WO2017170169A1 - 電解コンデンサ用電解液および電解コンデンサ - Google Patents

電解コンデンサ用電解液および電解コンデンサ Download PDF

Info

Publication number
WO2017170169A1
WO2017170169A1 PCT/JP2017/011829 JP2017011829W WO2017170169A1 WO 2017170169 A1 WO2017170169 A1 WO 2017170169A1 JP 2017011829 W JP2017011829 W JP 2017011829W WO 2017170169 A1 WO2017170169 A1 WO 2017170169A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
dibasic
carbon atoms
electrolytic
mixture
Prior art date
Application number
PCT/JP2017/011829
Other languages
English (en)
French (fr)
Inventor
隆宏 芝
史行 田邊
慶彦 赤澤
向井 孝夫
秀基 木村
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201780010565.XA priority Critical patent/CN108604501B/zh
Priority to US16/088,646 priority patent/US10879009B2/en
Priority to EP17774707.8A priority patent/EP3439001B1/en
Priority to JP2018509208A priority patent/JP6522850B2/ja
Publication of WO2017170169A1 publication Critical patent/WO2017170169A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor using the same. Specifically, the present invention relates to an electrolytic solution suitable for an aluminum electrolytic capacitor and an electrolytic capacitor using the electrolytic solution.
  • an electrolytic capacitor typified by an aluminum electrolytic capacitor has a sealed case in which an anode provided with a dielectric, a cathode for current collection, and a separator holding an electrolytic solution disposed between the anode and the cathode are sealed. It has a structure housed inside and is widely known to have a wound type or a laminated type. Electrolytic capacitors in which an ammonium salt of an acid such as 1,6-decanedicarboxylic acid is dissolved in a polar solvent such as ethylene glycol are widely used as an electrolytic solution that can provide a high spark voltage (for example, patents). Document 1) has a problem that heat resistance is insufficient. Further, as an electrolyte having good heat resistance, an electrolytic solution using alkenyl succinic acid or a salt thereof has been proposed (for example, Patent Document 2).
  • An electrolyte using alkenyl succinic acid or a salt thereof alone as an electrolyte is excellent in spark voltage and heat resistance, but is easily solidified at a low temperature, and the temperature range in which an electrolytic capacitor can be used is narrow and cannot be used in cold regions. There is a problem.
  • An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor that can be driven even in a cold region because the spark voltage is high, the heat resistance is good, and the solidification is difficult even at a low temperature.
  • the present invention is an electrolytic solution for an electrolytic capacitor containing a solvent (C) and an electrolyte, wherein the electrolyte comprises a salt of a dibasic acid (A) and a base (B), and the dibasic acid (A) Contains two or more dibasic acids, and the two or more dibasic acids are dibasic acids containing the two or more dibasic acids in a molar ratio in the dibasic acid (A).
  • An electrolytic solution for an electrolytic capacitor in which a mixture (E) of two or more acid anhydrides corresponding to the mixture is liquid at 50 ° C .; and an electrolytic capacitor using the same.
  • an electrolytic solution for an electrolytic capacitor and an electrolytic capacitor that can be driven even in a cold region because the spark voltage is high, the heat resistance is good, and the solidification is difficult even at a low temperature.
  • the electrolytic solution for electrolytic capacitors of the present invention is an electrolytic solution for electrolytic capacitors containing a solvent (C) and an electrolyte, wherein the electrolyte is a salt of a dibasic acid (A) and a base (B), and the dibasic
  • the acid (A) contains two or more dibasic acids, and the two or more dibasic acids contain the two or more dibasic acids in a molar ratio with the dibasic acid (A).
  • a mixture (E) of two or more acid anhydrides corresponding to the mixture of dibasic acids is liquid at 50 ° C.
  • a mixture of dibasic acids containing the two or more dibasic acids (two or more dibasic acids contained in the dibasic acid (A)) in a molar ratio in the dibasic acid (A).
  • a mixture of two or more acid anhydrides corresponding to is also simply referred to as a mixture of acid anhydrides corresponding to the mixture of dibasic acids.
  • the dibasic acid (A) in the present invention contains two or more dibasic acids.
  • the two or more dibasic acids are characterized in that the acid anhydride mixture (E) corresponding to the dibasic acid mixture is liquid at 50 ° C. If the mixture of acid anhydrides (E) is liquid at 50 ° C., the low temperature characteristics are good. For example, it does not solidify even at ⁇ 20 ° C. and can be used sufficiently even in cold regions and can be driven. Can be produced. Conversely, if the mixture of acid anhydrides (E) is solid at 50 ° C., it will be an electrolytic solution for electrolytic capacitors having poor low temperature characteristics.
  • the two or more dibasic acids in the dibasic acid (A) are essential that the mixture of acid anhydrides (E) corresponding to the mixture of dibasic acids is liquid at 50 ° C. It is also possible to use other monobasic acid and dibasic acid for the electrolytic solution.
  • the dibasic acid that can be an acid anhydride is a dibasic acid that can take the form of an acid anhydride due to its three-dimensional structure.
  • the dibasic acid that can be an acid anhydride a compound represented by the following general formula (1) is preferable.
  • the acid anhydride mixture (E) corresponds to a mixture of dibasic acids containing two or more dibasic acids contained in the dibasic acid (A) in a molar ratio in the dibasic acid (A). It is a mixture of more than one species of acid anhydride.
  • the acid anhydride mixture (E) is a mixture containing two or more acid anhydrides corresponding to each of two or more dibasic acids contained in the dibasic acid (A), and the molar ratio of the acid anhydrides. Is the same as the molar ratio of each corresponding dibasic acid in the dibasic acid (A).
  • the dibasic acid (A) contains m dibasic acids (m is an integer of 2 or more) of dibasic acids (a1) to (am), all in a molar ratio of 1. I will explain.
  • the mixture of acid anhydrides (E) contains m acid acids each containing the acid anhydrides (a1) to (am) corresponding to the dibasic acids (a1) to (am) in a molar ratio of 1, respectively. It is a mixture of anhydrides.
  • An acid anhydride corresponding to a dibasic acid can also be referred to as an acid anhydride of the dibasic acid.
  • dibasic acid (A) regardless of whether each acid anhydride itself corresponding to each dibasic acid contained in dibasic acid (A) is liquid or solid at 50 ° C. It is a feature of the present invention that the acid anhydride of a mixture of two or more dibasic acids (and thus also a mixture of two or more acid anhydrides) is liquid at 50 ° C. Some dibasic acids cannot be taken in the form of acid anhydrides in terms of the three-dimensional structure. In the present invention, two or more dibasic acids contained in the dibasic acid (A) The property is determined by a mixture (E) of two or more acid anhydrides corresponding to the mixture of the above dibasic acids.
  • the electrolytic solution for electrolytic capacitors of the present invention may contain a dibasic acid that cannot be an acid anhydride (cannot take the form of an acid anhydride due to its three-dimensional structure) unless the effects of the present invention are impaired. , It does not have to be included.
  • the acid anhydride mixture (E) may be obtained by obtaining a mixture of acid anhydrides from a mixture of two or more dibasic acids contained in the dibasic acid (A) by a dehydration reaction, and determining the properties.
  • a reaction of obtaining a dibasic acid from a hydrolysis of maleic anhydride and an olefin via a mixture of acid anhydrides of dibasic acid In the route, properties can be determined even with a mixture of acid anhydrides as intermediates.
  • the dibasic acid (A) preferably contains three or more dibasic acids. Moreover, as for the dibasic acid contained in a dibasic acid (A), 8 or less types are preferable, for example, and 6 or less types are more preferable. The number of dibasic acids contained in the dibasic acid (A) is more preferably 3 to 8, more preferably 3 to 6. The dibasic acid (A) preferably contains a dibasic acid having 7 or more carbon atoms (also referred to as the number of carbon atoms).
  • the dibasic acid (A) preferably contains k types of different dibasic acids (a1) to (ak) having 7 or more carbon atoms (k is an integer of 3 or more).
  • the dibasic acid having 7 or more carbon atoms contained in the dibasic acid (A) is preferably 3 or more (k is an integer of 3 or more), more preferably 3 to 8 (k is 3 to 8), particularly The number is preferably 4 to 6 (k is 4 to 6).
  • the k types of dibasic acids having 7 or more carbon atoms are preferably k types of dibasic acids having different carbon numbers.
