WO2017170276A1 - 内燃機関用のスパークプラグ - Google Patents

内燃機関用のスパークプラグ Download PDF

Info

Publication number
WO2017170276A1
WO2017170276A1 PCT/JP2017/012163 JP2017012163W WO2017170276A1 WO 2017170276 A1 WO2017170276 A1 WO 2017170276A1 JP 2017012163 W JP2017012163 W JP 2017012163W WO 2017170276 A1 WO2017170276 A1 WO 2017170276A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
tip
spark
spark plug
center electrode
Prior art date
Application number
PCT/JP2017/012163
Other languages
English (en)
French (fr)
Inventor
龍一 大野
亮平 秋吉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/088,976 priority Critical patent/US10431960B2/en
Priority to DE112017001640.1T priority patent/DE112017001640B4/de
Publication of WO2017170276A1 publication Critical patent/WO2017170276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • H01T13/467Sparking plugs having two or more spark gaps in parallel connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • This disclosure relates to a spark plug for an internal combustion engine.
  • a spark plug used as an ignition means in an internal combustion engine such as an automobile engine there is one in which a spark discharge gap is formed by making a center electrode and a ground electrode face each other in the axial direction.
  • a spark plug generates a discharge in the spark discharge gap and ignites the air-fuel mixture in the combustion chamber by this discharge.
  • an air flow of an air-fuel mixture such as a swirl flow or a tumble flow is formed, and ignitability can be ensured by appropriately flowing the air flow in the spark discharge gap.
  • a part of the ground electrode joined to the front end of the housing may be arranged upstream of the spark discharge gap in the airflow.
  • the airflow in the combustion chamber is blocked by the ground electrode, and the airflow in the vicinity of the spark discharge gap may stagnate.
  • the ignitability of the spark plug may be reduced. That is, there may be a problem that the ignitability of the spark plug varies depending on the mounting posture to the internal combustion engine.
  • an internal combustion engine using lean combustion is often used. In such an internal combustion engine, there is a risk that the combustion stability may be lowered depending on the mounting posture of the spark plug.
  • the mounting position of the spark plug to the internal combustion engine, that is, the position of the ground electrode in the circumferential direction unless special measures are taken.
  • the mounting posture changes depending on the formation state of the mounting screw in the housing and the degree of tightening of the spark plug during the mounting operation to the internal combustion engine.
  • the relationship between the mounting screw and the ground electrode joining position in the circumferential direction of the spark plug is limited to a specific positional relationship, and the female screw on the engine head side is also limited to a predetermined direction in the circumferential direction. It is also possible to take measures. However, in this case, there is a problem that the manufacturing man-hours and manufacturing costs of the spark plug and the engine head are increased.
  • Patent Document 1 a configuration in which the ground electrode is perforated or a configuration in which the ground electrode is joined to the housing by a plurality of thin plate members are disclosed.
  • the strength of the ground electrode may be reduced. Moreover, if the ground electrode is formed thick in order to prevent this, the airflow of the air-fuel mixture tends to be hindered after all. Further, in the “configuration in which the ground electrode is joined to the housing by a plurality of thin plate members” described in Patent Document 1, the shape of the ground electrode becomes complicated, the number of manufacturing steps increases, and the manufacturing cost increases. There is.
  • the present disclosure is intended to provide a spark plug for an internal combustion engine having a simple configuration capable of ensuring stable ignitability regardless of the mounting posture with respect to the internal combustion engine.
  • One aspect of the present disclosure includes a cylindrical housing; A cylindrical insulator held inside the housing; A center electrode held inside the insulator so that the tip protrudes; and A ground electrode connected to the housing and forming a spark discharge gap with the center electrode;
  • the ground electrode includes a standing portion standing on the distal end side from the distal end portion of the housing, and an inclined portion that bends from the distal end of the standing portion toward the central electrode side and extends to the oblique distal end side,
  • the inclined portion includes a grounding end surface that is an end surface opposite to the standing portion, a facing surface facing the center electrode side, and a curved corner surface that smoothly connects the grounding end surface and the facing surface.
  • the radius of curvature R of the corner curved surface satisfies 0.3 mm ⁇ R ⁇ 0.7 mm
  • the inclination angle ⁇ of the inclined portion with respect to the plug axis direction satisfies 30 ° ⁇ ⁇ ⁇ 60 °.
  • the ground electrode has an inclined portion. Therefore, it is possible to prevent the ignitability of the air-fuel mixture from being lowered due to the mounting posture of the spark plug with respect to the internal combustion engine.
  • the standing electrode is disposed at a position upstream of the airflow with respect to the spark discharge gap, the airflow along the inclined portion, that is, the tip, near the spark discharge gap. A flow of airflow toward the side can be generated.
  • the discharge spark stretched by the airflow can be prevented from approaching the engine head.
  • the heat of the flame generated by igniting the air-fuel mixture from the discharge spark is suppressed from being taken away by the engine head, and the flame is easily grown.
  • the inclined portion has a curved corner portion curved surface that smoothly connects the ground contact end surface and the opposing surface.
  • the corner curved surface has a smooth curved surface shape. Therefore, it is possible to prevent the electric field from concentrating on the corner curved surface. Therefore, the starting point of the discharge spark generated in the spark discharge gap on the ground electrode side easily moves to the tip side through the corner curved surface. This also makes it easy to stretch the discharge spark generated in the spark discharge gap toward the center of the combustion chamber. That is, in the spark plug for the internal combustion engine, in addition to the ground electrode having the inclined portion, the inclined portion has the corner curved surface, thereby synergistically obtaining the effect of extending the discharge spark toward the combustion chamber. be able to. Therefore, the ignitability to the air-fuel mixture can be further ensured.
  • the radius of curvature R of the corner curved surface satisfies 0.3 mm ⁇ R ⁇ 0.7 mm, and the inclination angle ⁇ of the inclined portion satisfies 30 ° ⁇ ⁇ ⁇ 60 °.
  • the ground electrode does not need to have a particularly complicated shape. Further, since the ground electrode does not need to be particularly thin, a special structure for securing its strength is not necessary. Therefore, a spark plug excellent in ignitability with a simple structure can be obtained.
  • FIG. 1 is a front explanatory view of the distal end portion of a spark plug in Embodiment 1.
  • FIG. 2 is an enlarged front explanatory view of the vicinity of the spark discharge gap of FIG.
  • FIG. 3 is a cross-sectional view orthogonal to the width direction at the center position in the width direction of the ground electrode in the first embodiment.
  • FIG. 4 is an IV view of FIG.
  • FIG. 5 is a diagram of the ground electrode in the first embodiment viewed from the protruding side of the protruding portion;
  • FIG. 6 is an explanatory diagram of the airflow along the inclined portion in the first embodiment.
  • FIG. 7 is a front explanatory view showing an initial discharge spark in Embodiment 1.
  • FIG. 8 is a front view showing a state in which both starting points of the discharge spark are moved to the downstream edge of the tip surface of the tip of the center electrode and the downstream edge of the protruding end surface of the ground electrode in the first embodiment.
  • Figure FIG. 9 is a front explanatory view showing a state in which the ground electrode side starting point is moved to the corner curved surface and the portion between both starting points of the discharge spark is stretched to the oblique tip side in the first embodiment, FIG.
  • FIG. 10 is a front explanatory view showing a state in which the ground electrode side starting point is moved to the ground end face and the part between both starting points of the spark discharge is stretched to the oblique tip side in the first embodiment
  • FIG. 11 is a front explanatory view of the distal end portion of the spark plug in Embodiment 2.
  • FIG. 12 is a diagram of the ground electrode as viewed from the protruding side of the protruding portion in the second embodiment.
  • the spark plug 1 for an internal combustion engine of the present embodiment includes a cylindrical housing 2, a cylindrical insulator 3, a center electrode 4, and a ground electrode 5.
  • the insulator 3 is held inside the housing 2.
  • the center electrode 4 is held inside the insulator 3 so that the tip 41 protrudes.
  • the ground electrode 5 is connected to the housing 2 and forms a spark discharge gap G with the center electrode 4.
  • the ground electrode 5 includes a standing portion 51 and an inclined portion 52.
  • the standing portion 51 is a portion that stands on the distal end side from the distal end portion 21 of the housing 2.
