WO2017187559A1 - 高周波回路 - Google Patents

高周波回路 Download PDF

Info

Publication number
WO2017187559A1
WO2017187559A1 PCT/JP2016/063211 JP2016063211W WO2017187559A1 WO 2017187559 A1 WO2017187559 A1 WO 2017187559A1 JP 2016063211 W JP2016063211 W JP 2016063211W WO 2017187559 A1 WO2017187559 A1 WO 2017187559A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
frequency
frequency device
conductor layer
conductor
Prior art date
Application number
PCT/JP2016/063211
Other languages
English (en)
French (fr)
Inventor
石橋 秀則
石田 清
英悟 桑田
幸宣 垂井
秀浩 吉岡
裕之 青山
津留 正臣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/063211 priority Critical patent/WO2017187559A1/ja
Priority to EP16900431.4A priority patent/EP3432353B1/en
Priority to JP2016555844A priority patent/JP6173611B1/ja
Priority to US16/091,467 priority patent/US10512153B2/en
Publication of WO2017187559A1 publication Critical patent/WO2017187559A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0222Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors for shielding around a single via or around a group of vias, e.g. coaxial vias or vias surrounded by a grounded via fence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/188Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or attaching to a structure having a conductive layer, e.g. a metal foil, such that the terminals of the component are connected to or adjacent to the conductive layer before embedding, and by using the conductive layer, which is patterned after embedding, at least partially for connecting the component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92225Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16251Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1327Moulding over PCB locally or completely
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to a high frequency circuit equipped with a high frequency device used for communication equipment, for example.
  • a transmission / reception unit of a high-frequency circuit used for communication equipment or the like is generally configured to include a high-power amplifier, a low-noise amplifier, a mixer, and an oscillator. Since the high-power amplifier used as the transmission / reception unit is a device that generates a large amount of heat, measures for heat dissipation are required. For example, in the semiconductor device described in Patent Document 1, a plate-like lead is disposed on a device that generates a large amount of heat, and the device radiates heat through the plate-like lead.
  • the wiring is shortened by arranging a high-frequency device on the inner layer of the multilayer substrate and connecting the wirings up and down.
  • the multilayer circuit module described in Patent Document 2 is small in size and has a structure that can reduce the loss of input / output signals, but does not consider heat dissipation of the devices that constitute the multilayer circuit module. For this reason, there is a concern about performance deterioration due to heat generation of a plurality of devices.
  • the present invention solves the above problems, and an object of the present invention is to obtain a high-frequency circuit that is small in size, reduces input / output signal loss, and can realize high heat dissipation characteristics.
  • the high frequency circuit includes a substrate and a first high frequency device.
  • the substrate includes a first dielectric layer having an opening penetrating in the layer thickness direction, a second dielectric layer laminated on one surface and the other surface of the first dielectric layer, and a first dielectric layer A plurality of conductor layers provided on the dielectric layer and the second dielectric layer;
  • the first high-frequency device is accommodated in the opening, and the device back surface opposite to the terminal surface is opposed to the opening from one surface side of the first dielectric layer among the plurality of conductor layers.
  • the terminal of the terminal surface is electrically connected to the conductor layer for the terminal provided on the other surface side of the first dielectric layer among the plurality of conductor layers. It is connected to the.
  • the terminal of the first high-frequency device incorporated in the substrate is connected to the conductor layer with a short wiring distance, a circuit with a small size can be realized and the loss of input / output signals can be reduced. be able to. Furthermore, since the device back surface of the first high-frequency device is thermally connected to the conductive layer for heat dissipation, high heat dissipation characteristics can be realized.
  • FIG. 10 is a cross-sectional view showing a modification of the high-frequency circuit according to the second embodiment. It is sectional drawing which shows the structure of the high frequency circuit which concerns on Embodiment 3 of this invention.
  • FIG. 10 is a cross-sectional view showing a modification of the high frequency circuit according to the third embodiment.
  • FIG. 10 is a cross-sectional view illustrating another modification of the high-frequency circuit according to Embodiment 3. It is sectional drawing which shows the structure of the high frequency circuit which concerns on Embodiment 4 of this invention.
  • FIG. 10 is a top view showing a high frequency circuit according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view showing a modification of the high frequency circuit according to the sixth embodiment. It is a top view which shows terminal arrangement
  • FIG. 10 is a top view showing the structure of the high frequency circuit which concerns on Embodiment 7 of this invention. It is sectional drawing which shows the structure of the high frequency circuit based on Embodiment 8 of this invention.
  • FIG. 10 is a top view showing a high frequency circuit according to an eighth embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration of a high-frequency circuit 1 according to Embodiment 1 of the present invention.
  • the high frequency circuit 1 includes a printed wiring board 2 and a high frequency device 3 as shown in FIG.
  • the printed wiring board 2 is a board constituting the high-frequency circuit 1, and includes conductor layers 4a to 4h, a core layer 5, and a buildup layer 6.
  • the conductor layers 4 a to 4 h are conductor layers formed on the core layer 5 and the buildup layer 6.
  • the high-frequency device 3 embodies the first high-frequency device of the present invention, and is realized, for example, by a semiconductor chip having one surface as the terminal surface 3a and the other surface as the mirror surface 3b.
  • the terminal surface 3a is a surface on which the terminals of the high-frequency device 3 are arranged
  • the mirror surface 3b is a device back surface on the opposite side to the terminal surface 3a and on which no terminals are arranged.
  • the conductor layer 4g embodies the conductor layer for heat dissipation in the present invention.
  • the conductor layer 4g is provided on one surface 2-1 of the printed wiring board 2 and has an opening 5b from the lower surface side of the core layer 5.
  • a conductor layer having a ground potential is appropriately described as a ground conductor or a ground conductor layer
  • a conductor layer through which a signal is propagated is appropriately described as a signal conductor or a signal conductor layer.
  • the conductor layer for heat dissipation is preferably a conductor layer 4g having one surface facing the outside of the printed wiring board 2, but the ground conductor layer provided in the inner layer of the buildup layer 6 is It may be used. However, in this case, the conductor layer for heat dissipation is connected to the ground conductor layer facing the outside of the printed wiring board 2 through the via hole serving as the heat dissipation path and the ground conductor layer inside the buildup layer 6. It has a multi-layer structure.
  • the conductor layers 4a, 4b, and 4h embody the conductor layer for terminals in the present invention, and are provided on the other surface 2-2 of the printed wiring board 2 so as to be electrically connected to the terminals of the high-frequency device 3.
  • the conductor layer 4 h is a ground conductor layer provided on the other surface 2-2 of the printed wiring board 2.
  • the conductor layers 4a and 4b are signal conductor layers disposed on the other surface 2-2 of the printed wiring board 2, and signals are propagated to the conductor layers 4a and 4b.
  • the conductor layers 4c to 4f are ground conductor layers disposed on the core layer 5.
  • the core layer 5 embodies the first dielectric layer according to the present invention, and is laminated so that the insulating layer 5a is sandwiched between the conductor layers 4c to 4f, and has an opening 5b penetrating in the layer thickness direction. .
  • the conductor layer 4c and the conductor layer 4d are electrically connected by a via hole 7 provided in the core layer 5, and the conductor layer 4d and the conductor layer 4g are electrically connected by a via hole 8 provided in the buildup layer 6.
  • the conductor layer 4 e and the conductor layer 4 f are electrically connected by the via hole 7, and the conductor layer 4 f and the conductor layer 4 g are electrically connected by the via hole 8.
  • the build-up layer 6 embodies the second dielectric layer in the present invention, and one surface (lower surface) orthogonal to the layer thickness direction of the core layer 5 and orthogonal to the layer thickness direction of the core layer 5. Are stacked on the other surface (upper surface).
  • the build-up layer 6 and the via hole 8 are laminated using, for example, a build-up method.
  • the high frequency device 3 is accommodated inside the opening 5b of the core layer 5 with the terminal surface 3a facing upward.
  • the mirror surface 3 b of the high-frequency device 3 is bonded to the conductor layer 4 g using the adhesive 10.
  • the adhesive 10 is desirably an adhesive having high thermal conductivity.
  • the high-frequency device 3 is resin-molded in a state where the mirror surface 3b and the conductor layer 4g are in contact with each other. Also good.
  • the signal terminal 9 a on the terminal surface 3 a is electrically connected to the conductor layer 4 a through the via hole 8 in the buildup layer 6, and the signal terminal 9 b on the terminal surface 3 a is electrically connected to the conductor layer 4 b through the via hole 8. .
  • the conductor layers 4a and 4b are signal conductor layers as described above.
  • the ground terminal 9c on the terminal surface 3a is electrically connected to the conductor layer 4h by the via hole 8.
  • the conductor layer 4h is a ground conductor layer as described above.
  • a signal input to the conductor layer 4a is input to the high-frequency device 3 through the via hole 8 and the signal terminal 9a. Thereby, the high frequency device 3 processes the signal.
  • the signal processed by the high frequency device 3 is output from the conductor layer 4b through the signal terminal 9b and the via hole 8. At this time, the heat generated in the high-frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • the high-frequency circuit 1 includes the printed wiring board 2 and the high-frequency device 3.
  • the printed wiring board 2 includes conductor layers 4a to 4h, a core layer 5 having an opening 5b penetrating in the layer thickness direction, and a buildup layer 6 laminated on both upper and lower surfaces of the core layer 5.
  • the mirror surface 3b of the high-frequency device 3 accommodated in the opening 5b of the core layer 5 is a conductive layer 4g for heat dissipation that faces the opening 5b from the lower surface side of the core layer 5 among the conductor layers 4a to 4h. Thermally connected.
  • the terminals 9a to 9b on the terminal surface 3a are electrically connected to terminal conductor layers 4a, 4b, and 4h provided on the upper surface side of the core layer 5.
  • the high-frequency circuit 1 can be reduced in height and a circuit having a small size can be realized.
  • the terminals are connected with a short wiring distance by the via hole 8 provided in the buildup layer 6, the loss of the input / output signal can be reduced.
  • the mirror surface 3b of the high frequency device 3 is thermally connected to the conductor layer 4g, the distance through which the material having low thermal conductivity is interposed is shortened, and high heat dissipation characteristics can be realized.
  • FIG. FIG. 2 is a cross-sectional view showing a configuration of a high-frequency circuit 1A according to Embodiment 2 of the present invention.
  • the high frequency circuit 1A includes a printed wiring board 2A, a high frequency device 3, and a high frequency device 11 as shown in FIG.
  • the printed wiring board 2A is a board constituting the high-frequency circuit 1A, and includes conductor layers 4a to 4k, a core layer 5, and a buildup layer 6A.
  • the conductor layers 4a to 4k are conductor layers provided on the core layer 5 and the buildup layer 6A.
  • the high-frequency device 11 embodies the second high-frequency device of the present invention, and is realized by, for example, a semiconductor chip in which one surface is a terminal surface 11a and the other surface is a mirror surface 11b.
  • the terminal surface 11a is a surface on which the terminals of the high-frequency device 11 are disposed
  • the mirror surface 11b is a surface on the opposite side of the device surface 11a from which no terminals are disposed.
  • the conductor layer 4g is a heat-dissipating conductor layer provided on one surface 2-1 of the printed wiring board 2A and facing the opening 5b from the lower surface side of the core layer 5. is there.
  • the conductor layers 4h, 4j, 4k are ground conductor layers provided on the other surface 2-2 of the printed wiring board 2A.
  • the conductor layers 4a, 4b, and 4i are terminal conductor layers.
  • the build-up layer 6A embodies the second dielectric layer in the present invention, and includes an upper surface orthogonal to the layer thickness direction of the core layer 5 and a lower surface orthogonal to the layer thickness direction of the core layer 5. Each is laminated.
  • the buildup layer 6A and the via hole 8 are laminated by using, for example, a buildup method.
  • the high frequency device 11 is mounted with the terminal surface 11a facing the other surface 2-2 of the printed wiring board 2A.
  • the signal terminal 12 a on the terminal surface 11 a is electrically connected to the conductor layer 4 a by the solder 13
  • the signal terminal 12 d on the terminal surface 11 a is electrically connected to the conductor layer 4 i by the solder 13.
  • the conductor layers 4a and 4i are signal conductor layers.
  • the ground terminal 12 b of the terminal surface 11 a is electrically connected to the conductor layer 4 k by the solder 13, and the ground terminal 12 c is electrically connected to the conductor layer 4 j by the solder 13.
  • the ground terminal 12e on the terminal surface 11a is electrically connected to the conductor layer 4h by the solder 13.