  • dibasic acids contained in the dibasic acid (A) two or more kinds of dibasic acids in which the mixture of acid anhydrides (E) corresponding to the mixture of dibasic acids is liquid at 50 ° C.
  • different k types k is an integer of 3 or more
  • dibasic acids (a1) to (ak) having 7 or more carbon atoms are preferable.
  • a compound represented by the following general formula (1) is preferable.
  • N 1 to nk are more preferably 9 or more, and further preferably 12 or more. This is because the total number of tertiary carbon atoms and quaternary carbon atoms is 9 or more, and the crystallization temperature of the dibasic acid (A) is lowered, so that it does not precipitate even at lower temperatures, and it is an electrolytic capacitor suitable for cold regions. This is because it becomes an electrolytic solution.
  • the upper limit of the total number of n 1 to nk is not particularly limited, but is preferably 50 or less, and more preferably 30 or less.
  • the total number of n 1 to nk is preferably 9 to 50, and more preferably 12 to 30.
  • a tertiary carbon atom can be said to be a carbon atom in which three bonds out of four bonds are bonded to a carbon atom.
  • a quaternary carbon atom can be said to be a carbon atom in which all four bonds are bonded to a carbon atom.
  • dibasic acid (A) is 2-octenyl succinic acid (referred to as dibasic acid (a1)), 2- A case where dodecenyl succinic acid (referred to as dibasic acid (a2)) and 2-hexadecenyl succinic acid (referred to as dibasic acid (a3)) are included will be described as an example.
  • the total number (n 1 ) of the number of tertiary carbon atoms and the number of quaternary carbon atoms in one molecule of 2-octenyl succinic acid which is the dibasic acid (a1) is 3.
  • the total number (n 2 ) of the number of tertiary carbon atoms and the number of quaternary carbon atoms in one molecule of 2-dodecenyl succinic acid which is a dibasic acid (a2) is 3.
  • the total number (n 3 ) of the number of tertiary carbon atoms and the number of quaternary carbon atoms in one molecule of 2-hexadecenyl succinic acid which is a dibasic acid (a3) is 3. Therefore, the dibasic acid (A) is a dibasic acid having 7 or more carbon atoms.
  • the dibasic acids (a1) to (a3) (2-octenyl succinic acid, 2-dodecenyl succinic acid and 2-hexadecenyl succinic acid) ) for the case including, dibasic acid (a1) ⁇ (a3 tertiary total number of the number of number and quaternary carbon atoms in the carbon atoms in 1 molecule) when n 1 ⁇ n 3 respectively, n 1 ⁇ The total number of n 3 is 9.
  • the dibasic acid contained in the dibasic acid (A) is preferably a compound represented by the following general formula (1).
  • the dibasic acid (A) preferably contains two or more dibasic acids represented by the following general formula (1), more preferably three or more.
  • the dibasic acid represented by the following general formula (1) preferably includes two or more compounds having different carbon numbers, and more preferably includes three or more compounds having different carbon numbers.
  • the dibasic acid (A) preferably includes 3 to 8 dibasic acids having different carbon numbers as the dibasic acid represented by the general formula (1), and 3 to 6 dibasic acids having different carbon numbers. It is more preferable to include a basic acid, and it is more preferable to include 4 to 6 types of dibasic acids having different carbon numbers.
  • X and Z are each independently any of a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a hydrocarbon group having 2 to 20 carbon atoms containing at least one unsaturated bond. The total carbon number of R 1 and R 2 is 6-20.
  • X and Z are each independently an acidic group of any of a carboxyl group, a sulfonic acid group, and a phosphoric acid group, and preferably both X and Z are carboxyl groups.
  • the carbon number of dibasic acid contained in dibasic acid (A) and the total number of n 1 to nk are determined by liquid chromatography mass spectrometer, gas chromatography mass spectrometer, nuclear magnetic resonance analyzer (NMR), etc. Can be analyzed.
  • dibasic acid represented by the general formula (1) examples include 2-octenyl succinic acid, 2-nonenyl succinic acid, 2-decyl succinic acid, 2-undecenyl succinic acid, 2-dodecenyl succinic acid, 2-tride Senyl succinic acid, 2-tetradecenyl succinic acid, 2-pentadecenyl succinic acid, 2-hexadecenyl succinic acid, 2-heptadecenyl succinic acid, 2-octadecenyl succinic acid, 3-carboxy-4-methyl-5-nonenoic acid, 3-carboxy-4-methyl-5-decenoic acid, 3-carboxy-4-methyl-5-undecenoic acid, 3-carboxy-4-methyl-5-dodecene X and Z are acid, 3-carboxy-4-methyl-5-tridecenoic acid, 3-carboxy-4-methyl-5-tetradecenoic acid, 3-
  • Dibasic acid which is a boxyl group; 2-sulfo-4-octenesulfonic acid, 2-sulfo-4-nonenesulfonic acid, 2-sulfo-4-decenesulfonic acid, 2-sulfo-4-undecenesulfonic acid, 2 -Sulfo-4-dodecenesulfonic acid, 2-sulfo-3-methyl-4-octenesulfonic acid, 2-sulfo-3-methyl-4-nonenesulfonic acid, 2-sulfo-3-methyl-4-decenesulfone Dibasic acids in which X and Z are sulfonic acid groups, such as acids, 2-sulfo-3-methyl-4-undecenesulfonic acid, 2-sulfo-3-methyl-4-dodecenesulfonic acid, etc .; 2-phosphono -4-octenylphosphonic acid, 2-phosphono-4-nonenylphosphonic acid, 2-phosphono-4-dec
  • dibasic acids represented by the general formula (1) those having a total carbon number of R 1 and R 2 of 7 to 20 are preferred, those of 7 to 18 are more preferred, and those of 7 to 16 are more preferred. Are more preferable, and those of 9 to 15 are particularly preferable.
  • the dibasic acid having these two acidic groups those in which X and Z are carboxyl groups in the general formula (1) are preferable, and in this case, for example, the corresponding one represented by the following general formula (2) It can be prepared by hydrolyzing an acid anhydride.
  • R 1 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a hydrocarbon group having 2 to 20 carbon atoms containing at least one unsaturated bond. .
  • the total carbon number of R 1 and R 2 is 6-20.
  • Examples of the base (B) in the present invention include ammonia; primary amines such as butylamine and ethanolamine; secondary amines such as dimethylamine, ethylmethylamine and diethylamine; tertiary amines such as trimethylamine, triethylamine and ethyldimethylamine; tetra
  • primary amines such as butylamine and ethanolamine
  • secondary amines such as dimethylamine, ethylmethylamine and diethylamine
  • tertiary amines such as trimethylamine, triethylamine and ethyldimethylamine
  • tetra There are quaternary ammonium cations such as methylammonium, 1,2,3,4-tetramethylimidazolinium and 1-ethyl-2,3-methylimidazolinium, which may be used alone or in combination of two or more. Also good.
  • the salt of the dibasic acid (A) and the base (B) is preferably an ammonium salt or a secondary amine salt.
  • the content of the electrolyte composed of the salt of the dibasic acid (A) and the base (B) is preferably 0.1 to 30% by weight, particularly preferably 1 to 20% by weight, based on the weight of the electrolytic solution for the electrolytic capacitor. is there.
  • the solvent (C) in the present invention is not particularly limited as long as it is a polar solvent usually used in an electrolytic solution for electrolytic capacitors. Specifically, ethylene glycol, propylene glycol, diethylene glycol, N-methylformamide, N, N -Dimethylformamide, N-ethylformamide, ⁇ -butyrolactone, acetonitrile, sulfolane, dimethyl sulfoxide, ethyl methyl sulfone and the like. These solvents may be used alone or in combination of two or more. As the solvent (C), ethylene glycol and ⁇ -butyrolactone are preferable, and ethylene glycol is more preferable.
  • additives (D) that are usually used in the electrolytic solution can be added to the electrolytic solution for electrolytic capacitors of the present invention.
  • An additive (D) may be used individually and may use 2 or more types together.
  • nitro compounds such as o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol, p-nitrophenol are added. be able to.
  • boric acid, polyvinyl alcohol, or the like can be added.
  • the additive (D) is added in an amount of preferably 5% by weight or less, particularly preferably 0.1 to 2% by weight based on the weight of the electrolytic solution for the electrolytic capacitor, from the viewpoint of specific conductivity and solubility in the electrolytic solution. %.
  • the electrolytic solution for electrolytic capacitors of the present invention is optimal for aluminum electrolytic capacitors.
  • the aluminum electrolytic capacitor is not particularly limited. For example, it is a scraped electrolytic capacitor, and a separator is interposed between an anode (aluminum oxide foil) in which aluminum oxide is formed on the anode surface and a cathode aluminum foil.
  • a capacitor formed by winding is used.
  • the opening of the aluminum case is sealed with a sealing rubber and electrolyzed.
