WO2020153068A1 - アンテナモジュール及び通信装置 - Google Patents

アンテナモジュール及び通信装置 Download PDF

Info

Publication number
WO2020153068A1
WO2020153068A1 PCT/JP2019/050131 JP2019050131W WO2020153068A1 WO 2020153068 A1 WO2020153068 A1 WO 2020153068A1 JP 2019050131 W JP2019050131 W JP 2019050131W WO 2020153068 A1 WO2020153068 A1 WO 2020153068A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna module
connector
module according
shield structure
Prior art date
Application number
PCT/JP2019/050131
Other languages
English (en)
French (fr)
Inventor
晴希 宮川
英樹 上田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980089862.7A priority Critical patent/CN113330643A/zh
Priority to JP2020567431A priority patent/JP7115568B2/ja
Publication of WO2020153068A1 publication Critical patent/WO2020153068A1/ja
Priority to US17/383,456 priority patent/US20210351503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/528Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the re-radiation of a support structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to an antenna module and a communication device.
  • Patent Document 1 discloses an antenna integrated module in which a radiation conductor is attached to a substrate on which components such as a chip capacitor, a chip resistor, an oscillation circuit, a voltage regulator, and a connector are mounted.
  • the plurality of components mounted on the board are covered with a metal frame body.
  • the frame is provided with an opening for passing a cable connected to the connector.
  • a high-frequency circuit component that performs signal processing of a high-frequency signal wirelessly communicated, A first substrate on which the high-frequency circuit component is mounted, A connector mounted on the first substrate, for connecting a cable for transmitting a signal to the high-frequency circuit component; There is provided an antenna module which covers at least a part of the connector and has at least a first shield structure arranged between the high-frequency circuit component and the connector.
  • the antenna module A baseband integrated circuit element for generating a signal to be given to the high-frequency circuit component,
  • the cable is provided with a communication device that connects the connector and the baseband integrated circuit device.
  • the first shield structure covers the connector, the effect that the noise leaked from the connector does not affect the high-frequency circuit parts can be obtained. Therefore, it is possible to obtain the effect that the noise leaked from the connector hardly affects the antenna characteristics of the radiating element connected to the high frequency circuit component.
  • FIG. 1A and 1B are a perspective view and a sectional view of an antenna module according to a first embodiment, respectively, and FIG. 1C is an enlarged sectional view of a portion where a first shield structure is mounted.
  • FIG. 2 is a block diagram of a communication device in which the antenna module according to the first embodiment is used.
  • FIG. 3 is a sectional view of the antenna module according to the second embodiment.
  • 4A is a cross-sectional view of an antenna module according to a third embodiment, and FIG. 4B is a diagram showing a planar positional relationship among conductor posts, ground conductor posts, RFICs, and ground planes in the first substrate. ..
  • FIG. 5 is a sectional view of the antenna module according to the fourth embodiment.
  • FIG. 6 is a cross-sectional view of an antenna module according to the fifth embodiment and a heat absorbing member to which the antenna module is attached.
  • 7A is a cross-sectional view of an antenna module according to the sixth embodiment and a heat absorbing member to which the antenna module is attached
  • FIG. 7B is a perspective view of the antenna module according to the sixth embodiment.
  • FIG. 8 is a perspective view of the antenna module according to the seventh embodiment.
  • 9A is a cross-sectional view of the antenna module according to the eighth embodiment, and FIG. 9B is a perspective view of the first shield structure as viewed from below.
  • 10A, 10B, and 10C are a plan view, a cross-sectional view, and a bottom view of an antenna module according to a ninth embodiment, respectively.
  • 11A and 11B are a cross-sectional view and a bottom view of an antenna module according to a modified example of the ninth embodiment.
  • 12A and 12B are a sectional view and a bottom view of an antenna module according to the tenth embodiment, respectively.
  • 13A and 13B are a cross-sectional view and a bottom view of an antenna module according to a modification of the tenth embodiment, respectively.
  • 14A and 14B are a cross-sectional view and a bottom view of the antenna module according to the eleventh embodiment, respectively.
  • 15A and 15B are a sectional view and a bottom view of an antenna module according to a modified example of the eleventh embodiment, respectively.
  • the high frequency circuit component 20 includes a second substrate 11, a high frequency integrated circuit element (RFIC) 12, and a plurality of circuit components 13.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are mounted on one surface of the second substrate 11, and the plurality of radiating elements 14 are provided on the opposite surface.
  • the plurality of radiating elements 14 form a patch array antenna.
  • the circuit component 13 is, for example, a bypass capacitor or the like.
  • a plurality of conductor posts 15 are erected on the surface of the second substrate 11 on which the RFIC 12 is mounted.
  • the conductor post 15 is formed of, for example, copper (Cu).
  • the RFIC 12, the plurality of circuit components 13, and the plurality of conductor posts 15 are sealed with a sealing resin layer 16.
  • the top surface of each of the conductor posts 15 is exposed on the surface of the sealing resin layer 16.
  • the radiating element 14 is connected to the RFIC 12. Note that the radiating element 14 is not necessarily directly connected to the RFIC 12, and may be electrically connected via a wiring provided on the second substrate 11 or a power supply line such as a via conductor. Further, the RFIC 12 is connected to the conductor post 15. Further, a ground plane (shown in FIG. 1C described later) is provided on the second substrate 11, and this ground plane is connected to a part of the conductor posts 15 for ground.
  • the exposed top surface of the conductor post 15 and the land provided on the surface of the first substrate 31 are electrically and mechanically connected by the solder 21 to mount the high frequency circuit component 20 on the first substrate 31.
  • the cable 51 (FIG. 1A) is detachably connected to the connector 32.
  • a signal including information to be wirelessly communicated is transmitted to the RFIC 12 through the cable 51.
  • FIG. 1B shows a state in which the cable 51 is not connected to the connector 32.
  • a first shield structure 33 is provided on the first substrate 31.
  • the first shield structure 33 covers at least a part of the connector 32, and shields the connector 32, the signal separation mixer 36, and the DCDC converter 37 from the outside including the RFIC 12.
  • the normal direction of the first substrate 31 that faces the outside of the surface on which the connector 32 is mounted is defined as “upward”.
  • the first shield structure 33 includes a side plate 34 that surrounds the connector 32 in a plan view and rises upward from the surface of the first substrate 31, and a top plate 35 that closes an opening above the side plate 34. In this way, the first shield structure 33 covers the connector 32 from above and laterally (sideways).
  • the side plate 34 is arranged at least between the connector 32 and the RFIC 12.
  • FIG. 1A shows a state in which the top plate 35 is removed from the side plate 34. After connecting the cable 51 to the connector 32, the top plate 35 is mounted on the side plate 34 as shown by the arrow in FIG. 1A, whereby the opening above the side plate 34 is closed by the top plate 35.
  • FIG. 1C is an enlarged cross-sectional view of a portion where the first shield structure 33 is mounted.
  • a ground plane 38 is provided on the first substrate 31, and the surface of the ground plane 38 is covered with a resist film 39.
  • An opening 39A is provided in a part of the resist film 39, and a part of the ground plane 38 is exposed in the opening 39A.
  • the lower end of the side plate 34 of the first shield structure 33 is connected to the ground plane 38 exposed in the opening 39A by soldering or the like.
  • FIG. 2 is a block diagram of a communication device in which the antenna module according to the first embodiment is used.
  • a mobile terminal such as a mobile phone, a smart phone, or a tablet terminal
  • a mother board 60 such as a personal computer having a communication function
  • the connector 32 of the antenna module are connected by a cable 51.
  • the cable 51 for example, a coaxial cable is used.
  • a local oscillator 61, a power supply circuit 62, a baseband integrated circuit element (BBIC) 63, etc. are mounted on the mother board 60.
  • the BBIC 63 generates a signal or the like to be given to the RFIC 12.
  • DC power, a local oscillation signal, a signal including information to be wirelessly communicated (for example, an intermediate frequency signal) is transmitted to the antenna module.
  • the signals are input to the signal separation mixer 36 through the connector 32 and separated into the local oscillation signal LO and the intermediate frequency signal IF.
  • the local oscillation signal LO and the intermediate frequency signal IF are input to the RFIC 12.
  • the DC power transmitted through the cable 51 is input to the DCDC converter 37.
  • the DCDC converter 37 performs voltage conversion and supplies DC power DC of a predetermined voltage to the RFIC 12.
  • the connector 32, the signal separation mixer 36, and the DCDC converter 37 are shielded from the RFIC 12 by the first shield structure 33.
  • the RFIC 12 performs signal processing of a high frequency signal that is wirelessly communicated (transmitted and received by an antenna). The detailed functions of the RFIC 12 will be described below.
  • the intermediate frequency signal IF is input to the up-down conversion mixer 78 via the intermediate frequency amplifier 79.
  • the high frequency signal up-converted by the up-down conversion mixer 78 is input to the power divider 76 via the transmission/reception changeover switch 77.
  • Each of the high frequency signals divided by the power divider 76 is supplied to the plurality of radiating elements 14 via the phase shifter 75, the attenuator 74, the transmission/reception changeover switch 73, the power amplifier 71, the transmission/reception changeover switch 70, and the power supply line 17. To be done.
  • the phase shifter 75 that processes the high frequency signal after being divided by the power divider 76, the attenuator 74, the transmission/reception changeover switch 73, the power amplifier 71, the transmission/reception changeover switch 70, and the power supply line 17 are provided for each radiating element 14. ing.