  • the conductor layers 4k, 4j, 4h are ground conductor layers.
  • the conductor layer 4j and the conductor layer 4k are electrically connected to the conductor layer 4c of the core layer 5 through the via hole 8 of the buildup layer 6A.
  • the conductor layer 4 h is electrically connected to the ground terminal 9 c of the high frequency device 3 through the via hole 8.
  • the conductor layer 4 i is electrically connected to the signal terminal 9 a by the via hole 8.
  • a signal input to the conductor layer 4a is input to the high-frequency device 11 through the solder 13 and the signal terminal 12a.
  • the high frequency device 11 processes the signal.
  • the signal processed by the high frequency device 11 is input to the high frequency device 3 through the signal terminal 12d, the solder 13, the conductor layer 4i, the via hole 8, and the signal terminal 9a.
  • the high frequency device 3 processes the signal.
  • the signal processed by the high frequency device 3 is output from the conductor layer 4b through the signal terminal 9b and the via hole 8. At this time, the heat generated in the high-frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • the high-frequency device 11 is connected to the printed wiring board 2A only by the solder 13, but underfill 14 is filled below the high-frequency device 11 as in the high-frequency circuit 1B shown in FIG. May be fixed. Further, instead of the solder 13, the high-frequency device 11 may be connected to the printed wiring board 2 ⁇ / b> A with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14.
  • the high-frequency circuits 1A and 1B according to the second embodiment include the high-frequency device 11 mounted with the terminal surface 11a facing the other surface 2-2 of the printed wiring board 2A.
  • the high-frequency device 11 is disposed above the high-frequency device 3, the wiring distance between the high-frequency device 3 and the high-frequency device 11 is shortened, and the loss of input / output signals can be reduced.
  • the high-frequency device 3 is built in the printed wiring board 2A, a small circuit can be realized even if a plurality of high-frequency devices are used.
  • the mirror surface 3b of the high-frequency device 3 is thermally connected to the conductive layer 4g for heat dissipation, so that the distance through which the low thermal conductivity material is interposed becomes short and high heat dissipation characteristics are obtained. realizable.
  • FIG. 4 is a cross-sectional view showing a configuration of a high-frequency circuit 1C according to Embodiment 3 of the present invention. 4, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the high-frequency circuit 1C includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11A, and a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is molded with a resin 15 as shown in FIG.
  • the printed wiring board 2B includes the conductor layers 4a-1, 4b-1, 4b-2, 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f-1. , 4f-2, 4g, 4g-1 to 4g-5, 4h to 4k, a core layer 5A, and a buildup layer 6B.
  • Conductor layers 4a-1, 4b-1, 4b-2, 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f-1, 4f-2, 4g, 4g- 1 to 4g-5 and 4h to 4k are conductor layers provided on the core layer 5A and the buildup layer 6B.
  • the conductor layer 4g is a heat-dissipating conductor layer provided on the surface 2-1 of the printed wiring board 2B.
  • the conductor layers 4a-1, 4b-2, 4c-1, 4c-2, 4c-4, 4d-1, 4d-2, 4d-4, 4e-2, 4f-2, 4g, 4g-1, 4g-2, 4g-5, 4h and 4j are ground conductor layers.
  • the conductor layers 4c-3, 4d-3, 4g-3, 4g-4, 4i, 4b-1, 4e-1, 4f-1, and 4k are signal conductor layers.
  • the conductor layers 4c-1 to 4c-4 and the conductor layers 4d-1 to 4d-4 are electrically connected by the via holes 7 provided in the core layer 5A.
  • the conductor layers 4d-4 and 4g are The via holes 8 provided in the build-up layer 6B are electrically connected.
  • the conductor layers 4e-1, 4e-2 and the conductor layers 4f-1, 4f-2 are electrically connected by the via holes 7, and the conductor layers 4f-1, 4f-2 and the conductor layers 4g-4, 4g-5 is electrically connected to the via hole 8.
  • the core layer 5A embodies the first dielectric layer according to the present invention, and the conductor layers 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f- 1, 4f-2 are stacked so as to sandwich the insulating layer 5a, and have an opening 5b penetrating in the layer thickness direction.
  • the buildup layer 6B embodies the second dielectric layer according to the present invention, and includes an upper surface orthogonal to the layer thickness direction of the core layer 5A and a lower surface orthogonal to the layer thickness direction of the core layer 5A. Each is laminated.
  • the build-up layer 6B and the via hole 8 are stacked using, for example, a build-up method.
  • the high-frequency device 11A embodies the second high-frequency device of the present invention, and is mounted with the terminal surface 11a facing the surface 2-2 of the printed wiring board 2B.
  • the signal terminal 12 f of the terminal surface 11 a is electrically connected to the signal conductor conductor layer 4 k by the solder 13
  • the signal terminal 12 d of the terminal surface 11 a is electrically connected to the signal conductor conductor layer 4 i by the solder 13. Yes.
  • the ground terminal 12 g of the terminal surface 11 a is electrically connected to the ground conductor layer 4 a-1 by the solder 13, and the ground terminal 12 c is electrically connected to the ground conductor layer 4 j by the solder 13. Further, the ground terminal 12 e on the terminal surface 11 a is electrically connected to the ground conductor layer 4 h by solder 13.
  • the signal input to the conductor layer 4g-3 is input to the core layer 5A through the via hole 8 and the conductor layer 4d-3, and the via hole 7, the conductor layer 4c-3, the via hole 8, the conductor layer 4k, the solder 13, and the signal
  • the signal is input to the high-frequency device 11A through the terminal 12f.
  • the high frequency device 11A processes the signal.
  • the signal processed by the high frequency device 11A is input to the high frequency device 3 through the signal terminal 12d, the solder 13, the conductor layer 4i, the via hole 8, and the signal terminal 9a. Thereby, the high frequency device 3 processes the signal.
  • the signal processed by the high-frequency device 3 is input to the core layer 5A through the signal terminal 9b, the via hole 8, the conductor layer 4b-1, the via hole 8, and the conductor layer 4e-1, and the via hole 7, the conductor layer 4f-1,
  • the light is output from the conductor layer 4g-4 through the via hole 8.
  • the heat generated in the high-frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • the underfill 14 may be filled and fixed below the high-frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14.
  • the high-frequency circuit 1 ⁇ / b> C may be mounted on the mother board 16.
  • conductor layers 17 a and 17 b provided on the mother board 16 are signal conductor layers and are connected to the high-frequency circuit 1 ⁇ / b> C by via holes 18.
  • the conductor layers 17c, 17d, and 17e provided on the mother board 16 are ground conductor layers and are connected to each other by a plurality of via holes 18 that penetrate the mother board 16 in the layer thickness direction. These via holes 18 serve as heat dissipation paths.
  • Heat generated in the high-frequency device 3 is transmitted to the conductor layer 17c of the mother board 16 through the conductor layer 4g and the solder 13, and further from the conductor layer 17e through the conductor layer 17d and the upper and lower via holes 18 of the conductor layer 17d. Heat is dissipated. That is, in the high frequency circuit 1C shown in FIG. 5, the conductor layer 4g, the solder 13, the conductor layers 17c to 17e, and the via hole 18 constitute a heat radiating conductor layer.
  • a metal block 19 may be disposed between the conductor layer 17 c and the conductor layer 17 e in the mother board 16.
  • the metal block 19 is in contact with the conductor layer 17 c and the conductor layer 17 e, and heat generated in the high-frequency device 3 is radiated from the conductor layer 17 e through the conductor layer 17 c and the metal block 19. That is, in the high-frequency circuit 1C shown in FIG. 6, the conductor layer 4g, the solder 13, the conductor layer 17c, the metal block 19, and the conductor layer 17e constitute a heat radiation conductor layer.
  • Embodiment 3 may be applied to the structure shown in Embodiment 2. That is, the high frequency device 11 may be molded with the resin 15 in the high frequency circuits 1A and 1B according to the second embodiment. Even if it does in this way, the effect similar to the above is acquired.
  • the high-frequency device 11 ⁇ / b> A is molded with the resin 15.
  • the mounting reliability is improved by molding with the resin 15.
  • the high-frequency circuit 1C has a structure for passing a signal to the surface 2-1 side of the printed wiring board 2B, so that it can be used as a surface mounting package.
  • FIG. 7 is a cross-sectional view showing a configuration of a high-frequency circuit 1D according to Embodiment 4 of the present invention.
  • the high-frequency circuit 1D includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is molded with a resin 15.
  • the mirror surface 11b is exposed from the resin 15 as shown in FIG. That is, in the high frequency circuit 1D, the resin 15 is provided to the same height as the mirror surface 11b in the thickness direction of the high frequency device 11A or a height lower than that. Thereby, the high frequency circuit 1D is a circuit thinner than the high frequency circuit 1C shown in FIG.
  • the high frequency circuit 1D operates in the same manner as the high frequency circuit 1C shown in the third embodiment. In this operation, heat generated in the high-frequency device 3 is radiated to the outside from the conductor layer 4g through the mirror surface 3b and the adhesive 10. The heat generated in the high frequency device 11A is radiated to the outside from the mirror surface 11b.
  • the underfill 14 may be filled and fixed below the high frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, the high-frequency circuit 1D may be mounted on the mother board 16 shown in FIGS.
  • the fourth embodiment may be applied to the configuration shown in the second embodiment. That is, in the high-frequency circuits 1A and 1B according to the second embodiment, the resin 15 may be molded so that the mirror surface 11b of the high-frequency device 11 is exposed.
  • the mirror surface 11b of the high-frequency device 11A is exposed from the resin 15.
  • a thin circuit can be realized in addition to the effects shown in the third embodiment.
  • heat generated in the high-frequency device 11A is radiated from the mirror surface 11b exposed to the outside, heat dissipation is improved.
  • FIG. FIG. 8 is a sectional view showing a configuration of a high-frequency circuit 1E according to Embodiment 5 of the present invention.
  • the high-frequency circuit 1E includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is molded with a resin 15.
  • a metal plate 20 is connected to the mirror surface 11b using an adhesive 10a.
  • the adhesive 10 a is desirably an adhesive having high thermal conductivity, like the adhesive 10.
  • the metal plate 20 is exposed from the resin 15 to the outside. That is, in the high frequency circuit 1E, the resin 15 is provided up to the same height as the surface of the metal plate 20 or a lower height in the thickness direction of the high frequency device 11A. As a result, the high frequency circuit 1E has substantially the same thickness as the high frequency circuit 1D, and is thinner than the high frequency circuit 1C shown in FIG.
  • the high frequency circuit 1E operates in the same manner as the high frequency circuit 1C shown in the third embodiment. In this operation, heat generated in the high frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g. Further, the heat generated in the high frequency device 11A is radiated to the outside through the adhesive 10a and the metal plate 20 from the mirror surface 11b.
  • the underfill 14 may be filled and fixed below the high frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, as shown in FIGS. 5 and 6, the high-frequency circuit 1 ⁇ / b> E may be mounted on the mother board 16.
  • Embodiment 5 may be applied to the structure shown in Embodiment 2. That is, in the high-frequency circuits 1A and 1B according to the second embodiment, the metal plate 20 may be connected to the mirror surface 11b of the high-frequency device 11 and molded with the resin 15 so that the metal plate 20 is exposed. Even if it does in this way, the effect similar to the above is acquired.
  • the high-frequency circuit 1E according to the fifth embodiment includes the metal plate 20 connected to the mirror surface 11b of the high-frequency device 11A, and the metal plate 20 is exposed from the resin 15.
  • a thin circuit can be realized in addition to the effects shown in the third embodiment.
  • heat generated in the high-frequency device 11A is dissipated from the metal plate 20, heat dissipation is improved.
  • FIG. 9 is a cross-sectional view showing a configuration of a high-frequency circuit 1F according to Embodiment 6 of the present invention.
  • the high frequency circuit 1F includes a printed wiring board 2B, a high frequency device 3, and a high frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high frequency device 11A is molded with a resin 15.
  • a shield portion 21 is provided on the mirror surface 11b side of the high frequency device 11A in the high frequency circuit 1F as shown in FIG.
  • the shield part 21 embodies the first shield part in the present invention, and covers the mirror surface 11b of the high-frequency device 11A and the surface of the resin 15 provided therearound.
  • the shield part 21 is formed by metal plating the mirror surface 11 b and the surface of the resin 15.
  • a conductive thin film obtained by printing, spraying, or sealing a conductive material on the mirror surface 11b and the surface of the resin 15 may be used as the shield portion 21.
  • the shield part 21 is electrically connected to the ground conductor layer of the printed wiring board 2B.
  • the shield portion 21 covers the surface 2-2 side of the printed wiring board 2B while being in contact with the ground conductor layers 4a-1 and 4b-2.
  • FIG. 10 is a top view showing the high-frequency circuit 1F, and the high-frequency device 11A covered with the resin 15 and the conductor layer 4b-1 are indicated by broken lines.
  • the shield part 21 is formed by performing metal plating or the like on the surface 2-2 of the printed wiring board 2B. Thereby, the shield part 21 is also formed on the conductor layers 4a-1 and 4b-2, and the shield part 21 and the conductor layers 4a-1 and 4b-2 are electrically connected.