  • a capacitor can be configured. Electrolytic capacitors using the electrolytic solution for electrolytic capacitors of the present invention are also included in the present invention.
  • liquid chromatograph mass spectrometry in Examples LCT Premier XE (manufactured by Waters) was used as the apparatus, and ACQUITY UPLC C18 (manufactured by Waters) was used as the column. Ammonium acetate aqueous solution / methanol (80/20 (volume ratio)) was used for mobile phase A, acetonitrile was used for mobile phase B, and the volume ratio of A / B was 40/60. Moreover, ESI was used for the ionization method of the mass spectrometer.
  • the ethyl acetate layer was recovered, and the ethyl acetate was evaporated to obtain 31 parts of a dibasic acid mixture (A-1).
  • A-1 a dibasic acid mixture
  • the mixture (A-1) was analyzed by a liquid chromatograph mass spectrometer, the distribution shown in Table 1 was found in the number of carbon atoms. % In Table 1 is mol%.
  • the mixture (A-1) contained 5 types of dibasic acids having different carbon numbers.
  • the dibasic acid mixture (A-1) obtained above is also referred to as dibasic acid (A-1).
  • the five dibasic acids having 14 to 18 carbon atoms shown in Table 1 are all represented by the above general formula (1), and X and Z are carboxyl groups. It was a basic acid.
  • those having 14 carbon atoms in Table 1 are those in which R 1 in the general formula (1) is a hydrogen atom, and R 2 was a carbon hydrogen group having 9 carbon atoms and had one C ⁇ C double bond.
  • the dibasic acid having 14 carbon atoms in Table 1 was a compound having two branched structures.
  • R 1 in the general formula (1) is a hydrogen atom
  • R 2 is a carbon hydrogen group having 10 carbon atoms, and has one C ⁇ C double bond.
  • This C15 dibasic acid was a compound having two branched structures.
  • R 2 in the general formula (1) is a carbon hydrogen group having 11 carbon atoms
  • R 2 in the general formula (1) is 12 carbon atoms.
  • R 2 in the general formula (1) was a carbon hydrogen group having 13 carbon atoms.
  • R 1 in the general formula (1) is a hydrogen atom
  • R 2 is C ⁇ C double. It had one bond.
  • the dibasic acid having 16 carbon atoms, the dibasic acid having 17 carbon atoms, and the dibasic acid having 18 carbon atoms were all compounds having two branched structures.
  • dibasic acids (a1) to (a5) The total number of tertiary carbons and the number of quaternary carbons (total number of n1 to n5) was determined.
  • the mixture (A-2) was analyzed by a liquid chromatograph mass spectrometer, the distribution shown in Table 2 was found in the number of carbon atoms. % In Table 2 is mol%.
  • the mixture (A-2) contained three kinds of dibasic acids having different carbon numbers.
  • the dibasic acid mixture (A-2) obtained above is also referred to as dibasic acid (A-2).
  • the three dibasic acids having different carbon numbers contained in the mixture (A-2) are all represented by the above general formula (1), and X and Z are carboxyl groups. It was the basic dibasic acid.
  • those having 18 carbon atoms in Table 2 are those in which R 1 in the general formula (1) is a hydrogen atom. Yes, R 2 was a carbon hydrogen group having 13 carbon atoms and had one C ⁇ C double bond. This C18 dibasic acid was a compound having two branched structures.
  • R 1 in the general formula (1) is a hydrogen atom
  • R 2 is a carbon hydrogen group having 15 carbon atoms, and has one C ⁇ C double bond. It was.
  • This dibasic acid having 20 carbon atoms was a compound having two branched structures.
  • R 1 in the general formula (1) is a hydrogen atom
  • R 2 is a carbon hydrogen group having 17 carbon atoms, and has one C ⁇ C double bond. It was.
  • This C22 dibasic acid was a compound having two branched structures.
  • tertiary compounds in one molecule of these dibasic acids (dibasic acids (a1) to (a3))
  • the total number of carbons and quaternary carbons was determined.
  • Example 1 The dibasic acid (A-1) obtained in Production Example 1 and ethylene glycol (C-1) were mixed in the number of parts shown in Table 3, and diethylamine (B-1) was added dropwise to neutralize. did. Thereafter, polyvinyl alcohol (D-1) and boric acid (D-2) were added, heated and stirred at 100 ° C., and uniformly mixed to obtain an electrolytic solution (1).
  • Example 2 The dibasic acid (A-1) obtained in Production Example 1 and ethylene glycol (C-1) were mixed in the number of blending parts shown in Table 3, and ammonia gas (B-2) was blown in. The pH was 7. Neutralization was performed with the point of 0 being the end point of blowing. Thereafter, polyvinyl alcohol (D-1) and boric acid (D-2) were added, heated and stirred at 100 ° C., and uniformly mixed to obtain an electrolytic solution (2).
  • A-1 dibasic acid obtained in Production Example 1 and ethylene glycol (C-1) were mixed in the number of blending parts shown in Table 3, and ammonia gas (B-2) was blown in. The pH was 7. Neutralization was performed with the point of 0 being the end point of blowing. Thereafter, polyvinyl alcohol (D-1) and boric acid (D-2) were added, heated and stirred at 100 ° C., and uniformly mixed to obtain an electrolytic solution (2).
  • Example 3 ⁇ Examples 3 and 4 and Comparative Examples 1, 2, 4, and 5> According to the number of parts described in Table 3, the same operation as in Example 1 was performed using each component, and the electrolytic solutions (3) and (4), which are the electrolytic solutions of Examples 3 and 4, were also compared with Comparative Example 1. Electrolytic solutions (1 ′), (2 ′), (4 ′), and (5 ′), which are electrolytic solutions 2, 4, and 5, were obtained.
  • Example 3 instead of the dibasic acid (A-1) used in Example 1, the dibasic acid (A-2) obtained in Production Example 2 was used.
  • Example 4 three kinds of dibasic acids described in Table 3 were used in place of the dibasic acid (A-1).
  • the mixture of products (E-1) and (E-2) is liquid at 50 ° C.
  • three types of dibasic acids were mixed and used, but these dibasic acids can be obtained by hydrolysis from the corresponding acid anhydrides.
  • a mixture of acid anhydrides (E) containing three types of acid anhydrides corresponding to each of the three types of dibasic acids used in Example 4 (the molar ratio of each acid anhydride was used in Example 4).
  • the same molar ratio of the corresponding dibasic acid) was confirmed to be liquid at 50 ° C.
  • the dibasic acid (A) in the salt of the dibasic acid (A) and the base (B) contains two or more types of dibasic acids. Since the mixture of two or more acid anhydrides corresponding to the mixture is liquid at 50 ° C., it is an example of the present invention.
  • dodecyl succinic acid (a-3) used in Comparative Example 1 can be obtained from dodecyl succinic anhydride (E-3) by hydrolysis, but dodecyl succinic anhydride (E-3) (dodecyl).
  • the acid anhydride of succinic acid (a-3) was a solid at 50 ° C.
  • 2-dodecenyl succinic acid anhydride (a-5) and 2-hexadecenyl succinic acid (a-6) used in Comparative Examples 2, 3 and 4 are 2-dodecenyl succinic anhydride, which is a corresponding acid anhydride.
  • the acid anhydride mixture (E) corresponding to the dibasic acid mixture used in the examples and k types (herein) having 7 or more carbon atoms contained in the dibasic acid (A) And k is an integer of 1 or more) of the dibasic acids (a1) to (ak), the number of tertiary carbons and the number of quaternary carbons in one molecule of the dibasic acids (a1) to (ak).
  • the total number (total number of n1 to nk) is also shown in Table 3.
  • the properties of the acid anhydride mixture (E) or acid anhydride corresponding to the dibasic acid mixture or dibasic acid used at 50 ° C. and the dibasic acid used per molecule Table 3 shows the total number of tertiary carbons and the number of quaternary carbons (total number of n1 to nk).
  • the electrolytic solutions of Examples 1 to 3 of the present invention were fluid without precipitates even at ⁇ 20 ° C.
  • the electrolytic solution of Example 4 was slightly cloudy even at ⁇ 20 ° C., but had no precipitate and was fluid when tilted.
  • the electrolytes of Comparative Examples 1 to 5 were solidified at -20 ° C.
  • the electrolyte solution of an Example is more excellent in heat resistance (high temperature test) than the electrolyte solution of a comparative example.
  • the balance of the spark voltage and the specific conductivity is equivalent to or higher than that of the electrolyte solution of the comparative example.
  • the electrolytic solution for electrolytic capacitors of the present invention does not solidify even at low temperatures, an electrolytic capacitor that can be driven even in cold regions can be obtained. For this reason, it can be suitably used as an outdoor use, for example, an on-vehicle use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、火花電圧が高く、耐熱性が良く、さらに低温でも固化しにくいため寒冷地でも駆動できる電解コンデンサ用電解液および電解コンデンサを提供することを目的とし、本発明の電解コンデンサ用電解液は、溶剤(C)および電解質を含有する電解コンデンサ用電解液であって、上記電解質が二塩基酸(A)と塩基(B)の塩からなり、上記二塩基酸(A)が2種以上の二塩基酸を含有しており、上記2種以上の二塩基酸は、上記二塩基酸(A)におけるモル比で上記2種以上の二塩基酸を含有する二塩基酸の混合物に対応する2種以上の酸無水物の混合物(E)が50℃において液状である。

