JP6304774B2 - 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池 - Google Patents

負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池 Download PDF

Info

Publication number
JP6304774B2
JP6304774B2 JP2015505237A JP2015505237A JP6304774B2 JP 6304774 B2 JP6304774 B2 JP 6304774B2 JP 2015505237 A JP2015505237 A JP 2015505237A JP 2015505237 A JP2015505237 A JP 2015505237A JP 6304774 B2 JP6304774 B2 JP 6304774B2
Authority
JP
Japan
Prior art keywords
negative electrode
paste
manufacturing
producing
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015505237A
Other languages
English (en)
Other versions
JPWO2014141552A1 (ja
Inventor
航 石口
航 石口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Publication of JPWO2014141552A1 publication Critical patent/JPWO2014141552A1/ja
Application granted granted Critical
Publication of JP6304774B2 publication Critical patent/JP6304774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。
リチウムイオン二次電池に用いられる負極は、一般的に、負極活物質層と集電体から主に構成されている。負極活物質層は、銅箔などの集電体表面に、黒鉛質材料などの負極活物質、導電助剤、増粘剤および水系バインダーなどを含む負極製造用ペーストを塗布して乾燥することにより得られる(特許文献1および2参照)。
ここで、負極活物質層に不均一な部分があると、得られるリチウムイオン二次電池の電池特性が低下してしまう場合がある。このような不均一な負極活物質層は、負極製造用ペーストが不均一な場合に得られやすい。よって、均一な負極活物質層を得るためには、負極製造用ペースト中で、負極活物質、導電助剤、増粘剤および水系バインダーなどの各成分を均一に分散させることが極めて重要になる。
負極製造用ペーストの製造方法としては、例えば、特許文献1および2に記載の方法が挙げられる。
特許文献1(特開2006−107896号公報)には、黒鉛と増粘剤を粉末状態で分散媒と共に混練する初混練工程と、初混練工程の混練物を分散媒で希釈混練する希釈混練工程と、希釈混練工程の混練物に結着材を添加して混練し、ペーストを作製する仕上げ混練工程の少なくとも3つの工程を含むペーストの製造方法が記載されている。
この特許文献1では、初混練工程における混練の剪断力を、希釈混練工程および仕上げ混練工程における混練の剪断力の2.5倍以上に設定している。こうすることにより、高分散かつ安定したペーストを作製することができると記載されている。
特許文献2(特開平11−213990号公報)には、結合剤樹脂の添加前の混合工程で強い剪断力で混合処理してペースト中の固形成分の一次粒子化を促進し、結合剤樹脂の添加後の混合工程で弱い剪断力で混合処理して結合剤樹脂の凝集が発生しないようにすることを特徴とするペーストの製造方法が記載されている。
こうした製造方法により、活物質層上にピンホールやひび割れがなく活物質の欠落のない電池電極を得ることができると記載されている。
特開2006−107896号公報 特開平11−213990号公報
本発明者の検討により、特許文献1および2に記載されているような製造方法により得られた負極製造用ペーストは、保存安定性が劣っていることが明らかになってきた。
そこで、本発明では、保存安定性に優れた負極製造用ペーストを安定的に得ることができる、負極製造用ペーストの製造方法を提供することを課題とする。
本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、黒鉛質材料および導電助剤をあらかじめ乾式混合して粉体混合物を調製してからペーストを作製することにより、保存安定性に優れた負極製造用ペーストを安定的に得ることができることを見出して本発明を完成するに至った。
本発明によれば、
黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であって、
上記黒鉛質材料および上記導電助剤を乾式混合することにより、上記黒鉛質材料および上記導電助剤を含む混合物を調製する工程(A)と、
上記混合物中に上記増粘剤を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程(B)と、
上記ペースト前駆体中に上記水系バインダーを含むエマルジョン水溶液を添加してさらに湿式混合することにより、上記負極製造用ペーストを調製する工程(C)と、
を含み、
B型粘度計による20℃での、せん断速度2.04s−1における粘度に対するせん断速度20.4s−1における粘度の比で定義される、上記負極製造用ペーストのチキソトロピーインデックス値を2.5以上に調整し、
遊星運動型ミキサーを用いて、上記工程(A)における上記乾式混合をおこない、
上記工程(A)における上記乾式混合の自転速度が0.12m/sec以上0.30m/sec以下の範囲内であり、
上記工程(A)における上記乾式混合の公転速度が0.04m/sec以上0.10m/sec以下の範囲内である、負極製造用ペーストの製造方法が提供される。
また、本発明によれば、
黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であって、
上記黒鉛質材料および上記導電助剤を乾式混合することにより、上記黒鉛質材料および上記導電助剤を含む混合物を調製する工程(A)と、
上記混合物中に上記増粘剤を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程(B)と、
上記ペースト前駆体中に上記水系バインダーを含むエマルジョン水溶液を添加してさらに湿式混合することにより、上記負極製造用ペーストを調製する工程(C)と、
を含み、
B型粘度計による20℃での、せん断速度2.04s −1 における粘度に対するせん断速度20.4s −1 における粘度の比で定義される、上記負極製造用ペーストのチキソトロピーインデックス値を2.5以上に調整し、
上記ペースト前駆体を調製する上記工程(B)は、
上記黒鉛質材料の窒素吸着BET法による比表面積[m /g]をXとし、
上記ペースト前駆体の固形分濃度[重量%]をYとしたとき、
−X/2+71.0≦Y≦−X/2+75.5の条件を満たすように固形分濃度Yを調整する工程を含む、負極製造用ペーストの製造方法が提供される。
また、本発明によれば、
黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池用負極の製造方法であって、
上記負極製造用ペーストの製造方法により負極製造用ペーストを作製する工程と、
得られた上記負極製造用ペーストを用いて負極を形成する工程と、
を含む、リチウムイオン二次電池用負極の製造方法が提供される。
また、本発明によれば、
上記リチウムイオン二次電池用負極の製造方法により得られた、リチウムイオン二次電池用負極が提供される。
また、本発明によれば、
上記リチウムイオン二次電池用負極と、電解質と、正極とを少なくとも備えた、リチウムイオン二次電池が提供される。
本発明によれば、保存安定性に優れた負極製造用ペーストを安定的に得ることができる、負極製造用ペーストの製造方法を提供することができる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のリチウムイオン二次電池用負極の構造の一例を示す断面図である。 本発明に係る実施形態のリチウムイオン二次電池の構造の一例を示す断面図である。
以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。
なお、本実施形態ではとくに断りがなければ、負極活物質を含む層を負極活物質層と呼び、集電体上に負極活物質層を形成させたものを負極と呼ぶ。また、「〜」はとくに断りがなければ、以上から以下を表す。
本実施形態に係る負極製造用ペーストの製造方法は、黒鉛質材料(a)と、導電助剤(b)と、増粘剤(c)と、水系バインダー(d)とを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であり、以下の工程(A)、工程(B)および工程(C)を少なくとも含む。
(A)黒鉛質材料(a)および導電助剤(b)を乾式混合することにより、黒鉛質材料(a)および導電助剤(b)を含む混合物を調製する工程
(B)上記混合物中に増粘剤(c)を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程
(C)ペースト前駆体中に水系バインダー(d)を含むエマルジョン水溶液を添加してさらに湿式混合することにより、負極製造用ペーストを調製する工程
