達した後、直ちに冷却することを意味する。
3.本発明の磁気ディスクの製造方法
本発明の磁気ディスクは、上述したステップ1~5によってアルミニウム合金板を製造した後、このアルミニウム合板を用い、上述したステップ6~11によって製造される。すなわち、このアルミニウム合金板を円環状に打ち抜いて、ディスクブランクを作製し(ステップ6)、ディスクブランクを加圧焼鈍により平坦化し(ステップ7)、平坦化したディスクブランクに切削加工、研削加工、加熱処理を施して磁気ディスク用アルミニウム合金基板とし(ステップ8)、アルミニウム合金基板の表面に脱脂、エッチング、ジンケート処理(Zn置換処理)を施し(ステップ9)、ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上にめっき層(例えばNi-Pめっき層)を形成し(ステップ10)、そして、下地処理によって形成しためっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成(ステップ11)させることによって、磁気ディスクを製造する。以下、各工程に分けて詳細に説明する。
本発明の磁気ディスクは、上述したステップ1~5によってアルミニウム合金板を製造した後、このアルミニウム合板を用い、上述したステップ6~11によって製造される。すなわち、このアルミニウム合金板を円環状に打ち抜いて、ディスクブランクを作製し(ステップ6)、ディスクブランクを加圧焼鈍により平坦化し(ステップ7)、平坦化したディスクブランクに切削加工、研削加工、加熱処理を施して磁気ディスク用アルミニウム合金基板とし(ステップ8)、アルミニウム合金基板の表面に脱脂、エッチング、ジンケート処理(Zn置換処理)を施し(ステップ9)、ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上にめっき層(例えばNi-Pめっき層)を形成し(ステップ10)、そして、下地処理によって形成しためっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成(ステップ11)させることによって、磁気ディスクを製造する。以下、各工程に分けて詳細に説明する。
(1)ステップ6(ディスクブランク作製工程)
上記ステップ1~5によって製造したアルミニウム合金板を円環状に打ち抜き、ディスクブランクを作製する。
上記ステップ1~5によって製造したアルミニウム合金板を円環状に打ち抜き、ディスクブランクを作製する。
(2)ステップ7(加圧平坦化処理工程)
次に、打ち抜いた円環状アルミニウム合金板の複数枚を積層した状態にして、上下から加圧しつつ、大気中にて250~430℃で30分以上の条件下で焼鈍を施して平坦化する加圧焼鈍を行う。処理温度が250℃未満の場合や、処理時間が30分未満では、平坦化の効果が得られない場合がある。処理温度が430℃を超える場合には、結晶粒が粗大化し、めっきの密着性が低下する場合がある。なお、加圧は、1.0~3.0MPaの圧力下で行うのが好ましい。
次に、打ち抜いた円環状アルミニウム合金板の複数枚を積層した状態にして、上下から加圧しつつ、大気中にて250~430℃で30分以上の条件下で焼鈍を施して平坦化する加圧焼鈍を行う。処理温度が250℃未満の場合や、処理時間が30分未満では、平坦化の効果が得られない場合がある。処理温度が430℃を超える場合には、結晶粒が粗大化し、めっきの密着性が低下する場合がある。なお、加圧は、1.0~3.0MPaの圧力下で行うのが好ましい。
(3)ステップ8(切削・研削加工及び加熱処理工程)
平坦化したディスクブランクに切削加工、研削加工及び加熱処理を施して磁気ディスク用アルミニウム合金基板とする。なお、研削加工を施した後に、ディスクブランクの歪取りのための加熱処理を行ってもよい。加熱処理を実施する場合には、200~400℃で5~15分の条件で行うのが好ましく、200~300℃で5~10分の条件で行うのがより好ましい。加熱温度が200℃未満の場合や、加熱温度が5分未満の場合には、十分な歪取り効果が得られないことがある。また、加熱温度が400℃を超える場合や、加熱時間が15分を超える場合には、アルミニウム合金基板の表層におけるAl-Mg-Be系酸化物が厚くなるため、めっき前処理でAl-Mg-Be系酸化物が完全に除去されずに残存し、ピットが多発する傾向があるからである。
平坦化したディスクブランクに切削加工、研削加工及び加熱処理を施して磁気ディスク用アルミニウム合金基板とする。なお、研削加工を施した後に、ディスクブランクの歪取りのための加熱処理を行ってもよい。加熱処理を実施する場合には、200~400℃で5~15分の条件で行うのが好ましく、200~300℃で5~10分の条件で行うのがより好ましい。加熱温度が200℃未満の場合や、加熱温度が5分未満の場合には、十分な歪取り効果が得られないことがある。また、加熱温度が400℃を超える場合や、加熱時間が15分を超える場合には、アルミニウム合金基板の表層におけるAl-Mg-Be系酸化物が厚くなるため、めっき前処理でAl-Mg-Be系酸化物が完全に除去されずに残存し、ピットが多発する傾向があるからである。
(4)ステップ9(ジンケート処理工程)
アルミニウム合金基板の表面に、脱脂、エッチング、ジンケート処理(Zn置換処理)を順次施す。
