WO2017159274A1 - ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板 - Google Patents

ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板 Download PDF

Info

Publication number
WO2017159274A1
WO2017159274A1 PCT/JP2017/006884 JP2017006884W WO2017159274A1 WO 2017159274 A1 WO2017159274 A1 WO 2017159274A1 JP 2017006884 W JP2017006884 W JP 2017006884W WO 2017159274 A1 WO2017159274 A1 WO 2017159274A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine
polyimide
layer
formula
clad laminate
Prior art date
Application number
PCT/JP2017/006884
Other languages
English (en)
French (fr)
Inventor
芳樹 須藤
哲平 西山
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201780014592.4A priority Critical patent/CN108699243B/zh
Priority to KR1020187025946A priority patent/KR102374975B1/ko
Priority to JP2018505394A priority patent/JP6908590B2/ja
Priority to US16/085,596 priority patent/US10844175B2/en
Publication of WO2017159274A1 publication Critical patent/WO2017159274A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide useful as an adhesive layer in a circuit board such as a flexible printed wiring board and the use thereof.
  • FPCs flexible printed wiring boards
  • HDDs high-dimensionally digital versatile disks
  • DVDs digital versatile disks
  • mobile phones digital versatile disks
  • parts such as cables and connectors. It is expanding.
  • the wiring pitch in FPC is becoming narrower and fine processing is required.
  • fine wiring processing is difficult unless one having a small surface roughness is used.
  • the surface roughness of the copper foil is large, the surface roughness is transferred to the insulating layer side. Therefore, in the region where the copper foil is removed by etching, the surface of the insulating layer diffuses and reflects light. There is also a problem that the copper pattern cannot be recognized through the light.
  • Patent Document 1 For the purpose of improving dielectric properties and adhesion to metal foil, a copper-clad laminate in which the imide group concentration of the polyimide layer in contact with the copper foil forming the conductor circuit is controlled has been proposed (Patent Document 1).
  • Patent Document 1 although the dielectric properties can be controlled by a combination of the surface roughness Rz of the copper foil and the polyimide layer having a low imide group concentration on the surface in contact with the copper foil, the long-term heat-resistant adhesiveness is sufficiently satisfactory. It was not a thing.
  • Patent Document 2 In order to improve the adhesion between the low-roughness copper foil and the insulating layer, a copper foil in which a predetermined metal is deposited on the surface of the copper foil in contact with the insulating layer has been proposed (Patent Document 2). According to Patent Document 2, it is said that by controlling the amount of nickel, zinc and cobalt deposited, it is possible to secure the initial adhesive force and suppress a decrease in the adhesive force after the heat resistance test.
  • the copper foil of patent document 2 is a non-thermoplastic polyimide resin, it is difficult to bond the copper foil by a laminating method, and the manufacturing method and manufacturing conditions are limited.
  • the present invention has excellent adhesion and long-term heat-resistant adhesion to metal layers such as copper foil, and by reducing the dielectric loss tangent, transmission loss can be reduced, and it is suitable for use in high-frequency circuit boards.
  • An object of the present invention is to provide a metal-clad laminate and a circuit board having a polyimide adhesive layer that can be used.
  • the present inventors have excellent adhesiveness and long-term heat-resistant adhesiveness for low-roughness copper foil by using a polyimide having a specific structure as an adhesive layer, It has been found that a low dielectric loss tangent can be achieved, and the present invention has been completed.
  • the polyamic acid of the present invention is a polyamic acid obtained by reacting a diamine component and an anhydride component
  • the diamine component is a total of at least one selected from diamine compounds represented by the following general formulas (1) to (7) within a range of 40 to 97 mol parts with respect to 100 mol parts of the total diamine components.
  • the acid anhydride component is in a range of 40 to 100 mol parts of biphenyltetracarboxylic dianhydride and 0 to 60 mol parts of pyromellitic dianhydride with respect to 100 mol parts of the total acid anhydride component. It is contained within the range.
  • R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms
  • the linking group A independently represents —O—, —S—, —CO
  • a divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—
  • n 1 is independent Represents an integer of 0 to 4. However, what overlaps with Formula (2) from Formula (3) is excluded, and what overlaps with Formula (4) from Formula (5) is excluded.
  • the linking group X represents a single bond or a divalent group selected from —CONH—
  • Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • thermoplastic polyimide of the present invention is a thermoplastic polyimide containing a diamine residue derived from a diamine component and a tetracarboxylic acid residue derived from an acid anhydride component, A total of 40 to 97 mol parts of diamine residues derived from at least one selected from the diamine compounds represented by the general formulas (1) to (7) with respect to 100 mol parts of all diamine residues.
  • At least one diamine residue selected from the diamine compounds represented by the general formula (8) is contained within a total range of 3 to 60 mol parts
  • the tetracarboxylic acid residue derived from biphenyltetracarboxylic dianhydride is derived from pyromellitic dianhydride within the range of 40 to 100 mol parts per 100 mol of all tetracarboxylic acid residues.
  • a tetracarboxylic acid residue is contained in the range of 0 to 60 mol parts.
  • the resin film of the present invention is a resin film having a single layer or multiple polyimide layers, At least one of the polyimide layers is made of the thermoplastic polyimide.
  • the metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer and a metal layer,
  • the insulating resin layer has a single layer or a plurality of polyimide layers,
  • the polyimide layer in contact with the metal layer is made of the thermoplastic polyimide.
  • the ten-point average roughness (Rz) of the metal layer on the surface in contact with the insulating resin layer may be in the range of 0.05 to 1.0 ⁇ m.
  • the circuit board of the present invention is obtained by processing the metal layer of the metal-clad laminate into wiring.
  • thermoplastic polyimide of the present invention is excellent in adhesiveness, and has a high adhesive force even for a low-roughness copper foil, for example. Moreover, since the thermoplastic polyimide of the present invention is thermoplastic, an ordered structure is formed in the entire polymer by the rigid structure derived from the monomer, so that low dielectric loss tangent is possible and gas permeability is low, It can exhibit excellent long-term heat-resistant adhesiveness. Therefore, the resin film having an adhesive layer formed using the thermoplastic polyimide of the present invention is excellent in adhesiveness with the metal wiring layer. Furthermore, a low dielectric loss tangent can be achieved by forming a thermoplastic polyimide layer from the thermoplastic polyimide of the present invention.
  • thermoplastic polyimide of the present invention can be suitably used as a material for manufacturing an electronic component such as an FPC that requires high-density mounting, high-speed signal transmission, and high reliability.
  • the metal-clad laminate using the thermoplastic polyimide of the present invention can be applied to a circuit board such as an FPC that transmits a high-frequency signal of 10 GHz or more.
  • the polyamic acid of the present embodiment is a precursor of the thermoplastic polyimide of the present embodiment, and is obtained by reacting a specific diamine component and an acid anhydride component.
  • thermoplastic polyimide of the present embodiment is formed by imidizing the above polyamic acid, and is produced by reacting a specific acid anhydride and diamine. By explaining the acid anhydride and diamine, A specific example of the thermoplastic polyimide of the present embodiment is understood.
  • diamine component As the diamine component of the polyamic acid raw material of the present embodiment, at least one selected from diamine compounds represented by the following general formulas (1) to (7) is used with respect to 100 mole parts of the total diamine component. A total of 40 to 97 mol parts is contained, and at least one selected from diamine compounds represented by the following general formula (8) is contained in a total amount of 3 to 60 mol parts.
  • R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms
  • the linking group A independently represents —O—, —S—, —CO.
  • a divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independent Represents an integer of 0 to 4.
  • n 1 is independent Represents an integer of 0 to 4.
  • the linking group X represents a single bond or a divalent group selected from —CONH—
  • Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • hydrogen atoms in the two terminal amino groups may be substituted, for example, —NR 2 R 3 (where R 2 and R 3 are independently Meaning an arbitrary substituent such as an alkyl group).
  • the flexibility of the polyimide molecular chain can be improved and thermoplasticity can be imparted.
  • the total amount of the diamine compounds represented by the general formulas (1) to (7) is less than 40 mol parts with respect to 100 mol parts of the total diamine component, sufficient thermoplasticity is obtained due to insufficient flexibility of the polyimide resin. If the amount exceeds 97 mol parts, the gas permeability increases and the long-term heat resistance decreases.
  • the total amount of the diamine compounds represented by the general formulas (1) to (7) is preferably in the range of 60 to 95 parts by mole with respect to 100 parts by mole of all diamine components.
  • the diamine compound represented by the general formula (8) in an amount within the above range, an ordered structure is formed in the entire polymer due to the rigid structure derived from the monomer, so that a low dielectric loss tangent can be achieved.
  • a polyimide having low gas permeability and excellent long-term heat-resistant adhesiveness while being thermoplastic is obtained.
  • the total amount of the diamine compound represented by the general formula (8) is less than 3 parts by mole with respect to 100 parts by mole of the total diamine component, formation of an ordered structure becomes difficult and the above-mentioned effects are not exhibited.
  • it exceeds 60 mol parts the thermoplasticity is impaired.
  • the total amount of the diamine compound represented by the general formula (8) is preferably in the range of 5 to 40 parts by mole with respect to 100 parts by mole of all diamine components.
  • the thermoplastic polyimide of the present embodiment contains a diamine residue derived from a diamine component and a tetracarboxylic acid residue derived from an acid anhydride component.