  • the inclined portion 52 is a portion that bends from the tip of the standing portion 51 to the center electrode 4 side and extends to the oblique tip side.
  • the inclined portion 52 has a ground contact end surface 521, a facing surface 522, and a corner curved surface 523.
  • the ground contact end surface 521 is an end surface of the inclined portion 52 on the side opposite to the standing portion 51.
  • the facing surface 522 is a surface facing the center electrode 4 side in the inclined portion 52.
  • the corner curved surface 523 is a curved surface that smoothly connects the ground contact end surface 521 and the facing surface 522.
  • the radius of curvature R of the corner curved surface 523 satisfies 0.3 mm ⁇ R ⁇ 0.7 mm.
  • the inclination angle ⁇ of the inclined portion 52 with respect to the plug axis direction Z satisfies 30 ° ⁇ ⁇ ⁇ 60 °.
  • the spark plug 1 of this embodiment is used for an internal combustion engine for a vehicle such as an automobile, for example.
  • the plug axis direction Z is the direction of the central axis of the spark plug 1.
  • the distal end side refers to a side in which the spark plug 1 is inserted into the combustion chamber in the plug axial direction Z, and the opposite side is referred to as a proximal end side.
  • the arrangement direction X of the standing portion 51 and the center electrode 4 is simply referred to as the arrangement direction X.
  • a direction perpendicular to both the arrangement direction X and the plug axis direction Z is referred to as a width direction Y.
  • the arrangement direction X, the width direction Y, and the plug axis direction Z are orthogonal to each other.
  • the extending direction E of the inclined portion 52 of the ground electrode 5 may be simply referred to as the extending direction E.
  • the side opposite to the standing portion 51 side of the inclined portion 52 in the extending direction E may be referred to as an extending side E1.
  • a direction orthogonal to both the extending direction E and the width direction Y may be referred to as an orthogonal direction O.
  • the standing portion 51 of the ground electrode 5 is formed in parallel with the plug axis direction Z. Further, the standing portion 51 has a rectangular shape with a cross section orthogonal to the plug axial direction Z.
  • the ground electrode 5 is formed in a shape composed of the standing portion 51 and the inclined portion 52 by bending a rod-shaped metal member whose cross-sectional shape orthogonal to the longitudinal direction is rectangular. Therefore, the shape of the cross section orthogonal to the longitudinal direction of the inclined portion 52 is also the same rectangular shape as the above-described cross sectional shape of the standing portion 51 for the inclined portion 52.
  • the inclination angle ⁇ of the inclined portion 52 with respect to the plug axis direction Z is 30 ° to 60 °. In the present embodiment, the inclination angle ⁇ is substantially the same as the inclination angle of the inclined portion 52 with respect to the standing portion 51.
  • the corner curved surface 523 is formed between the ground end face 521 of the ground electrode 5 and the facing surface 522. As shown in FIG. 3, the corner curved surface 523 is smoother toward the side opposite to the center electrode 4 side in the orthogonal direction O as it goes toward the extending side E1 in the extending direction E in the cross section orthogonal to the width direction Y.
  • the ground electrode 5 has a protruding portion 53 protruding from the facing surface 522 facing the center electrode 4 side in the inclined portion 52. As shown in FIGS. 1 and 2, a spark discharge gap G is formed between the protrusion 53 and the tip 41 of the center electrode 4.
  • the protrusion 53 is formed by welding a noble metal tip made of, for example, a platinum alloy to the facing surface 522. That is, the ground electrode 5 has a ground electrode base material 50 made of a nickel alloy and a protruding portion 53 made of a noble metal tip. The noble metal tip is welded to the ground electrode base material 50.
  • the welding of the protruding portion 53 to the facing surface 522 can be, for example, laser welding.
  • the corner curved surface 523 is formed over the entire inclined portion 52 in the width direction Y.
  • the formation range of the corner curved surface 523 in the width direction Y is not limited to this, and may be a part of the inclined portion 52 in the width direction Y.
  • the corner curved surface 523 is preferably formed at least in the same region as the protruding portion 53 in the width direction Y, that is, the region 7 shown in FIG.
  • the surface 61 of the welded portion 6 where the protruding portion 53 is welded to the facing surface 522 has a curved shape that is smoothly curved in a cross section including the central axis of the protruding portion 53. That is, the surface 61 of the welded portion 6 is a smooth curve that is curved so as to go outward in the radial direction of the protruding portion 53 toward the opposite side of the central electrode 4 in the orthogonal direction O in the cross section including the central axis of the protruding portion 53. Has a shape.
  • the end surface 521 is smoothly connected.
  • the shortest distance D between the protrusion 53 and the ground contact end surface 521 is shorter than the diameter ⁇ of the protrusion 53.
  • the shortest distance D is smaller than the radius ⁇ / 2 of the protrusion 53. That is, the protruding portion 53 is disposed in a region near the ground contact end surface 521.
  • the center electrode 4 is formed by joining a noble metal tip made of, for example, an iridium alloy to the tip of the center electrode base material 40. That is, the noble metal tip forms the tip 41 of the center electrode 4.
  • the ground electrode edge 54 which is the edge opposite to the standing portion 51 of the ground electrode 5 in the arrangement direction X, is on the opposite side of the standing portion 51 of the tip portion 41 of the center electrode 4. It is equivalent to the center electrode edge 42 which is an edge, or is located closer to the standing portion 51 than it. That is, in the arrangement direction X, the distance from the center electrode edge 42 to the ground electrode edge 54 when the upright portion 51 side is positive and the opposite side of the upright portion 51 is negative with respect to the center electrode edge 42 as a reference. L satisfies L ⁇ 0. Further, in the arrangement direction X, the ground electrode edge 54 is located closer to the standing portion 51 than the center electrode edge 42.
  • the ground electrode edge 54 is constituted by a part of the protruding portion 53 in this embodiment.
  • a part of the inclined portion 52 may constitute the ground electrode edge 54 in some cases.
  • the ground electrode 5 has an inclined portion 52. Therefore, it is possible to prevent the ignitability of the air-fuel mixture from being lowered by the mounting posture of the spark plug 1 with respect to the internal combustion engine. That is, even if the standing portion 51 of the ground electrode 5 is disposed at a position upstream of the airflow with respect to the spark discharge gap G, an inclined portion is provided near the spark discharge gap G as shown in FIG.
  • the flow of the air flow f along the line 52 that is, the flow of the air flow f toward the tip side can be generated. Therefore, the discharge spark generated in the spark discharge gap G is easily stretched to the tip side by the air flow f.
  • the initial discharge spark S generated by the spark discharge tends to start from the upstream edge of the tip surface of the tip portion 41 of the center electrode 4. That is, the distance between the center electrode 4 and the ground electrode 5 is the smallest between the upstream edge of the tip surface of the tip portion 41 of the center electrode 4 and the protruding portion 53 of the ground electrode 5.
  • the upstream edge of the distal end surface of the distal end portion 41 of the electrode 4 tends to be the starting point of the initial discharge spark S.
  • the initial discharge spark S generated in the spark discharge gap G is stretched to the downstream side, that is, the extension side E ⁇ b> 1 in the extension direction E over time by the airflow in the vicinity of the spark discharge gap G.
  • both starting points of the discharge spark S move with time. That is, both starting points of the initial discharge spark S are pushed by the air flow, and the downstream edge of the tip surface of the tip portion 41 of the center electrode 4 and the protruding side end surface 531 of the protruding portion 53 of the ground electrode 5 are detected. Move to the downstream edge.
  • the starting point on the ground electrode 5 side in the spark discharge gap G may be referred to as a ground electrode side starting point S1.
  • the discharge electrode S is further pushed by the air flow, and the ground electrode side starting point S1 moved to the downstream end edge of the protruding side end surface 531 moves to the side surface 532 of the protruding portion 53. Then, the ground electrode side starting point S1 moves to the side opposite to the center electrode 4 side in the orthogonal direction O so as to sandwich the side surface 532, and passes through the surface 61 of the welded portion 6 to the corner curved surface 523 as shown in FIG. Move. Then, as shown in FIG. 10, the ground electrode side starting point S ⁇ b> 1 moves from the corner curved surface 523 to the ground end surface 521, and moves on the ground end surface 521 toward the side opposite to the center electrode 4 in the orthogonal direction O.