<負極製造用ペーストの構成材料>
はじめに、本実施形態に係る負極製造用ペーストの製造方法で用いる各構成材料について説明する。
(黒鉛質材料(a))
黒鉛質材料(a)は、リチウムイオン二次電池の負極に使用可能な通常の黒鉛質材料であればとくに限定されない。例えば、天然黒鉛、石油系および石炭系コークスを熱処理することで製造される人造黒鉛などが挙げられる。
ここで、天然黒鉛とは、鉱石として天然に産出する黒鉛のことをいう。本実施形態の核材として用いる天然黒鉛は、産地や性状、種類はとくに限定されない。
また、人造黒鉛とは、人工的な手法で作られた黒鉛および黒鉛の完全結晶に近い黒鉛をいう。このような人造黒鉛は、例えば、石炭の乾留、原油の蒸留による残渣などから得られるタールやコークスを原料にして、焼成工程、黒鉛化工程を経ることにより得られる。
また、黒鉛質材料(a)は、黒鉛粉末を核材とし、上記黒鉛粉末の表面の少なくとも一部が上記黒鉛粉末よりも結晶性の低い炭素材料により被覆されているもの(以下、表面被覆黒鉛とも呼ぶ。)が好ましい。とくに黒鉛粉末のエッジ部が上記炭素材料により被覆されていることが好ましい。黒鉛粉末のエッジ部が被覆されることにより、エッジ部と電解液との不可逆的な反応を抑制することができ、その結果、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。
また、表面被覆黒鉛を用いると、黒鉛単独のときよりもバインダーとの結着性を向上させることができるため、結着剤の量を減らすことができる。その結果、得られるリチウムイオン二次電池の電池特性を向上させることができる。
ここで、上記黒鉛粉末よりも結晶性の低い炭素材料とは、例えば、ソフトカーボン、ハードカーボンなどのアモルファスカーボンである。
核材として用いる黒鉛粉末としては、例えば、天然黒鉛、石油系および石炭系コークスを熱処理することで製造される人造黒鉛などが挙げられる。本実施形態においては、これらの黒鉛粉末を一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、コストの点から、天然黒鉛が好ましい。
本実施形態に係る表面被覆黒鉛は、焼成工程により炭素化されて上記黒鉛粉末よりも結晶性の低い炭素材料となる有機化合物と、上記黒鉛粉末とを混合した後に、上記有機化合物を焼成炭素化することによって作製することができる。
上記黒鉛粉末と混合する有機化合物は、焼成することによって炭素化して、上記黒鉛粉末よりも結晶性の低い炭素材料が得られるものであればとくに限定されないが、例えば、石油系タール、石炭系タールなどのタール;石油系ピッチ、石炭系ピッチなどのピッチ;ポリ塩化ビニル、ポリビニルアセテート、ポリビニルブチラール、ポリビニルアルコール、ポリ塩化ビニリデン、ポリアクリロニトリルなどの熱可塑性樹脂;フェノール樹脂、フルフリルアルコール樹脂などの熱硬化性樹脂;セルロースなどの天然樹脂;ナフタレン、アルキルナフタレン、アントラセンなどの芳香族炭化水素などが挙げられる。
本実施形態においては、これらの有機化合物は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、これらの有機化合物は、必要に応じて、溶媒により溶解または分散させて用いてもよい。
上記有機化合物の中でも、価格の点からタールおよびピッチから選択される少なくとも一種以上が好ましい。
本実施形態に係る表面被覆黒鉛における有機化合物由来の炭素材料の割合(以下「被覆量」と呼ぶ。)は、負極活物質を100質量%としたとき、好ましくは0.7質量%以上8.0質量%以下である。
炭素材料の被覆量を上記上限値以下とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン二次電池のレート特性を向上させることができる。
炭素材料の被覆量を上記下限値以上とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、炭素材料の被覆量を上記下限値以上とすることにより、得られる負極製造用ペーストの安定性を向上させることができる。
ここで、上記被覆量は、熱重量分析により算出することができる。より具体的には、熱重量分析計(例えば、パーキンエルマ社製TGA7アナライザ)を用いて、酸素雰囲気下、昇温速度5℃/minにて負極活物質を900℃まで昇温したとき、質量減少が始まった温度から、質量減少割合が緩やかになり、その後質量減少が加速する温度までの減少質量を被覆量とすることができる。
黒鉛質材料(a)の窒素吸着BET法による比表面積は、好ましくは1.0m/g以上6.0m/g以下であり、より好ましくは2.0m/g以上5.0m/g以下である。
比表面積を上記上限値以下とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、比表面積を上記上限値以下とすることにより、得られる負極製造用ペーストの安定性を向上させることができる。
比表面積を上記下限値以上とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン二次電池のレート特性を向上させることができる。
また、比表面積を上記範囲内とすることにより、水系バインダーの結着性を向上させることができる。
黒鉛質材料(a)のレーザー回折散乱式粒度分布測定法による体積基準粒度分布における平均粒子径d50はとくに限定されないが、10μm以上30μm以下であることが好ましく、15μm以上25μm以下であることがより好ましい。平均粒子径d50が上記範囲内であると、結着性および活物質の分散性のバランスがより一層優れる。
黒鉛質材料(a)の使用量としては、本実施形態に係る負極製造用ペーストの固形分の全量を100質量部としたとき、94質量部以上98.9質量部以下であることが好ましく、95質量部以上97.9質量部以下であることがより好ましい。
(導電助剤(b))
導電助剤(b)は、電子伝導性を有しており、電極の導電性を向上させるものであればとくに限定されない。本実施形態に係る導電助剤(b)として、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、活物質として使用される黒鉛よりも粒子径の小さい黒鉛などの炭素材料が挙げられる。これらの導電助剤(b)は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
導電助剤(b)の使用量としては、負極製造用ペーストの固形分の全量を100質量部としたとき、0.1質量部以上2.0質量部以下であることが好ましく、0.3質量部以上1.2質量部以下であることがより好ましい。
導電助剤(b)の使用量が上記範囲内であると、負極製造用ペーストの塗工性およびバインダーの結着性のバランスがより一層優れる。
(増粘剤(c))
増粘剤(c)は、負極製造用ペーストの塗工性を向上させるものであればとくに限定されない。増粘剤(c)としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウムなどのポリアクリル酸塩;ポリビニルアルコール;などの水溶性ポリマーが挙げられる。
これらの中でもセルロース系ポリマー、セルロース系ポリマーのアンモニウム塩、セルロース系ポリマーのアルカリ金属塩からなる群から選択される少なくとも1種が好ましく、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースのアルカリ金属塩がより好ましい。
増粘剤(c)は粉末状のものを水系媒体に溶解させて水溶液として用いる。これにより、黒鉛質材料(a)と導電助剤(b)との接触を阻害せず、増粘剤(c)の分散性を向上させることができる。
増粘剤(c)を溶解させる水系媒体については、増粘剤(c)を溶解できるものであればとくに限定されないが、蒸留水、イオン交換水、市水、工業用水などを使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコールなどの水と親水性の高い溶媒を混合させてもよい。
上記で挙げた増粘剤(c)は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。増粘剤(c)の使用量としては、負極製造用ペーストの固形分の全量を100質量部としたとき、0.5質量部以上2.0質量部以下であることが好ましく、0.8質量部以上1.7質量部以下であることがより好ましく、0.8質量部以上1.5質量部以下であることがさらに好ましい。増粘剤(c)の使用量が上記範囲内であると、負極製造用ペーストの塗工性およびバインダーの結着性のバランスがより一層優れる。
(水系バインダー(d))
水系バインダー(d)は、電極成形が可能であり、十分な電気化学的安定性を有していればとくに限定されないが、例えば、ポリアクリル酸、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミドなどが挙げられる。これらの水系バインダー(d)は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレンブタジエンゴムが好ましい。
なお、本実施形態において、水系バインダー(d)とは、水系媒体に分散し、エマルジョン水溶液を形成できるものをいう。
水系バインダー(d)の使用量としては、負極製造用ペーストの固形分の全量を100質量部としたとき、0.5質量部以上3.0質量部以下であることが好ましく、1.0質量部以上2.5質量部以下であることがより好ましい。
水系バインダー(d)は、粉末状のものを水系媒体に分散させてエマルジョン水溶液として用いる。これにより、黒鉛質材料(a)と導電助剤(b)との接触を阻害せず、水系バインダー(d)の分散性を向上させることができる。