  • the thermoplastic polyimide of the present embodiment is derived from at least one selected from the diamine compounds represented by the above general formulas (1) to (7) with respect to 100 mol parts of all diamine residues. Contains a total of diamine residues in the range of 40 to 97 mol parts, and a total of 3 to 60 mol parts of diamine residues selected from the diamine compounds represented by the general formula (8). To do.
  • thermoplastic polyimide of the present embodiment has a tetracarboxylic acid residue derived from biphenyltetracarboxylic dianhydride in a range of 40 to 100 mol parts with respect to 100 mol parts of all tetracarboxylic acid residues.
  • a tetracarboxylic acid residue derived from pyromellitic dianhydride is contained within a range of 0 to 60 mol parts.
  • the diamine represented by the formula (1) (hereinafter sometimes referred to as “diamine (1)”) is an aromatic diamine having two benzene rings.
  • This diamine (1) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (1).
  • the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —SO 2 —, —S—.
  • Examples of the diamine (1) include 3,3′-diaminodiphenylmethane, 3,3′-diaminodiphenylpropane, 3,3′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfone, and 3,3-diaminodiphenyl ether.
  • the diamine represented by the formula (2) (hereinafter sometimes referred to as “diamine (2)”) is an aromatic diamine having three benzene rings.
  • This diamine (2) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of a polyimide increases by using diamine (2).
  • the linking group A is preferably —O—.
  • Examples of the diamine (2) include 1,4-bis (3-aminophenoxy) benzene, 3- [4- (4-aminophenoxy) phenoxy] benzenamine, 3- [3- (4-aminophenoxy) phenoxy] Examples thereof include benzeneamine.
  • the diamine represented by the formula (3) (hereinafter sometimes referred to as “diamine (3)”) is an aromatic diamine having three benzene rings.
  • This diamine (3) has high flexibility because the two divalent linking groups A directly connected to one benzene ring are in the meta position, and the degree of freedom of the polyimide molecular chain is increased. Therefore, it is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (3).
  • the linking group A is preferably —O—.
  • Examples of the diamine represented by the formula (3) include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 4,4 '-[2-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4'-[4-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 '-[5-methyl- ( 1,3-phenylene) bisoxy] bisaniline and the like.
  • the diamine represented by the formula (4) (hereinafter sometimes referred to as “diamine (4)”) is an aromatic diamine having four benzene rings.
  • This diamine (4) has high flexibility because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position, and improves the flexibility of the polyimide molecular chain. It is thought to contribute. Therefore, the thermoplasticity of a polyimide increases by using diamine (4).
  • the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO—, —CONH—.
  • Examples of the diamine represented by the formula (4) include bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, and bis [4- (3-aminophenoxy).
  • the diamine represented by the formula (5) (hereinafter sometimes referred to as “diamine (5)”) is an aromatic diamine having four benzene rings.
  • This diamine (5) has a high flexibility because the degree of freedom of the polyimide molecular chain is increased because two divalent linking groups A directly connected to at least one benzene ring are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of a polyimide increases by using diamine (5).
  • the linking group A is preferably —O—.
  • diamine (5) examples include 4- [3- [4- (4-aminophenoxy) phenoxy] phenoxy] aniline, 4,4 ′-[oxybis (3,1-phenyleneoxy)] bisaniline, and the like. .
  • the diamine represented by the formula (6) (hereinafter sometimes referred to as “diamine (6)”) is an aromatic diamine having four benzene rings.
  • This diamine (6) has high flexibility by having at least two ether bonds, and is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (6).
  • the linking group A is preferably —C (CH 3 ) 2 —, —O—, —SO 2 —, or —CO—.
  • Examples of the diamine represented by the formula (6) include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE). ), Bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ketone (BAPK), and the like.
  • the diamine represented by the formula (7) (hereinafter sometimes referred to as “diamine (7)”) is an aromatic diamine having four benzene rings. Since this diamine (7) has a highly flexible divalent linking group A on both sides of the diphenyl skeleton, it is considered that this diamine (7) contributes to an improvement in the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (7).
  • the linking group A is preferably —O—.
  • Examples of the diamine represented by the formula (7) include bis [4- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy)] biphenyl, and the like.
  • the diamine represented by the general formula (8) (hereinafter sometimes referred to as “diamine (8)”) is an aromatic diamine having 1 to 3 benzene rings. Since the diamine (8) has a rigid structure, it has an effect of imparting an ordered structure to the entire polymer. Therefore, by using one or more of diamine (1) to diamine (7) and one or more of diamine (8) in combination at a predetermined ratio, low dielectric loss tangent can be achieved and thermoplasticity can be reduced. Nevertheless, a polyimide having low gas permeability and excellent long-term heat-resistant adhesion can be obtained.
  • the linking group X is preferably a single bond or —CONH—.
  • diamine (8) examples include paraphenylenediamine (PDA), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), and 2,2′-n-propyl-4,4′-.
  • PDA paraphenylenediamine
  • m-TB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • n-propyl-4,4′- examples thereof include diaminobiphenyl (m-NPB), 2′-methoxy-4,4′-diaminobenzanilide (MABA), 4,4′-diaminobenzanilide (DABA), and the like.
  • m-NPB diaminobiphenyl
  • MABA 2′-methoxy-4,4′-diaminobenzanilide
  • DABA 4,4′-diaminobenzanilide
  • biphenyltetracarboxylic dianhydride is within a range of 40 to 100 mol parts, preferably 50 mol, per 100 mol parts of the total acid anhydride component.
  • the pyromellitic dianhydride is contained in the range of 0 to 60 mol parts, preferably in the range of 0 to 60 mol parts, and preferably in the range of 0 to 50 mol parts.
  • biphenyltetracarboxylic dianhydride for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride
  • examples include 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride.
  • biphenyltetracarboxylic dianhydride When the amount of biphenyltetracarboxylic dianhydride is less than 40 parts by mole, it is difficult to form an ordered structure and the above-mentioned effects are not exhibited.
  • pyromellitic dianhydride is an optional component but a monomer that plays a role in controlling the glass transition temperature.
  • other acid anhydrides other than those described above may be included.
  • other acid anhydrides include 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 2,2 ′, 3,3′-, 2,3,3 ′, 4′- or 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,3 ′, 3,4′-diphenyl ether tetracarboxylic dianhydride, bis (2 , 3-Dicarboxyphenyl) ether dianhydride, 3,3 ′′, 4,4 ′′-, 2,3,3 ′′, 4 ′′-or 2,2 ′′, 3,3 ′′- p-Terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dica
  • thermoplastic polyimide of the present embodiment by selecting the type of the acid anhydride and diamine and the molar ratio when using two or more acid anhydrides or diamine, the thermal expansion property and adhesiveness are selected.
  • the glass transition temperature (Tg) can be controlled.
  • the thermoplastic polyimide according to the present embodiment can be produced by reacting the diamine component and the acid anhydride component in a solvent to form a polyamic acid and then ring closure by heating.
  • a polyimide precursor by dissolving an acid anhydride component and a diamine component in an organic solvent in approximately equimolar amounts and stirring them at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours for polymerization reaction.
  • a polyamic acid is obtained.
  • the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent.
  • organic solvent used in the polymerization reaction examples include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2 -Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol and the like. Two or more of these organic solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination.
  • the amount of such organic solvent used is not particularly limited, but it should be adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight. Is preferred.
  • the synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted or substituted with another organic solvent as necessary. Moreover, since polyamic acid is generally excellent in solvent solubility, it is advantageously used.
  • the viscosity of the polyamic acid solution is preferably in the range of 500 cP to 100,000 cps. If it is out of this range, defects such as uneven thickness and streaks are likely to occur in the film during the coating operation by a coater or the like.
  • the method for imidizing the polyamic acid is not particularly limited, and for example, heat treatment such as heating in the above-mentioned solvent under a temperature condition in the range of 80 to 400 ° C. for 1 to 24 hours is suitably employed.
  • thermoplastic polyimide of the present embodiment when used as an adhesive layer in an insulating resin of a circuit board, a completely imidized structure is most preferable in order to suppress copper diffusion.
  • a part of the polyimide may be polyamic acid.
  • the imidation ratio was measured at about 1015 cm ⁇ 1 by measuring the infrared absorption spectrum of the polyimide thin film by a single reflection ATR method using a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). And the absorbance of C ⁇ O stretching derived from an imide group of 1780 cm ⁇ 1 , based on the benzene ring absorber.
  • the weight average molecular weight of the thermoplastic polyimide of the present embodiment is preferably in the range of 10,000 to 400,000, for example, and more preferably in the range of 50,000 to 350,000.
  • weight average molecular weight is less than 10,000, the strength of the film tends to decrease and the film tends to become brittle.
  • weight average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as film thickness unevenness and streaks tend to occur during the coating operation.
  • the resin film of the present embodiment is not particularly limited as long as it is an insulating resin film including a polyimide layer formed of the thermoplastic polyimide of the present embodiment, and is a film (sheet) made of an insulating resin. Alternatively, it may be a film of an insulating resin laminated on a base material such as a copper foil, a glass plate, a polyimide film, a polyamide film, a polyester film or the like.
  • the thickness of the resin film of the present embodiment can be preferably in the range of 3 to 100 ⁇ m, more preferably in the range of 3 to 75 ⁇ m.
  • thermoplastic polyimide of the present embodiment is highly expansible, it is suitable for application as an adhesive layer with a base material such as a metal layer or another resin layer.
  • the thermoplastic polyimide of the present embodiment preferably has a glass transition temperature (Tg) of, for example, 360 ° C. or less, and is in the range of 200 to 320 ° C. Some are more preferred.