  • the discharge spark S As described above, among the starting points of the discharge spark S, especially the ground electrode side starting point S1 moves greatly. Thereby, the distance between both starting points of the discharge spark S becomes long. Then, while the starting point of the discharge spark S moves as described above, the discharge spark S is greatly stretched to the downstream side in the vicinity of the spark discharge gap G, that is, to the extending side E1 in the extending direction E. Therefore, the discharge spark stretched by the airflow can be moved away from the wall surface of the combustion chamber toward the tip side. As a result, it is possible to prevent the flame ignited by the discharge spark from being cooled by the ground electrode 5 of the spark plug 1 or the wall surface of the combustion chamber. That is, the anti-inflammatory effect can be suppressed. As a result, flame growth easily occurs in the combustion chamber, and the ignitability can be improved.
  • the inclined portion 52 has a curved corner curved surface 523 that smoothly connects the ground contact end surface 521 and the facing surface 522.
  • the corner curved surface 523 has a smooth curved surface shape. Therefore, it is possible to prevent the electric field from concentrating on the corner curved surface 523. Therefore, the starting point of the discharge spark generated in the spark discharge gap G on the ground electrode 5 side easily moves to the tip side through the corner curved surface 523. This also makes it easy to stretch the discharge spark generated in the spark discharge gap G toward the center of the combustion chamber. That is, in the spark plug 1 for an internal combustion engine, in addition to the ground electrode 5 having the inclined portion 52, the inclined portion 52 has the corner curved surface 523, thereby extending the discharge spark toward the combustion chamber. It can be obtained synergistically. Therefore, the ignitability to the air-fuel mixture can be further ensured.
  • the radius of curvature R of the corner curved surface 523 satisfies 0.3 mm ⁇ R ⁇ 0.7 mm, and the inclination angle ⁇ of the inclined portion 52 satisfies 30 ° ⁇ ⁇ ⁇ 60 °.
  • the ground electrode 5 does not need to have a particularly complicated shape. Further, since the ground electrode 5 does not need to be particularly thin, a special structure for ensuring its strength is not necessary. Therefore, the spark plug 1 having a simple structure and excellent ignitability can be obtained.
  • the ground electrode edge 54 which is the edge opposite to the standing portion 51 of the ground electrode 5 in the arrangement direction X, is the edge opposite to the standing portion 51 of the tip portion 41 of the center electrode 4. It is equivalent to the center electrode edge 42 or is located closer to the standing portion 51 than that. Therefore, it is possible to further improve the ignitability of the air-fuel mixture when the standing portion 51 is disposed at a position upstream of the airflow with respect to the spark discharge gap G. That is, it is possible to prevent the flame generated by igniting the air-fuel mixture from the discharge spark stretched downstream as described above from approaching the ground electrode 5. Therefore, the cooling loss due to the heat of the flame being taken away by the ground electrode 5 can be suppressed.
  • the shortest distance D between the protruding portion 53 and the ground contact end surface 521 is shorter than the diameter ⁇ of the protruding portion 53.
  • the protruding portion 53 is disposed in the extending direction E at a position close to the ground contact end surface 521 in the facing surface 522. Therefore, the length of the inclined portion 52 can be shortened as much as possible. Thereby, even when the standing portion 51 is arranged at a position on the upstream side of the airflow with respect to the spark discharge gap G, the discharge spark is easily spread toward the tip side, and the ignitability can be improved.
  • the corner curved surface 523 can be simultaneously formed at the corner between the ground end surface 521 and the facing surface 522 by the heat of the welding. it can. Therefore, the easily manufactured spark plug 1 can be obtained.
  • the inclination angle ⁇ of the inclined portion 52 is variously changed between 10 ° and 90 °, and the curvature radius R of the corner curved surface 523 is changed between 0 mm and 0.9 mm.
  • Table 1 the inclination angle ⁇ of the inclined portion 52 is variously changed between 10 ° and 90 °, and the curvature radius R of the corner curved surface 523 is changed between 0 mm and 0.9 mm.
  • the sample in which the inclination angle ⁇ of the inclined portion 52 is 90 ° is a spark plug in which the inclined portion is orthogonal to the standing portion.
  • a sample having a curvature radius R of 0 mm is a spark plug in which a corner is formed between the ground end face and the facing surface.
  • a sample in which the inclination angle ⁇ of the inclined portion 52 is 90 ° and the curvature radius R of the corner curved surface 523 is 0 mm is used as a reference sample, and compared with the ignitability of the reference sample. Then, the ignitability of each sample was evaluated.
  • the ignitability was evaluated using the lean limit A / F as an index. That is, in the internal combustion engine to which each sample was attached, the air-fuel ratio (that is, A / F) of the air-fuel mixture was gradually changed, and the limit air-fuel ratio that could be ignited (that is, the lean limit A / F) was measured.
  • the conditions of the internal combustion engine in this test were a displacement of 1800 cc, an engine speed of 2000 rpm, and an indicated mean effective pressure of 0.28 MPa.
  • the air-fuel ratio at which the combustion fluctuation rate (that is, the fluctuation rate of the indicated mean effective pressure) is 3% is defined as the lean limit A / F.
  • the lean limit A / F was an average value of values obtained by performing five tests for each sample.
  • the dimension w in the width direction Y of the standing portion 51 of the ground electrode 5 was 2.6 mm, and the dimension t in the arrangement direction X was 1.3 mm.
  • the dimension of the spark discharge gap G was 0.8 mm.
  • the noble metal tip constituting the protruding portion 53 of the ground electrode 5 was formed in a cylindrical shape having a diameter of 1.0 mm and a length of 0.8 mm.
  • the noble metal tip constituting the tip 41 of the center electrode 4 was formed into a cylindrical shape having a diameter of 0.7 mm and a length of 0.6 mm.
  • the screw diameter of the mounting screw portion of the housing 2 was M12.
  • the projecting dimension of the center electrode 4 in the plug axial direction Z from the front end surface of the housing 2 was 3 mm.
  • the attitude of the spark plug 1 attached to the internal combustion engine was such that the position of the standing portion 51 of the ground electrode 5 was on the upstream side of the airflow with respect to the center electrode 4.
  • Table 1 shows the evaluation results.
  • D indicates that the reference sample and the lean limit A / F are equivalent (that is, the difference from the lean limit A / F of the reference sample is less than 0.05).
  • C indicates that the lean limit A / F is improved by 0.05 or more and less than 0.1 with respect to the reference sample.
  • B shows that the lean limit A / F is improved by 0.1 or more and less than 0.4 with respect to the reference sample.
  • A indicates that the lean limit A / F is improved by 0.4 or more with respect to the reference sample.
  • the present embodiment is an embodiment in which the shape of the end portion on the extending side E1 in the extending direction E of the inclined portion 52 is changed with respect to the first embodiment.
  • the inclined portion 52 has a shape in which the shape of the end portion on the extending side E1 in the extending direction E becomes narrower in the width direction Y toward the extending side E1. That is, when viewed from the orthogonal direction O, the end of the inclined portion 52 on the extending side E1 has a smaller dimension in the width direction Y toward the extending side E1 in the extending direction E.
  • the ground contact end surface 521 includes a parallel surface 521a having the normal direction as the extending direction E, and a pair of tapered surfaces 521b having the normal direction inclined in the width direction Y with respect to the extending direction E.
  • the pair of tapered surfaces 521b are formed on both sides of the parallel surface 521a in the width direction Y.
  • the pair of tapered surfaces 521b are formed so as to connect between the pair of side surfaces 524 in the inclined portion 52 and the parallel surface 521a.
  • the pair of tapered surfaces 521b are surfaces that are inclined so as to approach each other in the width direction Y toward the parallel surface 521a from the pair of side surfaces 524 in the extending direction E.
  • the corner curved surface 523 is formed so as to smoothly connect the parallel surface 521a, the pair of tapered surfaces 521b, and the facing surface 522. Also in this embodiment, the corner curved surface 523 is formed over the entire inclined portion 52 in the width direction Y. Also in this embodiment, the formation range of the corner curved surface 523 is not limited to this, and may be a part of the inclined portion 52 in the width direction Y. In this case, the corner curved surface 523 is preferably formed at least in the same region as the protruding portion 53 in the width direction Y, that is, the region 7 shown in FIG.
  • the ground electrode 5 provided with the protrusion 53 is shown.
  • the ground electrode may be provided with no protrusion. In this case, it is preferable to form a corner curved surface on the entire ground electrode in the width direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