水系バインダー(d)を分散させる水系媒体については、水系バインダー(d)を分散できるものであればとくに限定されないが、蒸留水、イオン交換水、市水、工業用水などを使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコールなどの水と親水性の高い溶媒を混合させてもよい。
<負極製造用ペーストの製造方法>
つぎに、本実施形態に係る負極製造用ペーストの製造方法について説明する。
本実施形態に係る負極製造用ペーストの製造方法は、黒鉛質材料(a)と、導電助剤(b)と、増粘剤(c)と、水系バインダー(d)とを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であり、以下の工程(A)、工程(B)および工程(C)を少なくとも含む。
(A)黒鉛質材料(a)および導電助剤(b)を乾式混合することにより、黒鉛質材料(a)および導電助剤(b)を含む混合物を調製する工程
(B)上記混合物中に増粘剤(c)を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程
(C)ペースト前駆体中に水系バインダー(d)を含むエマルジョン水溶液を添加してさらに湿式混合することにより、上記負極製造用ペーストを調製する工程
以下、各工程について説明する。
[(A)混合物を調製する工程]
(A)混合物を調製する工程では、黒鉛質材料(a)および導電助剤(b)を乾式混合(ドライブレンドとも呼ぶ。)することにより、粉体の混合物を調製する。
本実施形態において、工程(A)をおこなうことにより、工程(B)および工程(C)において、低攪拌速度でも、負極製造用ペーストを構成する各材料の分散性を高めることができる。
本発明者の検討により、特許文献1および2に記載の製造方法のように、増粘剤を含むペーストに強い剪断をかけると、ペースト中の増粘剤の分子鎖が切断されてしまうことが明らかになった。
そこで、本発明者は、さらに鋭意検討した。その結果、工程(A)をおこなうことにより、工程(B)および工程(C)において、増粘剤(c)の分子鎖の切断を抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができることを明らかにした。そして、このようにして得られた負極製造用ペーストは、保存安定性に優れており、かつ、このようなペーストを用いて得られた負極を備えるリチウムイオン二次電池は電池特性が優れることを見出し、本発明に到達した。
乾式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、黒鉛質材料(a)および導電助剤(b)の飛散を抑制しながら、黒鉛質材料(a)および導電助剤(b)を十分に混合することができる。なお、遊星運動型ミキサーは、攪拌機構として自転と公転機能を有しているミキサーのことをいう。遊星運動型プラネタリーミキサーとは、攪拌機構として自転と公転機能を有するブレードをもつミキサーをいう。
工程(A)における上記乾式混合の自転速度は、0.12m/sec以上0.30m/sec以下の範囲内であることが好ましく、0.13m/sec以上0.26m/sec以下の範囲内であることがより好ましい。
工程(A)における上記乾式混合の自転速度が、上記範囲内であると、黒鉛質材料(a)および導電助剤(b)の飛散を抑制しながら、黒鉛質材料(a)および導電助剤(b)を十分に混合することができる。
また、工程(A)における上記乾式混合の公転速度は、0.04m/sec以上0.10m/sec以下の範囲内であることが好ましく、0.05m/sec以上0.09m/sec以下の範囲内であることがより好ましい。
工程(A)における上記乾式混合の公転速度が、上記範囲内であると、黒鉛質材料(a)および導電助剤(b)の飛散を抑制しながら、黒鉛質材料(a)および導電助剤(b)を十分に混合することができる。
工程(A)における上記乾式混合の混合時間は、特に限定されないが、例えば、5分以上1時間以下である。
工程(A)における上記乾式混合の温度は、特に限定されないが、例えば、15℃以上30℃以下である。
[(B)ペースト前駆体を調製する工程]
(B)ペースト前駆体を調製する工程では、工程(A)により得られた上記混合物中に、上記増粘剤(c)を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する。
湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、低速で攪拌しながら、十分に混合することができる。そのため、攪拌混合による増粘剤(c)の分子鎖の切断を抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。そして、その結果として、保存安定性により一層優れた負極製造用ペーストを得ることができる。
また、得られる負極製造用ペーストは分散性がより一層優れるため、このような負極製造用ペーストを用いると、より一層均一な負極活物質層を得ることができる。その結果、より一層電池特性に優れたリチウムイオン二次電池を得ることができる。
工程(B)における上記湿式混合の自転速度は、0.35m/sec以上0.60m/sec以下の範囲内であることが好ましく、0.40m/sec以上0.55m/sec以下の範囲内であることがより好ましい。
工程(B)における上記湿式混合の自転速度が、上記範囲内であると増粘剤(c)の分子鎖の切断をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
また、工程(B)における上記湿式混合の公転速度は、0.12m/sec以上0.20m/sec以下の範囲内であることが好ましく、0.14m/sec以上0.18m/sec以下の範囲内であることがより好ましい。
工程(B)における上記湿式混合の公転速度が、上記範囲内であると増粘剤(c)の分子鎖の切断をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
また、工程(B)では、下記式(1)の条件を満たすようにペースト前駆体の固形分濃度を調整することが好ましい。
−X/2+71.0≦Y≦−X/2+75.5 (1)
上記(1)式において、Xは黒鉛質材料(a)の窒素吸着BET法による比表面積[m/g]を示し、Yは上記ペースト前駆体の固形分濃度[%]を示す。
ペースト前駆体の固形分濃度Yが上記式(1)の上限値以下であると、ペースト前駆体に加わる剪断力をより一層抑制することができるため、増粘剤(c)の分子鎖の切断をより一層抑制することができる。
また、ペースト前駆体の固形分濃度Yが上記式(1)の下限値以上であると、負極製造用ペーストを構成する各材料の分散性をより一層高めることができる。
したがって、ペースト前駆体の固形分濃度Yが上記式(1)の条件を満たすと、保存安定性により一層優れた負極製造用ペーストを得ることができる。
また、得られる負極製造用ペーストは分散性がより一層優れるため、このような負極製造用ペーストを用いると、より一層均一な負極活物質層を得ることができる。その結果、より一層電池特性に優れたリチウムイオン二次電池を得ることができる。
ペースト前駆体の固形分濃度Yは、増粘剤(c)を含む水溶液の濃度や添加量を調整したり、前述した水系媒体を添加して希釈したりすることにより調整することができる。
ここで、水系バインダー(d)を投入する前の段階、つまり工程(B)において、固形分濃度を適正な範囲に調整するのが重要となる。水系バインダー(d)の投入後に、固形分濃度を調整しても、分散性向上の効果が得られ難いからである。
工程(B)における上記湿式混合の混合時間は、特に限定されないが、例えば、10分以上1時間以下である。
工程(B)における上記湿式混合の温度は、特に限定されないが、例えば、17℃以上23℃以下である。
[(C)負極製造用ペーストを調製する工程]
(C)負極製造用ペーストを調製する工程では、工程(B)により得られた上記ペースト前駆体中に、水系バインダー(d)を含むエマルジョン水溶液を添加してさらに湿式混合することにより、上記負極製造用ペーストを調製する。
湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、低速で攪拌しながら、十分に混合することができる。そのため、攪拌混合による増粘剤(c)の分子鎖の切断を抑制し、かつ、水系バインダー(d)同士の凝集を抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。そして、その結果として、保存安定性により一層優れた負極製造用ペーストを得ることができる。
また、得られる負極製造用ペーストは分散性がより一層優れるため、このような負極製造用ペーストを用いると、より一層均一な負極活物質層を得ることができる。その結果、より一層電池特性に優れたリチウムイオン二次電池を得ることができる。
工程(C)における上記湿式混合の自転速度は、0.12m/sec以上0.30m/sec以下の範囲内であることが好ましく、0.13m/sec以上0.26m/sec以下の範囲内であることがより好ましい。
工程(C)における上記湿式混合の自転速度が上記範囲内であると、攪拌混合による増粘剤(c)の分子鎖の切断および水系バインダー(d)同士の凝集をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
また、工程(C)における上記湿式混合の公転速度は、0.04m/sec以上0.10m/sec以下の範囲内であることが好ましく、0.05m/sec以上0.09m/sec以下の範囲内であることがより好ましい。