脱脂は、例えば市販のAD-68F(上村工業製)脱脂液等を用い、温度40~70℃、処理時間3~10分、濃度200~800mL/Lの条件で脱脂を行うことが好ましく、温度45~65℃、処理時間4~8分、濃度300~700mL/Lの条件で行うのがより好ましい。温度が40℃未満の場合や、処理時間が3分未満の場合、或いは、濃度が200mL/L未満の場合には、十分な脱脂効果が得られないことがある。また、温度が70℃を超える場合や、処理時間が10分を超える場合、或いは、濃度が800mL/Lを超える場合は、基板表面の平滑性が低下し、めっき処理後にピットが発生し平滑性が低下することがある。
アルミニウム合金基板の表面に、脱脂、エッチング、ジンケート処理(Zn置換処理)を順次施す。
脱脂は、例えば市販のAD-68F(上村工業製)脱脂液等を用い、温度40~70℃、処理時間3~10分、濃度200~800mL/Lの条件で脱脂を行うことが好ましく、温度45~65℃、処理時間4~8分、濃度300~700mL/Lの条件で行うのがより好ましい。温度が40℃未満の場合や、処理時間が3分未満の場合、或いは、濃度が200mL/L未満の場合には、十分な脱脂効果が得られないことがある。また、温度が70℃を超える場合や、処理時間が10分を超える場合、或いは、濃度が800mL/Lを超える場合は、基板表面の平滑性が低下し、めっき処理後にピットが発生し平滑性が低下することがある。
エッチングは、例えば市販のAD-107F(上村工業製)エッチング液等を用い、温度50~75℃、処理時間0.5~5分、濃度20~100mL/Lの条件でエッチングを行うことが好ましく、温度55~70℃、処理時間0.5~3分、濃度40~100mL/Lの条件で行うのがより好ましい。温度が50℃未満の場合や、処理時間が0.5分未満の場合、或いは、濃度が20mL/L未満の場合には、十分なエッチング効果が得られないことがある。また、温度が75℃を超える場合や、処理時間が5分を超える場合、或いは、濃度が100mL/Lを超える場合は、基板表面の平滑性が低下し、めっき処理後にピットが発生し平滑性が低下することがある。なお、エッチング処理と後述のジンケート処理の間に、通常のデスマット処理を行なっても良い。
ジンケート処理は、例えば市販のAD-301F-3X(上村工業製)のジンケート処理液等を用い、温度10~35℃、処理時間0.1~5分、濃度100~500mL/Lの条件で行うことが好ましく、温度15~30℃、処理時間0.1~2分、濃度200~400mL/Lの条件で行うのがより好ましい。温度が10℃未満の場合や処理時間が0.1分未満の場合、或いは、濃度が100mL/L未満の場合には、ジンケート皮膜が不均一となり、めっき処理後に従来ピットが発生し平滑性が低下することがある。また、温度が35℃を超える場合や、処理時間が5分を超える場合、或いは、濃度が500mL/Lを超える場合も、ジンケート皮膜が不均一となり、めっき処理後に従来ピットが発生し平滑性が低下することがある。
(5)ステップ10(めっき層形成工程)
次に、ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上に、下地処理として無電解めっきを施してめっき層(例えばNi-P合金めっき層)を形成する。更に、めっき層の表面の研磨が行われる。無電解Ni-P合金めっき処理は、例えば市販のニムデンHDX(上村工業製)めっき液等を用い、温度80~95℃、処理時間30~180分、Ni濃度3~10g/Lの条件でめっき処理を行うことが好ましく、温度85~95℃、処理時間60~120分、Ni濃度4~9g/Lの条件で行うのがより好ましい。温度が80℃未満の場合や、Ni濃度が3g/L未満の場合にはめっきの成長速度が遅く、生産性の低下を招く場合がある。処理時間が30分未満の場合には、めっき表面に欠陥が多数発生し、めっき表面の平滑性が低下することがある。温度が95℃を超える場合や、Ni濃度が10g/Lを超える場合には、めっきが不均一に成長するため、めっきの平滑性が低下する場合がある。処理時間が180分を超える場合には、生産性の低下を招くことがある。これらのめっき前処理、ならびに、Ni-P合金めっき処理によって、本発明の下地処理したアルミニウム合金基板が得られる。
次に、ジンケート処理したアルミニウム合金基板の表面を下地処理して、この表面上に、下地処理として無電解めっきを施してめっき層(例えばNi-P合金めっき層)を形成する。更に、めっき層の表面の研磨が行われる。無電解Ni-P合金めっき処理は、例えば市販のニムデンHDX(上村工業製)めっき液等を用い、温度80~95℃、処理時間30~180分、Ni濃度3~10g/Lの条件でめっき処理を行うことが好ましく、温度85~95℃、処理時間60~120分、Ni濃度4~9g/Lの条件で行うのがより好ましい。温度が80℃未満の場合や、Ni濃度が3g/L未満の場合にはめっきの成長速度が遅く、生産性の低下を招く場合がある。処理時間が30分未満の場合には、めっき表面に欠陥が多数発生し、めっき表面の平滑性が低下することがある。温度が95℃を超える場合や、Ni濃度が10g/Lを超える場合には、めっきが不均一に成長するため、めっきの平滑性が低下する場合がある。処理時間が180分を超える場合には、生産性の低下を招くことがある。これらのめっき前処理、ならびに、Ni-P合金めっき処理によって、本発明の下地処理したアルミニウム合金基板が得られる。