  • the high frequency circuit 1F operates in the same manner as the high frequency circuit 1C shown in the third embodiment. In this operation, heat generated in the high frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g. The heat generated in the high frequency device 11A is radiated from the mirror surface 11b through the shield part 21. When a signal propagates inside the high-frequency circuit 1F, since one surface of the high-frequency circuit 1F is covered with the shield portion 21 having the ground potential, unnecessary electromagnetic waves are not easily radiated to the outside of the high-frequency circuit 1F.
  • the underfill 14 may be filled and fixed below the high frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14.
  • the high-frequency circuit 1 ⁇ / b> F may be mounted on the mother board 16.
  • Conductive layers 17a and 17b provided on mother board 16 are connected to high-frequency circuit 1F by via holes 18.
  • the conductor layer 4g of the high-frequency circuit 1F is connected to the conductor layer 17c of the mother board 16 by solder 13, and the conductor layer 17c is connected to the conductor layers 17d and 17e by a plurality of via holes 18.
  • Heat generated in the high-frequency device 3 is transmitted to the conductor layer 17c of the mother board 16 through the conductor layer 4g and the solder 13, and further from the conductor layer 17e through the conductor layer 17d and the upper and lower via holes 18 of the conductor layer 17d. Heat is dissipated.
  • the conductor layer 4g, the solder 13, the conductor layers 17c to 17e, and the via holes 18 constitute a heat radiation conductor layer. Further, the high frequency circuit 1F may be mounted on the mother board 16 having the metal block 19 shown in FIG.
  • the high-frequency device 11A has been molded with the resin 15 so far, but the sixth embodiment may be applied to the configuration shown in the second embodiment. That is, in the high-frequency circuits 1A and 1B according to the second embodiment, a surface 15 including the mirror surface 11b and the surface of the resin 15 surrounding it is molded with the resin 15 so that the mirror surface 11b of the high-frequency device 11 is exposed. 2 is covered with a shield part 21. Even if it does in this way, the effect similar to the above is acquired.
  • FIG. 12 is a top view showing the terminal arrangement of the high-frequency devices 3 and 11A.
  • the outline of the high-frequency device 11A and other than the terminals are shown through.
  • the circle with the letter S indicates the signal terminal
  • the circle with the letter G indicates the ground terminal.
  • a ground terminal is disposed around the signal terminal on the terminal surface 3a of the high-frequency device 3 and the terminal surface 11a of the high-frequency device 11A.
  • the ground terminals are arranged at intervals at which leakage of high-frequency signals in the operating frequency band of the high-frequency circuit 1F is reduced. For example, they are arranged at intervals at which the cutoff frequency is higher than the used frequency band. With this configuration, it is possible to reduce leakage of unnecessary high-frequency signals other than the signal path passing through the signal terminals.
  • FIG. 12 the configuration in which the ground terminals are arranged around the signal terminals on both the terminal surface 3a of the high-frequency device 3 and the terminal surface 11a of the high-frequency device 11A is shown, but either the terminal surface 3a or the terminal surface 11a is shown.
  • a ground terminal may be arranged around the signal terminal.
  • the terminal arrangement in which the ground terminal is arranged around the signal terminal may be applied to the high frequency device 3 provided in the high frequency circuit 1 according to the first embodiment. Even if it does in this way, the effect similar to the above is acquired.
  • the high-frequency circuit 1F covers the mirror surface 11b of the high-frequency device 11A and the resin 15 and is electrically connected to the ground conductor layers 4a-1 and 4b-2.
  • the shield part 21 is provided.
  • At least one of the terminal surface 3a of the high-frequency device 3 and the terminal surface 11a of the high-frequency device 11A leaks a high-frequency signal in the use frequency band around the signal terminal.
  • Ground terminals are arranged at reduced intervals. With this configuration, it is possible to reduce leakage of unnecessary high-frequency signals other than the signal path passing through the signal terminals.
  • FIG. 13 is a cross-sectional view showing a configuration of a high-frequency circuit 1G according to Embodiment 7 of the present invention.
  • the high-frequency circuit 1G includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is molded with a resin 15.
  • the metal plate 20 is bonded to the mirror surface 11b using an adhesive 10a.
  • the adhesive 10 a is desirably an adhesive having high thermal conductivity, like the adhesive 10.
  • the metal plate 20 is exposed from the resin 15 covering the high-frequency device 11A, and the entire surface 2-2 including the exposed metal plate 20 and the surrounding resin 15 is covered by the shield portion 21A. That is, in the high frequency circuit 1G, the resin 15 is provided up to the same height as the surface of the metal plate 20 or a lower height in the thickness direction of the high frequency device 11A. As a result, the high frequency circuit 1G has substantially the same thickness as the high frequency circuit 1E shown in FIG. 8, and is slightly thinner than the high frequency circuit 1C shown in FIG.
  • the shield portion 21A embodies the second shield portion in the present invention, and covers the surface 2-2 side of the printed wiring board 2B while being in contact with the conductor layers 4a-1 and 4b-2.
  • the shield part 21A is formed by metal plating the mirror surface 11b of the high-frequency device 11A and the surface of the resin 15.
  • a conductive thin film obtained by printing, spraying, or sealing a conductive material on the mirror surface 11b of the high-frequency device 11A and the surface of the resin 15 may be used as the shield portion 21A.
  • the high frequency circuit 1G operates in the same manner as the high frequency circuit 1C shown in the third embodiment.
  • heat generated in the high frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • the heat generated in the high frequency device 11A is radiated to the outside from the mirror surface 11b through the adhesive 10a, the metal plate 20, and the shield part 21.
  • unnecessary electromagnetic waves are not easily radiated to the outside of the high-frequency circuit 1G. .
  • the underfill 14 may be filled and fixed below the high-frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, the high-frequency circuit 1G may be mounted on the mother board 16 shown in FIGS.
  • Embodiment 7 may be applied to the structure shown in Embodiment 2. That is, in the high-frequency circuits 1A and 1B according to the second embodiment, the metal plate 20 is connected to the mirror surface 11b of the high-frequency device 11, molded with the resin 15 so that the metal plate 20 is exposed, and on the surface thereof. A shield part 21 may be provided. Even if it does in this way, the same effect as the above is acquired.
  • ground terminals are arranged around the signal terminal at intervals that do not leak high-frequency signals in the use frequency band of the high-frequency circuit 1G. May be. Thereby, it is possible to reduce leakage of unnecessary high-frequency signals to other than the signal path passing through the signal terminals.
  • the high-frequency circuit 1G covers the metal plate 20 and the resin 15 and is electrically connected to the ground potential conductor layers 4a-1 and 4b-2. Is provided.
  • a member having a low thermal resistance called the metal plate 20 is disposed near the high-frequency device 11A, so that heat dissipation is improved.
  • FIG. 14 is a cross-sectional view showing the configuration of the high-frequency circuit 1H according to the eighth embodiment of the present invention.
  • the high-frequency circuit 1H includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11B.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11B is molded with a resin 15.
  • the high-frequency device 11B embodies the second high-frequency device of the present invention, and a ground potential conductor layer 22 is provided on the mirror surface 11b, which is the back surface of the device, as shown in FIG.
  • the ground terminal on the terminal surface 11a is electrically connected to the conductor layer 22 through a via hole 23 that penetrates the high-frequency device 11B in the thickness direction.
  • the shield portion 21B covers the conductor layer 22 on the mirror surface 11b and the surface of the resin 15 provided therearound while being in contact with the conductor layers 4a-1 and 4b-2 at the ground potential.
  • the shield part 21B is formed by metal plating the conductor layer 22 of the high-frequency device 11B and the surface of the resin 15.
  • a conductive thin film obtained by printing, spraying, or sealing a conductive material on the surface of the conductor layer 22 and the resin 15 of the high-frequency device 11B may be used as the shield portion 21B.
  • the high frequency circuit 1H operates in the same manner as the high frequency circuit 1C shown in the third embodiment.
  • heat generated in the high frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • the heat generated in the high frequency device 11B is radiated to the outside from the mirror surface 11b through the conductor layer 22 and the shield part 21B.
  • the entire surface of the high frequency circuit 1H is covered with the shield portion 21B having the ground potential, so that unnecessary electromagnetic waves are not easily radiated to the outside of the high frequency circuit 1H. Yes.
  • FIG. 15 is a top view showing the high-frequency circuit 1H, and the high-frequency device 11B and the conductor layer 4b-1 covered with the resin 15 are indicated by broken lines.
  • the ground terminal of the terminal surface 11a and the conductor layer 22 are electrically connected by a plurality of via holes 23 arranged in a plane perpendicular to the thickness direction.
  • the ground potential space formed by the shield portion 21 ⁇ / b> B covering the high-frequency device 11 ⁇ / b> B is electromagnetically divided into a plurality of small spaces by these via holes 23. In each small space, the resonance frequency is shifted to a higher frequency and oscillation of the high-frequency device 11B is suppressed.
  • a ground conductor layer may be provided on the mirror surface 11b of the high-frequency device 11. In this case, the ground terminal of the terminal surface 11a of the high-frequency device 11 is electrically connected to the conductor layer through a via hole that penetrates the high-frequency device 11 in the thickness direction. Even if comprised in this way, the effect similar to the above is acquired.
  • the underfill 14 may be filled and fixed below the high frequency device 11B, and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> B may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, the high frequency circuit 1H may be mounted on the mother board 16 shown in FIGS.
  • Embodiment 8 may be applied to the structure shown in Embodiment 2. That is, in the high-frequency circuits 1A and 1B according to the second embodiment, the conductor layer 22 is formed on the mirror surface 11b of the high-frequency device 11 and molded with the resin 15 so that the conductor layer 22 is exposed. A shield part 21 ⁇ / b> B may be provided on the resin 15. Even if it does in this way, the same effect as the above is acquired.
  • ground terminals are arranged around the signal terminal at intervals that reduce leakage of high-frequency signals in the use frequency band. May be. Thereby, it is possible to reduce leakage of unnecessary high-frequency signals to other than the signal path passing through the signal terminals.
  • the ground conductor layer 22 is formed on the mirror surface 11b of the high-frequency device 11B.
  • the ground terminal of the terminal surface 11a is electrically connected to the conductor layer 22 by a via hole 23 that penetrates the high-frequency device 11B in the thickness direction.
  • the ground potential space formed by the shield portion 21B covering the high-frequency device 11B is electromagnetically divided into small spaces by the via holes 23. Since the resonance frequency shifts to a higher frequency in the small space, the oscillation of the high-frequency device 11B can be suppressed.
  • FIG. 16 is a cross-sectional view showing a configuration of a high-frequency circuit 1I according to Embodiment 9 of the present invention.
  • the high-frequency circuit 1I includes a printed wiring board 2B, a high-frequency device 3, and a high-frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is covered with a metal cap 24.
  • the metal cap 24 is a hollow metal member that is partially opened, and is disposed so that the opened portion faces the surface 2-2 of the printed wiring board 2B. Further, the metal cap 24 is in contact with the ground conductor layers 4a-1 and 4b-2 in a state of being disposed on the printed wiring board 2B.
  • the high frequency circuit 1I operates in the same manner as the high frequency circuit 1C shown in the third embodiment. In this operation, heat generated in the high frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g. Further, the heat generated in the high frequency device 11A is radiated from the mirror surface 11b to the hollow portion covered with the metal cap 24. Further, when a signal propagates inside the high-frequency circuit 1I, the entire surface of the high-frequency circuit 1I is covered with the metal cap 24 having the ground potential, so that unnecessary electromagnetic waves are not easily radiated to the outside of the high-frequency circuit 1I. Yes.
  • the underfill 14 may be filled and fixed below the high frequency device 11A and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> B with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, the high-frequency circuit 1I may be mounted on the mother board 16 shown in FIGS.
  • Embodiment 9 may be applied to the structure shown in Embodiment 2. That is, the metal cap 24 may be attached to the high-frequency circuits 1A and 1B according to the second embodiment. Even if it does in this way, the effect similar to the above is acquired.
  • ground terminals are arranged around the signal terminals at intervals at which leakage of high-frequency signals in the use frequency band is reduced on at least one of the terminal surface 3a of the high-frequency device 3 and the terminal surface 11a of the high-frequency device 11A. Also good. Thereby, it is possible to reduce leakage of unnecessary high-frequency signals to other than the signal path passing through the signal terminals.
  • the high-frequency circuit 1I covers the surface 2-2 side of the printed wiring board 2B and is electrically connected to the ground conductor layers 4a-1 and 4b-2.
  • a metal cap 24 is provided.