  • the high frequency signal received by each of the plurality of radiating elements 14 is input to the power divider 76 via the power supply line 17, the transmission/reception changeover switch 70, the low noise amplifier 72, the transmission/reception changeover switch 73, the attenuator 74, and the phase shifter 75. It The high frequency signal synthesized by the power divider 76 is input to the up/down conversion mixer 78 via the transmission/reception changeover switch 77. The intermediate frequency signal down-converted by the up/down conversion mixer 78 is transmitted by the cable 51 connected to the connector 32 via the intermediate frequency amplifier 79 and the signal separation mixer 36, and is transmitted to the BBIC 63 mounted on the motherboard 60. Is entered.
  • the connector 32 is shielded from the high frequency circuit component 20 including the RFIC 12 by the first shield structure 33. Therefore, the influence of noise radiated from the connector 32 on the high-frequency circuit component 20 can be reduced. Further, since the signal separation mixer 36 and the DCDC converter 37 are also shielded from the high frequency circuit component 20 by the first shield structure 33, the noise generated in the signal separation mixer 36 and the DCDC converter 37 gives to the high frequency circuit component 20. The impact can be reduced.
  • a modulation signal such as an intermediate frequency signal, a local oscillation signal, and DC power are transmitted from the mother board 60 (FIG. 2) to the antenna module through the cable 51.
  • the signal transmitted through the cable 51 between the mother board 60 and the antenna module may include a control signal, a clock signal, and the like.
  • the coaxial cable is used as the cable 51, and the coaxial cable is used as the connector 32.
  • a multi-pin connector may be used as the connector 32 depending on the cable type.
  • the plurality of radiating elements 14 constitute the patch array antenna, but other antennas may be constituted.
  • the radiating element 14 a monopole antenna, a dipole antenna or the like may be used.
  • FIG. 3 is a sectional view of the antenna module according to the second embodiment.
  • the high frequency circuit component 20 is mounted on the first substrate 31 in such a posture that the surface of the second substrate 11 on which the RFIC 12 is mounted faces the first substrate 31.
  • the high-frequency circuit component 20 is mounted on the first substrate 31 with the surface of the second substrate 11 opposite to the surface on which the RFIC 12 is mounted facing the first substrate 31. Has been done.
  • the high frequency circuit component 20 is electrically and mechanically connected to the first substrate by the solder 22.
  • the high frequency circuit component 20 is not provided with the conductor post 15 (FIG. 1B).
  • the radiating element 14 (FIG. 1B) is provided on the second substrate 11, but in the second embodiment, the surface of the first substrate 31 on which the high frequency circuit component 20 is mounted is A plurality of radiating elements 14 are provided on the opposite surface. The plurality of radiating elements 14 are connected to the RFIC 12 via the transmission line provided on the first substrate 31, the solder 22, and the transmission line provided on the second substrate 11.
  • the connector 32 is mounted on the first substrate 31, and the first shield structure 33 shields the connector 32 from the high frequency circuit component 20 including the RFIC 12.
  • the connector 32 is shielded from the high frequency circuit component 20 including the RFIC 12. Therefore, the influence of noise radiated from the connector 32 on the high-frequency circuit component 20 can be reduced.
  • FIG. 4A is a sectional view of the antenna module according to the third embodiment.
  • the ground plane 40 is arranged on the inner layer of the first substrate 31. Some of the plurality of conductor posts 15 on the second substrate 11 side are ground conductor posts 18, and the ground conductor posts 18 are connected to a ground plane 19 in the second substrate 11.
  • the ground plane 40 in the first substrate 31 is connected to the ground conductor post 18 via the plurality of via conductors 41 and the solder 21 arranged in the first substrate 31.
  • FIG. 4B is a diagram showing a planar positional relationship among the conductor post 15, the ground conductor post 18, the RFIC 12, and the ground plane 40 in the first substrate 31.
  • a plurality of ground conductor posts 18 are arranged so as to surround the RFIC 12.
  • the RFIC 12 is arranged inside the ground plane 40.
  • the ground plane 40 overlaps the ground conductor post 18 and is connected to the ground conductor post 18.
  • the conductor posts 15 other than the ground conductor posts 18 are arranged outside the ground plane 40.
  • the ground plane 40 and the plurality of ground conductor posts 18 form the second shield structure 43.
  • the second shield structure 43 covers the RFIC 12 that is a part of the high-frequency circuit component 20, and shields the RFIC 12 from the outside including the connector 32 (FIG. 4A).
  • the excellent effect of the third embodiment will be described.
  • the effect of noise radiated from the connector 32 on the high frequency circuit component 20 can be reduced.
  • the RFIC 12 is generated by noise generated in the connector 32 and peripheral elements such as elements mounted on the motherboard 60 (FIG. 2). An excellent effect is obtained in that it is less likely to be affected by the generated noise. Further, it is possible to reduce the influence of noise generated in the RFIC 12 on the connector 32 and peripheral elements.
  • FIG. 5 is a sectional view of the antenna module according to the fourth embodiment.
  • the surface of the sealing resin layer 16 is covered with the conductive film 44.
  • the conductive film 44 is connected to the ground plane 19 provided on the second substrate 11.
  • the conductive film 44 functions as the second shield structure 43.
  • the second shield structure 43 covers the RFIC 12 and is arranged at least between the connector 32 and the RFIC 12.
  • the excellent effect of the fourth embodiment will be described.
  • the effect of noise radiated from the connector 32 on the high frequency circuit component 20 can be reduced.
  • the RFIC 12 is mounted on the noise generated in the connector 32 and the mother board 60 (FIG. 2) as in the third embodiment.
  • An excellent effect is obtained in that it is less likely to be affected by noise generated from peripheral elements such as elements. Further, it is possible to reduce the influence of noise generated in the RFIC 12 on the connector 32 and peripheral elements.
  • FIG. 6 is a sectional view of the antenna module according to the fifth embodiment and the heat absorbing member 80 to which the antenna module is attached.
  • Heat radiation members 81 and 82 are attached to the surfaces of the first shield structure 33 and the second shield structure 43 that face the side opposite to the first substrate 31 (hereinafter referred to as the top surface).
  • the first shield structure 33 and the second shield structure 43 are thermally coupled to the heat absorbing member 80 via the heat radiating members 81 and 82, respectively.
  • thermally coupled refers to a coupling in which heat can be conducted between a plurality of objects to be coupled.
  • heat dissipation members 81 and 82 for example, a sheet-shaped material (heat dissipation sheet, heat conduction sheet) that is soft, has excellent adhesiveness, and has high heat conductivity may be used.
  • heat absorbing member 80 for example, a metal portion of the mother board 60 (FIG. 2), a housing that houses the antenna module, a heat sink, or the like can be used.
  • the heat dissipation members 81 and 82 have a function of efficiently conducting heat between the first shield structure 33 and the heat absorbing member 80 and between the second shield structure 43 and the heat absorbing member 80, respectively.
  • the excellent effect of the fifth embodiment will be described.
  • the fifth embodiment as in the fourth embodiment, it is possible to reduce the influence of noise radiated from the connector 32 on the high frequency circuit component 20.
  • the first shield structure 33 and the heat dissipation member 81 are components shielded by the first shield structure 33, such as the connector 32, the signal separation mixer 36 (FIG. 2), and the DCDC converter 37 ( It functions as a heat transfer path from FIG. 2) to the heat absorbing member 80. Therefore, heat can be efficiently radiated from the connector 32, the signal separation mixer 36 (FIG. 2), and the DCDC converter 37 (FIG. 2). Further, since the sealing resin layer 16, the second shield structure 43, and the heat dissipation member 82 are arranged between the RFIC 12 and the heat absorbing member 80 with substantially no space therebetween, heat can be efficiently dissipated from the RFIC 12. ..
  • the antenna module and the heat dissipation members 81 and 82 are provided.
  • the heat absorbing member 80 can be easily attached to the flat surface thereof.
  • the difference between the height from the first substrate 31 to the top surface of the first shield structure 33 and the height from the first substrate 31 to the top surface of the second shield structure 43 depends on the flexibility of the heat dissipation members 81 and 82. It is preferable to make it absorbable. In this case, the heat radiation members 81 and 82 having the same thickness can be used. It is also possible to use one continuous heat dissipation member as the heat dissipation members 81 and 82.
  • the heat dissipation member 82 is attached to the top surface of the second shield structure 43, but the second shield structure 43 is not provided and the top surface of the sealing resin layer 16 (FIG. 3) according to the second embodiment.
  • a heat dissipation member 82 may be attached to the.
  • FIG. 7A and 7B are a cross-sectional view and a perspective view of an antenna module according to the sixth embodiment and a heat absorbing member 80 to which the antenna module is attached, respectively.
  • a heat dissipation member 83 is attached to the surface of the first substrate 31 opposite to the surface on which the high frequency circuit component 20 is mounted. The heat dissipation member 83 is in close contact with the heat absorption member 80.
  • heat dissipation member 84 is attached to the top surface of the first shield structure 33.
  • the heat dissipation member 84 extends to the outside of the first substrate 31 in a plan view and is in close contact with the heat absorption member 85 located near the antenna module.
  • the heat absorbing member 85 for example, a metal part of a mother board, a housing that houses an antenna module, a heat sink, or the like is used.
  • the sixth embodiment can reduce the influence of noise radiated from the connector 32 on the high frequency circuit component 20.