(6)ステップ11(磁性層形成工程)
最後に、下地処理したアルミニウム合金基板のめっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成させて磁気ディスクを製造する。
最後に、下地処理したアルミニウム合金基板のめっき層の表面上に、スパッタリングによって磁性体(磁性層)を付着形成させて磁気ディスクを製造する。
上述したところは、この発明のいくつかの実施形態を示したにすぎず、特許請求の範囲において種々の変更を加えることができる。
以下に、本発明の実施例を説明する。
まず、表1に示すCl含有量のアルミニウム地金と、Cr酸化物量のCr原料(実施例の合金No.4及び5は除く。)を用い、表1に示す成分組成のアルミニウム合金溶湯を溶製し、その後、アルミニウム合金溶湯をDC鋳造法により厚さ500mmの鋳塊とし、両面15mmの面削を行った。次に510℃で6時間の均質化処理を施した(実施例の合金No.6は除く。)。その後、圧延開始温度460℃、圧延終了温度340℃で熱間圧延を行なって板厚3.0mmの熱間圧延板とし、その後、実施例の合金No.7以外の熱間圧延板は、中間焼鈍を行なわずに冷間圧延(圧延率66.7%)により最終板厚の1.0mmまで圧延し、冷間圧延板(アルミニウム合金板)とした。実施例の合金No.7の熱間圧延板については、まず第1の冷間圧延(圧延率33.3%)を施した後、バッチ式焼鈍炉を用いて、300℃で2時間の条件で中間焼鈍を行ない、次いで、第2の冷間圧延(圧延率50.0%)により最終板厚の1.0mmまで圧延し、冷間圧延板(アルミニウム合金板)とした。次に、アルミニウム合金板から外径96mm、内径24mmの円環状に打抜き、ディスクブランクを作製した後、このディスクブランクを340℃で4時間加圧焼鈍を施した。その後、端面加工を行い外径95mm、内径25mmとし、グラインディング加工(表面10μm研削)を行い、300℃で10分の加熱処理を行った。次に、AD-68F(上村工業製)により60℃で5分の脱脂を行った後、AD-107F(上村工業製)により65℃で1分のエッチングを行い、更に30%HNO3水溶液(室温)で20秒間のデスマット処理を施した。その後、表面調整したディスクブランクの表面に、AD-301F-3X(上村工業製)を用いてダブルジンケート処理を施した。さらに、ジンケート処理した表面に無電解Ni-P合金めっき処理液(ニムデンHDX(上村工業製))を用いてNi-P合金めっき層を19μm厚さで形成した後、羽布(バフ)により仕上げ研磨(研磨量5μm)を行い、磁気ディスクを得た。なお、表1の成分組成において、「-」の記号は、検出限界以下であることを示している。
まず、表1に示すCl含有量のアルミニウム地金と、Cr酸化物量のCr原料(実施例の合金No.4及び5は除く。)を用い、表1に示す成分組成のアルミニウム合金溶湯を溶製し、その後、アルミニウム合金溶湯をDC鋳造法により厚さ500mmの鋳塊とし、両面15mmの面削を行った。次に510℃で6時間の均質化処理を施した(実施例の合金No.6は除く。)。その後、圧延開始温度460℃、圧延終了温度340℃で熱間圧延を行なって板厚3.0mmの熱間圧延板とし、その後、実施例の合金No.7以外の熱間圧延板は、中間焼鈍を行なわずに冷間圧延(圧延率66.7%)により最終板厚の1.0mmまで圧延し、冷間圧延板(アルミニウム合金板)とした。実施例の合金No.7の熱間圧延板については、まず第1の冷間圧延(圧延率33.3%)を施した後、バッチ式焼鈍炉を用いて、300℃で2時間の条件で中間焼鈍を行ない、次いで、第2の冷間圧延(圧延率50.0%)により最終板厚の1.0mmまで圧延し、冷間圧延板(アルミニウム合金板)とした。次に、アルミニウム合金板から外径96mm、内径24mmの円環状に打抜き、ディスクブランクを作製した後、このディスクブランクを340℃で4時間加圧焼鈍を施した。その後、端面加工を行い外径95mm、内径25mmとし、グラインディング加工(表面10μm研削)を行い、300℃で10分の加熱処理を行った。次に、AD-68F(上村工業製)により60℃で5分の脱脂を行った後、AD-107F(上村工業製)により65℃で1分のエッチングを行い、更に30%HNO3水溶液(室温)で20秒間のデスマット処理を施した。その後、表面調整したディスクブランクの表面に、AD-301F-3X(上村工業製)を用いてダブルジンケート処理を施した。さらに、ジンケート処理した表面に無電解Ni-P合金めっき処理液(ニムデンHDX(上村工業製))を用いてNi-P合金めっき層を19μm厚さで形成した後、羽布(バフ)により仕上げ研磨(研磨量5μm)を行い、磁気ディスクを得た。なお、表1の成分組成において、「-」の記号は、検出限界以下であることを示している。
前記ステップ8(切削・研削加工及び加熱処理工程)を行った後のアルミニウム合金基板(S1)、及び前記ステップ10(Ni-P合金めっき層の形成工程)を行った後のめっき層を有するアルミニウム合金基板(S2)について以下の評価を行った。
〔Cr酸化物の存在密度〕