  • FIG. 17 is a sectional view showing the structure of a high-frequency circuit 1J according to Embodiment 10 of the present invention.
  • the high-frequency circuit 1J includes a printed wiring board 2C, a high-frequency device 3, and a high-frequency device 11A.
  • a surface 2-2 of the printed wiring board 2B including the high-frequency device 11A is molded with a resin 15. Further, the mirror surface 11 b exposed from the resin 15 and the surface of the resin 15 around the mirror surface 11 b are covered with a shield portion 21.
  • the printed wiring board 2C is a board constituting the high-frequency circuit 1J according to the tenth embodiment, and includes a core layer 5A and a buildup layer 6C.
  • the core layer 5A and the buildup layer 6C include conductor layers 4a-1, 4b-1, 4b-2, 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f. -1, 4f-2, 4g, 4g-1 to 4g-5, 4h to 4k, and 4l-1 to 4l-5.
  • the core layer 5A embodies the first dielectric layer according to the present invention, and the conductor layers 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f- 1, 4f-2 are stacked so as to sandwich the insulating layer 5a, and have an opening 5b penetrating in the layer thickness direction.
  • the build-up layer 6C embodies the second dielectric layer in the present invention, and is laminated on the upper surface orthogonal to the layer thickness direction of the core layer 5A, and orthogonal to the layer thickness direction of the core layer 5A. One layer is laminated on the lower surface.
  • the build-up layer 6C and the via hole 8 are stacked using, for example, a build-up method.
  • the conductor layers 4c-1 to 4c-4, 4e-1, and 4e-2 are conductor layers provided on the upper surface side of the core layer 5A.
  • the conductor layers 4d-1 to 4d-4, 4f-1, and 4f- 2 is a conductor layer provided on the lower surface side of the core layer 5A.
  • the conductor layers 4g, 4g-1 to 4g-5 are conductor layers provided on the buildup layer 6C on the lower surface side of the core layer 5A.
  • the first buildup layer 6C from the top surface of the core layer 5A is provided with conductor layers 4a-1, 4b-1, 4b-2, 4h to 4k, and the second buildup layer from the top surface of the core layer 5A.
  • the layer 6C is provided with conductor layers 4l-1 to 4l-5.
  • Conductive layers 4c-1 to 4c-4 and conductive layers 4d-1 to 4d-4 are electrically connected by via holes 7 provided in core layer 5A.
  • the conductor layers 4d-1 to 4d-4 and the conductor layers 4g-1 to 4g to 3 and 4g are electrically connected by via holes 8 provided in the buildup layer 6C.
  • the conductor layers 4e-1, 4e-2 and the conductor layers 4f-1, 4f-2 are electrically connected by the via holes 7, and the conductor layers 4f-1, 4f-2 and the conductor layers 4g-4, 4g-5 is electrically connected to the via hole 8.
  • the conductor layers 4c-1 and 4c-2 and the conductor layer 4a-1 are electrically connected by a via hole 8 provided in the first buildup layer 6C from the upper surface of the core layer 5A.
  • the conductor layers 4c-3, 4c-4 and the conductor layers 4k, 4j are electrically connected by the first via hole 8, and the conductor layers 4e-1, 4e-2 and the conductor layers 4b-1, 4b- 2 are electrically connected.
  • the conductor layer 4a-1 and the conductor layer 4l-1 are electrically connected by a via hole 8 provided in the second buildup layer 6C from the upper surface of the core layer 5A.
  • the conductor layer 4b-2 and the conductor layer 4l-5 are electrically connected by the second via hole 8
  • the conductor layer 4h and the conductor layer 4l-5 are electrically connected
  • the conductor layer 4i and the conductor layer 4l-5 are electrically connected.
  • 4l-4 is electrically connected.
  • the conductor layer 4j and the conductor layer 41-3 are electrically connected by the second via hole 8
  • the conductor layer 4k and the conductor layer 41-2 are electrically connected.
  • the high-frequency device 3 is accommodated in the opening 5b of the core layer 5A with the terminal surface 3a facing upward.
  • the mirror surface 3 b of the high-frequency device 3 is bonded to the conductor layer 4 g using the adhesive 10.
  • the adhesive 10 is desirably an adhesive having high thermal conductivity.
  • the signal terminal 9a on the terminal surface 3a is electrically connected to the signal conductor conductor layer 4i by the first-layer via hole 8
  • the signal terminal 9b on the terminal surface 3a is electrically connected to the signal conductor conductor layer by the first-layer via hole 8.
  • 4b-1 is electrically connected.
  • the ground terminal 9c on the terminal surface 3a is electrically connected to the ground conductor layer 4h through the first via hole 8.
  • the ground conductor layers 4h and 4j are disposed around the signal conductor layer 4i, and the signal conductor layer 4b-1 Are provided with ground conductor layers 4h and 4b-2.
  • the ground conductor conductor layers 4l-3 and 4l-5 are arranged around the signal conductor conductor layers 4l-4.
  • the conductor layers 4g and 4g-5 of the ground conductor are arranged around the conductor layer 4g-4 of the signal conductor.
  • a signal input to the conductor layer 4g-3 is input to the core layer 5A through the via hole 8 and the conductor layer 4d-3, and passes through the via hole 7, the conductor layer 4c-3, and the via hole 8 to enter the core layer 5A.
  • the signal is input to the conductor layer 41-2 in the second buildup layer 6C from the upper surface of the core layer 5A through the via hole 8, and input to the high-frequency device 11A through the solder 13 and the signal terminal 12f.
  • the high frequency device 11A processes the signal.
  • the heat generated in the high-frequency device 11A is radiated to the outside through the shield part 21 from the mirror surface 11b.
  • the signal processed by the high frequency device 11A is input to the conductor layer 4i through the signal terminal 12d, the solder 13, the conductor layer 4l-4, and the via hole 8. Next, the signal is input to the high frequency device 3 through the via hole 8 and the signal terminal 9a. Thereby, the high frequency device 3 processes the signal.
  • the signal processed by the high frequency device 3 is input to the core layer 5A through the signal terminal 9b, the via hole 8, the conductor layer 4b-1, and the via hole 8.
  • the signal is output from the core layer 5A through the conductor layer 4e-1, the via hole 7 and the conductor layer 4f-1, and is output from the conductor layer 4g-4 through the via hole 8.
  • the heat generated in the high-frequency device 3 is radiated to the outside from the mirror surface 3b through the adhesive 10 and the conductor layer 4g.
  • unnecessary electromagnetic waves are hardly radiated to the outside of the high-frequency circuit 1J.
  • the signal conductor conductor layer 4b-1 is surrounded by the ground conductor layers 4h, 4l-5, 4b-2, and 4e-2, and the signal conductor conductor layer 4g-4 is surrounded by the ground conductor layer 4g. , 4g-5.
  • the underfill 14 may be filled and fixed below the high frequency device 11A, and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> C with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Further, the high-frequency circuit 1J may be mounted on the mother board 16 shown in FIGS.
  • ground terminals are arranged around the signal terminals at intervals at which leakage of high-frequency signals in the use frequency band is reduced on at least one of the terminal surface 3a of the high-frequency device 3 and the terminal surface 11a of the high-frequency device 11A. Also good. Thereby, it is possible to reduce leakage of unnecessary high-frequency signals to other than the signal path passing through the signal terminals.
  • the buildup layer 6c is laminated on the upper surface side of the core layer 5A, and the signal terminals 9a and 9b of the high-frequency device 3 are connected to the conductor layers 4i and 4b ⁇ . 1 and 4l-4 are electrically connected.
  • ground conductor layers 4j, 4h, and 4b-2 are arranged around the signal conductor conductor layers 4i and 4b-1, and around the signal conductor conductor layers 4l-4.
  • Conductor layers 4l-3 and 4l-5 are disposed.
  • FIG. FIG. 18 is a sectional view showing the structure of a high-frequency circuit 1K according to Embodiment 11 of the present invention.
  • the high frequency circuit 1K includes a printed wiring board 2D, a high frequency device 3, and a high frequency device 11A.
  • a surface 2-2 of the printed wiring board 2D including the high frequency device 11A is molded with a resin 15. Further, the mirror surface 11 b exposed from the resin 15 and the surface of the resin 15 around it are covered with a shield portion 21.
  • the printed wiring board 2D is a board constituting the high-frequency circuit 1K according to the eleventh embodiment, and includes a core layer 5A and a buildup layer 6D. Further, the printed wiring board 2D includes conductor layers 4a-1, 4b-1, 4b-2, 4c-1 to 4c-4, 4d-1 to 4d-4, 4e-1, 4e-2, 4f-1, 4f-2, 4g, 4g-1 to 4g-5, 4h to 4k, 4l-1 to 4l-5, and 4m-1 to 4m-6.
  • the build-up layer 6D embodies the second dielectric layer in the present invention, and is laminated on the upper surface orthogonal to the layer thickness direction of the core layer 5A, and orthogonal to the layer thickness direction of the core layer 5A. Two layers are laminated on the lower surface.
  • the build-up layer 6C and the via hole 8 are stacked using, for example, a build-up method.
  • the build-up layer 6D is laminated with the same number of layers on the upper surface and the lower surface of the core layer 5A, the warp of the printed wiring board 2D can be reduced with a vertically symmetrical layer configuration.
  • the conductor layers 4m-1 to 4m-6 are conductor layers provided on the lowermost buildup layer 6D laminated on the lower surface side of the core layer 5A.
  • the conductor layers 4d-1 to 4d-3 and the conductor layers 4m-1 to 4m-3 are electrically connected via the via holes 8 with the conductor layers 4g-1 to 4g-3 interposed therebetween.
  • the conductor layer 4m-4 is electrically connected by a plurality of via holes 8.
  • the conductor layers 4g-4, 4g-5 and the conductor layers 4m-5, 4m-6 are electrically connected by a via hole 8.
  • the conductor layer 4m-4 is a ground conductor layer having one surface facing the outside of the printed wiring board 2D and the other surface facing the conductor layer 4g. As described above, a plurality of via holes 8 are arranged between the conductor layer 4m-4 and the conductor layer 4g, and these via holes 8 serve as a heat dissipation path. That is, in the high-frequency circuit 1K according to the eleventh embodiment, the conductor layer 4g and the conductor layer 4m-4 connected by the via hole 8 constitute a heat radiation conductor layer.
  • the conductor layer 4m-5 is a signal conductor layer. As shown in FIG. 18, ground conductor layers 4m-4 and 4m-6 are arranged around the conductor layer 4m-5.
  • a signal input to the conductor layer 4m-3 is input to the core layer 5A through the via hole 8, the conductor layer 4g-3, the via hole 8, and the conductor layer 4d-3, and is input to the via hole 7, the conductor layer 4c-3.
  • the signal is input to the conductor layer 4k in the buildup layer 6D through the via hole 8.
  • the signal is input to the conductor layer 41-2 through the via hole 8, and input to the high-frequency device 11A through the solder 13 and the signal terminal 12f.
  • the high frequency device 11A processes the signal. At this time, the heat generated in the high-frequency device 11A is radiated to the outside through the shield part 21 from the mirror surface 11b.
  • the signal processed by the high frequency device 11A is input to the conductor layer 4i through the signal terminal 12d, the solder 13, the conductor layer 4l-4, and the via hole 8. Next, the signal is input to the high frequency device 3 through the via hole 8 and the signal terminal 9a. Thereby, the high frequency device 3 processes the signal.
  • the signal processed by the high-frequency device 3 is input to the conductor layer 4b-1 through the signal terminal 9b and the via hole 8, and is input to the core layer 5A through the via hole 8.
  • the signal passes through the conductor layer 4e-1, the via hole 7 and the conductor layer 4f-1, and is output from the core layer 5A.
  • the conductor layer 4g-4 and the via hole 8 the conductor layer 4m Output from -5.
  • the heat generated in the high-frequency device 3 at this time is radiated from the mirror surface 3b to the outside through the adhesive 10, the conductor layer 4g, the via hole 8, and the conductor layer 4m-4.
  • the entire surface of the high-frequency circuit 1K is covered with the shield portion 21 having the ground potential, so that unnecessary electromagnetic waves are not easily radiated to the outside of the high-frequency circuit 1K. .
  • the signal conductor conductor layer 4b-1 is surrounded by ground conductor conductor layers 4h, 4l-5, 4b-2, and 4e-2.
  • the signal conductor conductor layer 4g-4 is surrounded by the ground conductor layers 4g and 4g-5, and the signal conductor conductor layer 4m-5 is connected to the ground conductor layers 4m-4 and 4m-6. Surrounded by Thereby, the electromagnetic interference between the high frequency devices in the high frequency circuit 1K and between other circuits can be reduced, and the oscillation of the high frequency circuit 1K can be suppressed.
  • the underfill 14 may be filled and fixed below the high frequency device 11A, and then molded with the resin 15. Further, instead of the solder 13, the high-frequency device 11 ⁇ / b> A may be connected to the printed wiring board 2 ⁇ / b> D with an anisotropic conductive adhesive, and an insulating adhesive may be used for the underfill 14. Furthermore, the high frequency circuit 1K may be mounted on the mother board 16 shown in FIGS.
  • ground terminals are arranged around the signal terminal at intervals that reduce leakage of high-frequency signals in the use frequency band. May be. Thereby, it is possible to reduce leakage of unnecessary high-frequency signals to other than the signal path passing through the signal terminals.
  • the buildup layer 6D may be stacked with the same number of layers on the upper surface and the lower surface of the core layer 5A. Further, in this configuration, by arranging the ground conductor layer around the conductor layer electrically connected to the signal terminals 9a and 9b of the high-frequency device 3, the same effect as described above can be obtained.
  • the buildup layer 6D is laminated with the same number of layers on the upper surface and the lower surface of the core layer 5A. By comprising in this way, it becomes a vertically symmetrical layer structure, and the curvature of printed wiring board 2D can be reduced.
  • the high-frequency circuit according to the present invention is suitable for a high-frequency circuit used in a transmission / reception unit of a communication device, for example, because it is small in size, reduces loss of input / output signals, and can realize high heat dissipation characteristics.