  • the heat generated by the RFIC 12 or the like can be efficiently radiated through the second substrate 11, the conductor post 15, the solder 21, the first substrate 31, and the heat dissipation member 83. Further, the heat generated by the components in the region surrounded by the first shield structure 33 can be efficiently radiated through the first shield structure 33 and the heat dissipation member 84.
  • the heights of the components such as the signal separation mixer 36, the DCDC converter 37 (FIG. 1A), etc. arranged near the connector 32 are different. In this way, when a plurality of components having different heights are mounted, it is difficult to attach a single heat-dissipating member that is difficult to deform to the top surfaces of these components.
  • the heat dissipation member 84 since the heat dissipation member 84 may be brought into close contact with the flat top surface of the first shield structure 33, it is possible to easily attach the heat dissipation member 84.
  • FIG. 8 is a perspective view of the antenna module according to the seventh embodiment.
  • the heat dissipation member 84 that is in close contact with the top surface of the first shield structure 33 is in close contact with the heat absorption member 85 near the antenna module.
  • the heat dissipation member 86 that is in close contact with the top surface of the first shield structure 33 is in close contact with the heat dissipation member 83 that is attached to the first substrate 31.
  • the seventh embodiment can reduce the influence of noise radiated from the connector 32 on the high frequency circuit component 20.
  • the heat generated by the components in the area surrounded by the first shield structure 33 is radiated via the first shield structure 33, the heat dissipation member 86, and the other heat dissipation member 83.
  • the heat can be efficiently radiated to the heat absorbing member 80 with which the member 83 is in close contact.
  • FIGS. 9A and 9B an antenna module according to the eighth embodiment will be described with reference to FIGS. 9A and 9B.
  • the description of the configuration common to the antenna module (FIGS. 7A and 7B) according to the sixth embodiment will be omitted.
  • FIG. 9A is a cross-sectional view of the antenna module according to the eighth embodiment
  • FIG. 9B is a perspective view of the first shield structure 33 as seen from below.
  • the heat dissipation member 84 is attached to the top surface of the first shield structure 33.
  • the heat dissipation member 87 is attached to the surface of the top plate 35 of the first shield structure 33 facing the first substrate 31 side. The heat dissipation member 87 is in close contact with the top surface of a component shielded by the first shield structure 33, for example, the connector 32 (FIG. 9A), the signal separation mixer 36 (FIG. 1A), the DCDC converter 37 (FIG.
  • the heat dissipation member 87 comes into close contact with the connector portion of the cable 51.
  • the heat dissipation member 87 is deformed by the flexibility of the heat dissipation member 87, so that the heat dissipation member 87 adheres to the top surfaces of these parts.
  • the excellent effect of the eighth embodiment will be described.
  • the eighth embodiment as in the sixth embodiment, it is possible to reduce the influence of noise radiated from the connector 32 on the high frequency circuit component 20.
  • the heat generated by the signal separation mixer 36, the DCDC converter 37 (FIG. 1A) and the like is directly conducted to the first substrate 31, and also through the heat dissipation member 87 and the first shield structure 33. 1 Conducted to the substrate 31.
  • the heat conducted to the first substrate 31 is absorbed by the heat absorbing member 80 via the heat radiating member 83. Therefore, the heat generated by the heat dissipation member 87 and the first shield structure 33 can be efficiently dissipated.
  • the heat dissipation member 87 can be easily attached. Even if the heights of the plurality of parts are different, the flexibility of the heat dissipation member 87 allows the heat dissipation member 87 to be easily attached to the plurality of parts.
  • 10A, 10B, and 10C are a plan view, a cross-sectional view, and a bottom view of an antenna module according to the ninth embodiment, respectively.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are mounted on the second substrate 11 that functions as an interposer to form the high frequency circuit component 20.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are mounted on the first substrate 31 via the second substrate 11.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are directly mounted on the first substrate 31.
  • the high frequency circuit component 20 includes the high frequency integrated circuit element 12 and a plurality of circuit components 13 directly mounted on the first substrate 31.
  • Shield case 90 covers high-frequency circuit component 20.
  • the shield case 90 includes a side plate 90A and a top plate 90B.
  • the side plate 90A surrounds the high frequency integrated circuit element 12 and the plurality of circuit components 13 in a state where the first substrate 31 is viewed in a plan view.
  • the top plate 90B closes the opening of the side plate 90A.
  • the shield case 90 is electrically connected to the ground plane 40 provided on the inner layer of the first substrate 31.
  • the shield case 90 and the ground plane 40 function as the second shield structure 43.
  • a heat dissipation member 91 is arranged between the high frequency integrated circuit element 12 and the top plate 90B of the shield case 90, and both are thermally coupled by the heat dissipation member 91.
  • the ninth embodiment can reduce the influence of noise radiated from the connector 32, the signal separation mixer 36, the DCDC converter 37, etc. on the high frequency circuit component 20.
  • the top plate 90B of the shield case 90 is attached to the heat absorbing member 80 via the heat radiating member 82 as in the fifth embodiment (FIG. 6), so that the heat radiating member 91 serves as a heat radiating path. It functions as a part and can dissipate heat efficiently.
  • FIGS. 11A and 11B are a cross-sectional view and a bottom view of an antenna module according to a modified example of the ninth embodiment.
  • the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33 are hollow.
  • the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33 are provided.
  • the heat dissipation member 87 is arranged between them. Therefore, the heat generated in the connector 32, the signal separation mixer 36, the DCDC converter 37, and the like can be efficiently radiated through the heat radiation member 87 and the first shield structure 33.
  • FIG. 12A and 12B are a cross-sectional view and a bottom view of the antenna module according to the tenth embodiment, respectively.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are covered with the shield case 90.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are sealed with the sealing resin layer 94. That is, the high frequency circuit component 20 is sealed with the sealing resin layer 94.
  • the tenth embodiment can reduce the influence of noise radiated from the connector 32, the signal separation mixer 36, the DCDC converter 37 and the like on the high frequency circuit component 20.
  • FIGS. 13A and 13B are a cross-sectional view and a bottom view of an antenna module according to a modification of the tenth embodiment, respectively.
  • the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33 Similar to the antenna module according to the modification of the ninth embodiment (FIGS. 11A and 11B), the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33.
  • a heat dissipation member 87 is disposed between the heat dissipation member 87 and the heat dissipation member 87. Therefore, the heat generated in the connector 32, the signal separation mixer 36, the DCDC converter 37, and the like can be efficiently radiated through the heat radiation member 87 and the first shield structure 33.
  • the high frequency circuit component 20 includes a second substrate 11 called an interposer.
  • the high frequency circuit component 20 has a so-called interposerless structure.
  • a high frequency circuit component 20 including the high frequency integrated circuit element 12 and a plurality of circuit components 13 is mounted on the first substrate 31.
  • the high frequency integrated circuit element 12 and the plurality of circuit components 13 are positioned and mounted on the temporary support substrate provided with the adhesive layer. In this state, the high frequency integrated circuit element 12 and the plurality of circuit components 13 are covered with a resin such as an epoxy resin. After the resin is cured, the temporary support substrate is removed together with the adhesive layer. The high frequency circuit component 20 is manufactured through these steps.
  • the eleventh embodiment As well, similar to the second embodiment, it is possible to reduce the influence of noise radiated from the connector 32, the signal separation mixer 36, the DCDC converter 37 and the like on the high frequency circuit component 20.
  • FIGS. 15A and 15B are a sectional view and a bottom view of an antenna module according to a modified example of the eleventh embodiment, respectively.
  • the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33 Similar to the antenna module according to the modification of the ninth embodiment (FIGS. 11A and 11B), the connector 32, the signal separation mixer 36, the DCDC converter 37, and the top plate 35 of the first shield structure 33.
  • a heat dissipation member 87 is disposed between the heat dissipation member 87 and the heat dissipation member 87. Therefore, the heat generated in the connector 32, the signal separation mixer 36, the DCDC converter 37, and the like can be efficiently radiated through the heat radiation member 87 and the first shield structure 33.
  • Second Substrate High Frequency Integrated Circuit Element (RFIC) 13 Circuit Parts 14 Radiating Element 15 Conductor Post 16 Sealing Resin Layer 17 Feed Line 18 Ground Conductor Post 19 Ground Plane 20 High Frequency Circuit Parts 21, 22 Solder 31 First Substrate 32 Connector 33 First Shield Structure 34 Side Plate 34A Opening 35 Top Plate 36 Signal Separation Mixer 37 DCDC Converter 38 Ground Plane 39 Resist Film 39A Opening 40 Ground Plane 41 Via Conductor 43 Second Shield Structure 44 Conductive Film 51 Cable 60 Motherboard 61 Local Oscillator 62 Power Supply Circuit 63 Baseband Integrated Circuit Device (BBIC) 70 transmission/reception changeover switch 71 power amplifier 72 low noise amplifier 73 transmission/reception changeover switch 74 attenuator 75 phase shifter 76 power divider 77 transmission/reception changeover switch 78 up-down conversion mixer 79 intermediate frequency amplifier 80 heat absorption members 81, 82, 83, 84 heat dissipation member 85 Heat absorbing member 86, 87 Heat radiating member