3~10μmの最長径を有するCr酸化物の存在密度(ディスク片面当たりの個数)は、研削加工・加熱工程後のアルミニウム合金板(S1)の表面を目視で検査し、EPMAの観察像とWDS分析(波長分散型X線分析)により3~10μmの最長径を有するCr酸化物を同定しつつ、各々のディスクの片面当たりの個数を数えて存在密度に換算して求めた。Cr酸化物が基板表面に存在すると研削加工時にこの介在物を起点に広範囲に研削傷が発生するため、介在物の分散状態は目視で確認することができる。上記存在密度を表2に示す。
3~10μmの最長径を有するCr酸化物の存在密度(ディスク片面当たりの個数)は、研削加工・加熱工程後のアルミニウム合金板(S1)の表面を目視で検査し、EPMAの観察像とWDS分析(波長分散型X線分析)により3~10μmの最長径を有するCr酸化物を同定しつつ、各々のディスクの片面当たりの個数を数えて存在密度に換算して求めた。Cr酸化物が基板表面に存在すると研削加工時にこの介在物を起点に広範囲に研削傷が発生するため、介在物の分散状態は目視で確認することができる。上記存在密度を表2に示す。
〔めっき表面平滑性〕
Ni-P合金めっき層の形成工程後のアルミニウム合金板(S2)の表面をOSA(Optical Surface Analyzer)等の機器を用いて観察し、ディスク片面当たりに存在する最長径0.5μm以上の大きさのピットの個数を計測し、単位面積当たりの個数(個数密度:ディスクの片面当たりの個数)を求めた。評価の基準は、ディスクの片面当たりのピットの個数が、10個以下の場合を優良であるとして「◎」印で示し、10個超え30個以下の場合を良好であるとして「○」印で示し、そして、30個を超える場合を不良であるとして「×」印で示す。評価結果を表2に示す。
Ni-P合金めっき層の形成工程後のアルミニウム合金板(S2)の表面をOSA(Optical Surface Analyzer)等の機器を用いて観察し、ディスク片面当たりに存在する最長径0.5μm以上の大きさのピットの個数を計測し、単位面積当たりの個数(個数密度:ディスクの片面当たりの個数)を求めた。評価の基準は、ディスクの片面当たりのピットの個数が、10個以下の場合を優良であるとして「◎」印で示し、10個超え30個以下の場合を良好であるとして「○」印で示し、そして、30個を超える場合を不良であるとして「×」印で示す。評価結果を表2に示す。
表2に示す評価結果から、実施例の合金No.1~7はいずれも、3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下であり、めっき表面平滑性が優良又は良好な磁気ディスク基板用アルミニウム合金基板が得られた。
これに対して比較例の合金No.8~22ではいずれも、化学組成及びCr酸化物の存在割合のいずれか一方が本発明の範囲外であるため、めっき表面の平滑性が不良である。
即ち、比較例の合金No.8は、Mg含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Mg系金属間化合物が多く生成され、これら金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.9は、Cu含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Cu-Mg-Zn系金属間化合物が多く生成され、これら金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.10では、Zn含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Cu-Mg-Zn系金属間化合物が多く生成され、これら金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.11は、Fe含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Fe系金属間化合物が多く生成し、これら金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.12は、Si含有量が本発明の適正範囲よりも多過ぎたために粗大なMg-Si系金属間化合物が多く生成し、これら金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.13は、Beの含有量が本発明の適正範囲よりも多過ぎたために研削後の加熱で厚いAl-Mg-Be系酸化物が形成された。その結果、めっき表面に微細ピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.14は、Cr含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Cr系金属間化合物が多く生成し、この金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.15は、Mn含有量が本発明の適正範囲よりも多過ぎたために粗大なAl-Mn系金属間化合物が多く生成し、この金属間化合物がめっき前処理で脱落してアルミニウム合金板表面に大きな窪みが発生した。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.16は、Clの含有量が本発明の適正範囲よりも多過ぎたためにMg-Cl系化合物が多く生成した。