WO2018016528A1 - リチウムイオン電池用電極およびリチウムイオン電池 - Google Patents

リチウムイオン電池用電極およびリチウムイオン電池 Download PDF

Info

Publication number
WO2018016528A1
WO2018016528A1 PCT/JP2017/026110 JP2017026110W WO2018016528A1 WO 2018016528 A1 WO2018016528 A1 WO 2018016528A1 JP 2017026110 W JP2017026110 W JP 2017026110W WO 2018016528 A1 WO2018016528 A1 WO 2018016528A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
lithium ion
electrode active
material layer
Prior art date
Application number
PCT/JP2017/026110
Other languages
English (en)
French (fr)
Inventor
由美 齋藤
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2018528833A priority Critical patent/JP6903263B2/ja
Priority to CN201780040358.9A priority patent/CN109417161B/zh
Priority to US16/318,988 priority patent/US20190280283A1/en
Priority to EP17831044.7A priority patent/EP3490037B1/en
Publication of WO2018016528A1 publication Critical patent/WO2018016528A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a lithium ion battery and a lithium ion battery.
  • An electrode used for a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector layer.
  • the electrode active material layer can be obtained, for example, by applying an electrode slurry containing an electrode active material, a binder resin, and a conductive additive to the surface of a current collector layer such as a metal foil and drying.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-52707 describes a composition formula LiNi 1-X M X O 2 (M is one or more elements selected from Ti, Mn, Co, Al, and Ga).
  • a positive electrode active material comprising a combination and represented by 0 ⁇ x ⁇ 1), a conductive material that imparts conductivity to the positive electrode active material, and a fluorine-based organic binder that binds the positive electrode active material and the conductive material;
  • the conductive material is amorphous, the BET specific surface area is 500 m 2 / g or less, and the bulk density is 0.1 g.
  • the density of the composite material coated on the current collector sheet surface is in the range of 2.0 to 3.5 g / cm 3
  • the positive electrode sheet has an area specific resistance of 100 m ⁇ cm. lithium secondary, characterized in that it is 2 or less Pond have been described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-214212
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-214212
  • An electrode body in which positive and negative electrode plates formed by forming an electrode active material layer on the surface of a current collecting substrate are wound or laminated through a separator
  • a lithium secondary battery using a non-aqueous electrolyte in which lithium manganate having a cubic spinel structure is used as a positive electrode active material, and the positive electrode active material layer is not impregnated with the non-aqueous electrolyte
  • a lithium secondary battery is described in which a positive electrode plate having a resistivity ⁇ in the thickness direction of 500 ⁇ ⁇ cm or less is used.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-251281 discloses a positive electrode having a positive electrode active material layer containing a positive electrode active material on the surface of a positive electrode current collector, and a negative electrode active material containing a negative electrode active material on the surface of the negative electrode current collector.
  • An electrode body including a negative electrode having a material layer; a separator disposed between the positive electrode and the negative electrode; and a battery case that houses the electrode body together with an electrolyte solution.
  • a lithium secondary battery is described in which the value of the ratio to the energy capacity during charging is 4.5 cm 2 / Wh or more, and the electrical resistivity of the positive electrode is 10 ⁇ ⁇ cm to 450 ⁇ ⁇ cm. .
  • the present invention has been made in view of the above circumstances, and provides an electrode for a lithium ion battery capable of realizing a lithium ion battery excellent in both battery characteristics and safety.
  • the present inventors have intensively studied to achieve the above problems. As a result, by making the interface resistance between the current collector layer and the electrode active material layer measured by a specific method within a specific range, the above trade-off relationship can be improved, and battery characteristics such as cycle characteristics can be improved.
  • the present invention has been completed by finding that a lithium ion battery having both good battery safety characteristics can be obtained.
  • a current collector layer An electrode active material layer provided on at least one surface of the current collector layer and including an electrode active material, a binder resin, and a conductive additive, and The interfacial resistance between the current collector layer and the electrode active material layer, measured at normal pressure by contacting an electrode probe with the surface of the electrode active material layer, exceeds 0.0010 ⁇ ⁇ cm 2 0.10 ⁇ ⁇ An electrode for a lithium ion battery that is less than cm 2 is provided.
  • a lithium ion battery comprising the above electrode for a lithium ion battery.
  • the present invention it is possible to provide a lithium ion battery electrode capable of realizing a lithium ion battery excellent in both battery characteristics and safety.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a lithium ion battery electrode 100 according to an embodiment of the present invention.
  • An electrode 100 for a lithium ion battery according to this embodiment is provided on a current collector layer 101 and at least one surface of the current collector layer 101, and includes an electrode active material, a binder resin, and a conductive additive.
  • An active material layer 103 is provided on a current collector layer 101 and at least one surface of the current collector layer 101, and includes an electrode active material, a binder resin, and a conductive additive.
  • An active material layer 103 is provided. Then, the interface resistance between the current collector layer 101 and the electrode active material layer 103 measured at normal pressure with the electrode probe brought into contact with the surface of the electrode active material layer 103 exceeds 0.0010 ⁇ ⁇ cm 2 . It is less than 10 ⁇ ⁇ cm 2 .
  • the interface resistance between the current collector layer 101 and the electrode active material layer 103 is measured using, for example, an electrode resistance measuring instrument (electrode resistance measuring instrument for a lithium ion secondary battery) manufactured by Hioki Electric Co., Ltd. be able to.
  • an electrode probe (measurement probe) including 46 measurement pins is brought into contact with the surface of the electrode active material layer 103 at normal pressure.
  • a constant current (1 mA) is applied from the surface of the electrode active material layer 103 to obtain a potential distribution of the electrode 100 for a lithium ion battery. From the obtained potential distribution, the interface resistance between the current collector layer 101 and the electrode active material layer 103 and the volume resistivity of the electrode active material layer 103 can be calculated.
  • the interface resistance between the current collector layer 101 and the electrode active material layer 103 is the current collector layer 101.
  • the electrode active material layer 103 provided on one surface of the current collector layer 101 are shown. That is, in this embodiment, when the electrode active material layer 103 is provided on both surfaces of the current collector layer 101, the interface between the current collector layer 101 and the electrode active material layer 103 on at least one surface of the current collector layer 101.
  • the resistance may be within the above range, and the interface resistance between the current collector layer 101 and the electrode active material layer 103 is preferably within the above range on both sides of the current collector layer 101.
  • the upper limit of the interface resistance between the current collector layer 101 and the electrode active material layer 103 is less than 0.10 ⁇ ⁇ cm 2 , preferably 0.090 ⁇ ⁇ cm 2 or less, more preferably 0.080 ⁇ ⁇ cm 2 or less, Preferably it is 0.060 ⁇ ⁇ cm 2 or less, particularly preferably 0.040 ⁇ ⁇ cm 2 or less.
  • the lower limit of the interface resistance 0.0010 ⁇ ⁇ cm 2 exceeded between the current collector layer 101 and the electrode active material layer 103 preferably 0.0020 ⁇ ⁇ cm 2 or more, more preferably 0.0030 ⁇ ⁇ cm 2 or more, further Preferably it is 0.0040 ⁇ ⁇ cm 2 or more, even more preferably 0.0050 ⁇ ⁇ cm 2 or more, and particularly preferably 0.0080 ⁇ ⁇ cm 2 or more.
  • the interface resistance between the current collector layer 101 and the electrode active material layer 103 exceeds or exceeds the above lower limit value, whereby the safety of the obtained lithium ion battery Can be improved effectively.
  • the interfacial resistance of the electrode 100 for a lithium ion battery includes (A) a blending ratio of the electrode active material layer 103, (B) a method for preparing an electrode slurry for forming the electrode active material layer 103, (C It can be realized by highly controlling production conditions such as a method for drying the electrode slurry and a method for pressing the electrode slurry.