Abstract

 プリント配線基板(2)は、導体層(4a~4h)、開口部(5b)を有するコア層(5)およびビルドアップ層(6)を有する。高周波デバイス(3)は、開口部(5b)の内部に収容されて、ミラー面(3b)がコア層(5)の下面側から開口部(5b)に対向した放熱用の導体層(4g)に熱的に接続され、端子面(3a)の端子が、コア層(5)の上面側に設けられた導体層に電気的に接続されている。

Description

高周波回路
 この発明は、例えば、通信機器に使用される高周波デバイスが搭載された高周波回路に関する。
 通信機器などに使用される高周波回路の送受信部は、一般的に、高出力増幅器、低雑音増幅器、ミキサ、発振器を備えて構成される。送受信部として使用される高出力増幅器は発熱量が大きなデバイスであるため、放熱対策が必要となる。
 例えば、特許文献1に記載される半導体装置では、発熱量が大きいデバイスの上に板状リードを配置して、この板状リードを介してデバイスを放熱している。
 また、従来から、高周波回路の送受信部として小型で入出力信号の損失が低い送受信部を実現するため、デバイス間の配線を短くすることが要求されている。
 例えば、特許文献2に記載される多層回路モジュールでは、多層基板の内部層に高周波デバイスを配置して上下に配線を接続することで配線を短くしている。
特開2011-181970号公報 特開2012-238797号公報
 しかしながら、特許文献1に記載された半導体装置では、複数のデバイスが基板の平面方向に配置されている。このため、デバイス間の接続部が長くなってサイズも大きくなるという課題があった。また、接続部を構成する配線が長くなるに連れて入出力信号の損失も増加する。
 一方、特許文献2に記載された多層回路モジュールは、小型で入出力信号の損失を低減できる構造を有しているが、多層回路モジュールを構成するデバイスの放熱が考慮されていない。このため、複数のデバイスの発熱による性能の劣化が懸念される。
 この発明は上記課題を解決するもので、サイズが小型で入出力信号の損失が低減され、高い放熱特性を実現することができる高周波回路を得ることを目的とする。
 この発明に係る高周波回路は、基板と、第1の高周波デバイスとを備える。
 基板は、層厚方向に貫通された開口部を有する第1の誘電体層、第1の誘電体層の一方の面と他方の面に積層された第2の誘電体層、および第1の誘電体層と第2の誘電体層に設けられた複数の導体層を有する。
 第1の高周波デバイスは、開口部の内部に収容され、端子面とは反対側のデバイス裏面が、複数の導体層のうち、第1の誘電体層の一方の面側から開口部に対向している放熱用の導体層に熱的に接続され、端子面の端子が、複数の導体層のうち、第1の誘電体層の他方の面側に設けられた端子用の導体層に電気的に接続されている。
 この発明によれば、基板に内蔵された第1の高周波デバイスの端子が、短い配線距離で導体層に接続されているので、サイズが小型な回路を実現でき、入出力信号の損失を低減することができる。さらに、第1の高周波デバイスのデバイス裏面が、放熱用の導体層に熱的に接続されているので、高い放熱特性を実現することができる。
この発明の実施の形態1に係る高周波回路の構成を示す断面図である。 この発明の実施の形態2に係る高周波回路の構成を示す断面図である。 実施の形態2に係る高周波回路の変形例を示す断面図である。 この発明の実施の形態3に係る高周波回路の構成を示す断面図である。 実施の形態3に係る高周波回路の変形例を示す断面図である。 実施の形態3に係る高周波回路の別の変形例を示す断面図である。 この発明の実施の形態4に係る高周波回路の構成を示す断面図である。 この発明の実施の形態5に係る高周波回路の構成を示す断面図である。 この発明の実施の形態6に係る高周波回路の構成を示す断面図である。 実施の形態6に係る高周波回路を示す上面図である。 実施の形態6に係る高周波回路の変形例を示す断面図である。 高周波デバイスの端子配置を示す上面図である。 この発明の実施の形態7に係る高周波回路の構成を示す断面図である。 この発明の実施の形態8に係る高周波回路の構成を示す断面図である。 実施の形態8に係る高周波回路を示す上面図である。 この発明の実施の形態9に係る高周波回路の構成を示す断面図である。 この発明の実施の形態10に係る高周波回路の構成を示す断面図である。 この発明の実施の形態11に係る高周波回路の構成を示す断面図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る高周波回路1の構成を示す断面図である。高周波回路1は、図1に示すように、プリント配線基板2と高周波デバイス3を備えている。
 プリント配線基板2は、高周波回路1を構成する基板であり、導体層4a~4h、コア層5、ビルドアップ層6を備える。導体層4a~4hは、コア層5とビルドアップ層6に形成された導体層である。
 また、高周波デバイス3は、この発明における第1の高周波デバイスを具体化したものであり、例えば、一方の面が端子面3a、他方の面がミラー面3bである半導体チップにより実現される。ここで、端子面3aは高周波デバイス3の端子が配置された面であり、ミラー面3bは、端子面3aとは反対側のデバイス裏面であって端子が配置されていない面である。
 導体層4gは、この発明における放熱用の導体層を具体化したものであって、例えば、プリント配線基板2の一方の面2-1に設けられて、コア層5の下面側から開口部5bに対向する、接地電位の導体層である。
 すなわち、導体層4gは、プリント配線基板2の最下層となるビルドアップ層6に設けられて、一方の面が外部に面し、他方の面が開口部5bに対向した導体層である。
 以下、接地電位の導体層を地導体または地導体層と適宜記載し、信号が伝搬される導体層を信号導体または信号導体層と適宜記載する。
 なお、放熱用の導体層は、図1に示すように、一方の面がプリント配線基板2の外部に面した導体層4gが好ましいが、ビルドアップ層6の内層に設けられた地導体層を用いてもよい。ただし、この場合、放熱用の導体層は、放熱経路となるビアホールを介してプリント配線基板2の外部に面した地導体層と、ビルドアップ層6の内層の上記地導体層とが接続された複数層の構成となる。
 また、導体層4a,4b,4hは、この発明における端子用の導体層を具体化したものであり、プリント配線基板2の他方の面2-2に設けられて、高周波デバイス3の端子と電気的に接続される導体層により実現される。
 ここで、導体層4hは、プリント配線基板2の他方の面2-2に設けられた地導体層である。導体層4a,4bは、図1に示すように、プリント配線基板2の他方の面2-2に配置された信号導体層であり、導体層4a,4bに信号が伝搬される。
 なお、導体層4c~4fは、コア層5に配置された地導体層である。
 コア層5は、この発明における第1の誘電体層を具体化したものであり、導体層4c~4fで絶縁層5aを挟むように積層され、層厚方向に貫通された開口部5bを有する。
 導体層4cと導体層4dは、コア層5に設けられたビアホール7によって電気的に接続され、導体層4dと導体層4gは、ビルドアップ層6に設けられたビアホール8によって電気的に接続される。同様に、導体層4eと導体層4fとが、ビアホール7によって電気的に接続され、導体層4fと導体層4gとが、ビアホール8によって電気的に接続されている。
 ビルドアップ層6は、この発明における第2の誘電体層を具体化したものであり、コア層5の層厚方向に直交する一方の面(下面)と、コア層5の層厚方向に直交する他方の面(上面)とにそれぞれ積層されている。なお、ビルドアップ層6およびビアホール8は、例えば、ビルドアップ工法を用いて積層される。
 また、高周波デバイス3は、コア層5の開口部5bの内部に、端子面3aを上側にして収容される。このとき、高周波デバイス3のミラー面3bは、接着剤10を用いて導体層4gに接着される。このようにミラー面3bと導体層4gの表面とを密着させて固定することで、ミラー面3bと導体層4gとが熱的に接続される。なお、接着剤10は、高熱伝導性を有した接着剤であることが望ましい。
 ミラー面3bと導体層4gとを熱的に接続する方法としては、接着剤10を用いる方法以外に、例えば、ミラー面3bと導体層4gを接触させた状態で高周波デバイス3を樹脂モールドしてもよい。
 端子面3aの信号端子9aは、ビルドアップ層6のビアホール8によって導体層4aに電気的に接続され、端子面3aの信号端子9bは、ビアホール8によって導体層4bに電気的に接続されている。導体層4a,4bは、前述したように信号導体層である。
 端子面3aのグランド端子9cは、ビアホール8によって導体層4hに電気的に接続されている。導体層4hは、前述したように地導体層である。
 次に動作について説明する。
 導体層4aに入力された信号は、ビアホール8と信号端子9aを通って高周波デバイス3に入力される。これにより、高周波デバイス3は上記信号を処理する。
 高周波デバイス3によって処理された信号は、信号端子9bとビアホール8とを通って導体層4bから出力される。このときに高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 以上のように、実施の形態1に係る高周波回路1は、プリント配線基板2および高周波デバイス3を備える。
 プリント配線基板2は、導体層4a~4h、層厚方向に貫通された開口部5bを有するコア層5およびコア層5の上下両面に積層されたビルドアップ層6を有する。
 コア層5の開口部5bの内部に収容された高周波デバイス3のミラー面3bは、導体層4a~4hのうち、コア層5の下面側から開口部5bに対向した放熱用の導体層4gに熱的に接続される。端子面3aの端子9a~9bは、コア層5の上面側に設けられた端子用の導体層4a,4b,4hに電気的に接続される。
 このように高周波デバイス3がプリント配線基板2に内蔵されるので、高周波回路1が低背化されてサイズが小型な回路を実現することができる。
 また、ビルドアップ層6に設けられたビアホール8によって短い配線距離で端子が接続されるので、入出力信号の損失を低減することができる。
 さらに、高周波デバイス3のミラー面3bが導体層4gに熱的に接続されるので、熱伝導性の低い材料が介在する距離が短くなって高い放熱特性を実現することができる。
実施の形態2.
 図2は、この発明の実施の形態2に係る高周波回路1Aの構成を示す断面図である。図2において、図1と同一の構成要素には同一の符号を付して説明を省略する。
 高周波回路1Aは、図2に示すようにプリント配線基板2A、高周波デバイス3および高周波デバイス11を備えて構成される。プリント配線基板2Aは、高周波回路1Aを構成する基板であり、導体層4a~4k、コア層5、ビルドアップ層6Aを備える。また、導体層4a~4kは、コア層5とビルドアップ層6Aに設けられた導体層である。
 高周波デバイス11は、この発明における第2の高周波デバイスを具体化したものであって、例えば、一方の面が端子面11a、他方の面がミラー面11bである半導体チップにより実現される。端子面11aは、高周波デバイス11の端子が配置された面であり、ミラー面11bは、端子面11aとは反対側のデバイス裏面であって端子が配置されていない面である。
 導体層4gは、実施の形態1で示したように、プリント配線基板2Aの一方の面2-1に設けられて、コア層5の下面側から開口部5bに対向する放熱用の導体層である。
 導体層4h,4j,4kは、プリント配線基板2Aの他方の面2-2に設けられた地導体層である。また、高周波回路1Aでは、導体層4a,4b,4iが端子用の導体層となる。
 ビルドアップ層6Aは、この発明における第2の誘電体層を具体化したものであって、コア層5の層厚方向に直交する上面と、コア層5の層厚方向に直交する下面とにそれぞれ積層されている。なお、ビルドアップ層6Aとビアホール8とは、例えば、ビルドアップ工法を用いて積層される。
 また、高周波デバイス11は、プリント配線基板2Aの他方の面2-2に端子面11aを向けて実装される。端子面11aの信号端子12aは、はんだ13によって導体層4aに電気的に接続され、端子面11aの信号端子12dは、はんだ13によって導体層4iに電気的に接続されている。なお、導体層4a,4iは、信号導体層である。
 端子面11aのグランド端子12bは、はんだ13によって導体層4kに電気的に接続され、グランド端子12cは、はんだ13によって導体層4jに電気的に接続される。
 端子面11aのグランド端子12eは、はんだ13によって導体層4hに電気的に接続されている。なお、導体層4k,4j,4hは、地導体層である。
 導体層4jおよび導体層4kは、ビルドアップ層6Aのビアホール8によってコア層5の導体層4cに電気的に接続される。導体層4hは、ビアホール8によって高周波デバイス3のグランド端子9cに電気的に接続されている。また、導体層4iは、ビアホール8によって信号端子9aに電気的に接続されている。
 次に動作について説明する。
 導体層4aに入力された信号は、はんだ13と信号端子12aを通って高周波デバイス11に入力される。これにより、高周波デバイス11は、上記信号を処理する。
 高周波デバイス11によって処理された信号は、信号端子12d、はんだ13、導体層4i、ビアホール8および信号端子9aを通って高周波デバイス3に入力される。これにより、高周波デバイス3は上記信号を処理する。
 高周波デバイス3によって処理された信号は、信号端子9bとビアホール8とを通って導体層4bから出力される。このときに高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 なお、図2では、高周波デバイス11をはんだ13のみでプリント配線基板2Aに接続した構成を示したが、図3に示す高周波回路1Bのように、高周波デバイス11の下方にアンダーフィル14を充填して固定してもよい。
 また、はんだ13の代わりに、高周波デバイス11を異方導電性接着剤でプリント配線基板2Aに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 以上のように、実施の形態2に係る高周波回路1A,1Bは、プリント配線基板2Aの他方の面2-2に端子面11aを向けて実装された高周波デバイス11を備える。
 図2に示すように、高周波デバイス11は高周波デバイス3の上方に配置されるため、高周波デバイス3と高周波デバイス11との間の配線距離が短くなり、入出力信号の損失を低減することができる。
 また、高周波デバイス3がプリント配線基板2Aに内蔵されるので、複数の高周波デバイスを用いても小型な回路を実現できる。
 さらに実施の形態1と同様に、高周波デバイス3のミラー面3bが放熱用の導体層4gに熱的に接続されるので、熱伝導性の低い材料が介在する距離が短くなって高い放熱特性を実現できる。
実施の形態3.
 図4は、この発明の実施の形態3に係る高周波回路1Cの構成を示す断面図である。
 図4において、図1および図2と同一の構成要素には、同一の符号を付して説明を省略する。高周波回路1Cは、プリント配線基板2B、高周波デバイス3および高周波デバイス11Aを備え、図4に示すように、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。
 ここで、プリント配線基板2Bは、導体層4a-1,4b-1,4b-2,4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2,4g,4g-1~4g-5,4h~4k、コア層5A、ビルドアップ層6Bを備えている。
 導体層4a-1,4b-1,4b-2,4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2,4g,4g-1~4g-5,4h~4kは、コア層5Aとビルドアップ層6Bに設けられた導体層である。
 導体層4gは、実施の形態1で示したように、プリント配線基板2Bの面2-1に設けられた放熱用の導体層である。また、導体層4a-1,4b-2,4c-1,4c-2,4c-4,4d-1,4d-2,4d-4,4e-2,4f-2,4g,4g-1,4g-2,4g-5,4h,4jは地導体層である。導体層4c-3,4d-3,4g-3,4g-4,4i,4b-1,4e-1,4f-1,4kは信号導体層である。
 導体層4c-1~4c-4と導体層4d-1~4d-4とは、コア層5Aに設けられたビアホール7によって電気的に接続されており、導体層4d-4と導体層4gは、ビルドアップ層6Bに設けられたビアホール8によって電気的に接続されている。
 同様に、導体層4e-1,4e-2と導体層4f-1,4f-2とが、ビアホール7によって電気的に接続され、導体層4f-1,4f-2と導体層4g-4,4g-5とが、ビアホール8によって電気的に接続されている。
 コア層5Aは、この発明における第1の誘電体層を具体化したものであり、導体層4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2で絶縁層5aを挟むように積層され、層厚方向に貫通された開口部5bを有する。
 ビルドアップ層6Bは、この発明における第2の誘電体層を具体化したものであって、コア層5Aの層厚方向に直交する上面と、コア層5Aの層厚方向に直交する下面とにそれぞれ積層されている。
 なお、ビルドアップ層6Bおよびビアホール8は、例えば、ビルドアップ工法を用いて積層される。
 高周波デバイス11Aは、この発明における第2の高周波デバイスを具体化したものであり、プリント配線基板2Bの面2-2に端子面11aを向けて実装される。
 端子面11aの信号端子12fは、はんだ13によって信号導体の導体層4kに電気的に接続され、端子面11aの信号端子12dは、はんだ13によって信号導体の導体層4iに電気的に接続されている。
 端子面11aのグランド端子12gは、はんだ13によって地導体の導体層4a-1に電気的に接続され、グランド端子12cは、はんだ13によって地導体の導体層4jに電気的に接続されている。さらに、端子面11aのグランド端子12eは、はんだ13によって地導体の導体層4hに電気的に接続されている。
 次に動作について説明する。
 導体層4g-3に入力された信号は、ビアホール8と導体層4d-3を通ってコア層5Aに入力され、ビアホール7、導体層4c-3、ビアホール8、導体層4k、はんだ13および信号端子12fを通って高周波デバイス11Aに入力される。これにより、高周波デバイス11Aは、上記信号を処理する。
 高周波デバイス11Aによって処理された信号は、信号端子12d、はんだ13、導体層4i、ビアホール8および信号端子9aを通って高周波デバイス3に入力される。これにより、高周波デバイス3は上記信号を処理する。
 高周波デバイス3により処理された信号は、信号端子9b、ビアホール8、導体層4b-1、ビアホール8、導体層4e-1を通ってコア層5Aに入力され、ビアホール7、導体層4f-1、ビアホール8を通って導体層4g-4から出力される。
 このときに高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 なお、高周波回路1Cにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5に示すように、高周波回路1Cは母基板16に搭載してもよい。
 図5において、母基板16に設けられた導体層17a,17bは、信号導体層であり、ビアホール18によって高周波回路1Cに接続される。
 また、母基板16に設けられた導体層17c,17d,17eは、地導体層であり、母基板16を層厚方向に貫通する複数のビアホール18によって互いに接続されている。
 これらのビアホール18が放熱経路となる。