その結果、めっき表面に微細ピットが多数発生し、めっき表面の平滑性が不良となった。Mg含有量が少な過ぎたためにジンケート皮膜が不均一となった。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.17は、Mg含有量が本発明の適正範囲よりも少な過ぎたためにジンケート皮膜が不均一となった。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.18は、Cu含有量が本発明の適正範囲よりも少な過ぎたためにジンケート皮膜が不均一となった。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.19は、Zn含有量が本発明の適正範囲よりも少な過ぎたためにジンケート皮膜が不均一となった。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.20は、Beを含有させなかったためにジンケート皮膜が不均一となった。その結果、めっき表面にピットが多数発生し、めっき表面の平滑性が不良となった。
比較例の合金No.21は、金属組織で観察された3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり3個と高かったために、これらの介在物(Cr酸化物)に起因する基板表面での大きな窪みや研削傷が多発し、めっき表面の平滑性が不良となった。
比較例の合金No.22は、金属組織で観察された3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり7個と高かったために、これらの介在物(Cr酸化物)に起因する基板表面での大きな窪みや研削傷が多発し、めっき表面の平滑性が不良となった。
上述のように、本発明に係る磁気ディスク基板用アルミニウム合金板は研削加工やめっき前処理等の処理を行うにあたり、3μm以上の最長径を有するCr酸化物の個数が制御されているために、窪みや研削傷の発生を抑制する効果を有し、優れためっき表面平滑性を得ることが出来る。このようなアルミニウム合金板を用いることにより、大容量及び高密度の磁気ディスクが得られる。
Claims (6)
- 質量%で、Mg:3.0~8.0%、Cu:0.002~0.150%、Zn:0.05~0.60%、Fe:0.001~0.060%、Si:0.001~0.060%、Be:0.00001~0.00200%、Cr:0.200%以下、Mn:0.500%以下及びCl:0.00300%以下を含有し、残部がAl及び不可避的不純物からなる組成を有し、金属組織中で観察される3~10μmの最長径を有するCr酸化物の存在密度が、ディスクの片面当たり1個以下であることを特徴とする磁気ディスク基板用アルミニウム合金板。
- Cr:0.010~0.200質量%、Mn:0.010~0.500質量%のうち1種又は2種を含有することを特徴とする請求項1に記載の磁気ディスク基板用アルミニウム合金板。
- Be:0.00001~0.00025質量%を含有することを特徴とする請求項1又は2に記載の磁気ディスク基板用アルミニウム合金板。
- 請求項1~3のいずれか1項に記載の磁気ディスク基板用アルミニウム合金板の製造方法において、
前記アルミニウム合金板の組成になるように溶湯を調整する溶湯調整工程と、
前記溶湯を鋳造する鋳造工程と、
鋳造した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、
前記熱間圧延板を冷間圧延して冷間圧延板とする冷間圧延工程と
を含み、
前記溶湯調整工程が、Cl:0.00300質量%以下を含有するアルミニウム地金を装入して溶湯を調整することを特徴とする磁気ディスク基板用アルミニウム合金板の製造方法。 - 前記溶湯調整工程が、Cr酸化物:0.50質量%以下を含有するCr原料をさらに装入して溶湯を調整することを特徴とする請求項4に記載の磁気ディスク基板用アルミニウム合金板の製造方法。
- 請求項1~3のいずれか1項に記載される磁気ディスク基板用アルミニウム合金板を用いて作製した円環状のアルミニウム合金基板の表面上に、めっき層と磁性層を有することを特徴とする磁気ディスク。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780047534.1A CN109563572B (zh) | 2016-08-01 | 2017-07-28 | 磁盘基板用铝合金板及其制造方法、磁盘 |
JP2018531867A JP6998305B2 (ja) | 2016-08-01 | 2017-07-28 | 磁気ディスク基板用アルミニウム合金板及びその製造方法、並びに磁気ディスク |
US16/265,884 US20190172487A1 (en) | 2016-08-01 | 2019-02-01 | Aluminum alloy plate for magnetic disc substrate, method for producing the same, and magnetic disc |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-150998 | 2016-08-01 | ||