内燃機関用のスパークプラグ(1)は、筒状のハウジング(2)と筒状の絶縁碍子(3)と中心電極(4)と接地電極(5)とを有する。接地電極(5)は、立設部(51)と傾斜部(52)とを備えている。立設部(51)は、ハウジング(2)の先端部(21)から先端側に立設する部位である。傾斜部(52)は、立設部(51)の先端から中心電極(4)側へ屈曲して斜め先端側へ延びる部位である。傾斜部(52)は、接地端面(521)と対向面(522)と角部曲面(523)とを有する。角部曲面(523)は、接地端面(521)と対向面(522)とを滑らかにつなぐ面である。角部曲面(523)は、曲面状を呈している。角部曲面(523)の曲率半径Rは、0.3mm≦R≦0.7mm、を満たす。プラグ軸方向(Z)に対する傾斜部(52)の傾斜角度θは、30°≦θ≦60°、を満たす。

Description

内燃機関用のスパークプラグ 関連出願の相互参照
 本出願は、2016年3月30日に出願された日本出願番号2016-069347号に基づくもので、ここにその内容を援用する。
 本開示は、内燃機関用のスパークプラグに関する。
 自動車のエンジン等の内燃機関における着火手段として用いられるスパークプラグとして、軸方向に中心電極と接地電極とを対向させて火花放電ギャップを形成したものがある。かかるスパークプラグは、火花放電ギャップに放電を生じさせ、この放電により、燃焼室内の混合気に着火している。
 ここで、燃焼室内においては、例えばスワール流やタンブル流といった混合気の気流が形成されており、この気流が火花放電ギャップにおいても適度に流れることにより、着火性を確保することができる。
 ところが、内燃機関へのスパークプラグの取付姿勢によっては、ハウジングの先端部に接合された接地電極の一部が、気流における火花放電ギャップの上流側に配置されることがある。この場合、燃焼室内の気流が接地電極によって遮られ、火花放電ギャップ付近の気流が停滞するおそれがある。その結果、スパークプラグの着火性が低下するおそれがある。すなわち、内燃機関への取付姿勢によって、スパークプラグの着火性がばらつくという問題が生じるおそれがある。特に近年、希薄燃焼による内燃機関が多く用いられているが、このような内燃機関においては、スパークプラグの取付姿勢によって、燃焼安定性が低下するおそれがある。
 また、内燃機関へのスパークプラグの取付姿勢、すなわち周方向についての接地電極の位置を制御することは、特別な措置を講じない限り、困難である。これは、ハウジングにおける取付用ネジの形成状態や内燃機関への取り付け作業時におけるスパークプラグの締付度合い等によって、取付姿勢が変化してしまうからである。なお、スパークプラグの周方向における取付用ネジと接地電極の接合位置との関係を特定の位置関係に限定するとともに、エンジンヘッド側の雌ネジも周方向における所定の向きに限定するなどの特別な手段を講じることも考えられる。しかし、この場合には、スパークプラグ及びエンジンヘッドの製造工数、製造コストの増加につながるという問題がある。
 そこで、接地電極による気流の阻害を抑制するために、接地電極に穴開け加工を施した構成や、複数の薄い板状部材によって接地電極をハウジングに接合した構成が開示されている(特許文献1)。
特開平9-148045号公報
 上記特許文献1に記載の「接地電極に穴開け加工を施した構成」では、接地電極の強度低下を招くおそれがある。また、それを防ぐために接地電極を太く形成すれば、結局、混合気の気流を妨げやすくなる。
 また、同じく特許文献1に記載の「複数の薄い板状部材によって接地電極をハウジングに接合した構成」では、接地電極の形状が複雑になり、製造工数も増加し、製造コストが高くなるという問題がある。
 本開示は、内燃機関に対する取付姿勢に関わらず安定した着火性を確保することができる簡易な構成の内燃機関用のスパークプラグを提供しようとするものである。
 本開示の一態様は、筒状のハウジングと、
 該ハウジングの内側に保持された筒状の絶縁碍子と、
 先端部が突出するように上記絶縁碍子の内側に保持された中心電極と、
 上記ハウジングに接続されると共に上記中心電極との間に火花放電ギャップを形成する接地電極と、を有し、
 上記接地電極は、上記ハウジングの先端部から先端側に立設する立設部と、該立設部の先端から上記中心電極側へ屈曲して斜め先端側へ延びる傾斜部とを備え、
 該傾斜部は、上記立設部と反対側の端面である接地端面と、上記中心電極側を向いた対向面と、上記接地端面と上記対向面とを滑らかにつなぐ曲面状の角部曲面とを有し、
 上記角部曲面の曲率半径Rは、0.3mm≦R≦0.7mm、を満たし、
 かつ、プラグ軸方向に対する上記傾斜部の傾斜角度θは、30°≦θ≦60°、を満たす、内燃機関用のスパークプラグにある。
 上記内燃機関用のスパークプラグにおいて、接地電極は傾斜部を有する。それゆえ、内燃機関に対するスパークプラグの取付姿勢によって、混合気への着火性が低下することを抑制することができる。つまり、仮に、接地電極の立設部が火花放電ギャップに対して気流の上流側となる位置に配置された場合においても、火花放電ギャップ付近に、傾斜部に沿った気流の流れ、すなわち、先端側へ向かう気流の流れを生じさせることができる。これにより、火花放電ギャップに生じた放電火花を、燃焼室内の中央に向かって引き延ばしやすい。そのため、気流によって引き伸ばされる放電火花が、エンジンヘッドに近付くことを防止することができる。その結果、放電火花から混合気へ着火されることにより生じた火炎の熱が、エンジンヘッドに奪われることを抑制し、火炎を成長させやすい。
 さらに、傾斜部は、接地端面と対向面とを滑らかにつなぐ曲面状の角部曲面を有する。そして、角部曲面は、滑らかな曲面形状を有する。それゆえ、角部曲面に、電界が集中することを防止することができる。それゆえ、火花放電ギャップに生じた放電火花の接地電極側の起点が、角部曲面上を通って先端側に移動しやすい。これによっても、火花放電ギャップに生じた放電火花を、燃焼室内の中央に向かって引き伸ばしやすい。
 つまり、上記内燃機関用のスパークプラグにおいては、接地電極が傾斜部を有することに加え、傾斜部が上記角部曲面を有することにより、放電火花を燃焼室内に向かって引き伸ばす効果を相乗的に得ることができる。そのため、混合気への着火性を一層確保することができる。
 また、角部曲面の曲率半径Rは、0.3mm≦R≦0.7mm、を満たし、かつ、傾斜部の傾斜角度θが、30°≦θ≦60°、を満たす。これにより、上述した混合気への着火性の向上の効果を、一層得ることができる。
 また、上記スパークプラグにおいては、接地電極を特に複雑な形状とする必要もない。また、接地電極を特に細くする必要もないため、その強度を確保するための特別な構造も必要ない。それゆえ、簡易な構造にて着火性に優れたスパークプラグを得ることができる。