  • the volume resistivity of the electrode active material layer 103 measured by a normal pressure by contacting an electrode probe with the surface of the electrode active material layer 103 is obtained lithium From the viewpoint of further improving the battery characteristics of the ion battery, it is preferably 5.0 ⁇ ⁇ cm or less, more preferably 3.0 ⁇ ⁇ cm or less, and even more preferably 2.5 ⁇ ⁇ cm or less. .
  • the lower limit of the volume resistivity of the electrode active material layer 103 is not particularly limited. However, from the viewpoint of further improving the safety of the obtained lithium ion battery, it is, for example, 0.010 ⁇ ⁇ cm or more, preferably 0.00.
  • the volume resistivity of the electrode active material layer 103 is the electrode active material layer 103 provided on one surface of the current collector layer 101. Only the volume resistivity is shown. That is, in this embodiment, when the electrode active material layer 103 is provided on both surfaces of the current collector layer 101, the volume resistivity of at least the electrode active material layer 103 provided on one surface of the current collector layer 101 is within the above range.
  • the volume resistivity of the electrode active material layer 103 provided on both surfaces of the current collector layer 101 is preferably in the above range.
  • the interface resistance is Rs [ ⁇ ⁇ cm 2 ]
  • the volume resistivity of the electrode active material layer 103 is rv [ ⁇ ⁇ cm]
  • the lower limit of the electrode resistance R of the electrode 100 for a lithium ion battery is not particularly limited, but is, for example, more than 0.0010 ⁇ ⁇ cm 2 from the viewpoint of further improving the safety of the obtained lithium ion battery, preferably 0.0050 ⁇ ⁇ cm 2 or more, more preferably 0.010 ⁇ ⁇ cm 2 or more.
  • the electrode active material layer 103 contains an electrode active material, a binder resin, and a conductive additive.
  • the electrode active material included in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application.
  • a positive electrode active material is used when producing a positive electrode
  • a negative electrode active material is used when producing a negative electrode.
  • the positive electrode active material is inferior in electronic conductivity as compared with the negative electrode active material, the positive electrode has higher resistance than the negative electrode and tends to affect the battery characteristics of the resulting lithium ion battery. Therefore, when the lithium ion battery electrode 100 according to this embodiment is used as a positive electrode, the effect of this embodiment can be obtained more effectively. Therefore, it is preferable that the electrode active material included in the electrode active material layer 103 is a positive electrode active material from the viewpoint of more effectively obtaining the effects of the present embodiment.
  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • transition metal sulfides such as TiS 2 , FeS, and MoS 2
  • transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , and TiO 2
  • olivine type lithium phosphorous oxide etc.
  • the olivine-type lithium phosphorus oxide is, for example, at least one member selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus, and oxygen. In order to improve the characteristics of these compounds, some elements may be partially substituted with other elements.
  • These positive electrode active materials have a high working potential, a large capacity, and a large energy density.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode active material is not particularly limited as long as it is a normal negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbon materials are preferable, and graphite materials such as natural graphite and artificial graphite are particularly preferable.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the average particle diameter of the electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 5 ⁇ m or more from the viewpoint of suppressing side reactions during charge / discharge and suppressing the decrease in charge / discharge efficiency. From the viewpoint of production (smoothness of the electrode surface, etc.), it is preferably 80 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the average particle diameter means the particle diameter (median diameter: D 50 ) at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.4 parts by mass or less, and 90.5 parts by mass or more and 98.5 parts by mass when the entire electrode active material layer 103 is 100 parts by mass. More preferably, it is 90.5 mass parts or more and 97.5 mass parts or less.
  • the binder resin contained in the electrode active material layer 103 according to the present embodiment is appropriately selected according to the application.
  • a fluorine-based binder resin that can be dissolved in a solvent, an aqueous binder that can be dispersed in water, or the like can be used.
  • the fluorine-based binder resin is not particularly limited as long as it can be electrode-molded and has sufficient electrochemical stability, and examples thereof include polyvinylidene fluoride-based resins and fluorine rubber. These fluorine-based binder resins may be used alone or in combination of two or more. Among these, a polyvinylidene fluoride resin is preferable.
  • the fluorine-based binder resin can be used after being dissolved in a solvent such as N-methyl-pyrrolidone (NMP).
  • the water-based binder can be formed into an electrode and is not particularly limited as long as it has sufficient electrochemical stability.
  • a polytetrafluoroethylene resin a polyacrylic acid resin, a styrene / butadiene rubber
  • examples include polyimide resins.
  • These aqueous binders may be used alone or in combination of two or more. Among these, styrene / butadiene rubber is preferable.
  • the aqueous binder refers to a binder that can be dispersed in water to form an aqueous emulsion solution. When an aqueous binder is used, a thickener can be further used.
  • cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and these ammonium salts, and alkali metal salts; Polycarboxylic acid; Polyethylene oxide; Polyvinylpyrrolidone; Sodium polyacrylate etc. And water-soluble polymers such as polyvinyl acrylate, polyvinyl alcohol, and the like.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, and 0.5 parts by mass or more and 5.0 parts by mass when the entire electrode active material layer 103 is 100 parts by mass. It is more preferably no greater than 1.0 part by weight, and even more preferably no less than 1.0 part by weight and no greater than 5.0 parts by weight.
  • the content of the binder resin is within the above range, the balance of electrode slurry coating properties, binder binding properties, and battery characteristics is further improved.
  • the content of the binder resin is not more than the above upper limit value because the ratio of the electrode active material is increased and the capacity per electrode mass is increased. It is preferable for the content of the binder resin to be not less than the above lower limit value because electrode peeling is suppressed.
  • the conductive additive contained in the electrode active material layer 103 according to the present embodiment is not particularly limited as long as it improves the conductivity of the electrode.
  • These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive assistant is preferably 0.5 parts by mass or more and 8.0 parts by mass or less, and 0.5 parts by mass or more and 5.0 parts by mass or less when the entire electrode active material layer 103 is 100 parts by mass. More preferably, it is 1.0 mass part or more and 4.5 mass part or less, and 1.5 mass part or more and 4.5 mass part or less are especially preferable.
  • the content of the conductive assistant is within the above range, the balance of electrode slurry coating property, binder binding property, and battery characteristics is further improved.
  • the content of the conductive assistant is not more than the above upper limit value because the ratio of the electrode active material is increased and the capacity per electrode mass is increased. It is preferable that the content of the conductive auxiliary is not less than the above lower limit value because the conductivity of the electrode becomes better.
  • the content of the electrode active material is preferably 85 parts by mass or more and 99.4 parts by mass or less, more preferably It is 90.5 mass parts or more and 98.5 mass parts or less, More preferably, it is 90.5 mass parts or more and 97.5 mass parts or less.
  • the content of the binder resin is preferably 0.1 parts by mass or more and 10.0 parts by mass or less, more preferably 0.5 parts by mass or more and 5.0 parts by mass or less, and further preferably 1.0 parts by mass or more and 5. 0 parts by mass or less.
  • the conductive auxiliary agent content is preferably 0.5 parts by mass or more and 8.0 parts by mass or less, more preferably 0.5 parts by mass or more and 5.0 parts by mass or less, and further preferably 1.0 parts by mass or more and 4 parts by mass or less. 0.5 parts by mass or less, particularly preferably 1.5 parts by mass or more and 4.5 parts by mass or less.
  • the density of the electrode active material layer 103 is not particularly limited, but when the electrode active material layer 103 is a positive electrode active material layer, for example, it is preferably 2.0 to 3.6 g / cm 3 . When the electrode active material layer 103 is a negative electrode active material layer, for example, it is preferably 1.0 to 2.0 g / cm 3 . It is preferable that the density of the electrode active material layer 103 be within the above range because the discharge capacity at the time of use at a high discharge rate is improved.