JP2016150998 | 2016-08-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/265,884 Continuation US20190172487A1 (en) | 2016-08-01 | 2019-02-01 | Aluminum alloy plate for magnetic disc substrate, method for producing the same, and magnetic disc |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025769A1 true WO2018025769A1 (ja) | 2018-02-08 |
Family
ID=61073460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027483 WO2018025769A1 (ja) | 2016-08-01 | 2017-07-28 | 磁気ディスク基板用アルミニウム合金板及びその製造方法、並びに磁気ディスク |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190172487A1 (ja) |
JP (1) | JP6998305B2 (ja) |
CN (1) | CN109563572B (ja) |
WO (1) | WO2018025769A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019167602A (ja) * | 2018-03-26 | 2019-10-03 | 株式会社Uacj | 磁気ディスク用アルミニウム合金板及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金板を用いた磁気ディスク |
EP3640358A1 (de) * | 2018-10-15 | 2020-04-22 | Achenbach Buschhütten GmbH & Co. KG | Verfahren zur herstellung eines hochfesten aluminium-legierungsblechs |
WO2023276572A1 (ja) * | 2021-07-02 | 2023-01-05 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
JP2023004878A (ja) * | 2021-07-02 | 2023-01-17 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107532245B (zh) * | 2015-05-28 | 2019-07-16 | 株式会社Uacj | 磁盘用铝合金基板及其制造方法、以及使用了该磁盘用铝合金基板的磁盘 |
JP6439082B1 (ja) * | 2017-02-01 | 2018-12-19 | 株式会社Uacj | アルミニウム合金製の磁気ディスク基板及びその製造方法 |
JP7132289B2 (ja) * | 2019-12-09 | 2022-09-06 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランク、磁気ディスク用アルミニウム合金サブストレート、及び磁気ディスク用アルミニウム合金板の製造方法 |
JP7190475B2 (ja) * | 2020-12-15 | 2022-12-15 | 株式会社Uacj | 磁気ディスク用アルミニウム合金基板及び磁気ディスク |
KR20220087210A (ko) * | 2020-12-17 | 2022-06-24 | 현대자동차주식회사 | 연료전지의 분리판용 알루미늄 박판재 및 그 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079286A (ja) * | 2007-09-05 | 2009-04-16 | Kobe Steel Ltd | 磁気ディスク用アルミニウム合金基板およびその製造方法 |
JP2013023737A (ja) * | 2011-07-22 | 2013-02-04 | Furukawa-Sky Aluminum Corp | 磁気ディスク用アルミニウム合金基板及びその製造方法 |
JP2013112884A (ja) * | 2011-11-30 | 2013-06-10 | Furukawa-Sky Aluminum Corp | アルミニウム合金基板及びその製造方法 |
JP2015093995A (ja) * | 2013-11-11 | 2015-05-18 | 株式会社Uacj | 磁気ディスク用アルミニウム合金基板及びその製造方法 |