工程(C)における上記湿式混合の公転速度が上記範囲内であると、攪拌混合による増粘剤(c)の分子鎖の切断および水系バインダー(d)同士の凝集をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
また、本実施形態において、工程(C)における湿式混合の自転速度を、工程(B)における湿式混合の自転速度よりも低く設定することが好ましい。これにより、攪拌混合による水系バインダー(d)同士の凝集をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
また、本実施形態において、工程(C)における湿式混合の公転速度を、工程(B)における湿式混合の公転速度よりも低く設定することが好ましい。これにより、攪拌混合による水系バインダー同士の凝集をより一層抑制しながら、負極製造用ペーストを構成する各材料の分散性を高めることができる。
工程(C)における上記湿式混合の混合時間は、特に限定されないが、例えば、10分以上30分以下である。
工程(C)における上記湿式混合の温度は、特に限定されないが、例えば、15℃以上23℃以下である。
ここで、工程(C)では、増粘剤(c)をさらに添加し、負極製造用ペーストの粘度を塗工に適した粘度に調整してもよい。
また、本実施形態に係る負極製造用ペーストの製造方法では、B型粘度計による20℃での、せん断速度2.04s−1における粘度に対するせん断速度20.4s−1における粘度の比で定義される、負極製造用ペーストのチキソトロピーインデックス値を好ましくは2.5以上、より好ましくは3.0以上に調整することが好ましい。
チキソトロピーインデックス値が上記下限値以上であると、保存安定性により一層優れた負極製造用ペーストを得ることができる。
また、得られる負極製造用ペーストは分散性がより一層優れるため、このような負極製造用ペーストを用いると、より一層均一な負極活物質層を得ることができる。その結果、より一層電池特性に優れたリチウムイオン二次電池を得ることができる。
チキソトロピーインデックス値は、増粘剤(c)の切断状況の指標を表し、チキソトロピーインデックス値が高いほど、ペースト中の増粘剤(c)の切断が抑制されていることを意味すると考えられる。
そのため、工程(B)および工程(C)における湿式混合の自転速度、公転速度およびペースト前駆体の固形分濃度などを調整して、増粘剤(c)の分子鎖の切断を抑制することにより、得られる負極製造用ペーストのチキソトロピーインデックス値を上記範囲内に調整することができる。
なお、負極製造用ペーストの固形分濃度は、水系バインダー(d)を含むエマルジョン水溶液の濃度や添加量を調整したり、前述した水系媒体を添加して希釈したりすることにより調整することができる。
[(D)真空脱泡する工程]
本実施形態に係る負極製造用ペーストの製造方法は、(D)真空脱泡する工程をさらにおこなってもよい。これにより、ペースト中に巻き込んだ気泡を取り除くことができ、ペーストの塗工性を向上させることができる。
真空脱泡は混合機の容器や軸部にシール処理を施して気泡を除去しても良いし、別の容器に移してから行っても良い。
<リチウムイオン二次電池用負極の製造方法>
つぎに、本実施形態に係るリチウムイオン二次電池用負極100の製造方法について説明する。図1は、本発明に係る実施形態のリチウムイオン二次電池用負極100の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン二次電池用負極100の製造方法は、以下の(1)および(2)の2つの工程を少なくとも含む。
(1)上記負極製造用ペーストの製造方法により負極製造用ペーストを作製する工程
(2)得られた上記負極製造用ペーストを用いてリチウムイオン二次電池用負極100を形成する工程
以下、各工程について説明する。
[(1)負極製造用ペーストを作製する工程]
本実施形態における(1)負極製造用ペーストを作製する工程は、前述した本実施形態に係る負極製造用ペーストの製造方法を用いて負極製造用ペーストを調製する。ここでは、説明は省略する。
[(2)得られた上記負極製造用ペーストを用いて負極を形成する工程]
(2)負極を形成する工程では、例えば、上記工程(1)により得られた負極製造用ペーストを集電体101上に塗布して乾燥し、負極活物質層103を形成することにより、集電体101に負極活物質層103が形成されたリチウムイオン二次電池用負極100を得る。
負極製造用ペーストを集電体101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法などを挙げることができる。
負極製造用ペーストは、集電体101の片面のみに塗布しても両面に塗布してもよい。集電体101の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さ、長さや幅は、電池の大きさに応じて、適宜決定することができる。
塗布した負極製造用ペーストの乾燥方法は、一般的に公知の方法を用いることができる。とくに、熱風、真空、赤外線、遠赤外線、電子線および低温風を単独あるいは組み合わせて用いることが好ましい。乾燥温度は通常は30℃以上350℃以下の範囲である。
本実施形態に係る負極の製造に用いられる集電体101としては、リチウムイオン二次電池に使用可能な通常の集電体であればとくに限定されないが、価格や入手容易性、電気化学的安定性などの観点から、銅が好ましい。また、集電体101の形状についてもとくに限定されないが、例えば、厚さが0.001〜0.5mmの範囲で箔状のものを用いることができる。
本実施形態に係るリチウムイオン二次電池用負極100は、必要に応じてプレスしてもよい。プレスの方法としては、一般的に公知の方法を用いることができる。例えば、金型プレス法やカレンダープレス法などが挙げられる。プレス圧はとくに限定されないが、例えば、0.2〜3t/cmの範囲である。
本実施形態に係る負極活物質層103の厚みや密度は、電池の使用用途などに応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
<リチウムイオン二次電池用負極>
本実施形態に係るリチウムイオン二次電池用負極100は、上述したリチウムイオン二次電池用負極100の製造方法により得ることができる。
<リチウムイオン二次電池>
つづいて、本実施形態に係るリチウムイオン二次電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン二次電池150の構造の一例を示す断面図である。本実施形態に係るリチウムイオン二次電池150は、上述したリチウムイオン二次電池用負極の製造方法により得られたリチウムイオン二次電池用負極100と、電解質110と、正極130とを少なくとも備えている。
本実施形態に係るリチウムイオン二次電池150は公知の方法に準じて作製することができる。
電極は、例えば、積層体や捲回体が使用できる。外装体としては、金属外装体やアルミラミネート外装体が適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型などいずれの形状であってもよい。
(正極)
本実施形態に係るリチウムイオン二次電池に使用する正極活物質は用途に応じて適宜選択されるが、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が容易におこなえるように電子伝導度が高い材料が好ましい。例えば、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウム−マンガン−ニッケル複合酸化物などのリチウムと遷移金属との複合酸化物;TiS、FeS、MoSなどの遷移金属硫化物;MnO、V、V13、TiOなどの遷移金属酸化物、オリビン型リチウムリン酸化物などが挙げられる。
オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
これらの中でも、オリビン型リチウム鉄リン酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム−マンガン−ニッケル複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
正極集電体としては、例えばアルミニウム箔を用いることができる。
また、本実施形態における正極130は、公知の製造方法により製造することができる。
(電解質)
電池の電解液中の電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CH SOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどが挙げられる。
電解質を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであればとくに限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)などのカーボネート類;γ−ブチロラクトン、γ−バレロラクトンなどのラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミドなどの含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホランなどのスルホラン類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(セパレーター)
セパレーターとしては、例えば、多孔性セパレーターが挙げられる。セパレーターの形態は、膜、フィルム、不織布などが挙げられる。