 以上のごとく、本開示によれば、内燃機関に対する取付姿勢に関わらず安定した着火性を確保することができる簡易な構成の内燃機関用のスパークプラグを提供することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、スパークプラグの先端部の正面説明図であり、 図2は、図1の、火花放電ギャップ周辺を拡大した拡大正面説明図であり、 図3は、実施形態1における、接地電極の、幅方向の中央位置での幅方向に直交する断面図であり、 図4は、図1の、IV視図であり、 図5は、実施形態1における、接地電極を突出部の突出側から見た図であり、 図6は、実施形態1における、傾斜部に沿う気流の説明図であり、 図7は、実施形態1における、初期の放電火花を表した正面説明図であり、 図8は、実施形態1における、放電火花の両起点が、中心電極の先端部の先端面の下流側端縁、及び接地電極の突出側端面の下流側端縁に移動した様子を示す正面説明図であり、 図9は、実施形態1における、接地電極側起点が角部曲面に移動し、放電火花の両起点間部位が斜め先端側に引き伸ばされている様子を示す正面説明図であり、 図10は、実施形態1における、接地電極側起点が接地端面に移動し、火花放電の両起点間部位が斜め先端側に引き伸ばされている様子を示す正面説明図であり、 図11は、実施形態2における、スパークプラグの先端部の正面説明図であり、 図12は、実施形態2における、接地電極を突出部の突出側から見た図である。
(実施形態1)
 内燃機関用のスパークプラグの実施形態につき、図1~図10を用いて説明する。
 本実施形態の内燃機関用のスパークプラグ1は、図1、図4に示すごとく、筒状のハウジング2と、筒状の絶縁碍子3と、中心電極4と、接地電極5と、を有する。絶縁碍子3は、ハウジング2の内側に保持されている。中心電極4は、先端部41が突出するように絶縁碍子3の内側に保持されている。図1に示すごとく、接地電極5は、ハウジング2に接続されると共に中心電極4との間に火花放電ギャップGを形成する。また、接地電極5は、立設部51と傾斜部52とを備えている。立設部51は、ハウジング2の先端部21から先端側に立設する部位である。傾斜部52は、立設部51の先端から中心電極4側へ屈曲して斜め先端側へ延びる部位である。
 図1~図3に示すごとく、傾斜部52は、接地端面521と対向面522と角部曲面523とを有する。接地端面521は、傾斜部52における立設部51と反対側の端面である。対向面522は、傾斜部52における中心電極4側を向いた面である。角部曲面523は、接地端面521と対向面522とを滑らかにつなぐ曲面である。角部曲面523の曲率半径Rは、0.3mm≦R≦0.7mm、を満たす。さらに、プラグ軸方向Zに対する傾斜部52の傾斜角度θは、30°≦θ≦60°、を満たす。
 本実施形態のスパークプラグ1は、例えば、自動車等の車両用の内燃機関に用いられる。
 なお、プラグ軸方向Zとは、スパークプラグ1の中心軸の方向である。また、先端側とは、プラグ軸方向Zにおいて、スパークプラグ1を燃焼室に挿入する側をいい、その反対側を基端側という。また、立設部51と中心電極4との並び方向Xを、単に並び方向Xという。さらに、並び方向Xとプラグ軸方向Zとの双方に直交する方向を幅方向Yという。並び方向Xと幅方向Yとプラグ軸方向Zとは、互いに直交している。また、以下において、接地電極5の傾斜部52の延設方向Eを、単に延設方向Eということもある。また、延設方向Eにおける傾斜部52の立設部51側と反対側を、延設側E1ということもある。また、延設方向Eと幅方向Yとの双方に直交する方向を、直交方向Oということもある。
 図1に示すごとく、接地電極5の立設部51は、プラグ軸方向Zに平行に形成されている。また、立設部51は、プラグ軸方向Zに直交する断面による形状が長方形状である。
 また、接地電極5は、長手方向に直交する断面の形状が長方形状である棒状の金属部材を、屈曲することにより、立設部51と傾斜部52とからなる形状に形成されている。したがって、傾斜部52についても、傾斜部52の長手方向に直交する断面の形状は、立設部51における上述の断面形状と同様の長方形状となっている。そして、プラグ軸方向Zに対する傾斜部52の傾斜角度θは、30°~60°である。本実施形態においては、この傾斜角度θは、立設部51に対する傾斜部52の傾斜角度と同程度である。
 上述のごとく、接地電極5の接地端面521と対向面522との間には、角部曲面523が形成されている。図3に示すごとく、角部曲面523は、幅方向Yに直交する断面において、延設方向Eにおける延設側E1に向かうほど、直交方向Oにおける中心電極4側と反対側に向かうように滑らかに湾曲した曲線形状を有する。当該曲線形状は、曲率半径Rが、0.3mm≦R≦0.7mmを満たす。
 図1~図3に示すごとく、接地電極5は、傾斜部52における中心電極4側を向いた対向面522から突出した突出部53を有する。図1、図2に示すごとく、突出部53と中心電極4の先端部41との間に、火花放電ギャップGが形成されている。突出部53は、例えば白金合金からなる貴金属チップを、対向面522に溶接することにより形成されている。すなわち、接地電極5は、ニッケル合金からなる接地電極母材50と、貴金属チップからなる突出部53とを有する。貴金属チップは、接地電極母材50に対して、溶接されている。対向面522に対する突出部53の溶接は、例えばレーザー溶接とすることができる。
 本実施形態においては、幅方向Yにおける傾斜部52の全体にわたって、角部曲面523が形成されている。なお、幅方向Yにおける角部曲面523の形成範囲は、これに限られず、幅方向Yにおける傾斜部52の一部としてもよい。この場合、角部曲面523は、少なくとも、幅方向Yにおける突出部53と同じ領域、すなわち図5に示す領域7、に形成されていることが好ましい。
 図3に示すごとく、突出部53を対向面522に溶接した溶接部6の表面61は、突出部53の中心軸を含む断面において、滑らかに湾曲した曲線形状を有する。すなわち、溶接部6の表面61は、突出部53の中心軸を含む断面において、直交方向Oにおける中心電極4と反対側に向かうほど突出部53の径方向の外側に向かうよう湾曲した滑らかな曲線形状を有する。本実施形態においては、少なくとも幅方向Yの突出部53の中央位置での、幅方向Yに直交する断面において、突出部53の側面532、溶接部6の表面61、角部曲面523、及び接地端面521は、滑らかにつながっている。