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

高周波集積回路素子が、アンテナで送受信される高周波信号の信号処理を行う。高周波集積回路素子は第1基板に実装されている。第1基板は第2基板に実装されている。第2基板に、高周波集積回路素子への変調信号が伝送されるケーブルを接続するコネクタが実装されている。第1シールド構造がコネクタを覆う。コネクタに起因するノイズがアンテナ特性に影響を及ぼしにくいアンテナモジュールが提供される。

Description

アンテナモジュール及び通信装置
 本発明は、アンテナモジュール及び通信装置に関する。
 チップ型コンデンサ、チップ型抵抗器、発振回路、電圧レギュレータ、コネクタ等の部品を実装した基板に放射導体を取り付けたアンテナ一体型モジュールが下記の特許文献1に開示されている。基板に実装された複数の部品は、金属製の枠体で覆われている。この枠体に、コネクタに接続するケーブルを通すための開口が設けられている。
特開2007-134894号公報
 特許文献1に開示されたアンテナ一体型モジュールでは、発振回路等の高周波部品とコネクタとが共通の枠体で覆われている。このため、コネクタから漏洩したノイズが高周波部品と結合し、その結果アンテナ特性に影響を及ぼす場合がある。本発明の目的は、コネクタに起因するノイズがアンテナ特性に影響を及ぼしにくいアンテナモジュールを提供することである。本発明の他の目的は、このアンテナモジュールを用いた通信装置を提供することである。
 本発明の一観点によると、
 無線通信される高周波信号の信号処理を行う高周波回路部品と、
 前記高周波回路部品を実装する第1基板と、
 前記第1基板に実装されたコネクタであって、前記高周波回路部品への信号が伝送されるケーブルを接続する前記コネクタと、
 前記コネクタの少なくとも一部を覆い、少なくとも前記高周波回路部品と前記コネクタとの間に配置されている第1シールド構造と
を有するアンテナモジュールが提供される。
 本発明の他の観点によると、
 前記アンテナモジュールと、
 前記高周波回路部品に与える信号を生成するベースバンド集積回路素子と
を有し、
 前記ケーブルは、前記コネクタと前記ベースバンド集積回路素子とを接続する通信装置が提供される。
 第1シールド構造がコネクタを覆っているため、コネクタから漏れたノイズが高周波回路部品に影響を及ぼしにくいという効果が得られる。このため、コネクタから漏れたノイズが、高周波回路部品に接続される放射素子のアンテナ特性に影響を及ぼしにくいという効果が得られる。
図1A及び図1Bは、それぞれ第1実施例によるアンテナモジュールの斜視図及び断面図であり、図1Cは、第1シールド構造が実装された箇所を拡大した断面図である。 図2は、第1実施例によるアンテナモジュールが用いられている通信装置のブロック図である。 図3は、第2実施例によるアンテナモジュールの断面図である。 図4Aは、第3実施例によるアンテナモジュールの断面図であり、図4Bは、導体ポスト、グランド用導体ポスト、RFIC、及び第1基板内のグランドプレーンの平面的な位置関係を示す図である。 図5は、第4実施例によるアンテナモジュールの断面図である。 図6は、第5実施例によるアンテナモジュール、及びアンテナモジュールが取り付けられた吸熱部材の断面図である。 図7Aは、第6実施例によるアンテナモジュール、及びアンテナモジュールが取り付けられた吸熱部材の断面図であり、図7Bは、第6実施例によるアンテナモジュールの斜視図である。 図8は、第7実施例によるアンテナモジュールの斜視図である。 図9Aは、第8実施例によるアンテナモジュールの断面図であり、図9Bは、第1シールド構造を下方から見た斜視図である。 図10A、図10B、及び図10Cは、それぞれ第9実施例によるアンテナモジュールの平面図、断面図、及び底面図である。 図11A及び図11Bは、それぞれ第9実施例の変形例によるアンテナモジュールの断面図及び底面図である。 図12A及び図12Bは、それぞれ第10実施例によるアンテナモジュールの断面図及び底面図である。 図13A及び図13Bは、それぞれ第10実施例の変形例によるアンテナモジュールの断面図及び底面図である。 図14A及び図14Bは、それぞれ第11実施例によるアンテナモジュールの断面図及び底面図である。 図15A及び図15Bは、それぞれ第11実施例の変形例によるアンテナモジュールの断面図及び底面図である。
 [第1実施例]
 図1Aから図2までの図面を参照して、第1実施例によるアンテナモジュールについて説明する。
 図1A及び図1Bは、それぞれ第1実施例によるアンテナモジュールの斜視図及び断面図である。第1基板31に高周波回路部品20、コネクタ32、信号分離混合器36、DCDCコンバータ37等が実装されている。高周波回路部品20は、第2基板11、高周波集積回路素子(RFIC)12、及び複数の回路部品13を含む。第2基板11の一方の面に高周波集積回路素子12及び複数の回路部品13が実装されており、反対側の面に複数の放射素子14が設けられている。複数の放射素子14は、パッチアレイアンテナを構成する。回路部品13は、例えばバイパスコンデンサ等である。第2基板11の、RFIC12が実装されている面に、複数の導体ポスト15が立てられている。導体ポスト15は、例えば銅(Cu)で形成される。RFIC12、複数の回路部品13、及び複数の導体ポスト15が封止樹脂層16で封止されている。導体ポスト15の各々の頂面は、封止樹脂層16の表面に露出している。
 放射素子14がRFIC12に接続されている。なお、放射素子14はRFIC12に直接接続されているとは限らず、第2基板11に設けられた配線やビア導体等の給電線を介して電気的に接続されていてもよい。さらに、RFIC12が導体ポスト15に接続されている。さらに、第2基板11にグランドプレーン(後述する図1Cに示されている)が設けられており、このグランドプレーンは一部のグランド用の導体ポスト15に接続されている。
 導体ポスト15の露出している頂面と、第1基板31の表面に設けられたランドとをハンダ21で電気的かつ機械的に接続することにより、高周波回路部品20が第1基板31に実装される。コネクタ32にケーブル51(図1A)が着脱可能に接続される。ケーブル51を通して、無線通信される情報を含む信号等がRFIC12に伝送される。なお、図1Bは、コネクタ32にケーブル51が接続されていない状態を示している。
 第1基板31に第1シールド構造33が設けられている。第1シールド構造33はコネクタ32の少なくとも一部を覆っており、RFIC12を含む外界からコネクタ32、信号分離混合器36、DCDCコンバータ37をシールドする。本明細書において、第1基板31の、コネクタ32が実装されている面の外側を向く法線方向を「上方」と定義することとする。第1シールド構造33は、平面視においてコネクタ32を取り囲み、第1基板31の表面から上方に立ち上がる側板34と、側板34の上方の開口部を塞ぐ天板35とを含む。このように、第1シールド構造33は、上方及び横方向(側方)からコネクタ32を覆っている。側板34は、少なくともコネクタ32とRFIC12との間に配置されている。側板34には、ケーブル51を引き出すための開口34A(図1A)が設けられている。図1Aは、天板35が側板34から取り外された状態を表している。ケーブル51をコネクタ32に接続した後、図1Aに矢印で示すように天板35を側板34の上に取り付けることにより、側板34の上方の開口が天板35で塞がれる。
 図1Cは、第1シールド構造33が実装された箇所を拡大した断面図である。第1基板31にグランドプレーン38が設けられており、グランドプレーン38の表面がレジスト膜39で覆われている。レジスト膜39の一部に開口39Aが設けられており、開口39A内にグランドプレーン38の一部が露出している。第1シールド構造33の側板34の下端が、開口39A内に露出しているグランドプレーン38にハンダ等で接続されている。
 図2は、第1実施例によるアンテナモジュールが用いられている通信装置のブロック図である。例えば携帯電話、スマートフォン、タブレット端末等の携帯端末や、通信機能を備えたパーソナルコンピュータ等のマザーボード60と、アンテナモジュールのコネクタ32とがケーブル51で接続される。ケーブル51として、例えば同軸ケーブルが用いられる。マザーボード60に、局部発振器61、電源回路62、ベースバンド集積回路素子(BBIC)63等が実装されている。BBIC63は、RFIC12に与える信号等を生成する。ケーブル51を通して、アンテナモジュールに直流電力、局部発振信号、無線通信される情報を含む信号(例えば、中間周波信号等)が伝送される。