多孔性セパレーターとしては、例えば、ポリプロピレン系、ポリエチレン系などのポリオレフィン系多孔性セパレーター;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの多孔性セパレーターが挙げられる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<負極製造用ペーストの作製>
(1)工程(A)
以下、平均粒子径d50はMicrotrac社製、MT3000装置により測定し、比表面積は、Quantachrome Corporation社製、Quanta Sorbを用いて、窒素吸着法にて求めた。
遊星運動型プラネタリーミキサーに、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:4m/g)100gと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m/g)1.042gとを投入した。
次いで、自転速度:0.25m/sec、公転速度:0.08m/sec、温度:20℃の条件下で10分間乾式混合をおこない、粉体混合物を得た。
ここで、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:4m/g)は以下のように作製した。
平均粒子径d50が20μm、比表面積が4m/gの天然黒鉛を核材として使用した。
この天然黒鉛粉末99.0質量部と、石炭系ピッチ粉末1.0質量部とを、Vブレンダーを用いた単純混合により固相で混合した。得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1300 ℃ で1時間熱処理して、表面が非晶質の炭素で被覆された黒鉛を得た。
(2)工程(B)
次いで、粉末状のカルボキシメチルセルロース(CMC)を水に分散させて1.0重量%のCMC水溶液を調製した。得られたCMC水溶液を、上記工程(A)が終了した遊星運動型プラネタリーミキサーに38.862g添加することにより、固形分濃度を72.5%に調整した。
その後、自転速度:0.50m/sec、公転速度:0.16m/sec、温度:20℃の条件下で30分間湿式混合をおこない、ペースト前駆体を得た。
(3)工程(C)
次いで、スチレンブタジエンゴム(SBR)を水に分散した固形分濃度40%のSBR水溶液を調製した。上記CMC水溶液53.447gと、得られたSBR水溶液5.208gを、上記工程(B)が終了した遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.25m/sec、公転速度:0.08m/sec、温度:20℃の条件下で15分間湿式混合をおこなった。
(4)工程(D)
次いで、真空脱泡を行い、負極製造用ペーストを得た。
<負極の作製>
得られた負極製造用ペーストを集電体である銅箔の両面にダイコータを用いて間欠的に塗布し、乾燥した。次いで、得られた電極をプレスして、負極を得た。
この負極を、後に負極端子と接続する耳部を残した状態で縦130mm、横70mmに打ちぬいた(耳部の寸法は除く)。
<正極の作製>
正極活物質として1次粒子が凝集して略球状の2次粒子を形成しているマンガン酸リチウム75g、ニッケル酸リチウム25g、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m/g)4.30g、バインダーとしてポリフッ化ビニリデンをn−メチルピロリドンに溶解した8%バインダー溶液40.323gをそれぞれ用いた。遊星運動型プラネタリーミキサーを用いて、これらの材料を混合することにより、リチウムイオン二次電池用の正極製造用ペーストを得た。
得られた正極製造用ペーストを集電体であるアルミニウム箔の両面にダイコータを用いて間欠的に塗布、乾燥し、さらにプレスをすることで正極を得た。
この正極を、後に負極端子と接続する耳部を残した状態で縦125mm、横65mmに打ちぬいた(ただし耳部の寸法は除く)。
<電極体の作製>
縦131mm、横70mmのセパレーターを準備し、セパレーターを介して正極を6層、負極を7層積層した。同極性の耳部が同じ位置に重なるようにして繰り返し交互に積み重ね、最外層が負極となるようにした。
負極の耳部を互いに溶接し、さらにニッケル製の負極端子の一端を溶接した。正極の耳部も互いに溶接し、さらにアルミニウム製の正極端子の一端を溶接した。
<ラミネート電池の作製>
正極端子および負極端子が取り付けられた電極体を、ラミネートフィルムからなる可撓性の容器に電解液とともに収容した。このとき、正極端子の他端と負極端子の他端とは容器の外側に引き出された状態となり、外部の負荷と電池とが電気的に接続可能な構成となっている。
<評価>
(負極製造用ペーストの保存安定性の評価)
得られた負極製造用ペースト100gを蓋付きのプラスチック容器に入れ、蓋を閉めた状態で温度25℃の条件下で3日間保持した。
次いで、保持前と保持後の負極製造用ペーストについて、B型粘度計を用いて、20℃、せん断速度3.4 s−1におけるペースト粘度を測定した。その後、下記式(2)により粘度変化率を算出し、負極製造用ペーストの保存安定性の評価をおこなった。
粘度変化率[%]=100×(3日間保持後の粘度)/(3日間保持前の粘度) (2)
A : 粘度変化率が17%以下
B : 粘度変化率が18%以上35%未満
C : 上記保持試験により、負極製造用ペーストが分離した(目視により判断)
(チキソトロピーインデックス(TI)の測定)
得られた負極製造用ペーストについて、以下の手順によりチキソトロピーインデックスを測定した。
まず、B型粘度計を用いて、20℃、せん断速度2.04s−1における負極製造用ペーストの粘度Aを測定した。次いで、20℃、せん断速度20.4s−1における負極製造用ペーストの粘度Bを測定した。その後、下記式(3)によりチキソトロピーインデックスを算出した。
チキソトロピーインデックス[−]=(粘度B)/(粘度A) (3)
また、ペースト前駆体の固形分濃度が下記式(1)の条件を満たすものは○、満たさないものは×とした。
−X/2+71.0≦Y≦−X/2+75.5 (1)
上記(1)式において、Xは黒鉛質材料(a)の窒素吸着BET法による比表面積[m/g]を示し、Yは上記ペースト前駆体の固形分濃度[%]を示す。
(電池特性評価)
(レート特性)
次に、作製した電池を用いて充放電試験をおこなった。20℃雰囲気において、上限電圧4.2V、充電電流2300mA、合計充電時間150分の条件で定電流・定電圧充電をおこなった。その後、下限電圧2.5V、放電電流2300mAの条件で定電流放電(1C放電)をおこなった。
次いで、60分間の休止時間を設けた後、20℃雰囲気において、上限電圧4.2V、充電電流2300mA、合計充電時間150分の条件で定電流・定電圧充電をおこなった。その後、下限電圧2.5V、放電電流6900mAの条件で再び定電流放電(3C放電)をおこなった。1C放電時の放電容量に対する3C放電容量(100×(3C放電の放電容量)/(1C放電の放電容量))を計算した。得られた結果を表1に示す。
(サイクル特性)
20℃雰囲気において、上限電圧4.2V、充電電流2300mA、合計充電時間150分の条件で定電流・定電圧充電をおこなった。その後、下限電圧2.5V、放電電流2300mAの条件で定電流放電(1C放電)をおこなった。次いで、上記の充電と放電のサイクルを繰り返し行い、1サイクル目の放電容量の70%になったときのサイクル数を求めた。得られた結果を表1に示す。
(実施例2)
工程(B)における固形分濃度を70.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例3)
黒鉛質材料として、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)を用い、工程(B)における固形分濃度を73.9%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。
ここで、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)は以下のように作製した。
平均粒子径d50が20μm、比表面積が2m/gの天然黒鉛を核材として使用した。
この天然黒鉛粉末99.0質量部と、石炭系ピッチ粉末1.0質量部とを、Vブレンダーを用いた単純混合により固相で混合した。得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1300 ℃ で1時間熱処理して、表面が非晶質の炭素で被覆された黒鉛を得た。
ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例4)
黒鉛質材料として、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)を用い、工程(B)における固形分濃度を71.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例5)
工程(B)における固形分濃度を71.3%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例6)
黒鉛質材料として、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)を用い、工程(B)における固形分濃度を72.5%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例7)