 図5に示すごとく、延設方向Eにおいて、突出部53と接地端面521との間の最短距離Dは、突出部53の直径φよりも短い。本実施形態において、最短距離Dは、突出部53の半径φ/2よりも小さい。つまり、突出部53は、接地端面521に近い領域に配されている。
 図1に示すごとく、中心電極4は、中心電極母材40の先端に、例えばイリジウム合金からなる貴金属チップを接合してなる。すなわち、この貴金属チップが中心電極4の先端部41を構成している。
 図2に示すごとく、並び方向Xにおける、接地電極5の立設部51と反対側の端縁である接地電極端縁54は、中心電極4の先端部41の立設部51と反対側の端縁である中心電極端縁42と同等もしくはそれよりも立設部51側に位置している。つまり、並び方向Xにおいて、中心電極端縁42を基準として立設部51側を正、立設部51と反対側を負としたとき、中心電極端縁42から接地電極端縁54までの距離Lは、L≧0を満たす。また、並び方向Xにおいて、接地電極端縁54は、中心電極端縁42よりも立設部51側に位置している。すなわち、本実施形態において、上記距離Lは、L>0を更に満たす。なお、接地電極端縁54は、本実施形態においては突出部53の一部によって構成されている。なお、傾斜部52の傾斜角度θ、突出部53の突出量等によっては、傾斜部52の一部が、接地電極端縁54を構成する場合もある。
 次に、本実施形態の作用効果につき、説明する。
 内燃機関用のスパークプラグ1において、接地電極5は傾斜部52を有する。それゆえ、内燃機関に対するスパークプラグ1の取付姿勢によって、混合気への着火性が低下することを抑制することができる。つまり、仮に、接地電極5の立設部51が火花放電ギャップGに対して気流の上流側となる位置に配置された場合においても、図6に示すごとく、火花放電ギャップG付近に、傾斜部52に沿った気流fの流れ、すなわち、先端側へ向かう気流fの流れを生じさせることができる。そのため、火花放電ギャップGにおいて発生した放電火花が、気流fによって先端側に引き伸ばされやすくなる。
 ここで、図7~図10を用いて、立設部51が火花放電ギャップGに対して気流の上流側となる位置に配置された場合において、放電火花Sが気流に押されることにより、放電火花Sの起点が移動する様子について説明する。
 図7に示すごとく、中心電極4と接地電極5との間に所定の電圧を印加することにより、火花放電ギャップGに火花放電が生じる。ここで、火花放電によって生じた初期の放電火花Sは、中心電極4の先端部41の先端面における上流側端縁が起点となりやすい。すなわち、中心電極4と接地電極5との間の距離は、中心電極4の先端部41の先端面における上流側端縁と、接地電極5の突出部53との間において最も小さくなるため、中心電極4の先端部41の先端面における上流側端縁が、初期の放電火花Sの起点となりやすい。
 そして、図8に示すごとく、火花放電ギャップGに生じた初期の放電火花Sは、火花放電ギャップG付近の気流によって、経時的に下流側、すなわち延設方向Eの延設側E1に引き伸ばされながら、経時的に放電火花Sの両起点が移動する。すなわち、初期の放電火花Sの両起点は、気流に押されて、中心電極4の先端部41の先端面における下流側の端縁、及び、接地電極5の突出部53の突出側端面531の下流側の端縁に移動する。なお、以下において、火花放電ギャップGにおける接地電極5側の起点を、接地電極側起点S1ということもある。
 そして、放電火花Sが更に気流に押され、突出側端面531の下流側端縁まで移動した接地電極側起点S1は、突出部53の側面532に移動する。そして、接地電極側起点S1は、側面532を這うように直交方向Oにおける中心電極4側と反対側に移動し、図9に示すごとく、溶接部6の表面61を通って角部曲面523に移る。そして、図10に示すごとく、接地電極側起点S1は、角部曲面523から接地端面521に移り、接地端面521を直交方向Oにおける中心電極4と反対側に向って移動する。
 以上のように、放電火花Sの両起点のうち、特に接地電極側起点S1が大きく移動する。これにより、放電火花Sの両起点間の距離が長くなる。そして、上述のごとく放電火花Sの起点が移動する間、放電火花Sは、両起点間の部位が火花放電ギャップG付近における下流側、すなわち延設方向Eの延設側E1に大きく引き伸ばされる。それゆえ、気流によって引き伸ばされる放電火花を、燃焼室の壁面から先端側に遠ざけることができる。その結果、放電火花によって着火した火炎が、スパークプラグ1の接地電極5や、燃焼室の壁面等によって冷却されることを防ぐことができる。つまり、消炎作用を抑制することができる。その結果、燃焼室において火炎の成長が生じやすくなり、着火性を向上させることができる。
 さらに、傾斜部52は、接地端面521と対向面522とを滑らかにつなぐ曲面状の角部曲面523を有する。そして、角部曲面523は、滑らかな曲面形状を有する。それゆえ、角部曲面523に電界が集中することを防止することができる。それゆえ、火花放電ギャップGに生じた放電火花の接地電極5側の起点が、角部曲面523上を通って先端側に移動しやすい。これによっても、火花放電ギャップGに生じた放電火花を、燃焼室内の中央に向かって引き伸ばしやすい。
 つまり、内燃機関用のスパークプラグ1においては、接地電極5が傾斜部52を有することに加え、傾斜部52が上記角部曲面523を有することにより、放電火花を燃焼室内に向かって引き伸ばす効果を相乗的に得ることができる。そのため、混合気への着火性を一層確保することができる。
 また、角部曲面523の曲率半径Rは、0.3mm≦R≦0.7mm、を満たし、かつ、傾斜部52の傾斜角度θが、30°≦θ≦60°、を満たす。これにより、上述した混合気への着火性の向上の効果を、一層得ることができる。これらの数値に関しては、後述する実験例によって裏付けられる。
 また、上記スパークプラグ1においては、接地電極5を特に複雑な形状とする必要もない。また、接地電極5を特に細くする必要もないため、その強度を確保するための特別な構造も必要ない。それゆえ、簡易な構造にて着火性に優れたスパークプラグ1を得ることができる。
 また、並び方向Xにおける、接地電極5の立設部51と反対側の端縁である接地電極端縁54は、中心電極4の先端部41の立設部51と反対側の端縁である中心電極端縁42と同等もしくはそれよりも立設部51側に位置している。それゆえ、立設部51が火花放電ギャップGに対して気流の上流側となる位置に配置された場合における混合気への着火性を一層向上させることができる。すなわち、上述のごとく下流側に引き伸ばされた放電火花から混合気へ着火されることにより生じた火炎が、接地電極5に近付くことを防止できる。それゆえ、上記火炎の熱が接地電極5に奪われることによる冷却損失を抑制することができる。