 これらの信号は、コネクタ32を通して信号分離混合器36に入力され、局部発振信号LO及び中間周波信号IFに分離される。局部発振信号LO及び中間周波信号IFは、RFIC12に入力される。さらに、ケーブル51を伝送された直流電力がDCDCコンバータ37に入力される。DCDCコンバータ37は電圧変換を行い、所定の電圧の直流電力DCをRFIC12に供給する。コネクタ32、信号分離混合器36及びDCDCコンバータ37は、第1シールド構造33によってRFIC12からシールドされている。RFIC12は、無線通信される(アンテナで送受信される)高周波信号の信号処理を行う。以下、RFIC12の詳細な機能について説明する。
 中間周波信号IFが中間周波増幅器79を介してアップダウンコンバート用ミキサ78に入力される。アップダウンコンバート用ミキサ78でアップコンバートされた高周波信号が、送受信切り替えスイッチ77を介してパワーディバイダ76に入力される。パワーディバイダ76で分割された高周波信号の各々が、移相器75、アッテネータ74、送受信切り替えスイッチ73、パワーアンプ71、送受信切り替えスイッチ70、及び給電線17を経由して複数の放射素子14に供給される。パワーディバイダ76で分割された後の高周波信号の処理を行う移相器75、アッテネータ74、送受信切り替えスイッチ73、パワーアンプ71、送受信切り替えスイッチ70、及び給電線17は、放射素子14ごとに設けられている。
 複数の放射素子14の各々で受信された高周波信号が、給電線17、送受信切り替えスイッチ70、ローノイズアンプ72、送受信切り替えスイッチ73、アッテネータ74、移相器75を経由してパワーディバイダ76に入力される。パワーディバイダ76で合成された高周波信号が、送受信切り替えスイッチ77を経由して、アップダウンコンバート用ミキサ78に入力される。アップダウンコンバート用ミキサ78でダウンコンバートされた中間周波信号が、中間周波増幅器79、信号分離混合器36を経由し、コネクタ32に接続されたケーブル51によって伝送され、マザーボード60に実装されたBBIC63に入力される。
 次に、第1実施例の優れた効果について説明する。
 第1実施例では、コネクタ32がRFIC12を含む高周波回路部品20から第1シールド構造33によってシールドされている。このため、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。さらに、信号分離混合器36及びDCDCコンバータ37も、高周波回路部品20から第1シールド構造33によってシールドされているため、信号分離混合器36及びDCDCコンバータ37で発生したノイズが高周波回路部品20に与える影響を軽減することができる。
 次に、第1実施例の構成を基にした他の例について説明する。第1実施例では、マザーボード60(図2)からケーブル51を通してアンテナモジュールに、中間周波信号等の変調信号、局部発振信号、及び直流電力が伝送される。マザーボード60とアンテナモジュールとの間でケーブル51を通して伝送される信号に、制御信号、クロック信号等を含めてもよい。また、第1実施例では、ケーブル51として同軸ケーブルを用い、コネクタ32として同軸ケーブル用のものを用いた。その他に、コネクタ32としてケーブル種別に応じて多ピンコネクタを用いてもよい。
 第1実施例では、複数の放射素子14がパッチアレイアンテナを構成しているが、他のアンテナを構成するようにしてもよい。例えば、放射素子14として、モノポールアンテナ、ダイポールアンテナ等を用いてもよい。
 [第2実施例]
 次に、図3を参照して第2実施例によるアンテナモジュールについて説明する。以下、第1実施例によるアンテナモジュールと共通の構成については説明を省略する。
 図3は、第2実施例によるアンテナモジュールの断面図である。第1実施例では、第2基板11の、RFIC12が実装された面を第1基板31に対向させる姿勢で高周波回路部品20が第1基板31に実装されている。これに対し第2実施例では、第2基板11の、RFIC12が実装されている面とは反対側の面を第1基板31に対向させる姿勢で、高周波回路部品20が第1基板31に実装されている。高周波回路部品20は、ハンダ22によって第1基板に電気的かつ機械的に接続される。第2実施例では、高周波回路部品20に導体ポスト15(図1B)は設けられていない。
 また、第1実施例では第2基板11に放射素子14(図1B)が設けられているが、第2実施例では、第1基板31の、高周波回路部品20が実装されている面とは反対側の面に複数の放射素子14が設けられている。複数の放射素子14は、第1基板31に設けられた伝送線路、ハンダ22、及び第2基板11に設けられた伝送線路を介してRFIC12に接続されている。
 第2実施例においても、第1実施例と同様に、第1基板31にコネクタ32が実装されており、第1シールド構造33がRFIC12を含む高周波回路部品20からコネクタ32をシールドしている。
 次に、第2実施例の優れた効果について説明する。
 第2実施例においても、第1実施例の場合と同様に、コネクタ32がRFIC12を含む高周波回路部品20からシールドされている。このため、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 [第3実施例]
 次に、図4A及び図4Bを参照して第3実施例によるアンテナモジュールについて説明する。以下、第1実施例によるアンテナモジュールと共通の構成については説明を省略する。
 図4Aは、第3実施例によるアンテナモジュールの断面図である。第1基板31の内層にグランドプレーン40が配置されている。第2基板11側の複数の導体ポスト15のうち一部はグランド用導体ポスト18であり、グランド用導体ポスト18は、第2基板11内のグランドプレーン19に接続されている。第1基板31内のグランドプレーン40は、第1基板31内に配置された複数のビア導体41及びハンダ21を介してグランド用導体ポスト18に接続されている。
 図4Bは、導体ポスト15、グランド用導体ポスト18、RFIC12、及び第1基板31内のグランドプレーン40の平面的な位置関係を示す図である。複数のグランド用導体ポスト18がRFIC12を取り囲むように配置されている。グランドプレーン40の内側にRFIC12が配置されている。グランドプレーン40は、グランド用導体ポスト18と重なり、グランド用導体ポスト18に接続されている。グランド用導体ポスト18以外の導体ポスト15は、グランドプレーン40の外側に配置されている。
 グランドプレーン40及び複数のグランド用導体ポスト18が第2シールド構造43を構成している。第2シールド構造43は、高周波回路部品20の一部であるRFIC12を覆い、コネクタ32(図4A)を含む外界からRFIC12をシールドする。
 次に、第3実施例の優れた効果について説明する。
 第3実施例においても第1実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第3実施例では、第2シールド構造43がRFIC12をシールドしているため、RFIC12が、コネクタ32で発生したノイズ、及びマザーボード60(図2)に実装された素子等の周辺素子から発生したノイズの影響を受けにくいという優れた効果が得られる。さらに、RFIC12で発生したノイズが、コネクタ32や周辺素子に与える影響を軽減することができる。
 [第4実施例]
 次に、図5を参照して第4実施例によるアンテナモジュールについて説明する。以下、第2実施例によるアンテナモジュール(図3)と共通の構成については説明を省略する。
 図5は、第4実施例によるアンテナモジュールの断面図である。第4実施例においては、封止樹脂層16の表面が導電膜44で覆われている。導電膜44は、第2基板11に設けられているグランドプレーン19に接続されている。導電膜44が、第2シールド構造43として機能する。第2シールド構造43は、RFIC12を覆っており、少なくともコネクタ32とRFIC12との間に配置されている。