  • the thickness of the electrode active material layer 103 is not particularly limited, and can be set as appropriate according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and can be set thin from the viewpoint of output characteristics.
  • the thickness of the electrode active material layer 103 can be appropriately set, for example, in the range of 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m, more preferably 40 to 180 ⁇ m, still more preferably 40 to 120 ⁇ m, and particularly preferably 40 to 100 ⁇ m or less.
  • the greater the thickness of the electrode active material layer 103 the worse the performance balance between battery characteristics and safety of the obtained lithium ion battery.
  • the effect of this embodiment can be acquired more effectively, so that the thickness of the electrode 100 for lithium ion batteries which concerns on this embodiment is thick. Therefore, the thickness of the electrode active material layer 103 is more preferably 40 ⁇ m or more from the viewpoint of more effectively obtaining the effect of the present embodiment.
  • the collector layer 101 which concerns on this embodiment, Aluminum, stainless steel, nickel, titanium, or these alloys etc. can be used for positive electrodes, price, availability, and electrochemical stability From the viewpoint of properties and the like, aluminum is particularly preferable.
  • the negative electrode copper, stainless steel, nickel, titanium or an alloy thereof can be used, and copper is particularly preferable from the viewpoints of price, availability, electrochemical stability, and the like.
  • the shape of the current collector layer 101 is not particularly limited, but it is preferable to use a foil shape, a flat plate shape, or a mesh shape within a thickness range of 0.001 to 0.5 mm.
  • the manufacturing method of the electrode 100 for lithium ion batteries which concerns on this embodiment differs from the manufacturing method of the conventional electrode.
  • the mixing ratio of the electrode active material layer 103, the electrode It is important to highly control manufacturing conditions such as a method for preparing an electrode slurry for forming the active material layer 103, a method for drying the electrode slurry, and a method for pressing the electrode.
  • the lithium ion battery electrode 100 according to the present embodiment can be obtained for the first time by a manufacturing method that highly controls various factors relating to the following four conditions (A) to (D).
  • the lithium ion battery electrode 100 according to the present embodiment is based on the assumption that various factors related to the above four conditions are highly controlled, for example, specific manufacturing conditions such as electrode slurry kneading time and kneading temperature. Various types can be adopted.
  • the electrode 100 for a lithium ion battery according to this embodiment can be manufactured by adopting a known method except for highly controlling the various factors related to the above four conditions. .
  • an example of a method for manufacturing the lithium ion battery electrode 100 according to the present embodiment will be described on the assumption that various factors relating to the above four conditions are highly controlled.
  • the method for manufacturing the lithium ion battery electrode 100 preferably includes the following three steps (1) to (3).
  • Step of preparing an electrode slurry by mixing an electrode active material, a binder resin, and a conductive auxiliary agent (2) By applying the obtained electrode slurry onto the current collector layer 101 and drying it Step of forming electrode active material layer 103 (3) Step of pressing electrode active material layer 103 formed on current collector layer 101 together with current collector layer 101
  • each step will be described.
  • an electrode slurry is prepared by mixing an electrode active material, a binder resin, and a conductive additive. Since the mixing ratio of the electrode active material, the binder resin, and the conductive additive is the same as the content ratio of the electrode active material, the binder resin, and the conductive additive in the electrode active material layer 103, the description thereof is omitted here.
  • the electrode slurry is obtained by dispersing or dissolving an electrode active material, a binder resin, and a conductive additive in a solvent. It is preferable that the mixing procedure of each component prepares an electrode slurry by dry-mixing an electrode active material and a conductive support agent, and then adding a binder resin and a solvent to perform wet mixing. By doing so, the dispersibility of the conductive assistant and binder resin in the electrode active material layer 103 is improved, and the amount of the conductive assistant and binder resin at the interface between the current collector layer 101 and the electrode active material layer 103 is increased. The interface resistance between the current collector layer 101 and the electrode active material layer 103 can be further reduced. At this time, a known mixer such as a ball mill or a planetary mixer can be used as the mixer used, and is not particularly limited.
  • the electrode active material layer 103 is formed by coating the obtained electrode slurry on the current collector layer 101 and drying it.
  • the electrode slurry obtained in the above step (1) is applied on the current collector layer 101 and dried, and the solvent is removed to form the electrode active material layer 103 on the current collector layer 101.
  • a method of applying the electrode slurry onto the current collector layer 101 generally known methods can be used. Examples thereof include a reverse roll method, a direct roll method, a doctor blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method.
  • the doctor blade method, the knife method, and the extrusion method are preferable in that a favorable surface state of the coating layer can be obtained in accordance with physical properties such as viscosity of the electrode slurry and drying properties.
  • the electrode slurry may be applied on only one side of the current collector layer 101 or on both sides. In the case of applying to both surfaces of the current collector layer 101, it may be applied sequentially on each side or on both sides simultaneously. Moreover, you may apply
  • a method of drying the electrode slurry without applying hot air directly to the undried electrode slurry is preferable.
  • the binder resin and the conductive auxiliary agent are unevenly distributed on the surface of the electrode active material layer 103, and as a result, the conductive auxiliary agent at the interface between the current collector layer 101 and the electrode active material layer 103.
  • the amount of the binder resin can be increased, and the interface resistance between the current collector layer 101 and the electrode active material layer 103 can be further reduced.
  • the press method is preferably a roll press from the viewpoint of increasing the linear pressure and improving the adhesion between the electrode active material layer 103 and the current collector layer 101.
  • the roll press pressure is 200 to 300 MPa. A range is preferable. By doing so, the adhesion between the electrode active material layer 103 and the current collector layer 101 is improved, and the interface resistance between the current collector layer 101 and the electrode active material layer 103 can be further reduced.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery 150 according to the embodiment of the present invention.
  • the lithium ion battery 150 according to the present embodiment includes at least a positive electrode 120, an electrolyte layer 110, and a negative electrode 130, and at least one of the positive electrode 120 and the negative electrode 130 includes the electrode 100 for a lithium ion battery according to the present embodiment.
  • the lithium ion battery 150 according to the present embodiment may include a separator in the electrolyte layer 110 as necessary.
  • the lithium ion battery 150 according to this embodiment can be manufactured according to a known method.
  • Examples of the form of the electrode include a laminated body and a wound body.
  • Examples of the exterior body include a metal exterior body and an aluminum laminate exterior body.
  • Examples of the shape of the battery include a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • any known lithium salt can be used, and may be selected according to the type of the electrode active material.
  • CF 3 Examples include SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
  • the solvent used to dissolve the electrolyte used in the electrolyte layer 110 is not particularly limited as long as it is normally used as a liquid component for dissolving the electrolyte.
  • Examples of the separator include a porous separator.
  • Examples of the separator include a membrane, a film, and a nonwoven fabric.
  • a porous separator for example, a polyolefin-based porous separator such as polypropylene or polyethylene; a porous separator formed of polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, or the like And the like.
  • Example 1 LiNi 0.8 Mn 0.1 Co 0.1 O 2 was used as the positive electrode active material, carbon black was used as the conductive additive, and polyvinylidene fluoride was used as the binder resin.
  • the positive electrode active material and the conductive assistant were dry mixed.
  • a positive electrode slurry was prepared by adding a binder resin and N-methyl-pyrrolidone (NMP) to the resulting mixture and performing wet mixing. This positive electrode slurry was continuously applied to and dried on a 20 ⁇ m-thick aluminum foil as a positive electrode current collector to produce a positive electrode roll having an applied portion of the positive electrode current collector and an uncoated portion not applied.