 また、傾斜部52の延設方向Eにおいて、突出部53と接地端面521との間の最短距離Dは、突出部53の直径φよりも短い。すなわち、突出部53は、延設方向Eにおいて、対向面522における接地端面521に近い位置に配されている。それゆえ、傾斜部52の長さを極力短くすることができる。これにより、立設部51が火花放電ギャップGに対して気流の上流側となる位置に配置された場合でも、放電火花が先端側へ向って広がりやすくなり、着火性を向上させることができる。また、突出部53を接地電極5の対向面522に溶接する際に、当該溶接の熱により、同時に、接地端面521と対向面522との間の角部に角部曲面523を形成することができる。それゆえ、製造容易なスパークプラグ1を得ることができる。
 以上のごとく、本実施形態によれば、内燃機関に対する取付姿勢に関わらず安定した着火性を確保することができる簡易な構成の内燃機関用のスパークプラグを提供することができる。
(実験例)
 本例においては、表1に示すごとく、接地電極5の傾斜部52の傾斜角度θ及び角部曲面523の曲率半径Rと、着火性との関係について評価した。
 すなわち、実施形態1に示したスパークプラグ1を基本構造としつつ、傾斜部52の傾斜角度θ、及び角部曲面523の曲率半径Rを種々変更した試料を用意し、各試料の着火性を評価した。
 具体的には、表1に示すごとく、傾斜部52の傾斜角度θを、10°~90°の間で種々変更すると共に、角部曲面523の曲率半径Rを、0mm~0.9mmの間で種々変更した複数の試料を作製した。ここで、傾斜部52の傾斜角度θが90°の試料は、傾斜部が立設部と直交しているスパークプラグである。また、曲率半径Rが0mmの試料は、接地端面と対向面との間に角が形成されたスパークプラグである。
 そして、複数の試料のうち、傾斜部52の傾斜角度θが90°であり、かつ、角部曲面523の曲率半径Rが0mmである試料を基準試料とし、該基準試料の着火性との比較において、各試料の着火性の評価を行った。
 着火性の評価は、リーン限界A/Fを指標として行った。つまり、各試料を取り付けた内燃機関において、混合気の空燃比(すなわち、A/F)を徐々に変化させて、着火できる限界の空燃比(すなわち、リーン限界A/F)を測定した。
 なお、この試験における内燃機関の条件としては、排気量1800cc、エンジン回転数2000rpm、図示平均有効圧0.28MPaとした。そして、燃焼変動率(すなわち、図示平均有効圧の変動率)が3%となる空燃比をリーン限界A/Fとした。また、リーン限界A/Fは、各試料につき5回の試験を行って得られた値の平均値とした。
 各試料のその他の条件は、以下の通りで、各試料において共通である。
 接地電極5の立設部51の幅方向Yの寸法wは2.6mm、並び方向Xの寸法tは1.3mmとした。火花放電ギャップGの寸法は、0.8mmとした。接地電極5の突出部53を構成する貴金属チップは、直径1.0mm、長さ0.8mmの円柱形状とした。中心電極4の先端部41を構成する貴金属チップは、直径0.7mm、長さ0.6mmの円柱形状とした。ハウジング2の取付ネジ部のネジ径は、M12とした。ハウジング2先端面からの中心電極4のプラグ軸方向Zの突き出し寸法は、3mmとした。
 また、内燃機関に取り付けたスパークプラグ1の姿勢は、中心電極4に対して接地電極5の立設部51の位置が、気流の上流側となるような姿勢とした。
 評価結果を、表1に示す。表1において、Dは、基準試料と、リーン限界A/Fが同等(すなわち基準試料のリーン限界A/Fとの差が0.05未満)であるものを示す。Cは、基準試料に対して、リーン限界A/Fが0.05以上、0.1未満向上しているものを示す。Bは、基準試料に対して、リーン限界A/Fが0.1以上、0.4未満向上しているものを示す。Aは、基準試料に対して、リーン限界A/Fが0.4以上向上しているものを示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、傾斜部52の傾斜角度θを、30°~60°とし、かつ、角部曲面523の曲率半径Rを、0.3mm~0.7mmとした試料は、いずれも評価がA又はBとなり、特に着火性を向上できていることが分かる。すなわち、傾斜角度θが、30°≦θ≦60°、を満たし、かつ、曲率半径Rが、0.3mm≦R≦0.7mm、を満たすことにより、相乗的な効果が得られていることが分かる。
(実施形態2)
 本実施形態は、図11、図12に示すごとく、実施形態1に対して、傾斜部52の延設方向Eの延設側E1の端部の形状を変更した実施形態である。
 図12に示すごとく、傾斜部52は、延設方向Eの延設側E1の端部の形状が、延設側E1に向かうほど幅方向Yに細くなる形状を有する。すなわち、傾斜部52の延設側E1の端部は、直交方向Oから見たとき、延設方向Eにおける延設側E1に向かうほど、幅方向Yの寸法が小さくなっている。
 本実施形態において、接地端面521は、法線方向を延設方向Eとした平行面521aと、法線方向を延設方向Eに対して幅方向Yに傾斜させた一対のテーパ面521bとを有する。一対のテーパ面521bは、幅方向Yにおける平行面521aの両側に形成されている。また、一対のテーパ面521bは、傾斜部52における一対の側面524と、平行面521aとの間をつなぐように形成されている。一対のテーパ面521bは、延設方向Eにおいて一対の側面524から平行面521aに向かうほど、互いに幅方向Yに近付くよう傾斜した面である。
 角部曲面523は、平行面521a、及び一対のテーパ面521bと、対向面522とを滑らかにつなぐように形成されている。本実施形態においても、幅方向Yにおける傾斜部52の全体にわたって、角部曲面523が形成されている。なお、本実施形態においても、角部曲面523の形成範囲は、これに限られず、幅方向Yにおける傾斜部52の一部としてもよい。この場合、角部曲面523は、実施形態1と同様、少なくとも、幅方向Yにおける突出部53と同じ領域、すなわち図12に示す領域7、に形成されていることが好ましい。
 その他は、実施形態1と同様である。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。本実施形態においても、実施形態1と同様の作用効果を有する。
 なお、本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、或いはそれ以下を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に含めるものである。例えば、上記実施形態においては、接地電極5に突出部53を設けたものを示したが、接地電極に突出部を設けない構成とすることもできる。この場合には、幅方向における接地電極の全体に、角部曲面を形成することが好ましい。