 次に、第4実施例の優れた効果について説明する。
 第4実施例においても第1実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第4実施例では、導電膜44が第2シールド構造43として機能するため、第3実施例と同様に、RFIC12が、コネクタ32で発生したノイズ、及びマザーボード60(図2)に実装され素子等の周辺素子から発生したノイズの影響を受けにくいという優れた効果が得られる。さらに、RFIC12で発生したノイズが、コネクタ32や周辺素子に与える影響を軽減することができる。
 [第5実施例]
 次に、図6を参照して第5実施例によるアンテナモジュールについて説明する。以下、第4実施例によるアンテナモジュール(図5)と共通の構成については説明を省略する。
 図6は、第5実施例によるアンテナモジュール、及びアンテナモジュールが取り付けられた吸熱部材80の断面図である。第1シールド構造33及び第2シールド構造43の、第1基板31とは反対側を向く面(以下、天面という。)に、それぞれ放熱部材81、82が貼り付けられている。第1シールド構造33及び第2シールド構造43は、それぞれ放熱部材81、82を介して吸熱部材80に熱的に結合する。ここで、「熱的に結合」とは、結合される複数の物体間において、熱を伝導可能な状態とした結合のことをいう。放熱部材81、82として、例えば柔らかく、密着性に優れ、かつ熱伝導性の高いシート状の材料(放熱シート、熱伝導シート)を用いるとよい。吸熱部材80として、例えばマザーボード60(図2)の金属部分、アンテナモジュールが収容される筐体、ヒートシンク等を用いることができる。
 放熱部材81、82は、それぞれ第1シールド構造33と吸熱部材80との間、及び第2シールド構造43と吸熱部材80との間で効率よく熱を伝導させる機能を持つ。
 次に、第5実施例の優れた効果について説明する。
 第5実施例においても第4実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第5実施例においては、第1シールド構造33及び放熱部材81が、第1シールド構造33でシールドされる部品、例えばコネクタ32、信号分離混合器36(図2)、及びDCDCコンバータ37(図2)から吸熱部材80までの伝熱経路として機能する。このため、コネクタ32、信号分離混合器36(図2)、及びDCDCコンバータ37(図2)から効率的に放熱を行うことができる。さらに、RFIC12と吸熱部材80との間に、封止樹脂層16、第2シールド構造43、及び放熱部材82が、ほぼ隙間なく配置されているため、RFIC12から効率的に放熱を行うことができる。
 第1基板31から第1シールド構造33の天面までの高さと、第1基板31から第2シールド構造43の天面までの高さとを揃えることにより、アンテナモジュールを、放熱部材81、82を介して吸熱部材80の平坦な表面に容易に密着させることができる。なお、第1基板31から第1シールド構造33の天面までの高さと、第1基板31から第2シールド構造43の天面までの高さとの差を、放熱部材81、82の柔軟性で吸収することができる程度にすることが好ましい。この場合には、放熱部材81、82として、同一の厚さのものを用いることができる。なお、放熱部材81、82として、連続した1枚の放熱部材を用いることも可能である。
 次に、第5実施例の変形例について説明する。第5実施例では、第2シールド構造43の天面に放熱部材82を貼り付けたが、第2シールド構造43を設けず、第2実施例による封止樹脂層16(図3)の天面に放熱部材82を貼り付けてもよい。
 [第6実施例]
 次に、図7A及び図7Bを参照して、第6実施例によるアンテナモジュールについて説明する。以下、第3実施例によるアンテナモジュール(図4A、図4B)と共通の構成については説明を省略する。
 図7A及び図7Bは、それぞれ第6実施例によるアンテナモジュール、及びアンテナモジュールが取り付けられた吸熱部材80の断面図及び斜視図である。第1基板31の、高周波回路部品20が実装された面とは反対側の面に、放熱部材83が貼り付けられている。放熱部材83は、吸熱部材80に密着する。
 さらに、第1シールド構造33の天面に、他の放熱部材84が貼り付けられている。放熱部材84は、平面視において第1基板31の外側まで延びて、アンテナモジュールの近傍に位置する吸熱部材85に密着する。吸熱部材85として、例えば、マザーボードの金属部分、アンテナモジュールが収容される筐体、ヒートシンク等が利用される。
 次に、第6実施例の優れた効果について説明する。
 第6実施例においても第3実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第6実施例では、RFIC12等で発生した熱を、第2基板11、導体ポスト15、ハンダ21、第1基板31、及び放熱部材83を介して効率的に放熱することができる。さらに、第1シールド構造33で囲まれた領域内の部品で発生した熱を、第1シールド構造33及び放熱部材84を介して効率的に放熱することができる。
 一般に、コネクタ32の近傍に配置される信号分離混合器36、DCDCコンバータ37(図1A)等の部品の高さは異なっている。このように、高さが異なっている複数の部品が実装されている場合、これらの部品の天面に変形しにくい1枚の放熱部材を貼り付けることは困難である。第6実施例では、第1シールド構造33の平坦な天面に放熱部材84を密着させればよいため、放熱部材84の貼り付けを容易に行うことができるという効果が得られる。
 [第7実施例]
 次に、図8を参照して第7実施例によるアンテナモジュールについて説明する。以下、第6実施例によるアンテナモジュール(図7A、図7B)と共通の構成については説明を省略する。
 図8は、第7実施例によるアンテナモジュールの斜視図である。第6実施例(図7B)では、第1シールド構造33の天面に密着した放熱部材84がアンテナモジュールの近傍の吸熱部材85に密着している。これに対し、第7実施例では、第1シールド構造33の天面に密着した放熱部材86が、第1基板31に貼り付けられた放熱部材83に密着している。
 次に、第7実施例の優れた効果について説明する。
 第7実施例においても第6実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第7実施例では、第1シールド構造33で囲まれた領域内の部品で発生した熱を、第1シールド構造33、放熱部材86、及びもう1枚の放熱部材83を介して、放熱部材83が密着している吸熱部材80に効率的に放熱することができる。
 [第8実施例]
 次に、図9A及び図9Bを参照して第8実施例によるアンテナモジュールについて説明する。以下、第6実施例によるアンテナモジュール(図7A、図7B)と共通の構成については説明を省略する。
 図9Aは、第8実施例によるアンテナモジュールの断面図であり、図9Bは、第1シールド構造33を下方から見た斜視図である。第6実施例(図7A、図7B)では、第1シールド構造33の天面に放熱部材84が貼り付けられている。これに対し第8実施例では、第1シールド構造33の天板35の、第1基板31側を向く面に放熱部材87が貼り付けられている。放熱部材87は、第1シールド構造33でシールドされている部品、例えばコネクタ32(図9A)、信号分離混合器36(図1A)、DCDCコンバータ37(図1A)等の天面に密着している。なお、コネクタ32にケーブル51(図1A)を接続した状態で第1シールド構造33の天板35を側板34に取り付けると、放熱部材87はケーブル51のコネクタ部に密着する。複数の部品の高さが異なっている場合には、放熱部材87の柔軟性によって放熱部材87が変形することにより、これらの部品の天面に放熱部材87が密着する。
 次に、第8実施例の優れた効果について説明する。
 第8実施例においても第6実施例と同様に、コネクタ32から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 さらに、第8実施例では、信号分離混合器36及びDCDCコンバータ37(図1A)等で発生した熱が、第1基板31に直接伝導するとともに、放熱部材87及び第1シールド構造33を通しても第1基板31に伝導する。第1基板31に伝導した熱は、放熱部材83を介して吸熱部材80に吸収される。このため、放熱部材87及び第1シールド構造33で発生した熱を効率的に放熱することができる。