  • the coefficient of thermal expansion (CTE) is 30 ⁇ 10 ⁇ 6 (1 / K) or less, preferably 10 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 (
  • a low thermal expansion polyimide layer in the range of 1 / K) may be applied to the base film layer.
  • a polyimide that can be suitably used is a non-thermoplastic polyimide.
  • the thickness of the low thermal expansion base film layer can be preferably in the range of 5 to 50 ⁇ m, more preferably in the range of 10 to 35 ⁇ m.
  • the dielectric loss tangent (Tan ⁇ ) at 10 GHz is preferably 0.004 or less.
  • the dielectric loss tangent at 10 GHz exceeds 0.004
  • inconvenience such as loss of an electric signal is likely to occur on a high-frequency signal transmission path.
  • the lower limit value of the dielectric loss tangent at 10 GHz is not particularly limited.
  • the dielectric constant at 10 GHz is preferably 4.0 or less in order to ensure impedance matching.
  • the dielectric constant at 10 GHz exceeds 4.0, when used on a circuit board such as an FPC, it leads to deterioration of dielectric loss, and inconvenience such as loss of an electric signal easily occurs on a high-frequency signal transmission path.
  • the method for forming the polyimide film as the resin film of the present embodiment is not particularly limited.
  • a polyimide film is produced by applying and drying a polyamic acid solution on a supporting substrate and then imidizing. Method (hereinafter referred to as a casting method), [2] after applying and drying a polyamic acid solution on a supporting substrate, peeling the polyamic acid gel film from the supporting substrate, imidizing and producing a polyimide film, etc. Can be mentioned.
  • the polyimide film manufactured by this Embodiment consists of a polyimide resin layer of two or more layers, as an aspect of the manufacturing method, for example, a polyamic acid solution is apply
  • a method of performing imidization after repeating a plurality of times (hereinafter, sequential coating method), [4] simultaneously applying and drying a laminated structure of polyamic acid on a supporting substrate by multilayer extrusion, and then imidizing And the like (hereinafter, multilayer extrusion method).
  • the method for applying the polyimide solution (or polyamic acid solution) on the substrate is not particularly limited, and for example, it can be applied by a coater such as a comma, die, knife, lip or the like.
  • a method of repeatedly applying and drying a polyimide solution (or polyamic acid solution) on a substrate is preferable.
  • the resin film of the present embodiment can include a single layer or a plurality of polyimide layers.
  • at least one of the polyimide layers may be formed using the thermoplastic polyimide of the present embodiment.
  • the non-thermoplastic polyimide layer is P1 and the thermoplastic polyimide layer is P2
  • the resin film is two layers, it is preferable to laminate with a combination of P2 / P1
  • when the resin film is three layers Are preferably laminated in the order of P2 / P1 / P2, or in the order of P2 / P1 / P1.
  • P1 is a base film layer formed using non-thermoplastic polyimide
  • P2 is an adhesive layer formed of the thermoplastic polyimide of the present embodiment.
  • the resin film of the present embodiment may contain an inorganic filler in the polyimide layer as necessary.
  • an inorganic filler include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride. These may be used alone or in combination of two or more.
  • the metal-clad laminate of the present embodiment has an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer.
  • Preferable specific examples of the metal-clad laminate include, for example, a copper-clad laminate (CCL).
  • the insulating resin layer has a single layer or a plurality of polyimide layers.
  • at least one of the polyimide layers may be formed using the thermoplastic polyimide of the present embodiment.
  • the layer in contact with the metal layer in the insulating resin layer may be an adhesive layer formed of the thermoplastic polyimide of the present embodiment.
  • P1 is a non-thermoplastic polyimide layer
  • P2 is a thermoplastic polyimide layer
  • M1 is a metal layer.
  • P1 is a base film layer formed using any non-thermoplastic polyimide
  • P2 is an adhesive layer made of the thermoplastic polyimide of the present embodiment.
  • the material of the metal layer in the metal-clad laminate of the present embodiment is not particularly limited.
  • copper or a copper alloy is particularly preferable.
  • the material of the wiring layer in the circuit board of the present embodiment described later is the same as that of the metal layer.
  • the surface of the surface of the metal layer that contacts the insulating resin layer As for the roughness, the ten-point average roughness Rz is preferably in the range of 0.05 to 1.0 ⁇ m, and the arithmetic average roughness Ra is preferably 0.2 ⁇ m or less.
  • a resin film including the thermoplastic polyimide of the present embodiment is prepared, and a seed layer is formed by sputtering metal on the resin film, and then a metal layer is formed by plating, for example. May also be prepared.
  • the metal-clad laminate may be prepared by preparing a resin film including the thermoplastic polyimide of the present embodiment and laminating a metal foil on the resin film by a method such as thermocompression bonding.
  • the metal-clad laminate is obtained by casting a coating solution containing polyamic acid, which is a precursor of the thermoplastic polyimide of the present embodiment, onto a metal foil, drying to form a coating film, and then heat-treating the imide And may be prepared by forming a polyimide layer.
  • polyamic acid which is a precursor of the thermoplastic polyimide of the present embodiment
  • the circuit board of the present embodiment includes an insulating resin layer and a wiring layer formed on the insulating resin layer.
  • the insulating resin layer can include a single layer or a plurality of polyimide layers.
  • at least one polyimide layer (preferably an adhesive layer) may be formed using the thermoplastic polyimide of the present embodiment.
  • the layer in contact with the wiring layer in the insulating resin layer is preferably an adhesive layer formed using the thermoplastic polyimide of the present embodiment.
  • P1 is a non-thermoplastic polyimide layer
  • P2 is a thermoplastic polyimide layer
  • M2 is a wiring layer.
  • P1 / P2 / M2 are preferably laminated in this order.
  • P1 is a base film layer formed using an arbitrary non-thermoplastic polyimide
  • P2 is an adhesive layer formed of the thermoplastic polyimide of the present embodiment.
  • the method for producing the circuit board is not limited except that the thermoplastic polyimide of the present embodiment is used.
  • a subtractive method may be used in which a metal-clad laminate including an insulating resin layer containing a thermoplastic polyimide and a metal layer according to the present embodiment is prepared, and wiring is formed by etching the metal layer.
  • a semi-additive method may be used in which a seed layer is formed on the thermoplastic polyimide layer of the present embodiment, then a resist is patterned, and a metal is pattern-plated to form a wiring.
  • the diamines (1) to diamine (7) used as monomers in the present embodiment all have high flexibility, can improve the flexibility of the polyimide molecular chain, and can impart high thermoplasticity. Moreover, since diamine (8) has a rigid structure, it has the effect
  • a low dielectric loss tangent can be achieved even though it is a thermoplastic resin.
  • a polyimide having low gas permeability and excellent long-term heat-resistant adhesion can be obtained.
  • a polyimide that exhibits excellent long-term heat-resistant adhesion due to low gas permeability due to the ordered structure while having high thermoplasticity and adhesiveness has been realized for the first time by the present invention.
  • the degree of formation of the ordered structure of polyimide can be estimated from changes in total light transmittance and haze in a film state, as shown in Examples below.
  • the polyimide of this Embodiment since the polyimide of this Embodiment is thermoplastic, it has the outstanding adhesiveness also with respect to low-roughness copper foil.
  • the polyimide of the present embodiment is thermoplastic, but due to the rigid structure derived from the monomer, an ordered structure is formed in the entire polymer, so that low dielectric loss tangent is possible and gas permeability is reduced. And has excellent long-term heat-resistant adhesiveness. Therefore, the resin film having an adhesive layer formed using the thermoplastic polyimide of this embodiment has excellent adhesion to the metal wiring layer, and is an electronic device such as an FPC that requires high-density mounting and high reliability. It can be suitably used as a material for producing parts.
  • the weight average molecular weight was measured by gel permeation chromatography (trade name: HLC-8220GPC, manufactured by Tosoh Corporation). Polystyrene was used as a standard substance, and N, N-dimethylacetamide was used as a developing solvent.
  • the surface roughness of the copper foil is AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip curvature radius 10 nm, Using a spring constant of 42 N / m 2), a tapping mode was used to measure the 80 ⁇ m ⁇ 80 ⁇ m range of the copper foil surface, and the ten-point average roughness (Rz) was determined.
  • AFM manufactured by Bruker AXS, trade name: Dimension Icon type SPM
  • probe manufactured by Bruker AXS, trade name: TESPA (NCHV)
  • tip curvature radius 10 nm Using a spring constant of 42 N / m 2), a tapping mode was used to measure the 80 ⁇ m ⁇ 80 ⁇ m range of the copper foil surface, and the ten-point average roughness (Rz) was determined.
  • the resin layer side of measurement sample 1 is fixed to an aluminum plate with double-sided tape, and the copper foil is moved in a 90 ° direction at a speed of 50 mm / min.
  • the center strength when the copper foil peeled 10 mm from the resin layer was determined. This value is defined as “peel strength 1A”.
  • a percentage (%) of a value obtained by dividing the peel strength 1B by the peel strength 1A is “retention rate 1”.
  • “retention rate 1” A percentage (%) of a value obtained by dividing the peel strength 1B by the peel strength 1A (that is, peel strength 1B / peel strength 1A) is “retention rate 1”.
  • “Excellent” Peel strength 1B is 0.30 kN / m or more, and retention 1 is 80% or more.
  • the percentage (%) of the value obtained by dividing the peel strength 2B by the peel strength 1B is “retention rate 2”.
  • retention rate 2 The percentage (%) of the value obtained by dividing the peel strength 2B by the peel strength 1B (that is, peel strength 2B / peel strength 2A) is “retention rate 2”.
  • No Peel strength 2B is less than 0.50 kN / m, or retention 2 is less than 70%.
  • thermoplastic a material having a modulus of 1.0 ⁇ 10 9 Pa or more and a storage elastic modulus at 360 ° C. of 1.0 ⁇ 10 8 Pa or more was designated as “non-thermoplastic”.
  • the dielectric constant and dielectric loss tangent of the polyimide film at a frequency of 10 GHz were measured using a vector network analyzer (manufactured by Agilent, trade name E8363C) and a split post dielectric resonator (SPDR resonator).
  • the polyimide film used for the measurement was left for 24 hours under the conditions of temperature: 24-26 ° C., humidity: 45-55%.