工程(B)における固形分濃度を75.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例8)
工程(B)における固形分濃度を68.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例9)
黒鉛質材料として、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)を用い、工程(B)における固形分濃度を75.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(実施例10)
黒鉛質材料として、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:2m/g)を用い、工程(B)における固形分濃度を68.0%に調整した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。ここで、固形分濃度の調整は、ペースト前駆体中の水の量を調整することによりおこなった。得られた結果を表1に示す。
(比較例1)
負極製造用ペーストを以下の手順で作製した以外は、実施例1と同様の条件で製造をおこない、各評価をおこなった。得られた結果を表1に示す。
<負極製造用ペーストの作製>
(1)工程1
遊星運動型プラネタリーミキサーに、表面が非晶質の炭素で被覆された黒鉛(平均粒子径d50:20μm、窒素吸着BET法による比表面積:4m/g)100gと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m/g)1.042gとを投入した。
(2)工程2
次いで、粉末状のカルボキシメチルセルロース(CMC)を水に分散させて1.0重量%のCMC水溶液を調製した。得られたCMC水溶液を、上記工程1が終了した遊星運動型プラネタリーミキサーに38.862g添加することにより、固形分濃度を72.5%に調整した。
その後、自転速度:0.50m/sec、公転速度:0.16m/sec、温度:20℃の条件下で30分湿式混合をおこない、ペースト前駆体を得た。
(3)工程3
次いで、スチレンブタジエンゴム(SBR)を水に分散した固形分濃度40%のSBR水溶液を調製した。CMC水溶液53.447gと、得られたSBR水溶液5.208gを遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.25m/sec、公転速度:0.08m/sec、温度:20℃の条件下で15分間湿式混合をおこなった。
(4)工程4
次いで、真空脱泡を行い、負極製造用ペーストを得た。
Figure 0006304774
この出願は、2013年3月15日に出願された日本出願特願2013−053200号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
以下、参考形態の例を付記する。
<付記>
(付記1)
黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であって、
前記黒鉛質材料および前記導電助剤を乾式混合することにより、前記黒鉛質材料および前記導電助剤を含む混合物を調製する工程(A)と、
前記混合物中に前記増粘剤を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程(B)と、
前記ペースト前駆体中に前記水系バインダーを含むエマルジョン水溶液を添加してさらに湿式混合することにより、前記負極製造用ペーストを調製する工程(C)と、
を含む、負極製造用ペーストの製造方法。
(付記2)
付記1に記載の負極製造用ペーストの製造方法において、
B型粘度計による20℃での、せん断速度2.04s −1 における粘度に対するせん断速度20.4s −1 における粘度の比で定義される、前記負極製造用ペーストのチキソトロピーインデックス値を2.5以上に調整する、負極製造用ペーストの製造方法。
(付記3)
付記1または2に記載の負極製造用ペーストの製造方法において、
遊星運動型ミキサーを用いて、前記工程(A)における前記乾式混合をおこなう、負極製造用ペーストの製造方法。
(付記4)
付記3に記載の負極製造用ペーストの製造方法において、
前記工程(A)における前記乾式混合の自転速度が0.12m/sec以上0.30m/sec以下の範囲内である、負極製造用ペーストの製造方法。
(付記5)
付記3または4に記載の負極製造用ペーストの製造方法において、
前記工程(A)における前記乾式混合の公転速度が0.04m/sec以上0.10m/sec以下の範囲内である、負極製造用ペーストの製造方法。
(付記6)
付記3乃至5いずれか一つに記載の負極製造用ペーストの製造方法において、
遊星運動型ミキサーを用いて、前記工程(B)および前記工程(C)における前記湿式混合をおこなう、負極製造用ペーストの製造方法。
(付記7)
付記6に記載の負極製造用ペーストの製造方法において、
前記工程(B)における前記湿式混合の自転速度が0.35m/sec以上0.60m/sec以下の範囲内である、負極製造用ペーストの製造方法。
(付記8)
付記6または7に記載の負極製造用ペーストの製造方法において、
前記工程(B)における前記湿式混合の公転速度が0.12m/sec以上0.20m/sec以下の範囲内である、負極製造用ペーストの製造方法。
(付記9)
付記6乃至8いずれか一つに記載の負極製造用ペーストの製造方法において、
前記工程(C)における前記湿式混合の自転速度を、前記工程(B)における前記湿式混合の自転速度よりも低く設定する、負極製造用ペーストの製造方法。
(付記10)
付記6乃至9いずれか一つに記載の負極製造用ペーストの製造方法において、
前記工程(C)における前記湿式混合の公転速度を、前記工程(B)における前記湿式混合の公転速度よりも低く設定する、負極製造用ペーストの製造方法。
(付記11)
付記1乃至10いずれか一つに記載の負極製造用ペーストの製造方法において、
前記ペースト前駆体を調製する前記工程(B)は、
前記黒鉛質材料の窒素吸着BET法による比表面積[m /g]をXとし、
前記ペースト前駆体の固形分濃度[%]をYとしたとき、
−X/2+71.0≦Y≦−X/2+75.5の条件を満たすように固形分濃度Yを調整する工程を含む、負極製造用ペーストの製造方法。
(付記12)
付記11に記載の負極製造用ペーストの製造方法において、
前記黒鉛質材料の前記比表面積(X)が1.0m /g以上6.0m /g以下である、負極製造用ペーストの製造方法。
(付記13)
付記1乃至12いずれか一つに記載の負極製造用ペーストの製造方法において、
前記黒鉛質材料が、黒鉛粉末を核材とし、前記黒鉛粉末の表面の少なくとも一部が前記黒鉛粉末よりも結晶性の低い炭素材料により被覆されているものである、負極製造用ペーストの製造方法。
(付記14)
付記1乃至13いずれか一つに記載の負極製造用ペーストの製造方法において、
前記水系バインダーが、スチレンブタジエンゴムを含む、負極製造用ペーストの製造方法。
(付記15)
黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池用負極の製造方法であって、
付記1乃至14いずれか一つに記載の負極製造用ペーストの製造方法により負極製造用ペーストを作製する工程と、
得られた前記負極製造用ペーストを用いて負極を形成する工程と、
を含む、リチウムイオン二次電池用負極の製造方法。
(付記16)
付記15に記載のリチウムイオン二次電池用負極の製造方法により得られた、リチウムイオン二次電池用負極。
(付記17)
付記16に記載のリチウムイオン二次電池用負極と、電解質と、正極とを少なくとも備えた、リチウムイオン二次電池。

Claims (24)

  1. 黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であって、
    前記黒鉛質材料および前記導電助剤を乾式混合することにより、前記黒鉛質材料および前記導電助剤を含む混合物を調製する工程(A)と、
    前記混合物中に前記増粘剤を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程(B)と、
    前記ペースト前駆体中に前記水系バインダーを含むエマルジョン水溶液を添加してさらに湿式混合することにより、前記負極製造用ペーストを調製する工程(C)と、
    を含み、
    B型粘度計による20℃での、せん断速度2.04s−1における粘度に対するせん断速度20.4s−1における粘度の比で定義される、前記負極製造用ペーストのチキソトロピーインデックス値を2.5以上に調整し、
    遊星運動型ミキサーを用いて、前記工程(A)における前記乾式混合をおこない、
    前記工程(A)における前記乾式混合の自転速度が0.12m/sec以上0.30m/sec以下の範囲内であり、
    前記工程(A)における前記乾式混合の公転速度が0.04m/sec以上0.10m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  2. 請求項に記載の負極製造用ペーストの製造方法において、
    遊星運動型ミキサーを用いて、前記工程(B)および前記工程(C)における前記湿式混合をおこなう、負極製造用ペーストの製造方法。
  3. 請求項に記載の負極製造用ペーストの製造方法において、
    前記工程(B)における前記湿式混合の自転速度が0.35m/sec以上0.60m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  4. 請求項またはに記載の負極製造用ペーストの製造方法において、