Description

電解コンデンサ用電解液および電解コンデンサ
 本発明は電解コンデンサ用電解液およびそれを用いた電解コンデンサに関する。詳しくは、アルミニウム電解コンデンサ用に好適な電解液およびそれを用いた電解コンデンサに関する。
 従来よりアルミニウム電解コンデンサに代表される電解コンデンサは、誘電体が設けられている陽極と、集電用の陰極と、陽極、陰極との間に配置された電解液を保持したセパレータとが密封ケース内に収納された構造を有しており、巻回型、積層型の形状のものが広く知られている。
 電解コンデンサには、エチレングリコールなどの極性溶媒に、1,6-デカンジカルボン酸などの酸のアンモニウム塩を溶解させたものが、高い火花電圧が得られる電解液として広く使用されている(例えば特許文献1)が、耐熱性が不充分であるという問題がある。
 また、耐熱性が良い電解質として、アルケニルコハク酸またはその塩を用いた電解液が提案されている(例えば特許文献2)。
特開2001-76974号公報 特開2000-315628号公報
 しかし、アルケニルコハク酸またはその塩を単独で電解質として用いた電解液は、火花電圧や耐熱性には優れるが、低温で固化し易く、電解コンデンサの使用できる温度領域が狭く、寒冷地では使用できないという問題がある。
 本発明は、火花電圧が高く、耐熱性が良く、さらに低温でも固化しにくいため寒冷地でも駆動できる電解コンデンサ用電解液および電解コンデンサを提供することを課題とする。
 本発明者らは、上記課題を解決するべく検討を行った結果、本発明に到達した。
 すなわち、本発明は、溶剤(C)および電解質を含有する電解コンデンサ用電解液であって、上記電解質が二塩基酸(A)と塩基(B)の塩からなり、上記二塩基酸(A)が2種以上の二塩基酸を含有しており、上記2種以上の二塩基酸は、上記二塩基酸(A)におけるモル比で上記2種以上の二塩基酸を含有する二塩基酸の混合物に対応する2種以上の酸無水物の混合物(E)が50℃において液状である電解コンデンサ用電解液;およびこれを用いた電解コンデンサである。
 本発明によれば、火花電圧が高く、耐熱性が良く、さらに低温でも固化しにくいため寒冷地でも駆動できる電解コンデンサ用電解液および電解コンデンサを提供することができる。
 本発明の電解コンデンサ用電解液は、溶剤(C)および電解質を含有する電解コンデンサ用電解液であって、上記電解質が二塩基酸(A)と塩基(B)の塩からなり、上記二塩基酸(A)が2種以上の二塩基酸を含有しており、上記2種以上の二塩基酸は、上記二塩基酸(A)におけるモル比で上記2種以上の二塩基酸を含有する二塩基酸の混合物に対応する2種以上の酸無水物の混合物(E)が50℃において液状である。
 本明細書中、二塩基酸(A)におけるモル比で上記2種以上の二塩基酸(二塩基酸(A)に含有される2種以上の二塩基酸)を含有する二塩基酸の混合物に対応する2種以上の酸無水物の混合物を、単に、該二塩基酸の混合物に対応する酸無水物の混合物ともいう。
 本発明における二塩基酸(A)は、2種以上の二塩基酸を含有する。上記2種以上の2塩基酸は、該二塩基酸の混合物に対応する酸無水物の混合物(E)が50℃において液状であることが特徴である。
 酸無水物の混合物(E)が50℃において液状であれば、低温特性が良好であり、例えば-20℃でも全く固化せず寒冷地でも充分使用でき、駆動できる電解コンデンサ用電解液および電解コンデンサを作製することができる。逆に酸無水物の混合物(E)が50℃において固体であれば、低温特性が悪い電解コンデンサ用電解液になってしまう。
 二塩基酸(A)における2種以上の二塩基酸は、該二塩基酸の混合物に対応する酸無水物の混合物(E)が50℃において液状であることは必須であるが、電解コンデンサ用電解液には、他の一塩基酸、二塩基酸を使用することも可能である。
 二塩基酸(A)に含まれる2種以上の二塩基酸は、通常、酸無水物となり得る二塩基酸である。酸無水物となり得る二塩基酸は、その立体構造上、酸無水物の形態を取り得る二塩基酸である。酸無水物となり得る二塩基酸として、後記の一般式(1)で表される化合物等が好ましい。
 酸無水物の混合物(E)は、二塩基酸(A)に含まれる2種以上の二塩基酸を、二塩基酸(A)におけるモル比で含有する二塩基酸の混合物に対応する、2種以上の酸無水物の混合物である。酸無水物の混合物(E)は、二塩基酸(A)に含まれる2種以上の二塩基酸それぞれに対応する2種以上の酸無水物を含む混合物であり、各酸無水物のモル比は、二塩基酸(A)における対応する各二塩基酸のモル比と同じである。
 一例として、二塩基酸(A)が、二塩基酸(a1)~(am)のm種(mは、2以上の整数)の二塩基酸を、全てモル比1で含む場合を例に挙げて説明する。この場合、酸無水物の混合物(E)は、二塩基酸(a1)~(am)それぞれに対応する酸無水物(a1)~(am)を、全てモル比1で含む、m種の酸無水物の混合物である。二塩基酸に対応する酸無水物は、該二塩基酸の酸無水物ということもできる。
 なお、二塩基酸(A)に含まれる個々の二塩基酸に対応する各酸無水物自体が50℃において液状であるか固状であるかは問わず、二塩基酸(A)に含まれる2種以上の二塩基酸の混合物の酸無水物(よって、これも2種以上の酸無水物の混合物)が50℃において液状であることが本発明の特徴である。二塩基酸の中には立体構造上酸無水物の形態を取れないものも存在するが、本発明においては、二塩基酸(A)に含まれる2種以上の二塩基酸について、該2種以上の二塩基酸の混合物に対応する、2種以上の酸無水物の混合物(E)でその性状を判定するものである。
 本発明の電解コンデンサ用電解液は、本発明の効果を損なわない限り、酸無水物となり得ない(立体構造上、酸無水物の形態をとり得ない)二塩基酸を含んでいてもよいが、含んでいなくてもよい。
 また、酸無水物の混合物(E)は、二塩基酸(A)に含まれる2種以上の二塩基酸の混合物から脱水反応により酸無水物の混合物を得て性状を判定してもよいし、本明細書の製造例1及び2に記載されているように、例えば無水マレイン酸とオレフィンとの反応で二塩基酸の酸無水物の混合物を経て、その加水分解から二塩基酸を得る反応経路においては、中間体としての酸無水物の混合物でも性状を判定できる。
 二塩基酸(A)は、3種以上の二塩基酸を含むことが好ましい。また、二塩基酸(A)に含まれる二塩基酸は、例えば、8種以下が好ましく、6種以下がより好ましい。二塩基酸(A)に含まれる二塩基酸は、より好ましくは3~8種であり、さらに好ましくは3~6種である。また、二塩基酸(A)は、炭素数(炭素原子数ということもできる)7以上の二塩基酸を含むことが好ましい。
 二塩基酸(A)は炭素数7以上の異なるk種類(kは3以上の整数)の二塩基酸(a1)~(ak)を含むことが好ましい。二塩基酸(A)に含まれる炭素数7以上の二塩基酸は3種以上が好ましく(kは3以上の整数)、さらに好ましくは3~8種(kが3~8)であり、特に好ましくは4~6種(kが4~6)である。炭素数7以上のk種類の二塩基酸は、好ましくは、炭素数が異なるk種類の二塩基酸である。
 二塩基酸(A)に含まれる2種以上の二塩基酸(該二塩基酸の混合物に対応する酸無水物の混合物(E)が50℃において液状である2種以上の二塩基酸)として、炭素数7以上の異なるk種類(kは3以上の整数)の二塩基酸(a1)~(ak)が好ましい。炭素数7以上の二塩基酸として、例えば、後記の一般式(1)で表される化合物等が好ましい。
 さらには、炭素数7以上の二塩基酸(a1)~(ak)の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数をそれぞれn~nとしたときに、n~nの合計数が9以上であることがより好ましく、12以上であることがさらに好ましい。