 高周波デバイス3で発生した熱は、導体層4gとはんだ13を通って母基板16の導体層17cに伝わり、さらに、導体層17dとこの導体層17dの上下のビアホール18を通って導体層17eから放熱される。すなわち、図5に示す高周波回路1Cでは、導体層4g、はんだ13、導体層17c~17eおよびビアホール18によって放熱用の導体層が構成される。
 また、図6に示すように、母基板16における、導体層17cと導体層17eとの間に金属ブロック19を配置してもよい。この構成では、金属ブロック19が導体層17cと導体層17eとに接触しており、高周波デバイス3で発生した熱は、導体層17cと金属ブロック19を通って導体層17eから放熱される。
 すなわち、図6に示す高周波回路1Cでは、導体層4g、はんだ13、導体層17c、金属ブロック19および導体層17eによって放熱用の導体層が構成される。
 なお、高周波デバイス11Aを樹脂15でモールドする構成を示したが、実施の形態3は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11を樹脂15でモールドしてもよい。このようにしても、上記と同様の効果が得られる。
 以上のように、実施の形態3に係る高周波回路1Cにおいて、高周波デバイス11Aが樹脂15でモールドされている。このように構成することで、実施の形態2で示した効果に加え、樹脂15によるモールドで実装の信頼性が向上する。
 また、高周波回路1Cは、プリント配線基板2Bの面2-1側に信号を通す構造であるので、表面実装用のパッケージとして使用することが可能である。
実施の形態4.
 図7は、この発明の実施の形態4に係る高周波回路1Dの構成を示す断面図である。
 図7において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Dは、プリント配線基板2B、高周波デバイス3および高周波デバイス11Aを備えており、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。
 また、高周波回路1Dにおける高周波デバイス11Aでは、図7に示すように樹脂15からミラー面11bが露出している。すなわち、高周波回路1Dにおいて、樹脂15は、高周波デバイス11Aの厚み方向におけるミラー面11bと同じ高さまたはそれより低い高さまで設けられる。これにより、高周波回路1Dは、図5に示した高周波回路1Cよりも薄型な回路となっている。
 高周波回路1Dは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bと接着剤10を通って導体層4gから外部に放熱される。高周波デバイス11Aで発生した熱は、ミラー面11bから外部に放熱される。
 なお、高周波回路1Dにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Dを搭載してもよい。
 また、高周波デバイス11Aを樹脂15でモールドした構成を示したが、実施の形態4は、実施の形態2で示した構成に適用してもよい。すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bが露出するように樹脂15でモールドしてもよい。
 以上のように、実施の形態4に係る高周波回路1Dにおいて、高周波デバイス11Aのミラー面11bが樹脂15から露出している。
 このように構成することで、実施の形態3で示した効果に加え、薄型の回路を実現することできる。また、高周波デバイス11Aで発生した熱が外部に露出したミラー面11bから放熱されるため、放熱性が向上する。
実施の形態5.
 図8は、この発明の実施の形態5に係る高周波回路1Eの構成を示す断面図である。
 図8において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Eは、プリント配線基板2B、高周波デバイス3および高周波デバイス11Aを備えており、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。
 また、高周波回路1Eにおける高周波デバイス11Aでは、図8に示すように、接着剤10aを用いてミラー面11bに金属プレート20が接続されている。接着剤10aは、接着剤10と同様に、高熱伝導性を有した接着剤であることが望ましい。
 金属プレート20は、樹脂15から外部に露出している。すなわち、高周波回路1Eにおいて、樹脂15は、高周波デバイス11Aの厚み方向における、金属プレート20の面と同じ高さまたはそれより低い高さまで設けられる。これによって、高周波回路1Eは、高周波回路1Dとほぼ同じ厚さになり、図5に示した高周波回路1Cよりも薄型な回路となる。
 高周波回路1Eは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。また、高周波デバイス11Aで発生した熱は、ミラー面11bから接着剤10aおよび金属プレート20を通って外部に放熱される。
 なお、高周波回路1Eにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示したように、高周波回路1Eを母基板16に搭載してもよい。
 また、高周波デバイス11Aを樹脂15でモールドする構成を示したが、実施の形態5は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bに金属プレート20を接続して、この金属プレート20が露出するように樹脂15でモールドしてもよい。このようにしても、上記と同様の効果が得られる。
 以上のように、実施の形態5に係る高周波回路1Eは、高周波デバイス11Aのミラー面11bに接続された金属プレート20を備え、金属プレート20は、樹脂15から露出している。このように構成することで、実施の形態3で示した効果に加え、薄型の回路を実現することできる。また、高周波デバイス11Aで発生した熱が金属プレート20から放熱されるため、放熱性が向上する。
実施の形態6.
 図9は、この発明の実施の形態6に係る高周波回路1Fの構成を示す断面図である。
 図9において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Fは、プリント配線基板2B、高周波デバイス3、高周波デバイス11Aを備えており、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。ただし、高周波回路1Fにおける高周波デバイス11Aのミラー面11b側には、図9に示すようにシールド部21が設けられている。
 シールド部21は、この発明における第1のシールド部を具体化したものであり、高周波デバイス11Aのミラー面11bとその周囲に設けられた樹脂15の表面とを被覆している。例えば、シールド部21は、ミラー面11bと樹脂15の表面とを金属メッキして形成される。また、導電性の材料を、ミラー面11bおよび樹脂15の表面に印刷、噴霧あるいはシーリングして得られる導電性の薄膜を、シールド部21としてもよい。
 また、シールド部21はプリント配線基板2Bの地導体層に電気的に接続されている。
 例えば、図9に示すように、シールド部21は、地導体の導体層4a-1,4b-2に接触しながらプリント配線基板2Bの面2-2側を被覆している。
 地導体層に電気的に接続した状態でシールド部21を形成する方法について説明する。
 図10は、高周波回路1Fを示す上面図であり、樹脂15に被覆された高周波デバイス11Aと導体層4b-1とを破線で示している。
 まず、図10に示すようにプリント配線基板2Bの面2-2において、高周波デバイス11Aと導体層4b-1とを含み、周囲に導体層4a-1,4b-2がある領域を、樹脂15でモールドする。このように樹脂15でモールドしてからプリント配線基板2Bの面2-2に金属メッキなどを施してシールド部21を形成する。これによって、シールド部21が導体層4a-1,4b-2上にも形成されて、シールド部21と導体層4a-1,4b-2とが電気的に接続される。
 高周波回路1Fは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。また、高周波デバイス11Aで発生した熱は、ミラー面11bからシールド部21を通って放熱される。高周波回路1Fの内部を信号が伝搬する際に、高周波回路1Fの一面が接地電位のシールド部21に覆われているため、不要な電磁波が、高周波回路1Fの外部へ放射されにくくなっている。
 なお、高周波回路1Fにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図11に示すように、高周波回路1Fを母基板16に搭載してもよい。
 母基板16に設けられた導体層17a,17bは、ビアホール18によって高周波回路1Fに接続される。高周波回路1Fの導体層4gは、はんだ13によって母基板16の導体層17cに接続され、導体層17cは、複数のビアホール18によって導体層17d、導体層17eに接続されている。
 高周波デバイス3で発生した熱は、導体層4gとはんだ13を通って母基板16の導体層17cに伝わり、さらに、導体層17dとこの導体層17dの上下のビアホール18を通って導体層17eから放熱される。
 すなわち、図11に示す高周波回路1Fでは、導体層4g、はんだ13、導体層17c~17eおよびビアホール18によって放熱用の導体層が構成される。
 また、高周波回路1Fは、図6に示した金属ブロック19を内蔵した母基板16に搭載してもよい。
 これまで高周波デバイス11Aを樹脂15でモールドしたが、実施の形態6は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bが露出するように樹脂15でモールドして、ミラー面11bとその周囲の樹脂15の表面を含む面2-2をシールド部21で被覆する。このようにしても、上記と同様の効果が得られる。
 また、図12は、高周波デバイス3,11Aの端子配置を示す上面図であり、端子配置を視認するために高周波デバイス11Aの外形および端子以外を透かして記載している。ここで、文字Sが記載された円は信号端子を示しており、文字Gが記載された円はグランド端子を示している。
 図12に示すように、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aにおいて、信号端子の周囲には、グランド端子が配置される。
 グランド端子は、高周波回路1Fの使用周波数帯域における高周波信号の漏洩が低減される間隔で配置されている。例えば、使用周波数帯域よりもカットオフ周波数が高くなる間隔で配置される。このように構成することで、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 なお、図12では、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aの両方で信号端子の周囲にグランド端子を配置した構成を示したが、端子面3aおよび端子面11aのいずれか一方で信号端子の周囲にグランド端子を配置してもよい。
 また、信号端子の周囲にグランド端子を配置する端子配置を、実施の形態1に係る高周波回路1が備える高周波デバイス3に適用してもよい。このようにしても、上記と同様の効果が得られる。
 以上のように、実施の形態6に係る高周波回路1Fは、高周波デバイス11Aのミラー面11bと樹脂15とを被覆して、地導体の導体層4a-1,4b-2に電気的に接続されたシールド部21を備える。
 このように構成することで、実施の形態4で示した効果に加え、シールド部21により不要な電磁波が高周波回路1Fの外部へ放射されにくくなる。
 また、実施の形態6に係る高周波回路1Fにおいて、高周波デバイス3の端子面3aと高周波デバイス11Aの端子面11aのうちの少なくとも一方は、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔で、グランド端子が配置されている。
 このように構成することで、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
実施の形態7.
 図13は、この発明の実施の形態7に係る高周波回路1Gの構成を示す断面図である。図13において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Gは、プリント配線基板2B、高周波デバイス3および高周波デバイス11Aを備えており、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。
 また、高周波回路1Gにおける高周波デバイス11Aでは、図13に示すように、接着剤10aを用いてミラー面11bに金属プレート20が接着されている。
 このようにミラー面11bと金属プレート20とを密着させて固定することで、ミラー面11bと金属プレート20とが熱的に接続される。
 なお、接着剤10aとしては、接着剤10と同様に、高熱伝導性を有した接着剤であることが望ましい。
 金属プレート20は、高周波デバイス11Aを被覆する樹脂15から露出し、露出した金属プレート20およびその周囲の樹脂15を含む面2-2全体が、シールド部21Aによって被覆される。
 すなわち、高周波回路1Gにおいて、樹脂15は、高周波デバイス11Aの厚み方向における、金属プレート20の面と同じ高さまたはそれより低い高さまで設けられる。
 これにより、高周波回路1Gは、図8に示した高周波回路1Eとほぼ同じ厚さになり、図5に示した高周波回路1Cよりも若干薄型な回路となる。
 シールド部21Aは、この発明における第2のシールド部を具体化したものであって、導体層4a-1,4b-2に接触しながらプリント配線基板2Bの面2-2側を被覆している。例えば、シールド部21Aは、シールド部21と同様に、高周波デバイス11Aのミラー面11bおよび樹脂15の表面を金属メッキして形成される。また、導電性の材料を、高周波デバイス11Aのミラー面11bと樹脂15の表面に対して、印刷、噴霧あるいはシーリングして得られる導電性の薄膜を、シールド部21Aとしてもよい。
 高周波回路1Gは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 また、高周波デバイス11Aで発生した熱は、ミラー面11bから接着剤10a、金属プレート20およびシールド部21を通って外部に放熱される。
 さらに、高周波回路1Gの内部を信号が伝搬する際、高周波回路1Gの一面が接地電位のシールド部21Aに覆われているため、不要な電磁波が、高周波回路1Gの外部へ放射されにくくなっている。
 なお、高周波回路1Gにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Gを搭載してもよい。
 また、高周波デバイス11Aを樹脂15でモールドする構成を示したが、実施の形態7は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bに金属プレート20を接続して、この金属プレート20が露出するように樹脂15でモールドし、その表面上にシールド部21を設けてもよい。このようにしても上記と同様の効果が得られる。
 さらに、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aのうちの少なくとも一方において、信号端子の周囲に、高周波回路1Gの使用周波数帯域における高周波信号が漏洩しない間隔でグランド端子を配置してもよい。これにより、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 以上のように、実施の形態7に係る高周波回路1Gは、金属プレート20と樹脂15とを被覆して、接地電位の導体層4a-1,4b-2に電気的に接続されたシールド部21Aを備える。この構成を有することで、実施の形態6で示した効果に加え、金属プレート20という熱抵抗の低い部材が高周波デバイス11Aの近くに配置されるため、放熱性が向上する。
実施の形態8.
 図14は、この発明の実施の形態8に係る高周波回路1Hの構成を示す断面図である。図14において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Hは、プリント配線基板2B、高周波デバイス3、および高周波デバイス11Bを備えており、高周波デバイス11Bを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。
 高周波デバイス11Bは、この発明における第2の高周波デバイスを具体化したものであり、デバイス裏面であるミラー面11bには、図14に示すように、接地電位の導体層22が設けられている。また、端子面11aのグランド端子は、高周波デバイス11Bを厚み方向に貫通するビアホール23によって導体層22に電気的に接続されている。
 シールド部21Bは、接地電位の導体層4a-1,4b-2に接触しながら、ミラー面11b上の導体層22とその周囲に設けられた樹脂15の表面とを被覆している。
 例えば、シールド部21Bは、高周波デバイス11Bの導体層22と樹脂15の表面とを金属メッキして形成される。また、導電性の材料を、高周波デバイス11Bの導体層22と樹脂15の表面に印刷、噴霧あるいはシーリングして得られる導電性の薄膜を、シールド部21Bとしてもよい。
 高周波回路1Hは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 また、高周波デバイス11Bで発生した熱は、ミラー面11bから導体層22およびシールド部21Bを通って外部に放熱される。
 さらに、高周波回路1Hの内部を信号が伝搬する際、高周波回路1Hの一面全体が接地電位のシールド部21Bに覆われているため、不要な電磁波が、高周波回路1Hの外部へ放射されにくくなっている。
 図15は、高周波回路1Hを示す上面図であり、樹脂15に被覆された高周波デバイス11Bおよび導体層4b-1を破線で示している。
 高周波デバイス11Bでは、図15に示すように、厚み方向に垂直な平面内に配置された複数のビアホール23によって端子面11aのグランド端子と導体層22とが電気的に接続されている。
 高周波デバイス11Bを覆うシールド部21Bによって形成された接地電位の空間は、これらのビアホール23によって電磁的に複数の小空間に分割されている。各小空間内では、共振周波数が高い周波数にシフトして高周波デバイス11Bの発振が抑制される。
 また、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bに地導体層を設けてもよい。
 この場合、高周波デバイス11の端子面11aのグランド端子は、高周波デバイス11を厚み方向に貫通するビアホールによって上記導体層に電気的に接続される。
 このように構成しても、上記と同様の効果が得られる。
 なお、高周波回路1Hにおいて、高周波デバイス11Bの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Bを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Hを搭載してもよい。
 また、高周波デバイス11Bを樹脂15でモールドする構成を示したが、実施の形態8は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bにおいて、高周波デバイス11のミラー面11bに導体層22を形成し、導体層22が露出するように樹脂15でモールドしてから、導体層22と樹脂15にシールド部21Bを設けてもよい。このようにしても上記と同様の効果が得られる。