Claims (4)

  1.  筒状のハウジング(2)と、
     該ハウジングの内側に保持された筒状の絶縁碍子(3)と、
     先端部(41)が突出するように上記絶縁碍子の内側に保持された中心電極(4)と、
     上記ハウジングに接続されると共に上記中心電極との間に火花放電ギャップ(G)を形成する接地電極(5)と、を有し、
     上記接地電極は、上記ハウジングの先端部(21)から先端側に立設する立設部(51)と、該立設部の先端から上記中心電極側へ屈曲して斜め先端側へ延びる傾斜部(52)とを備え、
     該傾斜部は、上記立設部と反対側の端面である接地端面(521)と、上記中心電極側を向いた対向面(522)と、上記接地端面と上記対向面とを滑らかにつなぐ曲面状の角部曲面(523)とを有し、
     上記角部曲面の曲率半径Rは、0.3mm≦R≦0.7mm、を満たし、
     かつ、プラグ軸方向(Z)に対する上記傾斜部の傾斜角度θは、30°≦θ≦60°、を満たす、内燃機関用のスパークプラグ(1)。
  2.  上記立設部と上記中心電極との並び方向(X)における、上記接地電極の上記立設部と反対側の端縁(54)は、上記中心電極の先端部の上記立設部と反対側の端縁(42)と同等もしくはそれよりも上記立設部側に位置している、請求項1に記載の内燃機関用のスパークプラグ。
  3.  上記接地電極は、上記傾斜部の上記対向面から突出した突出部(53)を有し、該突出部と上記中心電極の先端部との間に、上記火花放電ギャップが形成されている、請求項1又は2に記載の内燃機関用のスパークプラグ。
  4.  上記傾斜部の延設方向(E)において、上記突出部と上記接地端面との間の最短距離Dは、上記突出部の直径φよりも短い、請求項3に記載の内燃機関用のスパークプラグ。
PCT/JP2017/012163 2016-03-30 2017-03-24 内燃機関用のスパークプラグ WO2017170276A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/088,976 US10431960B2 (en) 2016-03-30 2017-03-24 Spark plug for internal combustion engine
DE112017001640.1T DE112017001640B4 (de) 2016-03-30 2017-03-24 Zündkerze für Verbrennungskraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069347A JP6680043B2 (ja) 2016-03-30 2016-03-30 内燃機関用のスパークプラグ
JP2016-069347 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170276A1 true WO2017170276A1 (ja) 2017-10-05

Family

ID=59965669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012163 WO2017170276A1 (ja) 2016-03-30 2017-03-24 内燃機関用のスパークプラグ

Country Status (4)

Country Link
US (1) US10431960B2 (ja)
JP (1) JP6680043B2 (ja)
DE (1) DE112017001640B4 (ja)
WO (1) WO2017170276A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702094B2 (ja) 2016-08-31 2020-05-27 株式会社デンソー スパークプラグ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260261A (ja) * 1993-03-04 1994-09-16 Nippondenso Co Ltd 内燃機関用スパークプラグ
JP2002198159A (ja) * 2000-12-26 2002-07-12 Nippon Soken Inc スパークプラグ及びスパークプラグを用いた点火装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148045A (ja) 1995-11-24 1997-06-06 Harumitsu Matsushita 点火プラグ
JP2001345162A (ja) 2000-03-30 2001-12-14 Denso Corp 内燃機関用スパークプラグ
JP4305713B2 (ja) 2000-12-04 2009-07-29 株式会社デンソー スパークプラグ
JP2008311185A (ja) 2007-06-18 2008-12-25 Nippon Soken Inc 内燃機関用のスパークプラグ
JP6664871B2 (ja) 2014-09-30 2020-03-13 小林製薬株式会社 液体外用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260261A (ja) * 1993-03-04 1994-09-16 Nippondenso Co Ltd 内燃機関用スパークプラグ
JP2002198159A (ja) * 2000-12-26 2002-07-12 Nippon Soken Inc スパークプラグ及びスパークプラグを用いた点火装置

Also Published As

Publication number Publication date
JP6680043B2 (ja) 2020-04-15
DE112017001640T5 (de) 2018-12-20
DE112017001640B4 (de) 2023-10-12
US20190214792A1 (en) 2019-07-11
JP2017183109A (ja) 2017-10-05
US10431960B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5919214B2 (ja) 内燃機関用のスパークプラグ
JP6731230B2 (ja) 内燃機関用のスパークプラグ及びそれを取り付けた点火装置
JP5593236B2 (ja) 内燃機関用のスパークプラグ
WO2014092072A1 (ja) 内燃機関用のスパークプラグ
WO2017169930A1 (ja) 内燃機関用のスパークプラグ
JP5600641B2 (ja) 内燃機関用のスパークプラグ
WO2017170276A1 (ja) 内燃機関用のスパークプラグ
US10931086B2 (en) Spark plug including a ground electrode having slanted surfaces and a facing portion facing a distal end surface of a center electrode
JP6729206B2 (ja) スパークプラグ
JP2017174681A (ja) 内燃機関用のスパークプラグ
JP2019067588A (ja) 内燃機関用のスパークプラグ
JP6731298B2 (ja) 内燃機関用のスパークプラグ
JP7122860B2 (ja) 内燃機関用のスパークプラグ
WO2016021445A1 (ja) 内燃機関用のスパークプラグ
US10777974B2 (en) Spark plug for internal combustion engine that makes re-discharge less prone to occur
WO2019138854A1 (ja) 内燃機関用の点火プラグ及び内燃機関
US9377001B2 (en) Spark plug for internal combustion engine
US9234491B2 (en) Spark plug for internal combustion engine
US10333282B2 (en) Spark plug for internal combustion engine
JP2019046742A (ja) 内燃機関用のスパークプラグ
JP2021092203A (ja) 内燃機関のシリンダヘッド構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774813

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774813

Country of ref document: EP

Kind code of ref document: A1