  • NMP N-methyl-pyrrolidone
  • the positive electrode slurry was dried by heating the aluminum foil with a heating roll and indirectly heating the positive electrode slurry. By this drying, NMP in the positive electrode slurry was removed, and a positive electrode active material layer was formed on the aluminum foil. Subsequently, the aluminum foil and the positive electrode active material layer were pressed by a roll press at a press pressure of 250 MPa to obtain a positive electrode.
  • the high-temperature cycle characteristics were evaluated using a lithium ion battery. At a temperature of 45 ° C., the charge rate was 1.0 C, the discharge rate was 1.0 C, the charge end voltage was 4.1 V, and the discharge end voltage was 2.5 V.
  • the capacity retention rate (%) is a value obtained by dividing the discharge capacity (mAh) after 500 cycles by the discharge capacity (mAh) at the 10th cycle. When the capacity retention rate (%) is 85% or more, ⁇ , when 80% or more and less than 85%, ⁇ , and when less than 80%, ⁇ .
  • Example 2 A positive electrode and a lithium ion battery were produced in the same manner as in Example 1 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 200 MPa, and each evaluation was performed. Each evaluation result is shown in Table 1.
  • Example 3 A positive electrode and a lithium ion battery were prepared and evaluated in the same manner as in Example 1 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 300 MPa. Each evaluation result is shown in Table 1.
  • a positive electrode and a lithium ion battery were prepared and evaluated. Each evaluation result is shown in Table 1.
  • Example 7 A positive electrode and a lithium ion battery were produced in the same manner as in Example 6 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 300 MPa, and each evaluation was performed. Each evaluation result is shown in Table 1.
  • Example 8 A positive electrode and a lithium ion battery were produced in the same manner as in Example 5 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 200 MPa, and each evaluation was performed. Each evaluation result is shown in Table 1.
  • Example 1 A positive electrode and a lithium ion battery were produced in the same manner as in Example 1 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 150 MPa, and each evaluation was performed. Each evaluation result is shown in Table 1.
  • Example 2 A positive electrode and a lithium ion battery were produced in the same manner as in Example 1 except that the press pressure of the roll press at the time of producing the positive electrode was changed to 350 MPa, and each evaluation was performed. Each evaluation result is shown in Table 1.
  • a positive electrode and a lithium ion battery were prepared and evaluated. Each evaluation result is shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明のリチウムイオン電池用電極(100)は、集電体層(101)と、集電体層(101)の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂、および導電助剤を含む電極活物質層(103)と、を備え、電極活物質層(103)の表面に電極プローブを接触して常圧で測定される、集電体層(101)と電極活物質層(103)との間の界面抵抗が0.0010Ω・cm超過0.10Ω・cm未満である。

Description

リチウムイオン電池用電極およびリチウムイオン電池
 本発明は、リチウムイオン電池用電極およびリチウムイオン電池に関する。
 リチウムイオン電池に用いられる電極は、一般的に、電極活物質層と集電体層から主に構成されている。電極活物質層は、例えば、電極活物質、バインダー樹脂、および導電助剤等を含む電極スラリーを金属箔等の集電体層の表面に塗布して乾燥することにより得られる。
 このようなリチウムイオン電池用電極に関する技術としては、例えば、特許文献1~3に記載のものが挙げられる。
 特許文献1(特開2001-52707号公報)には、組成式LiNi1-X(Mは、Ti、Mn、Co、Al、Gaから選ばれる1種又は2種以上の元素の組合せからなり、0≦x<1)で表される正極活物質と、正極活物質に導電性を付与する導電性物質と、正極活物質と導電性物質とを結着させるフッ素系有機バインダとからなる合材を集電体シート面に塗工した正極シートが用いられるリチウム二次電池において、上記導電性物質が非晶質の、BET比表面積500m/g以下で、かさ密度0.1g/cc以上の炭素系物質であり、さらに集電体シート面に塗工される合材の密度が2.0~3.5g/cmの範囲にあり、かつ正極シートの面積比抵抗が100mΩcm以下であることを特徴とするリチウム二次電池が記載されている。
 特許文献2(特開2004-214212号公報)には、集電基板表面に電極活物質層を形成してなる正負各電極板をセパレータを介して捲回若しくは積層してなる電極体を備え、非水電解液を用いたリチウム二次電池であって、正極活物質として立方晶スピネル構造を有するマンガン酸リチウムが用いられ、かつ、当該非水電解液を含浸していない状態における正極活物質層の厚み方向の抵抗率ρが500Ω・cm以下である正極板が用いられていることを特徴とするリチウム二次電池が記載されている。
 特許文献3(特開2013-251281号公報)には、正極集電体の表面に正極活物質を含む正極活物質層を有する正極と、負極集電体の表面に負極活物質を含む負極活物質層を有する負極と、該正極及び負極間に配置されたセパレータとから構成された電極体と、上記電極体を電解液とともに収容する電池ケースとを備え、上記電池ケースの表面積と電池の満充電時におけるエネルギー容量との比の値が4.5cm/Wh以上であり、かつ、上記正極の電気抵抗率が10Ω・cm以上450Ω・cm以下である、リチウム二次電池が記載されている。
特開2001-52707号公報 特開2004-214212号公報 特開2013-251281号公報
 本発明者の検討によれば、従来のリチウムイオン電池は、電極の抵抗を低下させてもサイクル特性等の電池特性が十分に向上させることができない場合があることが明らかになった。また、本発明者の検討によれば、電極の抵抗を下げすぎると、今度は電池の安全性が悪化してしまう場合があることが明らかになった。
 すなわち、本発明者は、従来のリチウムイオン電池には、サイクル特性等の電池特性および電池の安全性の間にトレードオフの関係があることを見出した。
 本発明は上記事情に鑑みてなされたものであり、電池特性および安全性の両方に優れたリチウムイオン電池を実現できるリチウムイオン電池用電極を提供するものである。
 本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、特定の方法で測定される、集電体層と電極活物質層との間の界面抵抗を特定の範囲にすることにより、上記トレードオフの関係を改善でき、サイクル特性等の電池特性および電池の安全性の両方の特性が良好なリチウムイオン電池が得られることを見出して本発明を完成するに至った。
 本発明によれば、
 集電体層と、
 上記集電体層の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂、および導電助剤を含む電極活物質層と、を備え、