 これは3級炭素原子と4級炭素原子の合計数が9個以上あることで、二塩基酸(A)の結晶化温度が低下し、より低温でも析出しない、より寒冷地に適した電解コンデンサ用電解液になるためである。n~nの合計数の上限は特に限定されないが、例えば、50以下が好ましく、30以下がより好ましい。n~nの合計数は、例えば、9~50が好ましく、12~30がより好ましい。
 3級炭素原子とは、4つの結合手のうち、3つの結合手が炭素原子と結合している炭素原子ともいえる。4級炭素原子とは、4つの結合手全てが炭素原子と結合している炭素原子ともいえる。
 3級炭素原子および4級炭素原子の個数の数え方は、例えばC=Cの炭素-炭素2重結合を持つとき、CもCも既に隣に2つの炭素原子をもっているとカウントし、さらに隣に1つ炭素原子があれば3級炭素原子とし、さらに隣に2つ炭素原子があれば、4級炭素原子とする。
 上記のn~nの合計数について、二塩基酸(A)が、炭素数7以上の異なる3種類の二塩基酸として、2-オクテニルコハク酸(二塩基酸(a1)という)、2-ドデセニルコハク酸(二塩基酸(a2)という)及び2-ヘキサデセニルコハク酸(二塩基酸(a3)という)を含む場合を例に挙げて説明する。この場合、二塩基酸(a1)である2-オクテニルコハク酸の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数(n)は、3である。二塩基酸(a2)である2-ドデセニルコハク酸の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数(n)は、3である。二塩基酸(a3)である2-ヘキサデセニルコハク酸の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数(n)は、3である。
 よって、二塩基酸(A)が、炭素数7以上の二塩基酸として、上記二塩基酸(a1)~(a3)(2-オクテニルコハク酸、2-ドデセニルコハク酸及び2-ヘキサデセニルコハク酸)を含む場合について、二塩基酸(a1)~(a3)の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数をそれぞれn~nしたとき、n~nの合計数は9である。
 二塩基酸(A)に含まれる二塩基酸としては、下記一般式(1)で表される化合物が好ましい。二塩基酸(A)は、下記一般式(1)で表される二塩基酸を2種以上含有することが好ましく、3種以上含有することがより好ましい。また、下記一般式(1)で表される二塩基酸として、炭素数が異なる2種以上の化合物を含むことが好ましく、炭素数が異なる3種以上の化合物を含むことがより好ましい。二塩基酸(A)は、一般式(1)で表される二塩基酸として、炭素数が異なる3~8種の二塩基酸を含むことが好ましく、炭素数が異なる3~6種の二塩基酸を含むことがより好ましく、炭素数が異なる4~6種の二塩基酸を含むことがさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
[一般式(1)中、XおよびZはそれぞれ独立にカルボキシル基、スルホン酸基およびリン酸基のいずれかである。Rは、水素原子または炭素数1~18の炭化水素基であって、Rは不飽和結合を少なくとも一つ含む炭素数2~20の炭化水素基である。また、RおよびRの合計炭素数は6~20である。]
 Rにおける不飽和結合は、好ましくは、炭素=炭素不飽和結合(C=C)である。XおよびZは、それぞれ独立に、カルボキシル基、スルホン酸基およびリン酸基のいずれかの酸性基であり、好ましくは、XとZがともにカルボキシル基である。
 二塩基酸(A)に含まれる二塩基酸の炭素数やn~nの合計数は、液体クロマトグラフ質量分析計やガスクロマトグラフィー質量分析計、核磁気共鳴分析計(NMR)などで分析できる。
 一般式(1)で表される二塩基酸として、具体的には、2-オクテニルコハク酸、2-ノネニルコハク酸、2-デシルコハク酸、2-ウンデセニルコハク酸、2-ドデセニルコハク酸、2-トリデセニルコハク酸、2-テトラデセニルコハク酸、2-ペンタデセニルコハク酸、2-ヘキサデセニルコハク酸、2-ヘプタデセニルコハク酸、2-オクタデセニルコハク酸、3-カルボキシ-4-メチル-5-ノネン酸、3-カルボキシ-4-メチル-5-デセン酸、3-カルボキシ-4-メチル-5-ウンデセン酸、3-カルボキシ-4-メチル-5-ドデセン酸、3-カルボキシ-4-メチル-5-トリデセン酸、3-カルボキシ-4-メチル-5-テトラデセン酸、3-カルボキシ-4-メチル-5-ペンタデセン酸等の、XおよびZがカルボキシル基である二塩基酸;2-スルホ-4-オクテンスルホン酸、2-スルホ-4-ノネンスルホン酸、2-スルホ-4-デセンスルホン酸、2-スルホ-4-ウンデセンスルホン酸、2-スルホ-4-ドデセンスルホン酸、2-スルホ-3-メチル-4-オクテンスルホン酸、2-スルホ-3-メチル-4-ノネンスルホン酸、2-スルホ-3-メチル-4-デセンスルホン酸、2-スルホ-3-メチル-4-ウンデセンスルホン酸、2-スルホ-3-メチル-4-ドデセンスルホン酸等の、XおよびZがスルホン酸基である二塩基酸;2-ホスホノ-4-オクテニルホスホン酸、2-ホスホノ-4-ノネニルホスホン酸、2-ホスホノ-4-デセニルホスホン酸、2-ホスホノ-4-ウンデセニルホスホン酸、2-ホスホノ-4-ドデセニルホスホン酸、2-ホスホノ-3-メチル-4-オクテニルホスホン酸、2-ホスホノ-3-メチル-4-ノネニルホスホン酸、2-ホスホノ-3-メチル-4-ドデセニルホスホン酸、2-ホスホノ-3-メチル-4-ウンデセニルホスホン酸および2-ホスホノ-3-メチル-4-ドデセニルホスホン酸等の、XおよびZがリン酸基である二塩基酸が挙げられる。一般式(1)で表される二塩基酸のうち、RとRの合計炭素数が7以上20以下のものが好ましく、7以上18以下のものがより好ましく、7以上16以下のものがさらに好ましく、9以上15以下のものが特に好ましい。
 これらの2個の酸性基を有する二塩基酸としては、一般式(1)において、XおよびZがカルボキシル基であるものが好ましく、その場合、例えば下記一般式(2)で表される対応する酸無水物を加水分解することで調製できる。
Figure JPOXMLDOC01-appb-C000003
[一般式(2)中、Rは、水素原子または炭素数1~18の炭化水素基であって、Rは不飽和結合を少なくとも一つ含む炭素数2~20の炭化水素基である。また、RおよびRの合計炭素数は6~20である。]
 Rにおける不飽和結合は、好ましくは、炭素=炭素不飽和結合である。
 本発明における塩基(B)としては、アンモニア;ブチルアミン、エタノールアミンなどの1級アミン;ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの2級アミン;トリメチルアミン、トリエチルアミン、エチルジメチルアミンなどの3級アミン;テトラメチルアンモニウム、1,2,3,4-テトラメチルイミダゾリニウム、1-エチル-2,3-メチルイミダゾリニウムなどの4級アンモニウムカチオンがあり、単独使用でもよいし2種以上を併用してもよい。これらのうち、アンモニア、2級アミン、3級アミンが好ましく、さらにアンモニア、2級アミンが好ましい。二塩基酸(A)と塩基(B)の塩は、好ましくは、アンモニウム塩、2級アミン塩である。
 二塩基酸(A)と塩基(B)の塩からなる電解質の含有量は、電解コンデンサ用電解液の重量に基づいて好ましくは0.1~30重量%、特に好ましくは1~20重量%である。