 さらに、高周波デバイス3の端子面3aおよび高周波デバイス11Bの端子面11aのうちの少なくとも一方において、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔で、グランド端子を配置してもよい。これにより、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 以上のように、実施の形態8に係る高周波回路1Hにおいて、高周波デバイス11Bのミラー面11bには、地導体層の導体層22が形成される。端子面11aのグランド端子は、高周波デバイス11Bを厚み方向に貫通するビアホール23によって導体層22に電気的に接続されている。
 このように構成することで、高周波デバイス11Bを被覆するシールド部21Bにより形成された接地電位の空間が、ビアホール23によって電磁的に小空間に分割される。
 小空間内では共振周波数が高い周波数にシフトすることから、高周波デバイス11Bの発振を抑制することができる。
実施の形態9.
 図16は、この発明の実施の形態9に係る高周波回路1Iの構成を示す断面図である。図16において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Iは、プリント配線基板2B、高周波デバイス3、および高周波デバイス11Aを備え、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が金属キャップ24で被覆されている。
 金属キャップ24は、一部が開口した中空の金属製の部材であり、この開口した部分をプリント配線基板2Bの面2-2に対向させて配置される。
 また、金属キャップ24は、プリント配線基板2Bに配置された状態で、地導体の導体層4a-1,4b-2に接触している。
 高周波回路1Iは、実施の形態3で示した高周波回路1Cと同様に動作する。この動作において、高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。また、高周波デバイス11Aで発生した熱は、ミラー面11bから金属キャップ24に覆われた中空部分に放熱される。
 さらに、高周波回路1Iの内部を信号が伝搬する際、高周波回路1Iの一面全体が接地電位の金属キャップ24に覆われているため、不要な電磁波が、高周波回路1Iの外部へ放射されにくくなっている。
 なお、高周波回路1Iにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを異方導電性接着剤でプリント配線基板2Bに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Iを搭載してもよい。
 また、高周波デバイス11Aを樹脂15でモールドする構成を示したが、実施の形態9は、実施の形態2で示した構成に適用してもよい。
 すなわち、実施の形態2に係る高周波回路1A,1Bに金属キャップ24を装着してもよい。このようにしても、上記と同様の効果が得られる。
 さらに、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aのうちの少なくとも一方において、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔でグランド端子を配置してもよい。
 これにより、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 以上のように、実施の形態9に係る高周波回路1Iは、プリント配線基板2Bの面2-2側を被覆して、地導体の導体層4a-1,4b-2に電気的に接続された金属キャップ24を備える。このように、金属キャップ24と高周波デバイス11Aの実装面との間が中空状態になっているので、誘電損失を軽減することができる。
実施の形態10.
 図17はこの発明の実施の形態10に係る高周波回路1Jの構成を示す断面図である。図17において、図1、図2および図4と同一の構成要素には同一の符号を付して説明を省略する。高周波回路1Jは、プリント配線基板2C、高周波デバイス3および高周波デバイス11Aを備えており、高周波デバイス11Aを含むプリント配線基板2Bの面2-2が樹脂15でモールドされている。また、樹脂15から露出したミラー面11bおよびその周囲の樹脂15の表面は、シールド部21によって被覆されている。
 プリント配線基板2Cは実施の形態10に係る高周波回路1Jを構成する基板であり、コア層5Aおよびビルドアップ層6Cを備える。
 コア層5Aとビルドアップ層6Cには、導体層4a-1,4b-1,4b-2,4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2,4g,4g-1~4g-5,4h~4k,4l-1~4l-5が設けられている。
 コア層5Aは、この発明における第1の誘電体層を具体化したものであり、導体層4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2で絶縁層5aを挟むように積層され、層厚方向に貫通された開口部5bを有する。
 ビルドアップ層6Cは、この発明における第2の誘電体層を具体化したものであって、コア層5Aの層厚方向に直交する上面に2層積層され、コア層5Aの層厚方向に直交する下面に1層積層されている。なお、ビルドアップ層6Cおよびビアホール8は、例えば、ビルドアップ工法を用いて積層される。
 導体層4c-1~4c-4,4e-1,4e-2は、コア層5Aの上面側に設けられた導体層であり、導体層4d-1~4d-4,4f-1,4f-2は、コア層5Aの下面側に設けられた導体層である。導体層4g,4g-1~4g-5は、コア層5Aの下面側のビルドアップ層6Cに設けられた導体層である。
 コア層5Aの上面から1層目のビルドアップ層6Cには、導体層4a-1,4b-1,4b-2,4h~4kが設けられ、コア層5Aの上面から2層目のビルドアップ層6Cには、導体層4l-1~4l-5が設けられている。
 導体層4c-1~4c-4と導体層4d-1~4d-4とは、コア層5Aに設けられたビアホール7によって電気的に接続される。導体層4d-1~4d-4と導体層4g-1~4g~3,4gとは、ビルドアップ層6Cに設けられたビアホール8によって電気的に接続されている。
 同様に、導体層4e-1,4e-2と導体層4f-1,4f-2とが、ビアホール7によって電気的に接続され、導体層4f-1,4f-2と導体層4g-4,4g-5とが、ビアホール8によって電気的に接続されている。
 また、導体層4c-1,4c-2と導体層4a-1とは、コア層5Aの上面から1層目のビルドアップ層6Cに設けられたビアホール8によって電気的に接続される。
 同様に、1層目のビアホール8によって導体層4c-3,4c-4と導体層4k,4jが電気的に接続され、導体層4e-1,4e-2と導体層4b-1,4b-2とが電気的に接続されている。導体層4a-1と導体層4l-1とは、コア層5Aの上面から2層目のビルドアップ層6Cに設けられたビアホール8によって電気的に接続される。
 2層目のビアホール8によって、導体層4b-2と導体層4l-5とが電気的に接続され、導体層4hと導体層4l-5とが電気的に接続され、導体層4iと導体層4l-4とが電気的に接続される。さらに、2層目のビアホール8によって、導体層4jと導体層4l-3とが電気的に接続され、導体層4kと導体層4l-2が電気的に接続される。
 高周波デバイス3は、コア層5Aの開口部5bの内部に、端子面3aを上側にして収容される。このとき、高周波デバイス3のミラー面3bは、接着剤10を用いて導体層4gに接着される。なお、接着剤10は、高熱伝導性を有した接着剤であることが望ましい。
 端子面3aの信号端子9aは、1層目のビアホール8によって信号導体の導体層4iに電気的に接続され、端子面3aの信号端子9bは、1層目のビアホール8によって信号導体の導体層4b-1に電気的に接続される。端子面3aのグランド端子9cは、1層目のビアホール8によって地導体の導体層4hに電気的に接続される。
 コア層5Aの上面から1層目のビルドアップ層6Cにおいて、信号導体層の導体層4iの周囲には、地導体の導体層4h,4jが配置され、信号導体の導体層4b-1の周囲には、地導体の導体層4h,4b-2が配置されている。
 また、コア層5Aの上面から2層目のビルドアップ層6Cにおいて、信号導体の導体層4l-4の周囲には、地導体の導体層4l-3,4l-5が配置される。
 さらに、コア層5Aの下面に積層されたビルドアップ層6Cにおいて、信号導体の導体層4g-4の周囲には、地導体の導体層4g,4g-5が配置されている。
 次に動作について説明する。
 まず、導体層4g-3に入力された信号は、ビアホール8と導体層4d-3とを通ってコア層5Aに入力され、ビアホール7、導体層4c-3およびビアホール8を通ってコア層5Aの上面から1層目のビルドアップ層6Cにおける導体層4kに入力される。
 上記信号は、ビアホール8を通ってコア層5Aの上面から2層目のビルドアップ層6Cにおける導体層4l-2に入力され、はんだ13および信号端子12fを通って高周波デバイス11Aに入力される。これにより、高周波デバイス11Aは上記信号を処理する。このときに高周波デバイス11Aで発生した熱は、ミラー面11bからシールド部21を通って外部に放熱される。
 高周波デバイス11Aにより処理された信号は、信号端子12d、はんだ13、導体層4l-4およびビアホール8を通って導体層4iに入力される。
 次に、上記信号は、ビアホール8および信号端子9aを通って高周波デバイス3に入力される。これにより、高周波デバイス3は、上記信号を処理する。
 高周波デバイス3によって処理された信号は、信号端子9b、ビアホール8および導体層4b-1、ビアホール8を通ってコア層5Aに入力される。
 上記信号は、導体層4e-1、ビアホール7および導体層4f-1を通ってコア層5Aから出力され、ビアホール8を通って導体層4g-4から出力される。このときに高周波デバイス3で発生した熱は、ミラー面3bから接着剤10および導体層4gを通って外部に放熱される。
 さらに、高周波回路1Jの内部を信号が伝搬する際、高周波回路1Jの一面が接地電位のシールド部21に覆われているため、不要な電磁波が高周波回路1Jの外部へ放射されにくくなっている。
 また、信号導体の導体層4b-1が地導体の導体層4h,4l-5,4b-2,4e-2に囲まれており、信号導体の導体層4g-4が地導体の導体層4g,4g-5に囲まれている。これによって、高周波回路1Jの内部にある高周波デバイス間と他の回路間とにおける電磁干渉を低減でき、高周波回路1Jの発振を抑制することができる。
 なお、高周波回路1Jにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを、異方導電性接着剤でプリント配線基板2Cに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Jを搭載してもよい。
 さらに、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aのうちの少なくとも一方において、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔でグランド端子を配置してもよい。
 これにより、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 なお、コア層5Aにビルドアップ層6Cを2層積層した場合を示したが、3層以上積層した構造であってもよい。
 この構成において、高周波デバイス3の信号端子9a,9bに電気的に接続される導体層の周囲に地導体層を配置することで、上記と同様の効果を得ることができる。
 以上のように、実施の形態10に係る高周波回路1Jにおいて、ビルドアップ層6cがコア層5Aの上面側に2層積層され、高周波デバイス3の信号端子9a,9bが、導体層4i,4b-1,4l-4に電気的に接続される。この構成において、信号導体の導体層4i,4b-1の周囲には、地導体の導体層4j,4h,4b-2が配置されて、信号導体の導体層4l-4の周囲には、地導体の導体層4l-3,4l-5が配置されている。
 このように構成することで、実施の形態6で示した効果に加え、高周波回路1Jの内部にある高周波デバイス間と他の回路間とにおける電磁干渉を低減することができ、高周波回路1Jの発振を抑制することができる。
実施の形態11.
 図18はこの発明の実施の形態11に係る高周波回路1Kの構成を示す断面図である。
 図18において、図1、図2、図4および図17と同一の構成要素には、同一の符号を付して説明を省略する。高周波回路1Kは、プリント配線基板2D、高周波デバイス3、および高周波デバイス11Aを備えており、高周波デバイス11Aを含んだプリント配線基板2Dの面2-2が樹脂15でモールドされている。また、樹脂15から露出したミラー面11bおよびその周囲の樹脂15の表面はシールド部21によって被覆されている。
 プリント配線基板2Dは、実施の形態11に係る高周波回路1Kを構成する基板であって、コア層5Aおよびビルドアップ層6Dを備えている。
 さらに、プリント配線基板2Dは、導体層4a-1,4b-1,4b-2,4c-1~4c-4,4d-1~4d-4,4e-1,4e-2,4f-1,4f-2,4g,4g-1~4g-5,4h~4k,4l-1~4l-5,4m-1~4m-6を備える。
 ビルドアップ層6Dは、この発明における第2の誘電体層を具体化したものであって、コア層5Aの層厚方向に直交する上面に2層積層され、コア層5Aの層厚方向に直交する下面に2層積層されている。なお、ビルドアップ層6Cおよびビアホール8は、例えば、ビルドアップ工法を用いて積層される。このように、ビルドアップ層6Dがコア層5Aの上面と下面とで同じ層数で積層されているので、上下対称の層構成となってプリント配線基板2Dの反りを低減することができる。
 導体層4m-1~4m-6は、コア層5Aの下面側に積層された最下層のビルドアップ層6Dに設けられた導体層である。導体層4d-1~4d-3と導体層4m-1~4m-3とは、導体層4g-1~4g-3を挟んで、ビアホール8によって電気的に接続されており、導体層4gと導体層4m-4とは、複数のビアホール8によって電気的に接続される。導体層4g-4,4g-5と導体層4m-5,4m-6とは、ビアホール8によって電気的に接続されている。
 導体層4m-4は、一方の面がプリント配線基板2Dの外部に面し、他方の面が導体層4gに対向する地導体層である。前述したように、導体層4m-4と導体層4gとの間には、複数のビアホール8が配置されており、これらのビアホール8が放熱経路となる。
 すなわち、実施の形態11に係る高周波回路1Kでは、ビアホール8で接続された導体層4gと導体層4m-4が放熱用の導体層を構成している。
 また、導体層4m-5は信号導体層であり、導体層4m-5の周囲には、図18に示すように、地導体の導体層4m-4,4m-6が配置されている。
 次に動作について説明する。
 まず、導体層4m-3に入力された信号は、ビアホール8、導体層4g-3およびビアホール8、導体層4d-3を通ってコア層5Aに入力されて、ビアホール7、導体層4c-3およびビアホール8を通ってビルドアップ層6Dにおける導体層4kに入力される。
 上記信号は、ビアホール8を通って導体層4l-2に入力され、はんだ13および信号端子12fを通って高周波デバイス11Aに入力される。高周波デバイス11Aは、上記信号を処理する。このときに高周波デバイス11Aで発生した熱は、ミラー面11bからシールド部21を通って外部に放熱される。
 高周波デバイス11Aにより処理された信号は、信号端子12d、はんだ13、導体層4l-4およびビアホール8を通って導体層4iに入力される。
 次に、上記信号は、ビアホール8および信号端子9aを通って高周波デバイス3に入力される。これにより、高周波デバイス3は上記信号を処理する。
 高周波デバイス3により処理された信号は、信号端子9bおよびビアホール8を通って導体層4b-1に入力され、ビアホール8を通ってコア層5Aに入力される。
 この後、上記信号は、導体層4e-1、ビアホール7および導体層4f-1を通って、コア層5Aが出力され、ビアホール8、導体層4g-4、ビアホール8を通って、導体層4m-5から出力される。このときに高周波デバイス3で発生した熱は、ミラー面3bから、接着剤10、導体層4g、ビアホール8および導体層4m-4を通って外部に放熱される。
 さらに、高周波回路1Kの内部を信号が伝搬する際、高周波回路1Kの一面全体が接地電位のシールド部21に覆われているため、不要な電磁波が高周波回路1Kの外部へ放射されにくくなっている。
 また、信号導体の導体層4b-1が地導体の導体層4h,4l-5,4b-2,4e-2に囲まれている。また、信号導体の導体層4g-4が、地導体の導体層4g,4g-5に囲まれており、信号導体の導体層4m-5が、地導体の導体層4m-4,4m-6に囲まれている。これにより、高周波回路1Kの内部にある高周波デバイス間と他の回路間とにおける電磁干渉を低減でき、高周波回路1Kの発振を抑制することができる。
 なお、高周波回路1Kにおいて、高周波デバイス11Aの下方にアンダーフィル14を充填し固定してから、樹脂15でモールドしてもよい。
 また、はんだ13の代わりに、高周波デバイス11Aを、異方導電性接着剤でプリント配線基板2Dに接続してもよく、アンダーフィル14には絶縁性接着剤を用いてもよい。
 さらに、図5、図6に示した母基板16に高周波回路1Kを搭載してもよい。
 さらに、高周波デバイス3の端子面3aおよび高周波デバイス11Aの端子面11aのうちの少なくとも一方において、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔で、グランド端子を配置してもよい。これにより、信号端子を通る信号経路以外への不要な高周波信号の漏洩を低減することができる。
 これまでの説明では、コア層5Aの上下面にビルドアップ層6Dを2層積層した場合を示したが、3層以上積層した構造であってもよい。
 すなわち、実施の形態11に係る高周波回路1Kは、ビルドアップ層6Dがコア層5Aの上面と下面とで同じ層数で積層されていればよい。
 また、この構成において、高周波デバイス3の信号端子9a,9bに電気的に接続される導体層の周囲に地導体層を配置することで、上記と同様の効果を得ることができる。
 以上のように、実施の形態11に係る高周波回路1Kにおいて、ビルドアップ層6Dがコア層5Aの上面と下面とで同じ層数で積層されている。
 このように構成することで、上下対称の層構成となってプリント配線基板2Dの反りを低減することができる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせあるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る高周波回路は、サイズが小型で入出力信号の損失が低減され、高い放熱特性を実現することができるので、例えば、通信機器の送受信部に使用される高周波回路に好適である。
 1,1A~1K 高周波回路、2,2A~2D プリント配線基板、2-1,2-2 面、3,11,11A,11B 高周波デバイス、3a,11a 端子面、3b,11b ミラー面、4a,4a-1,4b,4b-1,4b-2,4c,4c-1~4c-4,4d,4d-1~4d-4,4e,4e-1,4e-2,4f,4f-1,4f-2,4g,4g-1~4g-5,4h~4k,4l-1~4l-5,4m-1~4m-6,22 導体層、5,5A コア層、5a 絶縁層、5b 開口部、6,6A~6D ビルドアップ層、7,8,18,23 ビアホール、9a,9b,12a,12d,12f 信号端子、9c,12b,12c,12e,12g グランド端子、10,10a 接着剤、13 はんだ、14 アンダーフィル、16 母基板、17a~17e 導体層、19 金属ブロック、20 金属プレート、21,21A,21B シールド部、24 金属キャップ。