 上記電極活物質層の表面に電極プローブを接触して常圧で測定される、上記集電体層と上記電極活物質層との間の界面抵抗が0.0010Ω・cm超過0.10Ω・cm未満であるリチウムイオン電池用電極が提供される。
 また、本発明によれば、
 上記リチウムイオン電池用電極を備える、リチウムイオン電池が提供される。
 本発明によれば、電池特性および安全性の両方に優れたリチウムイオン電池を実現できるリチウムイオン電池用電極を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のリチウムイオン電池用電極の構造の一例を示す断面図である。 本発明に係る実施形態のリチウムイオン電池の構造の一例を示す断面図である。
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。また、本実施形態では数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
<リチウムイオン電池用電極>
 はじめに、本実施形態に係るリチウムイオン電池用電極100について説明する。図1は、本発明に係る実施形態のリチウムイオン電池用電極100の構造の一例を示す断面図である。
 本実施形態に係るリチウムイオン電池用電極100は、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂、および導電助剤を含む電極活物質層103と、を備える。
 そして、電極活物質層103の表面に電極プローブを接触して常圧で測定される、集電体層101と電極活物質層103との間の界面抵抗が0.0010Ω・cm超過0.10Ω・cm未満である。
 ここで、集電体層101と電極活物質層103との間の界面抵抗は、例えば、日置電機社製の電極抵抗測定器(リチウムイオン二次電池向け電極抵抗測定器)を用いて測定することができる。まず、46本の計測用ピンを備えた電極プローブ(測定用プローブ)を電極活物質層103の表面に常圧で接触させる。次いで、電極活物質層103の表面から定電流(1mA)を印加して、リチウムイオン電池用電極100の電位分布を得る。得られた電位分布から、集電体層101と電極活物質層103との間の界面抵抗および電極活物質層103の体積抵抗率を算出することができる。
 本実施形態において、集電体層101の両面に電極活物質層103が設けられた場合は、集電体層101と電極活物質層103との間の上記界面抵抗は、集電体層101と集電体層101の片面に設けられた電極活物質層103との間のみの界面抵抗を示す。
 すなわち、本実施形態において、集電体層101の両面に電極活物質層103が設けられる場合、少なくとも集電体層101の片面において集電体層101と電極活物質層103との間の界面抵抗が上記範囲内であればよく、集電体層101の両面において集電体層101と電極活物質層103との間の界面抵抗がそれぞれ上記範囲内であることが好ましい。
 本発明者の検討によれば、従来のリチウムイオン電池は、電極の抵抗を低下させてもサイクル特性等の電池特性が十分に向上させることができない場合があることが明らかになった。また、本発明者の検討によれば、電極の抵抗を下げすぎると、今度は電池の安全性が悪化してしまう場合があることが明らかになった。
 すなわち、本発明者は、従来のリチウムイオン電池には、サイクル特性等の電池特性および電池の安全性の間にトレードオフの関係があることを見出した。
 そこで、本発明者は鋭意検討した結果、特定の方法で測定される、集電体層と電極活物質層との間の界面抵抗を特定の範囲にすることにより、上記トレードオフの関係を改善でき、サイクル特性等の電池特性および電池の安全性の両方の特性が良好なリチウムイオン電池が得られることを見出した。
 集電体層101と電極活物質層103との間の界面抵抗の上限は0.10Ω・cm未満、好ましくは0.090Ω・cm以下、より好ましくは0.080Ω・cm以下、さらに好ましくは0.060Ω・cm以下、特に好ましくは0.040Ω・cm以下である。
 本実施形態に係るリチウムイオン電池用電極100において、集電体層101と電極活物質層103との間の界面抵抗を上記上限値未満または以下とすることにより、得られるリチウムイオン電池のサイクル特性等の電池特性を効果的に向上させることができる。
 集電体層101と電極活物質層103との間の界面抵抗の下限は0.0010Ω・cm超過、好ましくは0.0020Ω・cm以上、より好ましくは0.0030Ω・cm以上、さらに好ましくは0.0040Ω・cm以上、さらにより好ましくは0.0050Ω・cm以上、特に好ましくは0.0080Ω・cm以上である。
 本実施形態に係るリチウムイオン電池用電極100において、集電体層101と電極活物質層103との間の界面抵抗を上記下限値超過または以上とすることにより、得られるリチウムイオン電池の安全性を効果的に向上させることができる。
 本実施形態に係るリチウムイオン電池用電極100の上記界面抵抗は、(A)電極活物質層103の配合比率、(B)電極活物質層103を形成するための電極スラリーの調製方法、(C)電極スラリーの乾燥方法、(D)電極のプレス方法等の製造条件を高度に制御することにより実現することが可能である。
 また、本実施形態に係るリチウムイオン電池用電極100において、電極活物質層103の表面に電極プローブを接触して常圧で測定される、電極活物質層103の体積抵抗率は、得られるリチウムイオン電池の電池特性をより一層向上させる観点から、5.0Ω・cm以下であることが好ましく、3.0Ω・cm以下であることがより好ましく、2.5Ω・cm以下であることがさらに好ましい。また、電極活物質層103の体積抵抗率の下限は特に限定されないが、得られるリチウムイオン電池の安全性をより一層向上させる観点から、例えば、0.010Ω・cm以上であり、好ましくは0.30Ω・cm以上、より好ましくは0.50Ω・cm超過、さらに好ましくは0.55Ω・cm以上である。
 ここで、集電体層101の両面に電極活物質層103が設けられた場合は、電極活物質層103の体積抵抗率は、集電体層101の片面に設けられた電極活物質層103のみの体積抵抗率を示す。
 すなわち、本実施形態において、集電体層101の両面に電極活物質層103が設けられる場合、少なくとも集電体層101の片面に設けられた電極活物質層103の体積抵抗率が上記範囲内であればよく、集電体層101の両面に設けられた電極活物質層103の体積抵抗率がそれぞれ上記範囲内であることが好ましい。
 また、本実施形態に係るリチウムイオン電池用電極100において、上記界面抵抗をRs[Ω・cm]とし、電極活物質層103の上記体積抵抗率をrv[Ω・cm]とし、電極活物質層103の厚みをd[cm]としたとき、R=(Rs+rv×d)により算出される、リチウムイオン電池用電極100の電極抵抗Rが、得られるリチウムイオン電池の電池特性をより一層向上させる観点から、0.10Ω・cm以下であることが好ましく、0.090Ω・cm以下であることがより好ましく、0.080Ω・cm以下であることがより好ましい。
 また、リチウムイオン電池用電極100の電極抵抗Rの下限は特に限定されないが、得られるリチウムイオン電池の安全性をより一層向上させる観点から、例えば、0.0010Ω・cm超過であり、好ましくは0.0050Ω・cm以上、より好ましくは0.010Ω・cm以上である。
 次に、本実施形態に係る電極活物質層103を構成する各成分について説明する。
 電極活物質層103は、電極活物質、バインダー樹脂、および導電助剤を含んでいる。
 本実施形態に係る電極活物質層103に含まれる電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。
 ここで、正極活物質は負極活物質に比べて電子伝導性に劣るため、正極は負極に比べて抵抗が高く、得られるリチウムイオン電池の電池特性に影響を与えやすい。そのため、本実施形態に係るリチウムイオン電池用電極100を正極として用いたときに本実施形態の効果をより効果的に得ることができる。したがって、本実施形態の効果をより効果的に得ることができる観点から、電極活物質層103に含まれる電極活物質は正極活物質であることが好ましい。
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;シリコン、スズ等の金属材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 電極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 電極活物質の含有量は、電極活物質層103の全体を100質量部としたとき、85質量部以上99.4質量部以下であることが好ましく、90.5質量部以上98.5質量部以下であることがより好ましく、90.5質量部以上97.5質量部以下であることがさらに好ましい。
 本実施形態に係る電極活物質層103に含まれるバインダー樹脂は用途に応じて適宜選択される。例えば、溶媒に溶解可能なフッ素系バインダー樹脂や、水に分散可能な水系バインダー等を使用することができる。
 フッ素系バインダー樹脂としては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリフッ化ビニリデン系樹脂、フッ素ゴム等が挙げられる。これらのフッ素系バインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ポリフッ化ビニリデン系樹脂が好ましい。フッ素系バインダー樹脂は、例えば、N-メチル-ピロリドン(NMP)等の溶媒に溶解させて使用することができる。
 水系バインダーとしては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリテトラフルオロエチレン系樹脂、ポリアクリル酸系樹脂、スチレン・ブタジエン系ゴム、ポリイミド系樹脂等が挙げられる。これらの水系バインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレン・ブタジエン系ゴムが好ましい。
 なお、本実施形態において、水系バインダーとは、水に分散し、エマルジョン水溶液を形成できるものをいう。
 水系バインダーを使用する場合は、さらに増粘剤を使用することができる。増粘剤としては特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマー等が挙げられる。
 バインダー樹脂の含有量は、電極活物質層103の全体を100質量部としたとき、0.1質量部以上10.0質量部以下であることが好ましく、0.5質量部以上5.0質量部以下であることがより好ましく、1.0質量部以上5.0質量部以下がさらに好ましい。バインダー樹脂の含有量が上記範囲内であると、電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、バインダー樹脂の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。バインダー樹脂の含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