 さらに、第1シールド構造33の天板35の、第1基板31側を向く面は平坦であるため、放熱部材87を容易に貼り付けることができる。複数の部品の高さが異なっていても、放熱部材87の柔軟性により、複数の部品に容易に放熱部材87を密着させることができる。
 [第9実施例]
 次に、図10A、図10B、及び図10Cを参照して、第9実施例によるアンテナモジュールについて説明する。以下、第4実施例によるアンテナモジュール(図5)と共通の構成については説明を省略する。
 図10A、図10B、及び図10Cは、それぞれ第9実施例によるアンテナモジュールの平面図、断面図、及び底面図である。第4実施例(図5)では、高周波集積回路素子12及び複数の回路部品13が、インターポーザとして機能する第2基板11に実装されて高周波回路部品20が構成されている。高周波集積回路素子12及び複数の回路部品13は、第2基板11を介して第1基板31に実装される。これに対して第9実施例では、高周波集積回路素子12及び複数の回路部品13が、第1基板31に直接実装されている。第9実施例においては、高周波回路部品20が、第1基板31に直接実装された高周波集積回路素子12及び複数の回路部品13を含む。
 シールドケース90が高周波回路部品20を覆っている。シールドケース90は側板90Aと天板90Bとを含む。側板90Aは、第1基板31を平面視した状態で、高周波集積回路素子12及び複数の回路部品13を取り囲む。天板90Bは、側板90Aの開口部を塞ぐ。シールドケース90は、第1基板31の内層に設けられたグランドプレーン40に電気的に接続されている。シールドケース90及びグランドプレーン40が、第2シールド構造43として機能する。
 高周波集積回路素子12とシールドケース90の天板90Bとの間に放熱部材91が配置されており、両者が放熱部材91によって熱的に結合する。
 次に、第9実施例の優れた効果について説明する。
 第9実施例においても第4実施例と同様に、コネクタ32、信号分離混合器36、DCDCコンバータ37等から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。さらに、第9実施例においては、シールドケース90の天板90Bを、第5実施例(図6)のように放熱部材82を介して吸熱部材80に取り付けることにより、放熱部材91が放熱経路の一部として機能し、効率的に放熱を行うことができる。
 次に、図11A及び図11Bを参照して第9実施例の変形例について説明する。
 図11A及び図11Bは、それぞれ第9実施例の変形例によるアンテナモジュールの断面図及び底面図である。第9実施例(図10B)では、コネクタ32、信号分離混合器36、及びDCDCコンバータ37と、第1シールド構造33の天板35との間が空洞にされている。これに対して本変形例では、第8実施例(図9A、図9B)と同様に、コネクタ32、信号分離混合器36、及びDCDCコンバータ37と、第1シールド構造33の天板35との間に放熱部材87が配置されている。このため、コネクタ32、信号分離混合器36及びDCDCコンバータ37等で発生した熱を、放熱部材87及び第1シールド構造33を通しても効率的に放熱させることができる。
[第10実施例]
 次に、図12A及び図12Bを参照して第10実施例によるアンテナモジュールについて説明する。以下、第9実施例によるアンテナモジュール(図10A、図10B、図10C)と共通の構成については説明を省略する。
 図12A及び図12Bは、それぞれ第10実施例によるアンテナモジュールの断面図及び底面図である。第9実施例(図10B)では、高周波集積回路素子12及び複数の回路部品13が、シールドケース90で覆われている。これに対して第10実施例では、高周波集積回路素子12及び複数の回路部品13が、封止樹脂層94で封止されている。すなわち、高周波回路部品20が封止樹脂層94で封止されている。
 次に、第10実施例の優れた効果について説明する。
 第10実施例においても第9実施例と同様に、コネクタ32、信号分離混合器36、DCDCコンバータ37等から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 次に、図13A及び図13Bを参照して、第10実施例の変形例について説明する。
 図13A及び図13Bは、それぞれ第10実施例の変形例によるアンテナモジュールの断面図及び底面図である。本変形例では、第9実施例の変形例によるアンテナモジュール(図11A、図11B)と同様に、コネクタ32、信号分離混合器36、及びDCDCコンバータ37と、第1シールド構造33の天板35との間に放熱部材87が配置されている。このため、コネクタ32、信号分離混合器36及びDCDCコンバータ37等で発生した熱を、放熱部材87及び第1シールド構造33を通しても効率的に放熱させることができる。
 [第11実施例]
 次に、図14A及び図14Bを参照して第11実施例によるアンテナモジュールについて説明する。以下、第2実施例によるアンテナモジュール(図3)と共通の構成については説明を省略する。
 図14A及び図14Bは、それぞれ第11実施例の変形例によるアンテナモジュールの断面図及び底面図である。第2実施例(図3)では、高周波回路部品20がインターポーザと呼ばれる第2基板11を含んでいる。これに対して第11実施例では、高周波回路部品20が、いわゆるインターポーザレス構造を有する。高周波集積回路素子12及び複数の回路部品13を含む高周波回路部品20が、第1基板31に実装されている。
 以下、第11実施例によるアンテナモジュールに用いられている高周波回路部品20の製造方法の一例について説明する。接着層が設けられた仮のサポート基板に、高周波集積回路素子12及び複数の回路部品13を位置決めして搭載する。この状態で、高周波集積回路素子12及び複数の回路部品13をエポキシ樹脂等の樹脂で被覆する。樹脂を硬化させた後、仮のサポート基板を接着層とともに除去する。これらの工程を経て、高周波回路部品20が作製される。
 次に、第11実施例の優れた効果について説明する。
 第11実施例においても、第2実施例と同様に、コネクタ32、信号分離混合器36、DCDCコンバータ37等から放射されるノイズが高周波回路部品20に与える影響を軽減することができる。
 次に、図15A及び図15Bを参照して、第11実施例の変形例について説明する。
 図15A及び図15Bは、それぞれ第11実施例の変形例によるアンテナモジュールの断面図及び底面図である。本変形例では、第9実施例の変形例によるアンテナモジュール(図11A、図11B)と同様に、コネクタ32、信号分離混合器36、及びDCDCコンバータ37と、第1シールド構造33の天板35との間に放熱部材87が配置されている。このため、コネクタ32、信号分離混合器36及びDCDCコンバータ37等で発生した熱を、放熱部材87及び第1シールド構造33を通しても効率的に放熱させることができる。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
11 第2基板
12 高周波集積回路素子(RFIC)
13 回路部品
14 放射素子
15 導体ポスト
16 封止樹脂層
17 給電線
18 グランド用導体ポスト
19 グランドプレーン
20 高周波回路部品
21、22 ハンダ
31 第1基板
32 コネクタ
33 第1シールド構造
34 側板
34A 開口
35 天板
36 信号分離混合器
37 DCDCコンバータ
38 グランドプレーン
39 レジスト膜
39A 開口
40 グランドプレーン
41 ビア導体
43 第2シールド構造
44 導電膜
51 ケーブル
60 マザーボード
61 局部発振器
62 電源回路
63 ベースバンド集積回路素子(BBIC)
70 送受信切り替えスイッチ
71 パワーアンプ
72 ローノイズアンプ
73 送受信切り替えスイッチ
74 アッテネータ
75 移相器
76 パワーディバイダ
77 送受信切り替えスイッチ
78 アップダウンコンバート用ミキサ
79 中間周波増幅器
80 吸熱部材
81、82、83、84 放熱部材
85 吸熱部材
86、87 放熱部材
90 シールドケース
90A 側板
90B 天板
91 放熱部材
94 封止樹脂層