  • Example 1 Under a nitrogen stream, 0.5715 g of m-TB (0.0027 mol), 14.958 g of TPE-R (0.0512 mol) and 170 g of DMAc were charged into a 300 ml separable flask and stirred at room temperature. And dissolved. Next, 3.489 g of PMDA (0.0160 mol) and 10.882 g of BPDA (0.0373 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution a. It was. The polyamic acid solution a had a solution viscosity of 6,700 cps and a weight average molecular weight of 163,400.
  • Examples 2 to 12 The polyamic acid solutions b to k and m were prepared in the same manner as in Example 1 except that the raw material compositions shown in Table 1 and Table 2 were used, and the viscosity was measured.
  • Synthesis example 1 Under a nitrogen stream, 16.064 g of TPE-R (0.0550 mol) and 170 g of DMAc were charged into a 300 ml separable flask and dissolved by stirring at room temperature. Next, 5.933 g of PMDA (0.0272 mol) and 8.003 g of BPDA (0.0272 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution n. It was. The solution viscosity of the polyamic acid solution n was 7,400 cps.
  • Synthesis Examples 2-6 The polyamic acid solutions o to s were prepared in the same manner as in Synthesis Example 1 except that the raw material composition shown in Table 3 was used, and the viscosity was measured.
  • Example 13 On the copper foil, the polyamic acid solution c was uniformly applied so that the thickness after the heat treatment was about 2 ⁇ m, and the solvent was removed by heating at 120 ° C. for 1 minute. On top of that, the polyamic acid solution s was uniformly applied so that the thickness after the heat treatment was about 25 ⁇ m, and the solvent was removed by heating and drying at 120 ° C. for 3 minutes. Then, it heated up in steps from 130 degreeC to 360 degreeC, imidation was performed, and the single-sided copper clad laminated board 1 was prepared. The evaluation results of this single-sided copper clad laminate 1 are shown in Table 4.
  • Example 14 A single-sided copper clad laminate 2 was prepared in the same manner as in Example 13 except that the polyamic acid solution d was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper clad laminate 2 are shown in Table 4.
  • Example 15 A single-sided copper clad laminate 3 was prepared in the same manner as in Example 13, except that the polyamic acid solution j was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper clad laminate 3 are shown in Table 4.
  • Comparative Example 1 A single-sided copper clad laminate 4 was prepared in the same manner as in Example 13 except that the polyamic acid solution n was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper clad laminate 4 are shown in Table 4.
  • Comparative Example 2 A single-sided copper clad laminate 5 was prepared in the same manner as in Example 13 except that the polyamic acid solution o was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper-clad laminate 5 are shown in Table 4.
  • Comparative Example 3 A single-sided copper clad laminate 6 was prepared in the same manner as in Example 13 except that the polyamic acid solution p was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper clad laminate 6 are shown in Table 4.
  • Comparative Example 4 A single-sided copper clad laminate 7 was prepared in the same manner as in Example 13 except that the polyamic acid solution q was used instead of the polyamic acid solution c. The evaluation results of this single-sided copper-clad laminate 7 are shown in Table 4.
  • the polyamic acid solution a was uniformly applied so that the thickness after curing was about 2 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent.
  • the polyamic acid solution s was uniformly applied so that the thickness after curing was about 18 ⁇ m, and then dried by heating at 120 ° C. for 3 minutes to remove the solvent.
  • the polyamic acid solution a was uniformly applied thereon so that the thickness after curing was about 2 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. Thereafter, stepwise heat treatment was performed from 130 ° C. to 360 ° C.
  • a double-sided copper-clad laminate 8 was prepared by superimposing a copper foil on the polyimide insulating layer side of this single-sided copper-clad laminate 8 and thermocompression bonding for 15 minutes under conditions of a temperature of 310 ° C. and a pressure of 6.7 MPa.
  • the evaluation results of this double-sided copper-clad laminate 8 are shown in Table 5.
  • Example 17 A single-sided copper-clad laminate 9 and a double-sided copper-clad laminate 9 were prepared in the same manner as in Example 16 except that the polyamide acid solution b was used instead of the polyamic acid solution a. The evaluation results of this double-sided copper-clad laminate 9 are shown in Table 5.
  • Example 18 A single-sided copper-clad laminate 10 and a double-sided copper-clad laminate 10 were prepared in the same manner as in Example 16 except that the polyamide acid solution c was used instead of the polyamic acid solution a. The evaluation results of this double-sided copper clad laminate 10 are shown in Table 5.
  • Example 19 A single-sided copper clad laminate 11 was prepared in the same manner as in Example 16 except that the polyamic acid solution e was used instead of the polyamic acid solution a.
  • a double-sided copper-clad laminate 11 was prepared in the same manner as in Example 16 except that the single-sided copper-clad laminate 11 was used and thermocompression bonded for 15 minutes under the conditions of a temperature of 330 ° C. and a pressure of 6.7 MPa. The evaluation results of this double-sided copper-clad laminate 11 are shown in Table 5.
  • Example 20 A single-sided copper-clad laminate 12 and a double-sided copper-clad laminate 12 were prepared in the same manner as in Example 16 except that the polyamide acid solution f was used instead of the polyamic acid solution a. The evaluation results of this double-sided copper clad laminate 12 are shown in Table 5.
  • Example 21 A single-sided copper-clad laminate 13 and a double-sided copper-clad laminate 13 were prepared in the same manner as in Example 16 except that the polyamide acid solution g was used instead of the polyamic acid solution a. The evaluation results of this double-sided copper-clad laminate 13 are shown in Table 5.
  • Example 22 A single-sided copper clad laminate 14 was prepared in the same manner as in Example 16 except that the polyamic acid solution h was used instead of the polyamic acid solution a.
  • a double-sided copper-clad laminate 14 was prepared in the same manner as in Example 16 except that the single-sided copper-clad laminate 14 was used and thermocompression bonded for 15 minutes under the conditions of a temperature of 330 ° C. and a pressure of 6.7 MPa. The evaluation results of this double-sided copper clad laminate 14 are shown in Table 5.
  • Example 23 A single-sided copper-clad laminate 15 and a double-sided copper-clad laminate 15 were prepared in the same manner as in Example 16 except that the polyamide acid solution i was used instead of the polyamic acid solution a. The evaluation results of this double-sided copper clad laminate 15 are shown in Table 5.
  • a single-sided copper-clad laminate 16 was prepared in the same manner as in Example 16 except that the polyamic acid solution q was used instead of the polyamic acid solution a.
  • a double-sided copper-clad laminate 16 was prepared in the same manner as in Example 16 except that the single-sided copper-clad laminate 16 was used and thermocompression bonded for 15 minutes under the conditions of a temperature of 390 ° C. and a pressure of 6.7 MPa. The evaluation results of this double-sided copper clad laminate 16 are shown in Table 5.
  • a single-sided copper clad laminate 17 was prepared in the same manner as in Example 16 except that the polyamic acid solution r was used instead of the polyamic acid solution a.
  • a double-sided copper-clad laminate 17 was prepared in the same manner as in Example 16 except that the single-sided copper-clad laminate 17 was used and thermocompression bonded for 15 minutes under the conditions of a temperature of 350 ° C. and a pressure of 6.7 MPa.
  • the copper foil on the thermocompression bonding side of the double-sided copper clad laminate 17 could be easily peeled by hand, and the circuit processing of the copper foil on the thermocompression bonding side could not be performed.
  • Example 24 The polyamic acid solution a was uniformly applied onto the copper foil, and the solvent was removed by heating and drying at 120 ° C. for 3 minutes, so that the thickness after the heat treatment was about 25 ⁇ m. Then, it heated up in steps from 130 degreeC to 360 degreeC, imidation was performed, and the single-sided copper clad laminated board 18 was prepared. A polyimide film 18 was prepared by etching away the copper foil of the single-sided copper-clad laminate 18. The evaluation results of this polyimide film 18 are shown in Table 6.
  • Examples 25 to 33 Polyimide films 19 to 27 were prepared in the same manner as in Example 24 except that the polyamic acid solutions b to j were used. The evaluation results of the polyimide films 19 to 27 are shown in Table 6.
  • the polyamic acid solution a was uniformly applied so that the thickness after curing was about 2 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent.
  • the polyamic acid solution s was uniformly applied so that the thickness after curing was about 18 ⁇ m, and then dried by heating at 120 ° C. for 3 minutes to remove the solvent.
  • the polyamic acid solution a was uniformly applied thereon so that the thickness after curing was about 2 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. Thereafter, stepwise heat treatment was performed from 130 ° C. to 360 ° C.
  • a polyimide film 28 was prepared by etching away the copper foil of the single-sided copper-clad laminate 28.
  • the total light transmittance of the polyimide film 28 was 73%, and the haze was 54%.
  • Example 35 A polyimide film 29 was prepared in the same manner as in Example 34 except that the polyamic acid solution f was used instead of the polyamic acid solution a.
  • the polyimide film 29 had a total light transmittance of 74% and a haze of 56%.
  • Example 36 A polyimide film 30 was prepared in the same manner as in Example 34 except that the polyamic acid solution g was used instead of the polyamic acid solution a.
  • the total light transmittance in the polyimide film 30 was 74%, and the haze was 55%.
  • a polyimide film 31 was prepared in the same manner as in Example 34 except that the polyamic acid solution q was used instead of the polyamic acid solution a.
  • the total light transmittance of the polyimide film 31 was 77%, and the haze was 50%.
  • Example 37 A polyimide film 32 was prepared in the same manner as in Example 24 except that the polyamic acid solution k was used.
  • the polyimide film 32 had a dielectric constant of 3.40 and a dielectric loss tangent of 0.0032.
  • Example 38 A polyimide film 34 was prepared in the same manner as in Example 24 except that the polyamic acid solution m was used.
  • the polyimide film 34 had a dielectric constant of 3.52 and a dielectric loss tangent of 0.0037.
  • Comparative Example 7 A polyimide film 35 was prepared in the same manner as in Example 24 except that the polyamic acid solution q was used.
  • the polyimide film 35 had a dielectric constant of 3.16 and a dielectric loss tangent of 0.0057.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