 本実施形態に係る電極活物質層103に含まれる導電助剤としては電極の導電性を向上させるものであれば特に限定されないが、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 導電助剤の含有量は、電極活物質層103の全体を100質量部としたとき、0.5質量部以上8.0質量部以下であることが好ましく、0.5質量部以上5.0質量部以下であることがより好ましく、1.0質量部以上4.5質量部以下であることがさらに好ましく、1.5質量部以上4.5質量部以下が特に好ましい。導電助剤の含有量が上記範囲内であると、電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
 また、導電助剤の含有量が上記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。導電助剤の含有量が上記下限値以上であると、電極の導電性がより良好になるため好ましい。
 本実施形態に係る電極活物質層103は、電極活物質層103の全体を100質量部としたとき、電極活物質の含有量は好ましくは85質量部以上99.4質量部以下、より好ましくは90.5質量部以上98.5質量部以下、さらに好ましくは90.5質量部以上97.5質量部以下である。また、バインダー樹脂の含有量は好ましくは0.1質量部以上10.0質量部以下、より好ましくは0.5質量部以上5.0質量部以下、さらに好ましくは1.0質量部以上5.0質量部以下である。また、導電助剤の含有量は好ましくは0.5質量部以上8.0質量部以下、より好ましくは0.5質量部以上5.0質量部以下、さらに好ましくは1.0質量部以上4.5質量部以下、特に好ましくは1.5質量部以上4.5質量部以下である。
 電極活物質層103を構成する各成分の含有量が上記範囲内であると、リチウムイオン電池用電極100の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
 電極活物質層103の密度は特に限定されないが、電極活物質層103が正極活物質層の場合は、例えば、2.0~3.6g/cmとするのが好ましい。電極活物質層103が負極活物質層の場合は、例えば、1.0~2.0g/cmとするのが好ましい。電極活物質層103の密度を上記範囲内とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
 電極活物質層103の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。電極活物質層103の厚みは、例えば、10~250μmの範囲で適宜設定でき、20~200μmが好ましく、40~180μmがより好ましく、40~120μmがさらに好ましく、40~100μm以下が特に好ましい。
 ここで、電極活物質層103の厚みが厚いほど、得られるリチウムイオン電池の電池特性および安全性の性能バランスが悪化しやすい。そのため、本実施形態に係るリチウムイオン電池用電極100の厚みが厚いほど、本実施形態の効果をより効果的に得ることができる。したがって、本実施形態の効果をより効果的に得ることができる観点から、電極活物質層103の厚みは40μm以上であることがより好ましい。
 本実施形態に係る集電体層101としては特に限定されないが、正極用としてはアルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、価格や入手容易性、電気化学的安定性等の観点から、アルミニウムが特に好ましい。負極用としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、価格や入手容易性、電気化学的安定性等の観点から、銅が特に好ましい。また、集電体層101の形状についても特に限定されないが、厚さが0.001~0.5mmの範囲で箔状、平板状、またはメッシュ状のものを用いることが好ましい。
<リチウムイオン電池用電極の製造方法>
 次に、本実施形態に係るリチウムイオン電池用電極100の製造方法について説明する。
 本実施形態に係るリチウムイオン電池用電極100の製造方法は、従来の電極の製造方法とは異なるものである。集電体層101と電極活物質層103との間の界面抵抗が上記範囲内にある本実施形態に係るリチウムイオン電池用電極100を得るためには、電極活物質層103の配合比率、電極活物質層103を形成するための電極スラリーの調製方法、電極スラリーの乾燥方法、電極のプレス方法等の製造条件を高度に制御することが重要である。すなわち、以下の(A)~(D)の4つの条件に係る各種因子を高度に制御する製造方法によって初めて本実施形態に係るリチウムイオン電池用電極100を得ることができる。
(A)電極活物質層103の配合比率
(B)電極活物質層103を形成するための電極スラリーの調製方法
(C)電極スラリーの乾燥方法
(D)電極のプレス方法
 ただし、本実施形態に係るリチウムイオン電池用電極100は、上記4つの条件に係る各種因子を高度に制御することを前提に、例えば、電極スラリーの混練時間、混練温度等の具体的な製造条件は種々のものを採用することができる。言い換えれば、本実施形態に係るリチウムイオン電池用電極100は、上記4つの条件に係る各種因子を高度に制御すること以外の点については、公知の方法を採用して作製することが可能である。
 以下、上記4つの条件に係る各種因子を高度に制御していることを前提に、本実施形態に係るリチウムイオン電池用電極100の製造方法の一例について説明する。
 本実施形態に係るリチウムイオン電池用電極100の製造方法は、以下の(1)~(3)の3つの工程を含んでいるのが好ましい。
 (1)電極活物質と、バインダー樹脂と、導電助剤とを混合することにより電極スラリーを調製する工程
 (2)得られた電極スラリーを集電体層101上に塗布して乾燥することにより、電極活物質層103を形成する工程
 (3)集電体層101上に形成した電極活物質層103を集電体層101とともにプレスする工程
 以下、各工程について説明する。
 まず、(1)電極活物質と、バインダー樹脂と、導電助剤とを混合することにより電極スラリーを調製する。電極活物質、バインダー樹脂、および導電助剤の配合比率は電極活物質層103中の電極活物質、バインダー樹脂、および導電助剤の含有比率と同じため、ここでは説明を省略する。
 電極スラリーは、電極活物質と、バインダー樹脂と、導電助剤とを溶媒に分散または溶解させたものである。
 各成分の混合手順は電極活物質と導電助剤とを乾式混合した後に、バインダー樹脂および溶媒を添加して湿式混合することにより電極スラリーを調製することが好ましい。
 こうすることにより、電極活物質層103中の導電助剤およびバインダー樹脂の分散性が向上し、集電体層101と電極活物質層103との界面における導電助剤およびバインダー樹脂の量を増やすことができ、集電体層101と電極活物質層103との間の界面抵抗をより低下させることができる。
 このとき、用いられる混合機としては、ボールミルやプラネタリーミキサー等の公知のものが使用でき、特に限定されない。
 次いで、(2)得られた電極スラリーを集電体層101上に塗布して乾燥することにより、電極活物質層103を形成する。この工程では、例えば、上記工程(1)により得られた電極スラリーを集電体層101上に塗布して乾燥し、溶媒を除去することにより集電体層101上に電極活物質層103を形成する。
 電極スラリーを集電体層101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。これらの中でも、電極スラリーの粘性等の物性および乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ドクターブレード法、ナイフ法、エクストルージョン法が好ましい。
 電極スラリーは、集電体層101の片面のみに塗布しても両面に塗布してもよい。集電体層101の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体層101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さや長さ、幅は、電池の大きさに応じて、適宜決定することができる。
 集電体層101上に塗布した電極スラリーの乾燥方法としては、未乾燥の電極スラリーに熱風を直接当てずに乾燥させる方法が好ましい。例えば、加熱ロールを用いて集電体層101側または既に乾燥した電極活物質層103側から電極スラリーを間接的に加熱し、電極スラリーを乾燥させる方法;赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いて電極スラリーを乾燥させる方法;集電体層101側または既に乾燥した電極活物質層103側から熱風を当てて電極スラリーを間接的に加熱し、電極スラリーを乾燥させる方法等の方法が好ましい。
 こうすることで、バインダー樹脂および導電助剤が電極活物質層103の表面に偏在してしまうことを抑制でき、その結果、集電体層101と電極活物質層103との界面における導電助剤およびバインダー樹脂の量を増やすことができ、集電体層101と電極活物質層103との間の界面抵抗をより低下させることができる。
 次いで、(3)集電体層101上に形成した電極活物質層103を集電体層101とともにプレスする。プレスの方法としては線圧を高くすることができ、電極活物質層103と集電体層101との密着性を向上させることができる観点からロールプレスが好ましく、ロールプレス圧は200~300MPaの範囲であることが好ましい。こうすることにより、電極活物質層103と集電体層101との密着性が向上し、集電体層101と電極活物質層103との間の界面抵抗をより低下させることができる。
<リチウムイオン電池>
 つづいて、本実施形態に係るリチウムイオン電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン電池150の構造の一例を示す断面図である。
 本実施形態に係るリチウムイオン電池150は、正極120と、電解質層110と、負極130とを少なくとも備え、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極100を含む。また、本実施形態に係るリチウムイオン電池150は、必要に応じて電解質層110にセパレータを含んでもよい。
 本実施形態に係るリチウムイオン電池150は公知の方法に準じて作製することができる。