JP2016135914A (ja) * | 2015-01-16 | 2016-07-28 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランク及び磁気ディスク用アルミニウム合金サブストレート |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07331397A (ja) * | 1994-06-09 | 1995-12-19 | Mitsubishi Alum Co Ltd | 磁気ディスク基板用アルミニウム合金板の製造方法 |
JP5325869B2 (ja) * | 2010-11-02 | 2013-10-23 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金基板およびその製造方法 |
JP5762612B1 (ja) * | 2014-09-27 | 2015-08-12 | 株式会社Uacj | 磁気ディスク基板用アルミニウム合金板及びその製造方法、ならびに、磁気ディスクの製造方法 |
CN105803273B (zh) * | 2015-01-16 | 2018-01-02 | 株式会社神户制钢所 | 磁盘用铝合金板、磁盘用铝合金坯体及磁盘用铝合金基片 |
-
2017
- 2017-07-28 WO PCT/JP2017/027483 patent/WO2018025769A1/ja active Application Filing
- 2017-07-28 JP JP2018531867A patent/JP6998305B2/ja active Active
- 2017-07-28 CN CN201780047534.1A patent/CN109563572B/zh active Active
-
2019
- 2019-02-01 US US16/265,884 patent/US20190172487A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079286A (ja) * | 2007-09-05 | 2009-04-16 | Kobe Steel Ltd | 磁気ディスク用アルミニウム合金基板およびその製造方法 |
JP2013023737A (ja) * | 2011-07-22 | 2013-02-04 | Furukawa-Sky Aluminum Corp | 磁気ディスク用アルミニウム合金基板及びその製造方法 |
JP2013112884A (ja) * | 2011-11-30 | 2013-06-10 | Furukawa-Sky Aluminum Corp | アルミニウム合金基板及びその製造方法 |
JP2015093995A (ja) * | 2013-11-11 | 2015-05-18 | 株式会社Uacj | 磁気ディスク用アルミニウム合金基板及びその製造方法 |
JP2016135914A (ja) * | 2015-01-16 | 2016-07-28 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランク及び磁気ディスク用アルミニウム合金サブストレート |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019167602A (ja) * | 2018-03-26 | 2019-10-03 | 株式会社Uacj | 磁気ディスク用アルミニウム合金板及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金板を用いた磁気ディスク |
JP7027211B2 (ja) | 2018-03-26 | 2022-03-01 | 株式会社Uacj | 磁気ディスク用アルミニウム合金板及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金板を用いた磁気ディスク |
EP3640358A1 (de) * | 2018-10-15 | 2020-04-22 | Achenbach Buschhütten GmbH & Co. KG | Verfahren zur herstellung eines hochfesten aluminium-legierungsblechs |
WO2023276572A1 (ja) * | 2021-07-02 | 2023-01-05 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
JP2023004878A (ja) * | 2021-07-02 | 2023-01-17 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
JP7252395B2 (ja) | 2021-07-02 | 2023-04-04 | 株式会社神戸製鋼所 | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018025769A1 (ja) | 2019-05-30 |
CN109563572B (zh) | 2021-03-23 |
CN109563572A (zh) | 2019-04-02 |
JP6998305B2 (ja) | 2022-02-04 |