 本発明における溶剤(C)としては、電解コンデンサ用電解液に通常使われる極性溶剤であれば特に限定されず、具体的には、エチレングリコール、プロピレングリコール、ジエチレングリコール、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、γ-ブチロラクトン、アセトニトリル、スルホラン、ジメチルスルホキシド、エチルメチルスルホンなどが挙げられる。これらの溶剤は、単独使用でもよいし2種以上を併用してもよい。溶剤(C)として、エチレングリコール、γ-ブチロラクトンが好ましく、さらに、エチレングリコールが好ましい。
 本発明の電解コンデンサ用電解液には必要により、電解液に通常用いられる種々の添加剤(D)を添加することができる。添加剤(D)は、単独使用でもよいし2種以上を併用してもよい。
 駆動中に発生する水素ガスを吸収させる目的で、例えば、o-ニトロ安息香酸、p-ニトロ安息香酸、m-ニトロ安息香酸、o-ニトロフェノール、p-ニトロフェノールなどのニトロ化合物などを添加することができる。また、耐電圧を高めるために、ホウ酸、ポリビニルアルコールなどを添加することができる。
 添加剤(D)の添加量は、比電導度と電解液への溶解度の観点から、電解コンデンサ用電解液の重量に基づいて、好ましくは5重量%以下、特に好ましくは0.1~2重量%である。
 本発明の電解コンデンサ用電解液は、アルミニウム電解コンデンサ用に最適である。
 アルミニウム電解コンデンサとしては、特に限定されず、例えば、捲き取り形の電解コンデンサであって、陽極表面に酸化アルミニウムが形成された陽極(酸化アルミニウム箔)と陰極アルミニウム箔との間に、セパレーターを介在させて捲回することにより構成されたコンデンサが挙げられる。
 例えば、本発明の電解コンデンサ用電解液を駆動用電解液としてセパレーターに含浸し、陽陰極と共に、有底筒状のアルミニウムケースに収納した後、アルミニウムケースの開口部を封口ゴムで密閉して電解コンデンサを構成することができる。
 本発明の電解コンデンサ用電解液を用いた電解コンデンサも、本発明に包含される。
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部を示す。
 実施例における液体クロマトグラフ質量分析は、装置はLCT Premier XE(Waters製)、カラムはACQUITY UPLC C18(Waters製)を用いた。
 移動相Aに酢酸アンモニウム水溶液/メタノール(80/20(体積比))、移動相Bにアセトニトリルを用い、A/Bの体積比は40/60とした。また、質量分析計のイオン化法には、ESIを用いた。
<製造例1> 
 撹拌装置及び温度制御装置付きのステンレス製オートクレーブに、プロピレンテトラマー(商品名:PROPYLENE TETRAMER、和益化学社製)252部と無水マレイン酸98部を仕込み、攪拌下に室温で系内の気相部を窒素で置換し、1時間かけて220℃まで昇温した後、反応温度を220℃に制御しながら7時間反応させ、反応粗生成物350部を得た。
 得られた反応粗生成物を、減圧下(ゲージ圧:-0.95MPa)で4時間かけて165℃まで昇温させ、未反応のプロピレンテトラマーを84部留去した後、さらに180℃まで昇温し、減圧下(ゲージ圧:-0.95MPa)で180℃から220℃で蒸留される成分の酸無水物の混合物(E-1)200部を得た。この酸無水物の混合物(E-1)の50℃における性状は液状であった。 
 ガラス製100mL容器中で、酸無水物の混合物(E-1)30部を水30部に加えて1時間90℃で加熱攪拌し、酢酸エチル45部を加えて攪拌した後、静置分液し、酢酸エチル層を回収し、酢酸エチルを蒸発留去して二塩基酸の混合物(A-1)31部を得た。
 混合物(A-1)を液体クロマトグラフ質量分析計で分析したところ、炭素数に表1に記載の分布があった。表1中の%は、モル%である。混合物(A-1)は、炭素数が異なる5種の二塩基酸を含んでいた。上記で得られた二塩基酸の混合物(A-1)を、二塩基酸(A-1)ともいう。
Figure JPOXMLDOC01-appb-T000004
 液体クロマトグラフ質量分析でのフラグメンテーション解析から、表1に示す炭素数14~18の5種の二塩基酸は、いずれも上記一般式(1)で表され、X及びZがカルボキシル基である二塩基酸であった。なお、混合物(A-1)中の炭素数が異なる5種類の二塩基酸のうち、表1の炭素数14のものは、一般式(1)中のRが水素原子であり、Rが炭素数9の炭素水素基で、C=C二重結合を1個有していた。表1の炭素数14の二塩基酸は、分岐構造を2個持つ化合物であった。
 表1の炭素数15の二塩基酸は、一般式(1)中のRが、水素原子であり、Rが炭素数10の炭素水素基で、C=C二重結合を1個有していた。この炭素数15の二塩基酸は、分岐構造を2個持つ化合物であった。
炭素数16の二塩基酸は、一般式(1)中のRが炭素数11の炭素水素基、炭素数17の二塩基酸は、一般式(1)中のRが炭素数12の炭素水素基、炭素数18の二塩基酸は、一般式(1)中のRが炭素数13の炭素水素基であった。炭素数16の二塩基酸、炭素数17の二塩基酸及び炭素数18の二塩基酸はいずれも、一般式(1)中のRが水素原子であり、RがC=C二重結合を1個有していた。炭素数16の二塩基酸、炭素数17の二塩基酸及び炭素数18の二塩基酸はいずれも、分岐構造を2個持つ化合物であった。
 そして、混合物(A-1)に含まれる炭素数が14~18の5種類の二塩基酸について、これらの5種の二塩基酸(二塩基酸(a1)~(a5))の1分子中の3級炭素の個数と4級炭素の個数の合計数(n1~n5の合計数)を求めた。上記の炭素数が14~18の5種類の二塩基酸の1分子中の3級炭素原子はそれぞれ5個、4級炭素原子はいずれも0個なので、n1=n2=n3=n4=n5=5であり、n1~n5の合計は5×5=25である。
<製造例2>       
 撹拌装置及び温度制御装置付きのステンレス製オートクレーブに、リニアレン148(出光興産製)315部と無水マレイン酸98部を仕込み、攪拌下に室温で系内の気相部を窒素で置換し、1時間かけて220℃まで昇温した後、反応温度を220℃に制御しながら7時間反応させ、反応粗生成物413部を得た。
 得られた反応粗生成物を、減圧下(ゲージ圧:-0.95MPa)で4時間かけて175℃まで昇温させ、未反応のリニアレン148を105部留去した後、さらに200℃まで昇温し、減圧下(ゲージ圧:-0.95MPa)で200℃から240℃で蒸留される成分の酸無水物の混合物(E-2)235部を得た。この酸無水物の混合物(E-2)の50℃における性状は液状であった。
 ガラス製100mL容器中で、酸無水物の混合物(E-2)30部を水30部に加えて1時間90℃で加熱攪拌し、酢酸エチル45部を加えて攪拌した後、静置分液し、酢酸エチル層を回収し、酢酸エチルを蒸発留去して二塩基酸の混合物(A-2)31部を得た。
 混合物(A-2)を液体クロマトグラフ質量分析計で分析したところ、炭素数に表2に記載の分布があった。表2中の%は、モル%である。混合物(A-2)は、炭素数が異なる3種の二塩基酸を含んでいた。上記で得られた二塩基酸の混合物(A-2)を、二塩基酸(A-2)ともいう。
Figure JPOXMLDOC01-appb-T000005