全ジアミン成分の100モル部に対して、一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種を合計で3~60モル部の範囲内で含有し、全酸無水物成分の100モル部に対して、ビフェニルテトラカルボン酸二無水物を40~100モル部の範囲内、ピロメリット酸二無水物を0~60モル部の範囲内で含有するポリアミド酸及びこれを硬化させた熱可塑性ポリイミド。[式(8)において、連結基Xは単結合、又は-CONH-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]

Description

ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板
 本発明は、フレキシブルプリント配線板等の回路基板において接着層として有用なポリイミド及びその利用に関する。
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、携帯電話等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。
 高密度化に伴い、FPCにおける配線の狭ピッチ化が進んでおり、微細加工が必要である。ここで、配線材料として一般的な銅箔は、その表面粗度が小さいものを使用しないと、微細な配線加工が困難である。また、銅箔の表面粗度が大きいと、その表面粗さが絶縁層側に転写されてしまうため、銅箔をエッチング除去した領域では、絶縁層の表面が光を乱反射してしまい、絶縁層を透過して銅パターンが認識できないといった問題もある。
 また、機器の高性能化が進んだことから、伝送信号の高周波化への対応も必要とされている。情報処理や情報通信においては、大容量情報の伝送・処理するために伝送周波数を高くする取り組みが行われており、回路基板材料には、絶縁層の薄化とともに、絶縁層の低誘電率化、低誘電正接化による伝送損失の低下が求められている。従来のポリイミドを用いたFPCでは、誘電率や誘電正接が高く、高周波域では伝送損失が高いため、高周波伝送への適応が難しい。そこで、高周波化に対応するために、低誘電率、低誘電正接を特徴とした液晶ポリマーを誘電体層としたFPCが用いられている。しかしながら、液晶ポリマーは、誘電特性に優れているものの、耐熱性や金属箔との接着性に改善の余地がある。
 誘電特性の改善及び金属箔との接着性の改善を目的として、導体回路を形成する銅箔に接するポリイミド層のイミド基濃度を制御した銅張積層板が提案されている(特許文献1)。特許文献1によると、銅箔の表面粗度Rzと銅箔に接する面の低イミド基濃度のポリイミド層の組み合わせによって、誘電特性を制御できるとしているものの、長期耐熱接着性については十分に満足できるものではなかった。
 低粗度化された銅箔と絶縁層との接着性を改善するため、絶縁層と接する銅箔の表面に所定の金属を析出させた銅箔が提案されている(特許文献2)。特許文献2によると、ニッケル、亜鉛及びコバルトの析出量を制御することによって、初期接着力の確保と耐熱試験後の接着力の低下を抑え得るとされている。しかし、特許文献2の銅箔は、絶縁層が非熱可塑性ポリイミド樹脂であることからラミネート法による銅箔の接着が難しく、製造方法や製造条件が限られてしまうものであった。
特許第5031639号公報 特許第4652020号公報
 FPCの高密度実装において、配線の微細加工への対応を図るとともに、銅箔をエッチング除去した領域における絶縁層表面の光の乱反射を抑制するために、表面粗度が小さい銅箔を使用することが有効である。また、信号配線に高周波信号が供給されている状態では、その信号配線の表面にしか電流が流れず、電流が流れる有効断面積が少なくなって直流抵抗が大きくなり、信号が減衰するという現象(表皮効果)が知られている。銅箔のポリイミド絶縁層に接する面の表面粗度を下げることで、この表皮効果による信号配線の抵抗増大を抑制できる。しかし、表面粗度を下げた低粗度銅箔を用いると、ポリイミド絶縁層と銅箔との接着性が損なわれるという問題があった。
 本発明は、銅箔などの金属層に対し、優れた接着性および長期耐熱接着性を備えるとともに、誘電正接を小さくすることにより、伝送損失の低減が可能で、高周波用回路基板に好適に使用することができるポリイミド接着層を有する金属張積層板及び回路基板を提供することを目的とする。
 上述した課題を解決するため、本発明者らは、特定の構造を有するポリイミドを接着層として用いることにより、低粗度銅箔に対しても優れた接着性および長期耐熱接着性を有するとともに、低誘電正接化が可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリアミド酸は、ジアミン成分と、無水物成分と、を反応させて得られるポリアミド酸であって、
 前記ジアミン成分が、全ジアミン成分の100モル部に対して、下記の一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種を合計で40~97モル部の範囲内、下記の一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種を合計で3~60モル部の範囲内で含有し、
 前記酸無水物成分が、全酸無水物成分の100モル部に対して、ビフェニルテトラカルボン酸二無水物を40~100モル部の範囲内、ピロメリット酸二無水物を0~60モル部の範囲内で含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000005
[式(1)~(7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-又は-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(3)中から式(2)と重複するものは除き、式(5)中から式(4)と重複するものは除くものとする。]
Figure JPOXMLDOC01-appb-C000006
[式(8)において、連結基Xは単結合又は-CONH-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
 本発明の熱可塑性ポリイミドは、ジアミン成分から誘導されるジアミン残基及び酸無水物成分から誘導されるテトラカルボン酸残基を含有する熱可塑性ポリイミドであって、
 全ジアミン残基の100モル部に対して、上記一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種から誘導されるジアミン残基を合計で40~97モル部の範囲内、上記一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種のジアミン残基を合計で3~60モル部の範囲内で含有し、
 全テトラカルボン酸残基の100モル部に対して、ビフェニルテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基を40~100モル部の範囲内、ピロメリット酸二無水物から誘導されるテトラカルボン酸残基を0~60モル部の範囲内で含有することを特徴とする。
 本発明の樹脂フィルムは、単層又は複数層のポリイミド層を有する樹脂フィルムであって、
 前記ポリイミド層の少なくとも1層が、上記熱可塑性ポリイミドからなることを特徴とする。
 本発明の金属張積層板は、絶縁樹脂層と金属層とを備えた金属張積層板であって、
 前記絶縁樹脂層が、単層又は複数層のポリイミド層を有し、
 前記金属層に接するポリイミド層が上記熱可塑ポリイミドからなることを特徴とする。
 本発明の金属張積層板は、前記絶縁樹脂層に接する面の前記金属層の十点平均粗さ(Rz)が0.05~1.0μmの範囲内であってもよい。
 本発明の回路基板は、上記金属張積層板の前記金属層を配線に加工してなるものである。
 本発明の熱可塑性ポリイミドは、接着性に優れており、例えば低粗度銅箔に対しても高い接着力を有する。しかも本発明の熱可塑性ポリイミドは、熱可塑性でありながら、モノマーに由来する剛直構造によって、ポリマー全体に秩序構造が形成されるため、低誘電正接化が可能になるとともに、ガス透過性が低く、優れた長期耐熱接着性を発揮できるものである。従って、本発明の熱可塑性ポリイミドを用いて形成した接着層を有する樹脂フィルムは、金属配線層との接着性に優れている。
 更に、本発明の熱可塑性ポリイミドによって熱可塑性ポリイミド層を形成することで、低誘電正接化が可能となる。そのため、本発明の熱可塑性ポリイミドは、高密度実装や高速信号伝送と高信頼性を必要とするFPC等の電子部品を製造するための材料として好適に用いることが出来る。また、本発明の熱可塑性ポリイミドを用いた金属張積層板は、例えば、10GHz以上という高周波信号を伝送するFPCなどの回路基板等への適用も可能となる。
 以下、本発明の実施の形態について説明する。
[ポリアミド酸及び熱可塑性ポリイミド]
<ポリアミド酸>
 本実施の形態のポリアミド酸は、本実施の形態の熱可塑性ポリイミドの前駆体であり、特定のジアミン成分と酸無水物成分とを反応させて得られる。
<熱可塑性ポリイミド>
 本実施の形態の熱可塑性ポリイミドは、上記ポリアミド酸をイミド化してなるものであり、特定の酸無水物とジアミンとを反応させて製造されるので、酸無水物とジアミンを説明することにより、本実施の形態の熱可塑性ポリイミドの具体例が理解される。
(ジアミン成分)
 本実施の形態のポリアミド酸の原料のジアミン成分としては、全ジアミン成分の100モル部に対して、下記の一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種を合計で40~97モル部の範囲内で含有するとともに、下記の一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種を合計で3~60モル部の範囲内で含有する。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)~(7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-又は-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(3)中から式(2)と重複するものは除き、式(5)中から式(4)と重複するものは除くものとする。ここで、「独立に」とは、上記式(1)~(7)の内の一つにおいて、または二つ以上において、複数の連結基A、複数のR若しくは複数のnが、同一でもよいし、異なっていてもよいことを意味する。
Figure JPOXMLDOC01-appb-C000008
 上記式(8)において、連結基Xは単結合、又は-CONH-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。
 なお、上記式(1)~(8)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。
 一般式(1)~(7)で表されるジアミン化合物を上記範囲内の量で使用することによって、ポリイミド分子鎖の柔軟性を向上させ、熱可塑性を付与することができる。一般式(1)~(7)で表されるジアミン化合物の合計量が全ジアミン成分の100モル部に対して40モル部未満であるとポリイミド樹脂の柔軟性不足で十分な熱可塑性が得られず、97モル部を超えると、ガス透過性が高くなって長期耐熱性が低下する。一般式(1)~(7)で表されるジアミン化合物の合計量は、全ジアミン成分の100モル部に対して、60~95モル部の範囲内とすることが好ましい。
 また、一般式(8)で表されるジアミン化合物を上記範囲内の量で使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されるので、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。一般式(8)で表されるジアミン化合物の合計量が、全ジアミン成分の100モル部に対して3モル部未満であると秩序構造の形成が困難となって上記作用効果が発揮されず、60モル部を超えると、熱可塑性が損なわれる。一般式(8)で表されるジアミン化合物の合計量は、全ジアミン成分の100モル部に対して、5~40モル部の範囲内とすることが好ましい。
 従って、本実施の形態の熱可塑性ポリイミドは、ジアミン成分から誘導されるジアミン残基及び酸無水物成分から誘導されるテトラカルボン酸残基を含有するものである。
 そして、本実施の形態の熱可塑性ポリイミドは、全ジアミン残基の100モル部に対して、上記一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種から誘導されるジアミン残基を合計で40~97モル部の範囲内、上記一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種のジアミン残基を合計で3~60モル部の範囲内で含有する。
 また、本実施の形態の熱可塑性ポリイミドは、全テトラカルボン酸残基の100モル部に対して、ビフェニルテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基を40~100モル部の範囲内、ピロメリット酸二無水物から誘導されるテトラカルボン酸残基を0~60モル部の範囲内で含有する。
 式(1)で表されるジアミン(以下、「ジアミン(1)」と記すことがある)は、2つのベンゼン環を有する芳香族ジアミンである。このジアミン(1)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(1)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-CO-、-SO-、-S-が好ましい。
 ジアミン(1)としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン等を挙げることができる。
 式(2)で表されるジアミン(以下、「ジアミン(2)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(2)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(2)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
 ジアミン(2)としては、例えば1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン等を挙げることができる。
 式(3)で表されるジアミン(以下、「ジアミン(3)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(3)は、1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(3)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
 式(3)で表されるジアミンとしては、例えば1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン等を挙げることができる。
 式(4)で表されるジアミン(以下、「ジアミン(4)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(4)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(4)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-SO-、-CO-、-CONH-が好ましい。
 式(4)で表されるジアミンとしては、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド等を挙げることができる。
 式(5)で表されるジアミン(以下、「ジアミン(5)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(5)は、少なくとも1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(5)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
 ジアミン(5)としては、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン等を挙げることができる。
 式(6)で表されるジアミン(以下、「ジアミン(6)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(6)は、少なくとも2つのエーテル結合を有することで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(6)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-C(CH-、-O-、-SO-、-CO-が好ましい。