 電極の形態としては、例えば、積層体や捲回体等が挙げられる。外装体としては、例えば、金属外装体やアルミラミネート外装体等が挙げられる。電池の形状としては、コイン型、ボタン型、シート型、円筒型、角型、扁平型等の形状が挙げられる。
 電解質層110に使用される電解質としては、公知のリチウム塩がいずれも使用でき、電極活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。
 電解質層110に使用される電解質を溶解する溶媒としては、電解質を溶解させる液体成分として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 セパレータとしては、例えば、多孔性セパレータが挙げられる。セパレータの形態は、膜、フィルム、不織布等が挙げられる。
 多孔性セパレータとしては、例えば、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレータ;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレータ;等が挙げられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<正極の作製>
 正極活物質としてLiNi0.8Mn0.1Co0.1、導電助剤としてカーボンブラック、バインダー樹脂としてポリフッ化ビニリデンを用いた。まず、正極活物質および導電助剤を乾式混合した。次いで、得られた混合物にバインダー樹脂およびN-メチル-ピロリドン(NMP)を添加して湿式混合することにより、正極スラリーを調製した。この正極スラリーを、正極集電体である厚さ20μmのアルミニウム箔に連続的に塗布・乾燥し、正極集電体の塗布部と塗布しない未塗布部とを備える正極ロールを作製した。ここで、正極スラリーの乾燥は、加熱ロールによりアルミニウム箔を加熱し、正極スラリーを間接的に加熱することによりおこなった。この乾燥により正極スラリー中のNMPを除去し、アルミニウム箔上に正極活物質層を形成した。
 次いで、ロールプレスにより、プレス圧250MPaでアルミニウム箔および正極活物質層をプレスし、正極を得た。
 なお、正極活物質と導電助剤とバインダー樹脂の配合比率は、正極活物質/導電助剤/バインダー樹脂=93/4/3(質量比)である。
<負極の作製>
 負極活物質として人造黒鉛、バインダー樹脂としてポリフッ化ビニリデン(PVdF)を用いた。これらをN-メチル-ピロリドン(NMP)に分散させ、負極スラリーを調製した。この負極スラリーを、負極集電体である厚さ15μmの銅箔に連続的に塗布・乾燥し、負極集電体の塗布部と塗布しない未塗布部とを備える負極ロールを作製した。
<リチウムイオン電池の作製>
 得られた正極と負極とをポリオレフィン系多孔性セパレータを介して積層し、これに負極端子や正極端子を設け、積層体を得た。次いで、エチレンカーボネートとジエチルカーボネートからなる溶媒に1MのLiPFを溶かした電解液と、得られた積層体を可撓性フィルムに収容することでリチウムイオン電池を得た。
<評価>
(1)正極の界面抵抗および体積抵抗率の測定
 日置電機社製の電極抵抗測定器(リチウムイオン二次電池向け電極抵抗測定器)を用いて、正極の界面抵抗および体積抵抗率をそれぞれ測定した。まず、46本の計測用ピンを備えた電極プローブ(測定用プローブ)を正極活物質層の表面に常圧で接触させた。次いで、正極活物質層の表面から定電流(1mA)を印加して、正極の電位分布を得た。得られた電位分布から、アルミニウム箔と正極活物質層との間の界面抵抗および正極活物質層の体積抵抗率を算出した。
(2)高温サイクル特性
 リチウムイオン電池を用いて、高温サイクル特性を評価した。温度45℃において、充電レート1.0C、放電レート1.0C、充電終止電圧4.1V、放電終止電圧2.5V、とした。容量維持率(%)は500サイクル後の放電容量(mAh)を、10サイクル目の放電容量(mAh)で割った値である。容量維持率(%)が85%以上のものを◎、80%以上85%未満のものを〇、80%未満のものを×とした。
(3)釘刺し試験
 満充電状態において、直径3mmの金属製の釘をリチウムイオン電池の中央部に刺し、リチウムイオン電池をショートさせた。
 次いで、以下の基準で、リチウムイオン電池の安全性を評価した。
 〇:リチウムイオン電池から発煙が生じなかったもの
 ×:リチウムイオン電池から発煙が生じたもの
 以上の評価結果を表1に示す。
(実施例2)
 正極を作製する際のロールプレスのプレス圧を200MPaに変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例3)
 正極を作製する際のロールプレスのプレス圧を300MPaに変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例4)
 正極活物質と導電助剤とバインダー樹脂の配合比率を、正極活物質/導電助剤/バインダー樹脂=92/4/4(質量比)に変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例5)
 正極活物質と導電助剤とバインダー樹脂の配合比率を、正極活物質/導電助剤/バインダー樹脂=93/3/4(質量比)に変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例6)
 正極活物質と導電助剤とバインダー樹脂の配合比率を、正極活物質/導電助剤/バインダー樹脂=91.5/4.5/4(質量比)に変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例7)
 正極を作製する際のロールプレスのプレス圧を300MPaに変更した以外は、実施例6と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(実施例8)
 正極を作製する際のロールプレスのプレス圧を200MPaに変更した以外は、実施例5と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(比較例1)
 正極を作製する際のロールプレスのプレス圧を150MPaに変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(比較例2)
 正極を作製する際のロールプレスのプレス圧を350MPaに変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(比較例3)
 正極活物質と導電助剤とバインダー樹脂の配合比率を、正極活物質/導電助剤/バインダー樹脂=95.6/0.4/4(質量比)に変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
(比較例4)
 正極活物質と導電助剤とバインダー樹脂の配合比率を、正極活物質/導電助剤/バインダー樹脂=90/6/4(質量比)に変更した以外は、実施例1と同様に正極およびリチウムイオン電池を作製し、各評価を行った。各評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2016年7月20日に出願された日本出願特願2016-142140号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  集電体層と、
     前記集電体層の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂、および導電助剤を含む電極活物質層と、を備え、
     前記電極活物質層の表面に電極プローブを接触して常圧で測定される、前記集電体層と前記電極活物質層との間の界面抵抗が0.0010Ω・cm超過0.10Ω・cm未満であるリチウムイオン電池用電極。
  2.  請求項1に記載のリチウムイオン電池用電極において、
     前記電極活物質層の厚みが40μm以上であるリチウムイオン電池用電極。
  3.  請求項1または2に記載のリチウムイオン電池用電極において、
     前記電極活物質が正極活物質であるリチウムイオン電池用電極。
  4.  請求項1乃至3いずれか一項に記載のリチウムイオン電池用電極において、
     前記バインダー樹脂はフッ素系バインダー樹脂を含むリチウムイオン電池用電極。
  5.  請求項1乃至4いずれか一項に記載のリチウムイオン電池用電極において、
     前記電極活物質層の表面に電極プローブを接触して常圧で測定される、前記電極活物質層の体積抵抗率が5.0Ω・cm以下であるリチウムイオン電池用電極。
  6.  請求項5に記載のリチウムイオン電池用電極において、
     前記界面抵抗をRs[Ω・cm]とし、
     前記電極活物質層の体積抵抗率をrv[Ω・cm]とし、
     前記電極活物質層の厚みをd[cm]としたとき、
     R=(Rs+rv×d)により算出される、前記リチウムイオン電池用電極の電極抵抗Rが0.10Ω・cm以下であるリチウムイオン電池用電極。
  7.  請求項1乃至6いずれか一項に記載のリチウムイオン電池用電極において、
     前記電極活物質層の全体を100質量部としたとき、
     前記バインダー樹脂の含有量が0.1質量部以上10.0質量部以下であるリチウムイオン電池用電極。
  8.  請求項1乃至7いずれか一項に記載のリチウムイオン電池用電極において、
     前記電極活物質層の全体を100質量部としたとき、
     前記導電助剤の含有量が0.5質量部以上8.0質量部以下であるリチウムイオン電池用電極。
  9.  請求項1乃至8いずれか一項に記載のリチウムイオン電池用電極において、
     前記集電体層がアルミニウムを含むリチウムイオン電池用電極。
  10.  請求項1乃至9いずれか一項に記載のリチウムイオン電池用電極を備える、リチウムイオン電池。
PCT/JP2017/026110 2016-07-20 2017-07-19 リチウムイオン電池用電極およびリチウムイオン電池 WO2018016528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018528833A JP6903263B2 (ja) 2016-07-20 2017-07-19 リチウムイオン電池用電極およびリチウムイオン電池
CN201780040358.9A CN109417161B (zh) 2016-07-20 2017-07-19 锂离子电池用电极和锂离子电池
US16/318,988 US20190280283A1 (en) 2016-07-20 2017-07-19 Electrode for lithium-ion battery and lithium-ion battery