US20190172487A1 (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018025769A1 (ja) | 磁気ディスク基板用アルミニウム合金板及びその製造方法、並びに磁気ディスク | |
US9613648B2 (en) | Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc | |
JP6807142B2 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法 | |
JP6427267B2 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金基板を用いた磁気ディスク | |
JP5325472B2 (ja) | 磁気ディスク用アルミニウム合金基板およびその製造方法 | |
JP5767384B1 (ja) | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランク及び磁気ディスク用アルミニウム合金サブストレート | |
JP2009242843A (ja) | 磁気ディスク用アルミニウム合金基板およびその製造方法 | |
JP6131083B2 (ja) | 磁気ディスク基板用アルミニウム合金板及びその製造方法 | |
JP2017186597A (ja) | 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート | |
JP5901168B2 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法、ならびに、下地処理磁気ディスク用アルミニウム合金基板及びその製造方法 | |
JP2020029595A (ja) | 磁気ディスク用アルミニウム合金ブランク及びその製造方法、ならびに、当該磁気ディスク用アルミニウム合金ブランクを用いた磁気ディスク及びその製造方法 | |
JP2011102415A (ja) | 磁気ディスク用アルミニウム合金板及びその製造方法 | |
WO2017163943A1 (ja) | 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート | |
WO2018092547A1 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法 | |
JP2017179590A (ja) | 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート | |
JP5836352B2 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法 | |
JP6908741B2 (ja) | 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート | |
WO2017018451A1 (ja) | 磁気ディスク用アルミニウム合金基板及びその製造方法 | |
US20230111915A1 (en) | Aluminum alloy substrate for magnetic disks, and magnetic disk using said aluminum alloy substrate for magnetic disks | |
JP4477998B2 (ja) | 磁気ディスク用アルミニウム合金板の製造方法、磁気ディスク用アルミニウム合金板、および磁気ディスク用アルミニウム合金基板 | |
US20230120845A1 (en) | Aluminum alloy substrate for magnetic disk, and magnetic disk using same | |
WO2020184038A1 (ja) | 磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート | |
WO2023167219A1 (ja) | アルミニウム合金原料の製造方法、アルミニウム合金鋳塊の製造方法、アルミニウム合金板の製造方法、めっき用アルミニウム合金基板の製造方法、磁気ディスク用アルミニウム合金基板の製造方法、磁気ディスクの製造方法及び磁気ディスク | |
JP2018059138A (ja) | 磁気ディスク用Al−Mg系合金板、磁気ディスク用Al−Mg系合金ブランク及び磁気ディスク用Al−Mg系合金サブストレート | |
JP6339710B1 (ja) | 磁気ディスク用アルミニウム合金板、磁気ディスク用アルミニウム合金ブランクおよび磁気ディスク用アルミニウム合金サブストレート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018531867 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836874 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17836874 Country of ref document: EP Kind code of ref document: A1 |