    前記工程(B)における前記湿式混合の公転速度が0.12m/sec以上0.20m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  5. 請求項乃至いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記工程(C)における前記湿式混合の自転速度を、前記工程(B)における前記湿式混合の自転速度よりも低く設定する、負極製造用ペーストの製造方法。
  6. 請求項乃至いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記工程(C)における前記湿式混合の公転速度を、前記工程(B)における前記湿式混合の公転速度よりも低く設定する、負極製造用ペーストの製造方法。
  7. 請求項1乃至いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記ペースト前駆体を調製する前記工程(B)は、
    前記黒鉛質材料の窒素吸着BET法による比表面積[m/g]をXとし、
    前記ペースト前駆体の固形分濃度[重量%]をYとしたとき、
    −X/2+71.0≦Y≦−X/2+75.5の条件を満たすように固形分濃度Yを調整する工程を含む、負極製造用ペーストの製造方法。
  8. 請求項に記載の負極製造用ペーストの製造方法において、
    前記黒鉛質材料の前記比表面積(X)が1.0m/g以上6.0m/g以下である、負極製造用ペーストの製造方法。
  9. 請求項1乃至いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記黒鉛質材料が、黒鉛粉末を核材とし、前記黒鉛粉末の表面の少なくとも一部が前記黒鉛粉末よりも結晶性の低い炭素材料により被覆されているものである、負極製造用ペーストの製造方法。
  10. 請求項1乃至いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記水系バインダーが、スチレンブタジエンゴムを含む、負極製造用ペーストの製造方法。
  11. 黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池用負極の製造方法であって、
    請求項1乃至10いずれか一項に記載の負極製造用ペーストの製造方法により負極製造用ペーストを作製する工程と、
    得られた前記負極製造用ペーストを用いて負極を形成する工程と、
    を含む、リチウムイオン二次電池用負極の製造方法。
  12. 黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池の負極製造用ペーストの製造方法であって、
    前記黒鉛質材料および前記導電助剤を乾式混合することにより、前記黒鉛質材料および前記導電助剤を含む混合物を調製する工程(A)と、
    前記混合物中に前記増粘剤を含む水溶液を添加して湿式混合することにより、ペースト前駆体を調製する工程(B)と、
    前記ペースト前駆体中に前記水系バインダーを含むエマルジョン水溶液を添加してさらに湿式混合することにより、前記負極製造用ペーストを調製する工程(C)と、
    を含み、
    B型粘度計による20℃での、せん断速度2.04s−1における粘度に対するせん断速度20.4s−1における粘度の比で定義される、前記負極製造用ペーストのチキソトロピーインデックス値を2.5以上に調整し、
    前記ペースト前駆体を調製する前記工程(B)は、
    前記黒鉛質材料の窒素吸着BET法による比表面積[m /g]をXとし、
    前記ペースト前駆体の固形分濃度[重量%]をYとしたとき、
    −X/2+71.0≦Y≦−X/2+75.5の条件を満たすように固形分濃度Yを調整する工程を含む、負極製造用ペーストの製造方法。
  13. 請求項12に記載の負極製造用ペーストの製造方法において、
    遊星運動型ミキサーを用いて、前記工程(A)における前記乾式混合をおこなう、負極製造用ペーストの製造方法。
  14. 請求項13に記載の負極製造用ペーストの製造方法において、
    前記工程(A)における前記乾式混合の自転速度が0.12m/sec以上0.30m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  15. 請求項13または14に記載の負極製造用ペーストの製造方法において、
    前記工程(A)における前記乾式混合の公転速度が0.04m/sec以上0.10m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  16. 請求項13乃至15いずれか一項に記載の負極製造用ペーストの製造方法において、
    遊星運動型ミキサーを用いて、前記工程(B)および前記工程(C)における前記湿式混合をおこなう、負極製造用ペーストの製造方法。
  17. 請求項16に記載の負極製造用ペーストの製造方法において、
    前記工程(B)における前記湿式混合の自転速度が0.35m/sec以上0.60m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  18. 請求項16または17に記載の負極製造用ペーストの製造方法において、
    前記工程(B)における前記湿式混合の公転速度が0.12m/sec以上0.20m/sec以下の範囲内である、負極製造用ペーストの製造方法。
  19. 請求項16乃至18いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記工程(C)における前記湿式混合の自転速度を、前記工程(B)における前記湿式混合の自転速度よりも低く設定する、負極製造用ペーストの製造方法。
  20. 請求項16乃至19いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記工程(C)における前記湿式混合の公転速度を、前記工程(B)における前記湿式混合の公転速度よりも低く設定する、負極製造用ペーストの製造方法。
  21. 請求項12乃至20いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記黒鉛質材料の前記比表面積(X)が1.0m/g以上6.0m/g以下である、負極製造用ペーストの製造方法。
  22. 請求項12乃至21いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記黒鉛質材料が、黒鉛粉末を核材とし、前記黒鉛粉末の表面の少なくとも一部が前記黒鉛粉末よりも結晶性の低い炭素材料により被覆されているものである、負極製造用ペーストの製造方法。
  23. 請求項12乃至22いずれか一項に記載の負極製造用ペーストの製造方法において、
    前記水系バインダーが、スチレンブタジエンゴムを含む、負極製造用ペーストの製造方法。
  24. 黒鉛質材料と、導電助剤と、増粘剤と、水系バインダーとを含む、リチウムイオン二次電池用負極の製造方法であって、
    請求項12乃至23いずれか一項に記載の負極製造用ペーストの製造方法により負極製造用ペーストを作製する工程と、
    得られた前記負極製造用ペーストを用いて負極を形成する工程と、
    を含む、リチウムイオン二次電池用負極の製造方法。
JP2015505237A 2013-03-15 2013-12-10 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池 Active JP6304774B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013053200 2013-03-15
JP2013053200 2013-03-15
PCT/JP2013/083042 WO2014141552A1 (ja) 2013-03-15 2013-12-10 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JPWO2014141552A1 JPWO2014141552A1 (ja) 2017-02-16
JP6304774B2 true JP6304774B2 (ja) 2018-04-04

Family

ID=51536238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015505237A Active JP6304774B2 (ja) 2013-03-15 2013-12-10 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US10290854B2 (ja)
JP (1) JP6304774B2 (ja)
CN (1) CN105027333B (ja)
WO (1) WO2014141552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121284A1 (ko) * 2021-12-21 2023-06-29 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극 및 이차전지

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963730B2 (ja) * 2013-10-17 2016-08-03 シャープ株式会社 通信システム及び通信装置