 式(6)で表されるジアミンとしては、例えば、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)等を挙げることができる。
 式(7)で表されるジアミン(以下、「ジアミン(7)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(7)は、ジフェニル骨格の両側に、それぞれ屈曲性の高い2価の連結基Aを有するため、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(7)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。
 式(7)で表されるジアミンとしては、例えば、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル等を挙げることができる。
 一般式(8)で表されるジアミン(以下、「ジアミン(8)」と記すことがある)は、1ないし3つのベンゼン環を有する芳香族ジアミンである。ジアミン(8)は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。そのため、ジアミン(1)~ジアミン(7)の1種以上と、ジアミン(8)の1種以上とを所定の比率で組み合わせて用いることによって、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。ここで、連結基Xとしては、単結合、-CONH-が好ましい。
 ジアミン(8)としては、例えば、パラフェニレンジアミン(PDA)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、2’-メトキシ-4,4’-ジアミノベンズアニリド(MABA)、4,4‘-ジアミノベンズアニリド(DABA)等を挙げることができる。
(酸無水物)
 本実施の形態のポリアミド酸の原料の酸無水物成分としては、全酸無水物成分の100モル部に対して、ビフェニルテトラカルボン酸二無水物を40~100モル部の範囲内、好ましくは50~100モル部の範囲内、ピロメリット酸二無水物を0~60モル部の範囲内、好ましくは0~50モル部の範囲内、で含有する。ここで、ビフェニルテトラカルボン酸二無水物としては、例えば3,3',4,4’-ビフェニルテトラカルボン酸二無水物、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物などを挙げることができる。ビフェニルテトラカルボン酸二無水物を上記範囲内で使用することによって、剛直構造による秩序構造が形成されるので、低誘電正接化が可能になるとともに、熱可塑性でありながら、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。ビフェニルテトラカルボン酸二無水物が40モル部未満であると、秩序構造の形成が困難となって上記作用効果が発揮されない。なお、ピロメリット酸二無水物は、任意成分であるが、ガラス転移温度の制御の役割を担うモノマーである。
 本実施の形態において、上記以外のその他の酸無水物を含むこともできる。その他の酸無水物としては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物等が挙げられる。
 本実施の形態の熱可塑性ポリイミドにおいて、上記酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移温度(Tg)等を制御することができる。
 本実施の形態に係る熱可塑性ポリイミドは、上記ジアミン成分と酸無水物成分とを溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスホキシド(DMSO)、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの有機溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。
 合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸の溶液の粘度は、500cP~100,000cpsの範囲内であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。
 本実施の形態の熱可塑性ポリイミドは、例えば回路基板の絶縁樹脂における接着層として使用する場合には、銅の拡散を抑制するために完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がポリアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm-1付近のベンゼン環吸収体を基準とし、1780cm-1のイミド基に由来するC=O伸縮の吸光度から算出される。
 本実施の形態の熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。
[樹脂フィルム]
 本実施の形態の樹脂フィルムは、本実施の形態の熱可塑性ポリイミドから形成されるポリイミド層を含む絶縁樹脂のフィルムであれば特に限定されるものではなく、絶縁樹脂からなるフィルム(シート)であってもよく、銅箔、ガラス板、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルムなどの樹脂シート等の基材に積層された状態の絶縁樹脂のフィルムであってもよい。また、本実施の形態の樹脂フィルムの厚みは、好ましくは3~100μmの範囲内、より好ましくは3~75μmの範囲とすることができる。
 本実施の形態の熱可塑性ポリイミドは、高膨張性であるため、例えば金属層や他の樹脂層などの基材との接着層としての適用が好適である。このような接着性ポリイミド層として好適に用いるために、本実施の形態の熱可塑性ポリイミドは、ガラス転移温度(Tg)が、例えば360℃以下であるものが好ましく、200~320℃の範囲内にあるものがより好ましい。
 本実施の形態の熱可塑性ポリイミドを接着層として適用する場合、例えば熱膨張係数(CTE)が30×10-6(1/K)以下、好ましくは10×10-6~30×10-6(1/K)の範囲内にある低熱膨張性のポリイミド層をベースフィルム層に適用するとよい。低熱膨張性ポリイミドの中で、好適に利用できるポリイミドは、非熱可塑性のポリイミドである。低熱膨張性のベースフィルム層の厚みは、好ましくは5~50μmの範囲内、より好ましくは10~35μmの範囲とすることができる。
 本実施の形態の熱可塑性ポリイミドは、例えば回路基板の接着層として適用する場合において、10GHzにおける誘電正接(Tanδ)は、0.004以下がよい。10GHzにおける誘電正接が0.004を超えると、FPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。なお、10GHzにおける誘電正接の下限値は特に制限されない。
 本実施の形態の熱可塑性ポリイミドは、例えば回路基板の接着層として適用する場合において、インピーダンス整合性を確保するために、10GHzにおける誘電率が4.0以下であることが好ましい。10GHzにおける誘電率が4.0を超えると、FPC等の回路基板に使用した際に、誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
 本実施の形態の樹脂フィルムとしてのポリイミドフィルムの形成方法については特に限定されないが、例えば、[1]支持基材に、ポリアミド酸の溶液を塗布・乾燥した後、イミド化してポリイミドフィルムを製造する方法(以下、キャスト法)、[2]支持基材に、ポリアミド酸の溶液を塗布・乾燥した後、ポリアミド酸のゲルフィルムを支持基材から剥がし、イミド化してポリイミドフィルムを製造する方法などが挙げられる。また、本実施の形態で製造されるポリイミドフィルムが、複数層のポリイミド樹脂層からなる場合、その製造方法の態様としては、例えば、[3]支持基材に、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返した後、イミド化を行う方法(以下、逐次塗工法)、[4]支持基材に、多層押出により、同時にポリアミド酸の積層構造体を塗布・乾燥した後、イミド化を行う方法(以下、多層押出法)などが挙げられる。ポリイミド溶液(又はポリアミド酸溶液)を基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。多層のポリイミド層の形成に際しては、ポリイミド溶液(又はポリアミド酸溶液)を基材に塗布、乾燥する操作を繰り返す方法が好ましい。
 本実施の形態の樹脂フィルムは、単層又は複数層のポリイミド層を含むことができる。この場合、ポリイミド層の少なくとも1層(好ましくは接着層)が、本実施の形態の熱可塑性ポリイミドを用いて形成されていればよい。例えば、非熱可塑性ポリイミド層をP1、熱可塑性ポリイミド層をP2とすると、樹脂フィルムを2層とする場合にはP2/P1の組み合わせで積層することが好ましく、樹脂フィルムを3層とする場合にはP2/P1/P2の順、又は、P2/P1/P1の順に積層することが好ましい。ここで、P1が非熱可塑性ポリイミドを用いて形成されたベースフィルム層、P2が本実施の形態の熱可塑性ポリイミドによって形成された接着層である。
 本実施の形態の樹脂フィルムは、必要に応じて、ポリイミド層中に無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
[金属張積層板]
 本実施の形態の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも片側の面に積層された金属層と、を有する。金属張積層板の好ましい具体例としては、例えば銅張積層板(CCL)などを挙げることができる。
<絶縁樹脂層>
 本実施の形態の金属張積層板において、絶縁樹脂層は、単層又は複数層のポリイミド層を有する。この場合、ポリイミド層の少なくとも1層(好ましくは接着層)が、本実施の形態の熱可塑性ポリイミドを用いて形成されていればよい。好ましくは、絶縁樹脂層と金属層との接着性を高めるため、絶縁樹脂層における金属層に接する層が、本実施の形態の熱可塑性ポリイミドによって形成された接着層であることがよい。例えば、絶縁樹脂層を2層とする場合において、非熱可塑性ポリイミド層をP1、熱可塑性ポリイミド層をP2、金属層をM1とすると、P1/P2/M1の順に積層することが好ましい。ここで、P1が任意の非熱可塑性ポリイミドを用いて形成されたベースフィルム層、P2が本実施の形態の熱可塑性ポリイミドによって構成された接着層である。
<金属層>
 本実施の形態の金属張積層板における金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。なお、後述する本実施の形態の回路基板における配線層の材質も金属層と同様である。
 信号配線に高周波信号が供給されている状態では、その信号配線の表面にしか電流が流れず、電流が流れる有効断面積が少なくなって直流抵抗が大きくなり信号が減衰する問題(表皮効果)がある。銅箔などの金属層の絶縁樹脂層に接する面の表面粗度を下げることで、この表皮効果による信号配線の抵抗増大を抑制できる。しかし、抵抗の増大を抑制するために表面粗度を下げると、金属層と誘電体基板との接着力(剥離強度)が弱くなる。そこで、抵抗の増大を抑制することが可能であり、絶縁樹脂層との接着性を確保しつつ金属張積層板の視認性を向上させるという観点から、金属層の絶縁樹脂層に接する面の表面粗度は、十点平均粗さRzが0.05~1.0μmの範囲内であることが好ましく、かつ、算術平均粗さRaが0.2μm以下であることが好ましい。
 金属張積層板は、例えば本実施の形態の熱可塑性ポリイミドを含んで構成される樹脂フィルムを用意し、これに金属をスパッタリングしてシード層を形成した後、例えばメッキによって金属層を形成することによって調製してもよい。
 また、金属張積層板は、本実施の形態の熱可塑性ポリイミドを含んで構成される樹脂フィルムを用意し、これに金属箔を熱圧着などの方法でラミネートすることによって調製してもよい。
 さらに、金属張積層板は、金属箔の上に本実施の形態の熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する塗布液をキャストし、乾燥して塗布膜とした後、熱処理してイミド化し、ポリイミド層を形成することによって調製してもよい。
[回路基板]
 本実施の形態の回路基板は、絶縁樹脂層と、絶縁樹脂層上に形成された配線層と、を有する。本実施の形態の回路基板において、絶縁樹脂層は、単層又は複数層のポリイミド層を有することができる。この場合、回路基板に優れた高周波伝送特性を付与するためには、ポリイミド層の少なくとも1層(好ましくは接着層)が、本実施の形態の熱可塑性ポリイミドを用いて形成されていればよい。また、絶縁樹脂層と配線層との接着性を高めるため、絶縁樹脂層における配線層に接する層が、本実施の形態の熱可塑性ポリイミドを用いて形成された接着層であることが好ましい。例えば、絶縁樹脂層を2層とする場合において、非熱可塑性ポリイミド層をP1、熱可塑性ポリイミド層をP2、配線層をM2とすると、P1/P2/M2の順に積層することが好ましい。ここで、P1が任意の非熱可塑性ポリイミドを用いて形成されたベースフィルム層、P2が本実施の形態の熱可塑性ポリイミドによって形成された接着層である。
 本実施の形態の熱可塑性ポリイミドを使用する以外、回路基板を作製する方法は問われない。例えば、本実施の形態の熱可塑性ポリイミドを含む絶縁樹脂層と金属層で構成される金属張積層板を用意し、金属層をエッチングして配線を形成するサブトラクティブ法でもよい。また、本実施の形態の熱可塑性ポリイミドによる層の上にシード層を形成した後、レジストをパターン形成し、さらに金属をパターンメッキすることにより配線形成を行うセミアディティブ法でもよい。
<作用>
 本実施の形態でモノマーとして用いるジアミン(1)~ジアミン(7)は、いずれも高い屈曲性を有しており、ポリイミド分子鎖の柔軟性を向上させ、高い熱可塑性を付与することができる。また、ジアミン(8)は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。このような秩序構造が形成されると、誘電正接を抑制できるともに、金属配線層との間の長期耐熱接着性低下の要因となる酸素などのガスの透過が抑制される。そのため、ジアミン(1)~ジアミン(7)の1種以上と、ジアミン(8)の1種以上とを所定の比率で組み合わせて用いることによって、熱可塑性樹脂でありながら、低誘電正接化が可能になるとともに、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。このように、熱可塑性で高い接着性を有しながら、秩序構造による低いガス透過性によって優れた長期耐熱接着性を奏するポリイミドは、本発明によって初めて実現されたものである。なお、ポリイミドの秩序構造の形成の程度は、後記実施例で示すように、フィルム化した状態での全光線透過率及びヘーズの変化から推定することができる。
 以上のように、本実施の形態のポリイミドは、熱可塑性であるため、低粗度銅箔に対しても優れた接着性を有している。また、本実施の形態のポリイミドは、熱可塑性でありながら、モノマーに由来する剛直構造によって、ポリマー全体に秩序構造が形成されるため、低誘電正接化が可能になるとともに、ガス透過性を低減させ、優れた長期耐熱接着性を備えている。従って、本実施の形態の熱可塑性ポリイミドを用いて形成した接着層を有する樹脂フィルムは、金属配線層との接着性に優れており、高密度実装や高信頼性を必要とするFPC等の電子部品を製造するための材料として好適に用いることが出来る。
 以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。
[粘度の測定]
 粘度の測定は、E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。トルクが10%~90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[重量平均分子量の測定]
 重量平均分子量は、ゲル浸透クロマトグラフィー(東ソー株式会社製、商品名;HLC-8220GPC)により測定した。標準物質としてポリスチレンを用い、展開溶媒にはN,N-ジメチルアセトアミドを用いた。
[銅箔の表面粗度の測定]
 銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名:Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名:TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m )を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲について測定し、十点平均粗さ(Rz)を求めた。
[ピール強度の測定]
1)片面銅張積層板のキャスト側(樹脂塗工側)