Claims (12)

  1.  無線通信される高周波信号の信号処理を行う高周波回路部品と、
     前記高周波回路部品を実装する第1基板と、
     前記第1基板に実装されたコネクタであって、前記高周波回路部品への信号が伝送されるケーブルを接続する前記コネクタと、
     前記コネクタの少なくとも一部を覆い、少なくとも前記高周波回路部品と前記コネクタとの間に配置されている第1シールド構造と
    を有するアンテナモジュール。
  2.  前記第1基板の、前記コネクタが実装されている面が向く方向を上方と定義したとき、前記第1シールド構造は、上方及び横方向から前記コネクタを覆う請求項1に記載のアンテナモジュール。
  3.  さらに、前記高周波回路部品の少なくとも一部を覆う第2シールド構造を有する請求項1または2に記載のアンテナモジュール。
  4.  前記第2シールド構造は、少なくとも前記コネクタと前記高周波回路部品との間に配置されている請求項3に記載のアンテナモジュール。
  5.  前記高周波回路部品は、
     第2基板と、
     前記第2基板に実装された高周波集積回路素子と、
     前記高周波集積回路素子を封止する封止樹脂層と、
     前記封止樹脂層に埋め込まれた導体ポストと
    を含み、
     前記第2シールド構造は、
     前記第1基板に設けられた第1グランドプレーンと、
     前記第2基板に設けられた第2グランドプレーンと
    を含み、
     前記導体ポストが前記第1グランドプレーンと前記第2グランドプレーンとを電気的に接続し、前記第2シールド構造の一部を構成している請求項3または4に記載のアンテナモジュール。
  6.  前記高周波回路部品は、
     第2基板と、
     前記第2基板に実装された高周波集積回路素子と、
     前記高周波集積回路素子を封止する封止樹脂層と
    を含み、
     前記第2シールド構造は、前記封止樹脂層を覆う導電膜を含む請求項3または4に記載のアンテナモジュール。
  7.  前記高周波回路部品は、前記第1基板に直接実装された高周波集積回路素子を含む請求項1乃至4のいずれか1項に記載のアンテナモジュール。
  8.  さらに、前記第1基板に設けられた放射素子を備えており、前記放射素子は前記高周波回路部品に接続されている請求項1乃至7のいずれか1項に記載のアンテナモジュール。
  9.  さらに、前記第2基板に設けられた放射素子を備えており、前記放射素子は前記高周波回路部品に接続されている請求項5または6に記載のアンテナモジュール。
  10.  さらに、前記第1シールド構造に熱的に結合する第1放熱部材を備えている請求項1乃至9のいずれか1項に記載のアンテナモジュール。
  11.  さらに、前記第2シールド構造に熱的に結合する第2放熱部材を備えている請求項3乃至6のいずれか1項に記載のアンテナモジュール。
  12.  請求項1乃至11のいずれか1項に記載のアンテナモジュールと、
     前記高周波回路部品に与える信号を生成するベースバンド集積回路素子と
    を有し、
     前記ケーブルは、前記コネクタと前記ベースバンド集積回路素子とを接続する通信装置。
     
PCT/JP2019/050131 2019-01-23 2019-12-20 アンテナモジュール及び通信装置 WO2020153068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980089862.7A CN113330643A (zh) 2019-01-23 2019-12-20 天线模块以及通信装置
JP2020567431A JP7115568B2 (ja) 2019-01-23 2019-12-20 アンテナモジュール及び通信装置
US17/383,456 US20210351503A1 (en) 2019-01-23 2021-07-23 Antenna module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019009221 2019-01-23
JP2019-009221 2019-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/383,456 Continuation US20210351503A1 (en) 2019-01-23 2021-07-23 Antenna module and communication device

Publications (1)

Publication Number Publication Date
WO2020153068A1 true WO2020153068A1 (ja) 2020-07-30

Family

ID=71735742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050131 WO2020153068A1 (ja) 2019-01-23 2019-12-20 アンテナモジュール及び通信装置

Country Status (4)

Country Link
US (1) US20210351503A1 (ja)
JP (1) JP7115568B2 (ja)
CN (1) CN113330643A (ja)
WO (1) WO2020153068A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124405A1 (ja) * 2020-12-11 2022-06-16 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び高周波デバイス
WO2022124406A1 (ja) * 2020-12-11 2022-06-16 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び電子部品装置
JP7179213B1 (ja) 2022-05-17 2022-11-28 株式会社フジクラ 無線モジュール
WO2023084991A1 (ja) * 2021-11-12 2023-05-19 株式会社村田製作所 アンテナモジュール及びアンテナ部品
WO2023135912A1 (ja) * 2022-01-17 2023-07-20 株式会社村田製作所 アンテナモジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089836A4 (en) * 2020-11-12 2023-04-19 Guangzhou Shiyuan Electronics Co., Ltd. ANTENNA AND ELECTRONIC DEVICE ASSEMBLY

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286587A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd 外部ケーブル接続用コネクタ部の電磁シールド構造
JP2002335094A (ja) * 2001-03-19 2002-11-22 Hewlett Packard Co <Hp> 基板レベルのemiシールド
JP2003115704A (ja) * 2001-10-04 2003-04-18 Mitsubishi Electric Corp 高周波回路
JP2009147008A (ja) * 2007-12-12 2009-07-02 Toshiba Corp 携帯端末および携帯電話機
EP3324717A1 (en) * 2016-11-22 2018-05-23 Sercomm Corporation Communication device
US20180183185A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Ungrounded shield for an electrical connector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283976A (ja) * 1996-04-08 1997-10-31 Kitagawa Ind Co Ltd 放熱・シールド材
JP2001102817A (ja) * 1999-09-29 2001-04-13 Nec Corp 高周波回路及び該高周波回路を用いたシールディドループ型磁界検出器
JP4294670B2 (ja) * 2006-09-15 2009-07-15 シャープ株式会社 無線通信装置
US9007273B2 (en) * 2010-09-09 2015-04-14 Advances Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
CN106796924B (zh) * 2014-08-26 2019-02-26 三菱电机株式会社 高频模块
CN107078405B (zh) * 2014-10-20 2021-03-05 株式会社村田制作所 无线通信模块
JP6448358B2 (ja) * 2014-12-25 2019-01-09 株式会社イトーキ アンテナユニット
US10347967B2 (en) * 2016-01-26 2019-07-09 Qualcomm Incorporated Signal delivery and antenna layout using flexible printed circuit board (PCB)
JP6524986B2 (ja) * 2016-09-16 2019-06-05 株式会社村田製作所 高周波モジュール、アンテナ付き基板、及び高周波回路基板
US20210233865A1 (en) * 2018-09-12 2021-07-29 Mitsubishi Electric Corporation Microwave device and antenna
US11128030B2 (en) * 2018-10-04 2021-09-21 Samsung Electro-Mechanics Co., Ltd. Antenna module and electronic device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286587A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd 外部ケーブル接続用コネクタ部の電磁シールド構造
JP2002335094A (ja) * 2001-03-19 2002-11-22 Hewlett Packard Co <Hp> 基板レベルのemiシールド
JP2003115704A (ja) * 2001-10-04 2003-04-18 Mitsubishi Electric Corp 高周波回路
JP2009147008A (ja) * 2007-12-12 2009-07-02 Toshiba Corp 携帯端末および携帯電話機
EP3324717A1 (en) * 2016-11-22 2018-05-23 Sercomm Corporation Communication device
US20180183185A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Ungrounded shield for an electrical connector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124405A1 (ja) * 2020-12-11 2022-06-16 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び高周波デバイス
WO2022124406A1 (ja) * 2020-12-11 2022-06-16 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び電子部品装置
WO2023084991A1 (ja) * 2021-11-12 2023-05-19 株式会社村田製作所 アンテナモジュール及びアンテナ部品
WO2023135912A1 (ja) * 2022-01-17 2023-07-20 株式会社村田製作所 アンテナモジュール
JP7179213B1 (ja) 2022-05-17 2022-11-28 株式会社フジクラ 無線モジュール
JP2023169654A (ja) * 2022-05-17 2023-11-30 株式会社フジクラ 無線モジュール

Also Published As

Publication number Publication date
US20210351503A1 (en) 2021-11-11
JPWO2020153068A1 (ja) 2021-11-04
JP7115568B2 (ja) 2022-08-09
CN113330643A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP7115568B2 (ja) アンテナモジュール及び通信装置
JP6821008B2 (ja) マイクロ波デバイス及び空中線
US6770955B1 (en) Shielded antenna in a semiconductor package
JP6341293B2 (ja) 無線通信モジュール
JP5703245B2 (ja) 無線装置、それを備えた情報処理装置および記憶装置
EP2626897B1 (en) Transmission line transition having vertical structure and single chip package using land grid array joining
US10938091B1 (en) Chip antenna
KR20200056965A (ko) 안테나 모듈 및 이를 포함하는 전자기기
EP3188229A1 (en) High-frequency module
KR20200073572A (ko) 안테나 모듈 및 이를 포함하는 전자기기
US11211689B2 (en) Chip antenna
US11532895B2 (en) Radio frequency module and communication device
WO2017022221A1 (ja) 放熱構造および電子機器
KR20200145230A (ko) 안테나 모듈 및 이를 포함하는 전자기기
JP6602326B2 (ja) 無線装置
KR20200038836A (ko) 안테나 모듈 및 이를 포함하는 전자기기
JP6910313B2 (ja) 高周波デバイスおよび空中線
JP2011023683A (ja) 電子回路モジュール
US20240186693A1 (en) Antenna module and communication device
KR20210038529A (ko) 안테나 모듈 및 이를 포함하는 전자기기
KR102444299B1 (ko) 전자 소자 모듈 및 이의 제조 방법
CN218525735U (zh) 电子器件
CN219998479U (zh) 电子器件
JP4696621B2 (ja) 半導体装置
JP2001223604A (ja) 無線通信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911637

Country of ref document: EP

Kind code of ref document: A1