 液体クロマトグラフ質量分析でフラグメンテーション解析をしたところ、混合物(A-2)に含まれる炭素数が異なる3種の二塩基酸は、いずれも上記一般式(1)で表され、X及びZがカルボキシル基である二塩基酸であった。なお、二塩基酸の混合物(A-2)中の炭素数が異なる3種類の二塩基酸のうち、表2の炭素数18のものは、一般式(1)中のRが水素原子であり、Rが炭素数13の炭素水素基で、C=C二重結合を1個有していた。この炭素数18の二塩基酸は、分岐構造を2個持つ化合物であった。
 表2の炭素数20の二塩基酸は、一般式(1)中のRが水素原子であり、Rが炭素数15の炭素水素基で、C=C二重結合を1個有していた。この炭素数20の二塩基酸は、分岐構造を2個持つ化合物であった。また、炭素数22の二塩基酸は、一般式(1)中のRが水素原子であり、Rが炭素数17の炭素水素基で、C=C二重結合を1個有していた。この炭素数22の二塩基酸は、分岐構造を2個持つ化合物であった。
 そして、混合物(A-2)に含まれる炭素数が18~22の3種類の二塩基酸について、これらの二塩基酸(二塩基酸(a1)~(a3))の1分子中の3級炭素の個数と4級炭素の個数の合計数(n1~n3の合計数)を求めた。上記の炭素数が18~22の3種類の二塩基酸の1分子中の3級炭素原子はそれぞれ5個、4級炭素原子はいずれも0個なので、n1=n2=n3=5であり、n1~n3の合計は5×3=15である。
<実施例1>   
 製造例1で得られた二塩基酸(A-1)とエチレングリコール(C-1)とを表3に記載した配合部数で混合し、ジエチルアミン(B-1)を滴下して、中和をした。その後、ポリビニルアルコール(D-1)とほう酸(D-2)を添加し、100℃で加熱撹拌し、均一混合させて、電解液(1)を得た。
<実施例2>   
 製造例1で得られた二塩基酸(A-1)とエチレングリコール(C-1)とを表3に記載した配合部数で混合し、アンモニアガス(B-2)を吹き込み、pHが7.0となる点を吹き込みの終点とし中和をした。その後、ポリビニルアルコール(D-1)とほう酸(D-2)を添加し、100℃で加熱撹拌し、均一混合させて、電解液(2)を得た。
<実施例3、4及び比較例1、2、4、5>
 表3に記載した部数に従い、各成分を用いて、実施例1と同様の操作を行い、実施例3、4の電解液である電解液(3)、(4)を、また比較例1、2、4、5の電解液である電解液(1’)、(2’)、(4’)、(5’)を得た。実施例3では、実施例1で使用した二塩基酸(A-1)の代わりに、製造例2で得られた二塩基酸(A-2)を用いた。実施例4では、二塩基酸(A-1)の代わりに、表3に記載した3種の二塩基酸を使用した。
<比較例3>
 表3に記載した部数に従い、各成分を用いて、実施例2と同様の操作を行い、電解液(3’)を得た。
 実施例1~3で用いた二塩基酸の混合物である二塩基酸(A-1)及び(A-2)は、上記製造例1および2の中に記載したように、それに対応する酸無水物の混合物(E-1)及び(E-2)は、50℃において液状である。
 実施例4では3種類の二塩基酸を混合して用いたが、これらの二塩基酸は、それぞれに対応する酸無水物から加水分解することで得ることができる。また、実施例4で使用した3種類の二塩基酸それぞれに対応する3種類の酸無水物を含む酸無水物の混合物(E)(各酸無水物のモル比は、実施例4で使用した、対応する二塩基酸のモル比と同じ)は、50℃において液状であることを確認した。
 よって、実施例1~4は、二塩基酸(A)と塩基(B)の塩における二塩基酸(A)が2種以上の二塩基酸を含有し、該2種以上の二塩基酸の混合物に対応する2種以上の酸無水物の混合物が50℃において液状であることから、本発明の実施例となる。
 一方、比較例1で用いたドデシルコハク酸(a-3)はドデシルコハク酸無水物(E-3)から、加水分解によって得ることができるが、ドデシルコハク酸無水物(E-3)(ドデシルコハク酸(a-3)の酸無水物)は、50℃において、固体であった。
 また、比較例2、3及び4で用いた2-ドデセニルコハク酸(a-5)、2-ヘキサデセニルコハク酸(a-6)もそれぞれに対応する酸無水物である2-ドデセニルコハク酸無水物(E-5)、2-ヘキサデセニルコハク酸無水物(E-6)から加水分解によって得ることができるが、2-ドデセニルコハク酸無水物(E-5)、および2-ヘキサデセニルコハク酸無水物(E-6)ともに50℃において固体であった。
 さらに、比較例5では、2種類の二塩基酸を混合して用いたが、これらに対応する2種類の酸無水物の混合物は50℃において固体であった。
 したがって、比較例1~4で用いた二塩基酸は1種の二塩基酸しか含有しない点で本発明の範囲外であり、比較例5で用いた二塩基酸は2種の二塩基酸の混合物ではあるが、該二塩基酸の混合物に対応する2種の酸無水物の混合物は50℃において固体であることから本発明の範囲外となる。
 実施例1~4、および比較例1~5で得た電解液(1)~(4)および(1’)~(5’)を用い、以下に示す方法で、低温(-20℃)での状態を目視で観察し、火花電圧、比電導度、高温保管前後の比電導度、pHを測定した。測定結果を表3に記載した。
 また、実施例に用いた二塩基酸の混合物に対応する酸無水物の混合物(E)の50℃での性状と、二塩基酸(A)に含まれる炭素数が7以上のk種類(ここで、kは、1以上の整数)の二塩基酸(a1)~(ak)について、二塩基酸(a1)~(ak)の1分子中の3級炭素の個数と4級炭素の個数の合計数(n1~nkの合計数)も表3に記載した。比較例についても、使用した二塩基酸の混合物又は二塩基酸に対応する、酸無水物の混合物(E)又は酸無水物の50℃での性状と、使用した二塩基酸について、1分子中の3級炭素の個数と4級炭素の個数の合計数(n1~nkの合計数)を表3に記載した。
[-20℃での電解液の状態]   
 電解液を透明のガラス瓶に入れ、-20℃の恒温槽で24時間放置した後、-20℃の状態でガラス瓶を傾けて目視で観察し、下記の判定基準で評価した。
◎:透明であり、析出物なく、傾けると流動性がある
○:若干、白濁するものの、析出物なく、傾けると流動性がある
×:全体が固化 
[火花電圧の測定]
 陽極および陰極として高圧用化成エッチングアルミニウム箔を用い、85℃にて定電流(電流密度:10mA/cm)を負荷したときに、電圧の降下(ショート)がみられたときの電圧値を読み取って火花電圧とした。直流安定化電源として高砂製作所製のGP650-05Rを用いて測定した。
[比電導度の測定]
 電解液を測定用セルに15mL入れて、恒温槽中で30℃に温調し、比電導度を測定した。比電導度測定用セルとして東亜ディーケーケー製のCT-57101Bを用いて測定した。
[pHの測定]
 電解液を25℃に温調し、pHメーターを用いてpHを測定した。pH測定用電極として、東亜ディーケーケー製のDST-5421Cを用いて測定した。
[高温試験]
 耐熱容器に電解液を入れ、125℃恒温乾燥機中で500時間保管前後の比電導度を測定し、比電導度の変化率を計算した。
Figure JPOXMLDOC01-appb-T000006
 表3に示した結果から、本発明の実施例1~3の電解液は、-20℃でも析出物がなく流動性があった。また実施例4の電解液は、-20℃でも若干は白濁するものの、析出物なく、傾けると流動性があった。
 一方、比較例1~5の電解液は、-20℃で全体が固化した。
 また、塩基(B)を同じにした塩同士で比較すると、実施例の電解液は、比較例の電解液よりも耐熱性(高温試験)に優れる。
 さらに、火花電圧と比電導度のバランスも、実施例の電解液は、比較例の電解液と同等またはそれ以上である。
 本発明の電解コンデンサ用電解液は、低温でも固化しないため寒冷地でも駆動できる電解コンデンサが得られる。このため、屋外での用途、例えば車載などの用途として好適に使用できる。