 片面銅張積層板(銅箔/樹脂層)の銅箔を幅1.0mm、間隔5.0mmのライン&スペースに回路加工した後、幅;8cm×長さ;4cmに切断し、測定サンプル1を調製した。
 測定サンプル1のキャスト側のピール強度を以下の方法で測定した。
 テンシロンテスター(東洋精機製作所製、商品名;ストログラフVE-1D)を用いて、測定サンプル1の樹脂層側を両面テープによりアルミ板に固定し、銅箔を90°方向に50mm/分の速度で剥離していき、銅箔が樹脂層から10mm剥離したときの中央強度を求めた。この値を「ピール強度1A」とする。
2)両面銅張積層板のキャスト側(樹脂塗工側)
 両面銅張積層板(銅箔/樹脂層/銅箔)の熱圧着側とキャスト側の両面の銅箔を、それぞれ幅0.8mm、間隔3.0mmのライン&スペースに回路加工した。ここで、両面の銅箔の回路加工は、ラインとスペースの位置が表裏両面で重なるように行った。このように回路加工した後のサンプルを、幅;8cm×長さ;4cmに切断し、測定サンプル2を調製した。
 測定サンプル2のキャスト側のピール強度を次の方法で測定した。
 テンシロンテスター(東洋精機製作所製、商品名;ストログラフVE-1D)を用いて、測定サンプル2の熱圧着側の銅箔面を両面テープによりアルミ板に固定し、銅箔を90°方向に50mm/分の速度で剥離していき、樹脂塗工側の銅箔が樹脂層から10mm剥離したときの中央値強度を求めた。この値を「ピール強度2A」とする。
[耐熱ピール強度の測定]
1)片面銅張積層板のキャスト側(樹脂塗工側)
 上記のように調製した測定サンプル1を150℃の大気オーブンに投入し、1000時間静置した。1000時間の熱処理後の測定サンプル1の樹脂層側を両面テープによりアルミ板に固定し、銅箔を90°方向に50mm/分の速度で剥離していき、銅箔を樹脂層から10mm剥離したときの中央強度を求めた。この値を「ピール強度1B」とする。ピール強度1Bをピール強度1Aで除した値(つまり、ピール強度1B/ピール強度1A)の百分率(%)を「保持率1」とする。
<判定基準>
「優」:ピール強度1Bが0.30kN/m以上、保持率1が80%以上であること。
「良」:ピール強度1Bが0.30kN/m以上、保持率1が60%以上であること。
「可」:ピール強度1Bが0.30kN/m以上、保持率1が40%以上であること。
「不可」:ピール強度1Bが0.30kN/m未満であること。
2)両面銅張積層板のキャスト側(樹脂塗工側)
 上記のように調製した測定サンプル2を177℃の大気オーブンに投入し、240時間静置した。240時間の熱処理後の測定サンプル2の熱圧着側の銅箔面を両面テープによりアルミ板に固定し、銅箔を90°方向に50mm/分の速度で剥離していき、樹脂塗工側の銅箔と樹脂層から10mm剥離したときの中央値強度を求めた。この値を「ピール強度2B」とする。ピール強度2Bをピール強度1Bで除した値(つまり、ピール強度2B/ピール強度2A)の百分率(%)を「保持率2」とする。
<判定基準>
「優」:ピール強度2Bが0.50kN/m以上、保持率2が90%以上であること。
「良」:ピール強度2Bが0.50kN/m以上、保持率2が80%以上であること。
「可」:ピール強度2Bが0.50kN/m以上、保持率2が70%以上であること。
「不可」:ピール強度2Bが0.50kN/m未満であること、又は保持率2が70%未満であること。
[ガラス転移温度(Tg)の測定]
 5mm×20mmのサイズのポリイミドフィルムのサンプルについて、動的粘弾性測定装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、30℃から400℃まで昇温速度4℃/分、周波数11Hzで貯蔵弾性率及び損失弾性率の測定を行い、弾性率変化(tanδ)が最大となる温度をガラス転移温度とした。なお、30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa未満を示すものを「熱可塑性」とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、360℃における貯蔵弾性率が1.0×10Pa以上を示すものを「非熱可塑性」とした。
[視認性]
 ポリイミドフィルムを厚み約25μm、30mm×30mmに切断したサンプルについて、濁度計(日本電色工業社製、商品名:HAZE METER NDH5000)を用いて、JISK7136に準拠した全光線透過率及びヘーズ(濁度=拡散光線透過率/全光線透過率)を測定した。
[誘電率及び誘電正接の測定]
 ベクトルネットワークアナライザ(Agilent社製、商品名E8363C)ならびにスプリットポスト誘電体共振器(SPDR共振器)を用いて、周波数10GHzにおけるポリイミドフィルムの誘電率および誘電正接を測定した。なお、測定に使用したポリイミドフィルムは、温度;24~26℃、湿度;45~55%の条件下で、24時間放置したものである。
 実施例及び比較例に用いた略号は、以下の化合物を示す。
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
PDA :パラフェニレンジアミン
APAB:4-アミノフェニル-4’-アミノベンゾエート
MABA:2’-メトキシ-4,4’-ジアミノベンズアニリド
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
PMDA:ピロメリット酸二無水物
BPDA:3,3’、4,4’-ビフェニルテトラカルボン酸二無水物
DMAc:N,N-ジメチルアセトアミド
銅箔:Rz=0.35μm、厚み12μm
[実施例1]
 窒素気流下で、300mlのセパラブルフラスコに、0.5715gのm-TB(0.0027モル)、14.958gのTPE-R(0.0512モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、3.489gのPMDA(0.0160モル)及び10.982gのBPDA(0.0373モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液aを得た。ポリアミド酸溶液aの溶液粘度は6,700cps、重量平均分子量は163,400であった。
[実施例2~12]
 表1及び表2に示す原料組成とした他は、実施例1と同様にしてポリアミド酸溶液b~k及びmを調製し粘度を測定した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
合成例1
 窒素気流下で、300mlのセパラブルフラスコに、16.064gのTPE-R(0.0550モル)及び170gのDMAcを投入し、室温で撹拌して溶解させた。次に、5.933gのPMDA(0.0272モル)及び8.003gのBPDA(0.0272モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液nを得た。ポリアミド酸溶液nの溶液粘度は7,400cpsであった。
合成例2~6
 表3に示す原料組成とした他は、合成例1と同様にしてポリアミド酸溶液o~sを調製し粘度を測定した。
Figure JPOXMLDOC01-appb-T000011
[実施例13]
 銅箔上に、熱処理後の厚みが約2μmとなるようポリアミド酸溶液cを均一に塗布し、120℃で1分加熱乾燥して溶媒を除去した。その上に、熱処理後の厚みが約25μmとなるようポリアミド酸溶液sを均一に塗布し、120℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的に昇温させて、イミド化を行い、片面銅張積層板1を調製した。この片面銅張積層板1の評価結果を表4に示す。
[実施例14]
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液dを使用したこと以外は、実施例13と同様にして、片面銅張積層板2を調製した。この片面銅張積層板2の評価結果を表4に示す。
[実施例15]
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液jを使用したこと以外は、実施例13と同様にして、片面銅張積層板3を調製した。この片面銅張積層板3の評価結果を表4に示す。
比較例1
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液nを使用したこと以外は、実施例13と同様にして、片面銅張積層板4を調製した。この片面銅張積層板4の評価結果を表4に示す。
比較例2
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液oを使用したこと以外は、実施例13と同様にして、片面銅張積層板5を調製した。この片面銅張積層板5の評価結果を表4に示す。
比較例3
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液pを使用したこと以外は、実施例13と同様にして、片面銅張積層板6を調製した。この片面銅張積層板6の評価結果を表4に示す。
比較例4
 ポリアミド酸溶液cの代わりに、ポリアミド酸溶液qを使用したこと以外は、実施例13と同様にして、片面銅張積層板7を調製した。この片面銅張積層板7の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012
[実施例16]
 銅箔上に、ポリアミド酸溶液aを硬化後の厚みが約2μmとなるように均一に塗布した後、120℃で1分加熱乾燥して溶媒を除去した。その上にポリアミド酸溶液sを硬化後の厚みが、約18μmとなるように均一に塗布した後、120℃で3分加熱乾燥して溶媒を除去した。更に、その上にポリアミド酸溶液aを硬化後の厚みが約2μmとなるように均一に塗布した後、120℃で1分加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的な熱処理を行い、イミド化を完結して、片面銅張積層板8を調製した。この片面銅張積層板8のポリイミド絶縁層側に、銅箔を重ね合わせ、温度310℃、圧力6.7MPaの条件で15分間熱圧着して、両面銅張積層板8を調製した。この両面銅張積層板8の評価結果を表5に示す。
[実施例17]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液bを使用したこと以外は、実施例16と同様にして、片面銅張積層板9及び両面銅張積層板9を調製した。この両面銅張積層板9の評価結果を表5に示す。
[実施例18]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液cを使用したこと以外は、実施例16と同様にして、片面銅張積層板10及び両面銅張積層板10を調製した。この両面銅張積層板10の評価結果を表5に示す。
[実施例19]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液eを使用したこと以外は、実施例16と同様にして、片面銅張積層板11を調製した。また、片面銅張積層板11を使用し、温度330℃、圧力6.7MPaの条件で15分間熱圧着したこと以外は、実施例16と同様にして、両面銅張積層板11を調製した。この両面銅張積層板11の評価結果を表5に示す。
[実施例20]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液fを使用したこと以外は、実施例16と同様にして、片面銅張積層板12及び両面銅張積層板12を調製した。この両面銅張積層板12の評価結果を表5に示す。
[実施例21]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液gを使用したこと以外は、実施例16と同様にして、片面銅張積層板13及び両面銅張積層板13を調製した。この両面銅張積層板13の評価結果を表5に示す。
[実施例22]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液hを使用したこと以外は、実施例16と同様にして、片面銅張積層板14を調製した。また、片面銅張積層板14を使用し、温度330℃、圧力6.7MPaの条件で15分間熱圧着したこと以外は、実施例16と同様にして、両面銅張積層板14を調製した。この両面銅張積層板14の評価結果を表5に示す。
[実施例23]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液iを使用したこと以外は、実施例16と同様にして、片面銅張積層板15及び両面銅張積層板15を調製した。この両面銅張積層板15の評価結果を表5に示す。
比較例5
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液qを使用したこと以外は、実施例16と同様にして、片面銅張積層板16を調製した。また、片面銅張積層板16を使用し、温度390℃、圧力6.7MPaの条件で15分間熱圧着したこと以外は、実施例16と同様にして、両面銅張積層板16を調製した。この両面銅張積層板16の評価結果を表5に示す。
比較例6
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液rを使用したこと以外は、実施例16と同様にして、片面銅張積層板17を調製した。また、片面銅張積層板17を使用し、温度350℃、圧力6.7MPaの条件で15分間熱圧着したこと以外は、実施例16と同様にして、両面銅張積層板17を調製した。この両面銅張積層板17の熱圧着側の銅箔は手で容易に剥離でき、熱圧着側の銅箔の回路加工ができなかった。
Figure JPOXMLDOC01-appb-T000013
[実施例24]
 銅箔上に、ポリアミド酸溶液aを均一に塗布し、120℃で3分秒間加熱乾燥して溶媒を除去し、熱処理後の厚みが約25μmとなるようにした。その後、130℃から360℃まで段階的に昇温させて、イミド化を行い、片面銅張積層板18を調製した。この片面銅張積層板18の銅箔をエッチング除去することによって、ポリイミドフィルム18を調製した。このポリイミドフィルム18の評価結果を表6に示す。
[実施例25~33]
 ポリアミド酸溶液b~jを使用したこと以外は、実施例24と同様にして、ポリイミドフィルム19~27を調製した。ポリイミドフィルム19~27の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000014
[実施例34]
 銅箔上に、ポリアミド酸溶液aを硬化後の厚みが約2μmとなるように均一に塗布した後、120℃で1分加熱乾燥して溶媒を除去した。その上にポリアミド酸溶液sを硬化後の厚みが、約18μmとなるように均一に塗布した後、120℃で3分加熱乾燥して溶媒を除去した。更に、その上にポリアミド酸溶液aを硬化後の厚みが約2μmとなるように均一に塗布した後、120℃で1分加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的な熱処理を行い、イミド化を完結して、片面銅張積層板28を調製した。この片面銅張積層板28の銅箔をエッチング除去することによって、ポリイミドフィルム28を調製した。ポリイミドフィルム28における全光線透過率は73%、ヘーズは54%であった。
[実施例35]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液fを使用したこと以外は、実施例34と同様にして、ポリイミドフィルム29を調製した。ポリイミドフィルム29における全光線透過率は74%、ヘーズは56%であった。
[実施例36]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液gを使用したこと以外は、実施例34と同様にして、ポリイミドフィルム30を調製した。ポリイミドフィルム30における全光線透過率は74%、ヘーズは55%であった。
[参考例1]
 ポリアミド酸溶液aの代わりに、ポリアミド酸溶液qを使用したこと以外は、実施例34と同様にして、ポリイミドフィルム31を調製した。ポリイミドフィルム31における全光線透過率は77%、ヘーズは50%であった。
[実施例37]
 ポリアミド酸溶液kを使用したこと以外は、実施例24と同様にして、ポリイミドフィルム32を調製した。ポリイミドフィルム32における誘電率は3.40、誘電正接は0.0032であった。
[実施例38]
 ポリアミド酸溶液mを使用したこと以外は、実施例24と同様にして、ポリイミドフィルム34を調製した。ポリイミドフィルム34における誘電率は3.52、誘電正接は0.0037であった。
比較例7
 ポリアミド酸溶液qを使用したこと以外は、実施例24と同様にして、ポリイミドフィルム35を調製した。ポリイミドフィルム35における誘電率は3.16、誘電正接は0.0057であった。
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。
 本国際出願は、2016年3月17日に出願された日本国特許出願2016-54299号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。
 