JP6615785B2 (ja) * 2014-12-24 2019-12-04 株式会社エンビジョンAescエナジーデバイス 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN107749478A (zh) * 2016-10-21 2018-03-02 万向二三股份公司 一种锰酸锂‑三元动力锂离子电池
US11424439B2 (en) 2016-11-25 2022-08-23 Dai-Ichi Kogyo Seiyaku Co., Ltd. Negative electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11456452B2 (en) * 2016-12-28 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6615802B2 (ja) * 2017-02-06 2019-12-04 日本碍子株式会社 目封止ハニカム構造体の製造方法
CN110476281B (zh) * 2017-03-31 2022-10-18 远景Aesc日本有限公司 锂离子电池用负极和锂离子电池
CN106981620B (zh) * 2017-04-07 2021-03-30 惠州拓邦电气技术有限公司 一种锂离子电池负极浆料的制备方法
CN107768651A (zh) * 2017-10-25 2018-03-06 中盐安徽红四方锂电有限公司 一种含vgcf的磷酸铁锂水性复合浆料的制备方法
WO2019107054A1 (ja) * 2017-11-29 2019-06-06 Necエナジーデバイス株式会社 負極製造用ペーストの製造方法、電池用負極電極、電池および電池用負極電極の製造方法
CN112952042A (zh) * 2021-03-08 2021-06-11 上海兰钧新能源科技有限公司 一种锂离子电池极片的合膏制砖制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111222A (ja) * 1994-10-12 1996-04-30 Fuji Photo Film Co Ltd シート状電極極板の製造方法
US6344296B1 (en) * 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JP4032477B2 (ja) 1998-01-21 2008-01-16 松下電器産業株式会社 電池電極の製造方法
JP4220867B2 (ja) 2003-09-11 2009-02-04 三菱重工業株式会社 非水電解質二次電池の正極電極形成用スラリー、非水電解質二次電池の正極電極および非水電解質二次電池
US20070275302A1 (en) 2004-01-05 2007-11-29 Chiaki Sotowa Negative Electrode Material for Lithium Battery, and Lithium Battery
US7846574B2 (en) * 2004-08-27 2010-12-07 Panosonic Corporation Positive electrode plate for alkaline storage battery and method for producing the same
JP4852836B2 (ja) 2004-10-05 2012-01-11 パナソニック株式会社 非水系二次電池の負極用電極板の製造方法
JP5091392B2 (ja) 2005-08-09 2012-12-05 住友ゴム工業株式会社 電極線の形成方法および該電極線を備えた電極板
JP2009016265A (ja) * 2007-07-06 2009-01-22 Showa Denko Kk リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP5188795B2 (ja) * 2007-12-14 2013-04-24 パナソニック株式会社 リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
JP4561843B2 (ja) * 2008-02-26 2010-10-13 ソニー株式会社 非水電解質電池および負極
KR100978422B1 (ko) * 2008-04-11 2010-08-26 엘에스엠트론 주식회사 2차 전지용 음극 활물질, 이를 포함하는 2차 전지용 전극및 2차 전지
JP5231166B2 (ja) * 2008-10-28 2013-07-10 古河電池株式会社 非水電解質二次電池用正極板の製造法及び非水電解質二次電池
JP5364500B2 (ja) * 2009-08-20 2013-12-11 古河電池株式会社 非水電解液二次電池用正極板の製造方法
JP2011063673A (ja) * 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd 水系ペースト及びその製造方法
JP5633747B2 (ja) * 2011-03-17 2014-12-03 トヨタ自動車株式会社 リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121284A1 (ko) * 2021-12-21 2023-06-29 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극 및 이차전지

Also Published As

Publication number Publication date
CN105027333A (zh) 2015-11-04
WO2014141552A1 (ja) 2014-09-18
US10290854B2 (en) 2019-05-14
US20160013473A1 (en) 2016-01-14
JPWO2014141552A1 (ja) 2017-02-16
CN105027333B (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6304774B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN107408686B (zh) 用于锂离子二次电池的阴极活性物质、其制造方法及包含其的锂离子二次电池
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
JP5757148B2 (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
JP6522167B2 (ja) 金属ナノ粒子を含む正極活物質及び正極、それを含むリチウム−硫黄電池
JP6615785B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
US11695111B2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
JP2011113862A (ja) 非水二次電池およびその製造方法
JP2017520892A (ja) リチウム電池用正極
JP2015118742A (ja) 非水電解質二次電池
JP2014199750A (ja) リチウム二次電池用負極炭素材料、リチウム電池用負極およびリチウム二次電池
JP6903263B2 (ja) リチウムイオン電池用電極およびリチウムイオン電池
CN116964786A (zh) 导电性底涂剂
KR20080036255A (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력리튬 이차전지
JP2017050204A (ja) 非水電解質二次電池用正極材料、その製造方法および非水電解質二次電池
WO2018066110A1 (en) Spacer Included Electrodes Structure and Its Application for High Energy Density and Fast Chargeable Lithium Ion Batteries
WO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
JP2017188424A (ja) リチウムイオン二次電池用正極活物質、及びそれを用いたリチウムイオン二次電池用正極並びにリチウムイオン二次電池
JP2014199749A (ja) リチウム二次電池用負極炭素材料、リチウム電池用負極およびリチウム二次電池
WO2018155240A1 (ja) リチウムイオン電池用正極およびリチウムイオン電池
KR101115390B1 (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력 리튬 이차전지
JP7274265B2 (ja) リチウムイオン二次電池用電極製造用ペーストの製造方法、リチウムイオン二次電池用電極の製造方法およびリチウムイオン二次電池の製造方法
CN115152048A (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP2014072062A (ja) 非水電解質二次電池及び組電池
JP2014116217A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6304774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250