Claims (5)

  1.  溶剤(C)および電解質を含有する電解コンデンサ用電解液であって、前記電解質が二塩基酸(A)と塩基(B)の塩からなり、前記二塩基酸(A)が2種以上の二塩基酸を含有しており、
     前記2種以上の二塩基酸は、前記二塩基酸(A)におけるモル比で前記2種以上の二塩基酸を含有する二塩基酸の混合物に対応する2種以上の酸無水物の混合物(E)が50℃において液状である電解コンデンサ用電解液。
  2.  二塩基酸(A)が炭素数7以上の異なるk種類(kは3以上の整数)の二塩基酸(a1)~(ak)を含み、二塩基酸(a1)~(ak)の1分子中の3級炭素原子の個数と4級炭素原子の個数の合計個数をそれぞれn~nとしたとき、n~nの合計数が9以上である請求項1記載の電解コンデンサ用電解液。
  3.  二塩基酸(A)が下記一般式(1)で表される二塩基酸を含む請求項1または2に記載の電解コンデンサ用電解液。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、XおよびZはそれぞれ独立にカルボキシル基、スルホン酸基およびリン酸基のいずれかである。Rは、水素原子または炭素数1~18の炭化水素基であって、Rは不飽和結合を少なくとも一つ含む炭素数2~20の炭化水素基である。また、RおよびRの合計炭素数は6~20である。]
  4.  前記一般式(1)中のXとZがともにカルボキシル基である請求項3記載の電解コンデンサ用電解液。
  5.  請求項1~4のいずれかに記載の電解コンデンサ用電解液を用いた電解コンデンサ。
PCT/JP2017/011829 2016-03-29 2017-03-23 電解コンデンサ用電解液および電解コンデンサ WO2017170169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780010565.XA CN108604501B (zh) 2016-03-29 2017-03-23 电解电容器用电解液和电解电容器
US16/088,646 US10879009B2 (en) 2016-03-29 2017-03-23 Electrolyte solution for electrolytic capacitors, and electrolytic capacitor
EP17774707.8A EP3439001B1 (en) 2016-03-29 2017-03-23 Electrolyte solution for electrolytic capacitors, and electrolytic capacitor
JP2018509208A JP6522850B2 (ja) 2016-03-29 2017-03-23 電解コンデンサ用電解液および電解コンデンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065439 2016-03-29
JP2016-065439 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170169A1 true WO2017170169A1 (ja) 2017-10-05

Family

ID=59965560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011829 WO2017170169A1 (ja) 2016-03-29 2017-03-23 電解コンデンサ用電解液および電解コンデンサ

Country Status (6)

Country Link
US (1) US10879009B2 (ja)
EP (1) EP3439001B1 (ja)
JP (1) JP6522850B2 (ja)
CN (1) CN108604501B (ja)
TW (1) TWI672291B (ja)
WO (1) WO2017170169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220127219A1 (en) * 2020-10-23 2022-04-28 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896723A (ja) * 1981-12-03 1983-06-08 日本ケミコン株式会社 電解コンデンサの駆動用電解液
JP2012089660A (ja) * 2010-10-19 2012-05-10 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP2012164777A (ja) * 2011-02-04 2012-08-30 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547423A (en) 1968-04-12 1970-12-15 Gen Electric Electrolytic capacitor and electrolyte material therefor
US4110817A (en) * 1976-07-16 1978-08-29 Sprague Electric Company Electrolytic capacitor with an electrolyte including dibasic acid compounds
KR0122882B1 (ko) * 1987-03-12 1997-11-21 사또오 도시아끼 전해콘덴서용 전해액
JPH06302475A (ja) * 1993-04-09 1994-10-28 Sanyo Chem Ind Ltd 電解コンデンサ駆動用電解液
JP3245604B2 (ja) 1993-12-03 2002-01-15 三洋化成工業株式会社 電解液及びそれを用いた電気化学素子
JPH0963896A (ja) * 1995-08-24 1997-03-07 San Denshi Kogyo Kk 電解コンデンサ駆動用電解液
JP4554012B2 (ja) * 1998-10-13 2010-09-29 パナソニック株式会社 アルミニウム電解コンデンサ
KR100566581B1 (ko) * 1998-11-26 2006-05-25 오카무라 세이유 가부시키가이샤 장쇄이염기산조성물및이것을사용하는전해액
JP2000315628A (ja) * 1999-04-30 2000-11-14 Nippon Chemicon Corp 電解コンデンサ用電解液
JP4609607B2 (ja) 1999-09-06 2011-01-12 日本ケミコン株式会社 電解コンデンサ用電解液
KR100714737B1 (ko) * 2001-01-15 2007-05-07 우베 고산 가부시키가이샤 전해 커패시터용 전해액
JP4748930B2 (ja) 2003-09-09 2011-08-17 三洋電機株式会社 非水溶媒系二次電池
US7460356B2 (en) * 2007-03-20 2008-12-02 Avx Corporation Neutral electrolyte for a wet electrolytic capacitor
JP5076850B2 (ja) * 2007-12-07 2012-11-21 パナソニック株式会社 電解コンデンサおよび電解コンデンサ駆動用電解液
CN102667983B (zh) 2009-11-26 2014-10-01 松下电器产业株式会社 铝电解电容器用电解液和使用其的铝电解电容器
JP6052984B2 (ja) 2011-12-27 2016-12-27 日本酢ビ・ポバール株式会社 電解コンデンサの駆動用電解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896723A (ja) * 1981-12-03 1983-06-08 日本ケミコン株式会社 電解コンデンサの駆動用電解液
JP2012089660A (ja) * 2010-10-19 2012-05-10 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP2012164777A (ja) * 2011-02-04 2012-08-30 Sanyo Chem Ind Ltd 電解コンデンサ用電解液およびそれを用いた電解コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439001A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220127219A1 (en) * 2020-10-23 2022-04-28 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor
US11807601B2 (en) * 2020-10-23 2023-11-07 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Also Published As

Publication number Publication date
TW201806921A (zh) 2018-03-01
CN108604501A (zh) 2018-09-28
TWI672291B (zh) 2019-09-21
JP6522850B2 (ja) 2019-05-29
JPWO2017170169A1 (ja) 2018-11-22
EP3439001B1 (en) 2023-07-26
EP3439001A4 (en) 2019-12-04
US10879009B2 (en) 2020-12-29
CN108604501B (zh) 2020-02-21
US20190108946A1 (en) 2019-04-11
EP3439001A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5466256B2 (ja) アルミニウム電解コンデンサ電解液及びその核心溶質の製造方法
US8828261B2 (en) Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using same
EP0251577A2 (en) Ammonium salt solution as electrolyte for electrolytic capacitors
JP2013051238A (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2017224834A (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
WO2017170169A1 (ja) 電解コンデンサ用電解液および電解コンデンサ
JP2017516287A (ja) アルミニウム電解コンデンサ用電解液、及び、これを用いたアルミニウム電解コンデンサ
WO2015114931A1 (ja) 電解コンデンサ駆動用電解液
JP2011187705A (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2012164777A (ja) 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP4619820B2 (ja) 電解液
JP6104809B2 (ja) アルミニウム電解コンデンサ用電解液、及びそれを用いたアルミニウム電解コンデンサ
JP7269883B2 (ja) 電解コンデンサ用電解液及び電解コンデンサ
JPWO2014141620A1 (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2012089660A (ja) 電解コンデンサ用電解液およびそれを用いた電解コンデンサ
JP6423786B2 (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP4991799B2 (ja) アルミニウム電解コンデンサ用電解液、およびそれを用いたアルミニウム電解コンデンサ
JP2017034180A (ja) 電解コンデンサ用電解液
JP4016218B2 (ja) 電解コンデンサ用電解液
JP3885836B2 (ja) 電解コンデンサ用電解液
JP2017034114A (ja) 電解コンデンサ用電解液
JP2902686B2 (ja) 電解コンデンサ用電解液
JPH0997749A (ja) 電解コンデンサ駆動用電解液
JP2004134655A (ja) 電解コンデンサ駆動用電解液
JP2001143969A (ja) 電解コンデンサ用電解液及び電解コンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509208

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774707

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017774707

Country of ref document: EP

Effective date: 20181029