Claims (12)

  1.  層厚方向に貫通された開口部を有する第1の誘電体層、前記第1の誘電体層の一方の面と他方の面に積層された第2の誘電体層、および前記第1の誘電体層と前記第2の誘電体層に設けられた複数の導体層を有する基板と、
     前記開口部の内部に収容され、端子面とは反対側のデバイス裏面が、前記複数の導体層のうち、前記第1の誘電体層の一方の面側から前記開口部に対向している放熱用の導体層に熱的に接続され、端子面の端子が、前記複数の導体層のうち、前記第1の誘電体層の他方の面側に設けられた端子用の導体層に電気的に接続された第1の高周波デバイスと
    を備えたことを特徴とする高周波回路。
  2.  前記基板における前記第1の誘電体層の他方の面側の表層に端子面を向けて実装された第2の高周波デバイスを備えたことを特徴とする請求項1記載の高周波回路。
  3.  前記第2の高周波デバイスは樹脂でモールドされていることを特徴とする請求項2記載の高周波回路。
  4.  前記第2の高周波デバイスにおける端子面とは反対側のデバイス裏面は、前記樹脂から露出していることを特徴とする請求項3記載の高周波回路。
  5.  前記第2の高周波デバイスにおける端子面とは反対側のデバイス裏面に熱的に接続された金属プレートを備え、
     前記金属プレートは、前記樹脂から露出していることを特徴とする請求項3記載の高周波回路。
  6.  前記第2の高周波デバイスのデバイス裏面と前記樹脂とを被覆して、接地電位の導体層に電気的に接続された第1のシールド部を備えたことを特徴とする請求項4記載の高周波回路。
  7.  前記第1の高周波デバイスの端子面および前記第2の高周波デバイスの端子面のうちの少なくとも一方は、信号端子の周囲に、使用周波数帯域の高周波信号の漏洩が低減される間隔でグランド端子が配置されていることを特徴とする請求項2記載の高周波回路。
  8.  前記樹脂と当該樹脂から露出している前記金属プレートとを被覆して、接地電位の導体層に電気的に接続された第2のシールド部を備えたことを特徴とする請求項5記載の高周波回路。
  9.  前記第2の高周波デバイスは、端子面とは反対側のデバイス裏面に接地電位の導体層が設けられており、
     端子面のグランド端子は、前記第2の高周波デバイスを厚み方向に貫通したビアホールによりデバイス裏面に設けられた導体層に電気的に接続されていることを特徴とする請求項2記載の高周波回路。
  10.  前記第2の高周波デバイスが実装された基板面を被覆して、前記基板に設けられた接地電位の導体層に電気的に接続された金属キャップを備えたことを特徴とする請求項2記載の高周波回路。
  11.  前記第2の誘電体層は、前記第1の誘電体層の他方の面側に2層以上積層されており、
     前記第1の高周波デバイスの信号端子のうちの少なくとも一つは、前記第2の誘電体層における信号を伝搬させる導体層に電気的に接続され、
     前記信号を伝搬させる導体層の周囲には接地電位の導体層が配置されていることを特徴とする請求項1記載の高周波回路。
  12.  前記第2の誘電体層は、前記第1の誘電体層の一方の面と他方の面とで同じ層数で積層されていることを特徴とする請求項11記載の高周波回路。
PCT/JP2016/063211 2016-04-27 2016-04-27 高周波回路 WO2017187559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/063211 WO2017187559A1 (ja) 2016-04-27 2016-04-27 高周波回路
EP16900431.4A EP3432353B1 (en) 2016-04-27 2016-04-27 High frequency circuit
JP2016555844A JP6173611B1 (ja) 2016-04-27 2016-04-27 高周波回路
US16/091,467 US10512153B2 (en) 2016-04-27 2016-04-27 High frequency circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063211 WO2017187559A1 (ja) 2016-04-27 2016-04-27 高周波回路

Publications (1)

Publication Number Publication Date
WO2017187559A1 true WO2017187559A1 (ja) 2017-11-02

Family

ID=59505283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063211 WO2017187559A1 (ja) 2016-04-27 2016-04-27 高周波回路

Country Status (4)

Country Link
US (1) US10512153B2 (ja)
EP (1) EP3432353B1 (ja)
JP (1) JP6173611B1 (ja)
WO (1) WO2017187559A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225116A1 (ja) * 2020-05-07 2021-11-11 住友電気工業株式会社 回路モジュール及び通信装置
JP6972438B1 (ja) * 2020-12-11 2021-11-24 三菱電機株式会社 3次元実装集積回路
WO2022071009A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022071010A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022107275A1 (ja) * 2020-11-19 2022-05-27 日本電信電話株式会社 集積化電子部品
WO2022185522A1 (ja) * 2021-03-05 2022-09-09 株式会社メイコー 部品内蔵基板、及びその製造方法
WO2022190184A1 (ja) * 2021-03-09 2022-09-15 三菱電機株式会社 半導体モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051398B2 (ja) 2017-11-30 2022-04-11 三菱重工業株式会社 開閉弁及び蒸気タービンシステム
DE102019117844A1 (de) * 2018-09-27 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Integrierte-schaltung-package und verfahren
US11632860B2 (en) * 2019-10-25 2023-04-18 Infineon Technologies Ag Power electronic assembly and method of producing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299427A (ja) * 1999-04-13 2000-10-24 Sony Corp 高周波集積回路装置
JP2003060523A (ja) * 2001-08-09 2003-02-28 Tdk Corp 無線通信モジュール
JP2005026373A (ja) * 2003-06-30 2005-01-27 Tdk Corp 放熱構造を備えた電子部品
JP2007294828A (ja) * 2006-03-29 2007-11-08 Kyocera Corp 回路モジュール
JP2011187812A (ja) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp 高周波モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992862B2 (ja) 1998-12-25 2007-10-17 富士通株式会社 高周波マルチチップモジュール
CN101401206B (zh) 2006-03-29 2011-04-13 京瓷株式会社 电路组件和无线通信设备、以及电路组件的制造方法
KR100965339B1 (ko) * 2008-06-04 2010-06-22 삼성전기주식회사 전자부품 내장형 인쇄회로기판 및 그 제조방법
JP2012238797A (ja) 2011-05-13 2012-12-06 Murata Mfg Co Ltd 多層回路モジュール
TWI446464B (zh) 2011-05-20 2014-07-21 Subtron Technology Co Ltd 封裝結構及其製作方法
JP2011181970A (ja) 2011-06-21 2011-09-15 Renesas Electronics Corp 半導体装置
JP6152254B2 (ja) * 2012-09-12 2017-06-21 新光電気工業株式会社 半導体パッケージ、半導体装置及び半導体パッケージの製造方法
JP2016025143A (ja) * 2014-07-17 2016-02-08 イビデン株式会社 回路基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299427A (ja) * 1999-04-13 2000-10-24 Sony Corp 高周波集積回路装置
JP2003060523A (ja) * 2001-08-09 2003-02-28 Tdk Corp 無線通信モジュール
JP2005026373A (ja) * 2003-06-30 2005-01-27 Tdk Corp 放熱構造を備えた電子部品
JP2007294828A (ja) * 2006-03-29 2007-11-08 Kyocera Corp 回路モジュール
JP2011187812A (ja) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp 高周波モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432353A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225116A1 (ja) * 2020-05-07 2021-11-11 住友電気工業株式会社 回路モジュール及び通信装置
WO2022071009A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022071010A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022107275A1 (ja) * 2020-11-19 2022-05-27 日本電信電話株式会社 集積化電子部品
JP6972438B1 (ja) * 2020-12-11 2021-11-24 三菱電機株式会社 3次元実装集積回路
WO2022123785A1 (ja) * 2020-12-11 2022-06-16 三菱電機株式会社 3次元実装集積回路
WO2022185522A1 (ja) * 2021-03-05 2022-09-09 株式会社メイコー 部品内蔵基板、及びその製造方法
JP7161629B1 (ja) * 2021-03-05 2022-10-26 株式会社メイコー 部品内蔵基板、及びその製造方法
WO2022190184A1 (ja) * 2021-03-09 2022-09-15 三菱電機株式会社 半導体モジュール
JPWO2022190184A1 (ja) * 2021-03-09 2022-09-15
JP7278516B2 (ja) 2021-03-09 2023-05-19 三菱電機株式会社 半導体モジュール
GB2619437A (en) * 2021-03-09 2023-12-06 Mitsubishi Electric Corp Semiconductor module

Also Published As

Publication number Publication date
US10512153B2 (en) 2019-12-17
EP3432353A4 (en) 2019-04-03
US20190159332A1 (en) 2019-05-23
JPWO2017187559A1 (ja) 2018-05-10
EP3432353B1 (en) 2021-09-01
JP6173611B1 (ja) 2017-08-02
EP3432353A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6173611B1 (ja) 高周波回路
US10468323B2 (en) High frequency module
JP6821008B2 (ja) マイクロ波デバイス及び空中線
JP7031004B2 (ja) マイクロ波デバイス及び空中線
US6794961B2 (en) High frequency circuit module
US8592959B2 (en) Semiconductor device mounted on a wiring board having a cap
JP5851439B2 (ja) 高周波半導体用パッケージ
US20220059427A1 (en) Semiconductor package, semiconductor device, semiconductor package-mounted apparatus, and semiconductor device-mounted apparatus
JP2009038696A (ja) アンテナ付き集積回路パッケージ
JP6139585B2 (ja) 高周波モジュール及びマイクロ波送受信装置
WO2020153068A1 (ja) アンテナモジュール及び通信装置
CN111771276A (zh) 高频模块
JP5577694B2 (ja) 部品内蔵モジュール
JP2005311230A (ja) 回路モジュールおよびこの回路モジュールを用いた回路装置
JP2011029446A (ja) 高周波モジュール及び高周波モジュールの製造方法
JP6910313B2 (ja) 高周波デバイスおよび空中線
JP2011077075A (ja) 発熱性電子素子内蔵のモジュール基板及びその製造方法
JP7098820B2 (ja) 無線通信モジュール
WO2022014066A1 (ja) 無線通信モジュール
JP2006157066A (ja) 高周波パッケージモジュール
JP2005340713A (ja) マルチチップモジュール
JP2010272585A (ja) フリップチップ実装構造
JP2006351952A (ja) 半導体装置
JP2006157067A (ja) 高周波パッケージモジュール
JP2019161480A (ja) アンテナモジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016555844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016900431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900431

Country of ref document: EP

Effective date: 20181016

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900431

Country of ref document: EP

Kind code of ref document: A1