EP17831044.7A EP3490037B1 (en) 2016-07-20 2017-07-19 Electrode for lithium ion batteries, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016142140 2016-07-20
JP2016-142140 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016528A1 true WO2018016528A1 (ja) 2018-01-25

Family

ID=60992547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026110 WO2018016528A1 (ja) 2016-07-20 2017-07-19 リチウムイオン電池用電極およびリチウムイオン電池

Country Status (5)

Country Link
US (1) US20190280283A1 (ja)
EP (1) EP3490037B1 (ja)
JP (1) JP6903263B2 (ja)
CN (1) CN109417161B (ja)
WO (1) WO2018016528A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175778A (ja) * 2018-03-29 2019-10-10 凸版印刷株式会社 バイポーラ電池ユニット及びバイポーラ電池
JP6911986B1 (ja) * 2020-08-31 2021-07-28 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
WO2022085574A1 (ja) 2020-10-22 2022-04-28 マクセル株式会社 非水電解質二次電池用正極、その製造方法およびその検査方法、並びに非水電解質二次電池およびその製造方法
WO2022145107A1 (ja) 2020-12-29 2022-07-07 マクセル株式会社 非水電解質二次電池用負極、その製造方法およびその検査方法、並びに非水電解質二次電池およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041698A (ja) * 2010-12-21 2014-03-06 Panasonic Corp 非水系二次電池用正極板およびこれを用いた非水系二次電池
WO2015045719A1 (ja) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 積層型リチウムイオン二次電池用正極
JP2015206754A (ja) * 2014-04-23 2015-11-19 日置電機株式会社 判定装置および判定方法
JP6176381B1 (ja) * 2016-09-30 2017-08-09 住友大阪セメント株式会社 リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838329A1 (de) * 1987-11-11 1989-05-24 Ricoh Kk Negative elektrode fuer sekundaerbatterie
JPH11111270A (ja) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd リチウム二次電池
US6869727B2 (en) * 2002-09-20 2005-03-22 Eveready Battery Company, Inc. Battery with high electrode interfacial surface area
JP5295664B2 (ja) * 2007-07-12 2013-09-18 株式会社東芝 非水電解質電池用電極および非水電解質電池
JP5334485B2 (ja) * 2008-07-25 2013-11-06 日新製鋼株式会社 リチウムイオン二次電池用集電体および負極材料
JP2011233564A (ja) * 2010-04-23 2011-11-17 Aisin Seiki Co Ltd 電池
JP5598356B2 (ja) * 2011-01-28 2014-10-01 日立化成株式会社 リチウムイオン電池用の導電下地塗料
JP6159228B2 (ja) * 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
JP2016054277A (ja) * 2014-09-04 2016-04-14 株式会社Uacj 集電体、当該集電体を備えた電極構造体、ならびに、当該電極構造体を備えた非水電解質電池、電気二重層キャパシタ及びリチウムイオンキャパシタから選択される蓄電部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041698A (ja) * 2010-12-21 2014-03-06 Panasonic Corp 非水系二次電池用正極板およびこれを用いた非水系二次電池
WO2015045719A1 (ja) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 積層型リチウムイオン二次電池用正極
JP2015206754A (ja) * 2014-04-23 2015-11-19 日置電機株式会社 判定装置および判定方法
JP6176381B1 (ja) * 2016-09-30 2017-08-09 住友大阪セメント株式会社 リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490037A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175778A (ja) * 2018-03-29 2019-10-10 凸版印刷株式会社 バイポーラ電池ユニット及びバイポーラ電池
JP7255079B2 (ja) 2018-03-29 2023-04-11 凸版印刷株式会社 バイポーラ電池ユニット及びバイポーラ電池
JP6911986B1 (ja) * 2020-08-31 2021-07-28 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
WO2022045217A1 (ja) * 2020-08-31 2022-03-03 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
JP2022041229A (ja) * 2020-08-31 2022-03-11 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
WO2022085574A1 (ja) 2020-10-22 2022-04-28 マクセル株式会社 非水電解質二次電池用正極、その製造方法およびその検査方法、並びに非水電解質二次電池およびその製造方法
WO2022145107A1 (ja) 2020-12-29 2022-07-07 マクセル株式会社 非水電解質二次電池用負極、その製造方法およびその検査方法、並びに非水電解質二次電池およびその製造方法

Also Published As

Publication number Publication date
EP3490037A1 (en) 2019-05-29
US20190280283A1 (en) 2019-09-12
EP3490037A4 (en) 2019-08-21
JP6903263B2 (ja) 2021-07-14
CN109417161A (zh) 2019-03-01
JPWO2018016528A1 (ja) 2019-05-09
EP3490037B1 (en) 2020-09-30
CN109417161B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
JP5187791B1 (ja) 正極合剤層形成用組成物の製造方法およびリチウムイオン二次電池の製造方法
JP6258641B2 (ja) 非水電解液二次電池
JP6304774B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7028164B2 (ja) リチウムイオン二次電池
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
US20120052386A1 (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
WO2018016528A1 (ja) リチウムイオン電池用電極およびリチウムイオン電池
JP4992203B2 (ja) リチウムイオン二次電池
JP6750196B2 (ja) 非水系リチウム電池及びその使用方法
TW201941484A (zh) 內部短路所致熱失控之抑制方法
WO2018030002A1 (ja) リチウムイオン電池用電極およびリチウムイオン電池
JP5929183B2 (ja) 電極、リチウム二次電池及び電極の製造方法
CN116964786A (zh) 导电性底涂剂
KR102227102B1 (ko) 리튬이차전지 전극 코팅 방법, 및 이에 따라 제조한 전극을 포함하는 리튬이차전지
JP6850975B2 (ja) リチウムイオン電池用正極およびリチウムイオン電池
JP5679206B2 (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
WO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
JP2020077620A (ja) 電気化学素子用バインダー組成物
JP2017224562A (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP6763163B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2009187819A (ja) リチウムイオン二次電池用ペーストの製造方法
JP2012226963A (ja) リチウム二次電池
JP2016143577A (ja) リチウムイオン二次電池
JP2019192540A (ja) リチウムイオン二次電池用電極製造用ペーストの製造方法、リチウムイオン二次電池用電極の製造方法、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP7455045B2 (ja) 正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017831044

Country of ref document: EP

Effective date: 20190220