 

Claims (6)

  1.  ジアミン成分と、無水物成分と、を反応させて得られるポリアミド酸であって、
     前記ジアミン成分が、全ジアミン成分の100モル部に対して、下記の一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種を合計で40~97モル部の範囲内、下記の一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種を合計で3~60モル部の範囲内で含有し、
     前記酸無水物成分が、全酸無水物成分の100モル部に対して、ビフェニルテトラカルボン酸二無水物を40~100モル部の範囲内、ピロメリット酸二無水物を0~60モル部の範囲内で含有することを特徴とするポリアミド酸。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)~(7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-又は-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(3)中から式(2)と重複するものは除き、式(5)中から式(4)と重複するものは除くものとする。]
    Figure JPOXMLDOC01-appb-C000002
    [式(8)において、連結基Xは単結合、又は-CONH-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
  2.  ジアミン成分から誘導されるジアミン残基及び酸無水物成分から誘導されるテトラカルボン酸残基を含有する熱可塑性ポリイミドであって、
     全ジアミン残基の100モル部に対して、下記の一般式(1)~(7)で表されるジアミン化合物から選ばれる少なくとも1種から誘導されるジアミン残基を合計で40~97モル部の範囲内、下記の一般式(8)で表されるジアミン化合物から選ばれる少なくとも1種のジアミン残基を合計で3~60モル部の範囲内で含有し、
     全テトラカルボン酸残基の100モル部に対して、ビフェニルテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基を40~100モル部の範囲内、ピロメリット酸二無水物から誘導されるテトラカルボン酸残基を0~60モル部の範囲内で含有することを特徴とする熱可塑性ポリイミド。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)~(7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-又は-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(3)中から式(2)と重複するものは除き、式(5)中から式(4)と重複するものは除くものとする。]
    Figure JPOXMLDOC01-appb-C000004
    [式(8)において、連結基Xは単結合、又は-CONH-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基又はアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
  3.  単層又は複数層のポリイミド層を有する樹脂フィルムであって、
     前記ポリイミド層の少なくとも1層が、請求項2に記載の熱可塑性ポリイミドからなることを特徴とする樹脂フィルム。
  4.  絶縁樹脂層と金属層とを備えた金属張積層板であって、
     前記絶縁樹脂層が、単層又は複数層のポリイミド層を有し、
     前記金属層に接するポリイミド層が請求項2に記載の熱可塑ポリイミドからなることを特徴とする金属張積層板。
  5.  前記絶縁樹脂層に接する面の前記金属層の十点平均粗さ(Rz)が0.05~1.0μmの範囲内である請求項4に記載の金属張積層板。
  6.  請求項4に記載の金属張積層板の前記金属層を配線に加工してなる回路基板。

     
PCT/JP2017/006884 2016-03-17 2017-02-23 ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板 WO2017159274A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780014592.4A CN108699243B (zh) 2016-03-17 2017-02-23 聚酰胺酸、热塑性聚酰亚胺、树脂膜、层叠板及电路基板
KR1020187025946A KR102374975B1 (ko) 2016-03-17 2017-02-23 폴리아미드산, 열가소성 폴리이미드, 수지 필름, 금속장 적층판 및 회로 기판
JP2018505394A JP6908590B2 (ja) 2016-03-17 2017-02-23 ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板
US16/085,596 US10844175B2 (en) 2016-03-17 2017-02-23 Polyamide acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016054299 2016-03-17
JP2016-054299 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159274A1 true WO2017159274A1 (ja) 2017-09-21

Family

ID=59851128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006884 WO2017159274A1 (ja) 2016-03-17 2017-02-23 ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板

Country Status (6)

Country Link
US (1) US10844175B2 (ja)
JP (1) JP6908590B2 (ja)
KR (1) KR102374975B1 (ja)
CN (1) CN108699243B (ja)
TW (1) TWI721133B (ja)
WO (1) WO2017159274A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575283A (zh) * 2017-09-29 2019-04-05 日铁化学材料株式会社 聚酰亚胺膜、覆金属层叠板及电路基板
CN112601656A (zh) * 2018-09-28 2021-04-02 日铁化学材料株式会社 覆金属层叠板的制造方法及电路基板的制造方法
KR20210038331A (ko) 2019-09-28 2021-04-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 필름, 금속 피복 적층판 및 회로 기판
KR20220134475A (ko) 2021-03-26 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 회로기판

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722309B (zh) * 2018-01-08 2021-03-21 亞洲電材股份有限公司 高頻高傳輸雙面銅箔基板、用於軟性印刷電路板之複合材料及其製法
CN110871606B (zh) * 2018-09-03 2023-05-16 日铁化学材料株式会社 覆金属层叠板、粘接片、粘接性聚酰亚胺树脂组合物及电路基板
JP7405644B2 (ja) * 2019-03-27 2023-12-26 日鉄ケミカル&マテリアル株式会社 金属張積層板及び回路基板
KR102272716B1 (ko) * 2019-04-12 2021-07-05 피아이첨단소재 주식회사 치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 제조방법
CN112048240B (zh) * 2019-06-06 2022-03-01 达迈科技股份有限公司 底漆组成物、金属积层板及其制法
KR20220002628A (ko) * 2019-06-27 2022-01-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 수지필름, 금속박적층체 및 그 제조방법
CN112646222B (zh) * 2020-12-23 2022-02-11 无锡顺铉新材料有限公司 一种可热压合的高硬度聚酰亚胺薄膜及其制备方法
KR20230000671A (ko) * 2021-06-25 2023-01-03 피아이첨단소재 주식회사 반투명 저유전 폴리이미드 필름 및 그 제조방법
CN114806396A (zh) * 2022-05-17 2022-07-29 住井科技(深圳)有限公司 使聚酰亚胺清漆兼具耐电涌性和耐湿热性的方法、聚酰亚胺清漆和绝缘电线

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208690A (ja) * 1985-10-31 1987-09-12 三井東圧化学株式会社 フレキシブルプリント回路基板及びその製法
JPH04334089A (ja) * 1991-05-09 1992-11-20 Sumitomo Bakelite Co Ltd フレキシブル印刷回路板の製造方法
JPH05105755A (ja) * 1991-10-15 1993-04-27 Sumitomo Bakelite Co Ltd ポリイソイミドおよびそのフイルム
JPH0729670A (ja) * 1993-07-12 1995-01-31 Mitsui Toatsu Chem Inc 面状発熱体およびその製造方法
JPH07125134A (ja) * 1993-10-29 1995-05-16 Mitsui Toatsu Chem Inc ポリイミドフィルム・金属箔積層体およびその製造方法
JPH07300526A (ja) * 1993-12-21 1995-11-14 Mitsui Toatsu Chem Inc ポリイミド
JP2000119419A (ja) * 1998-10-16 2000-04-25 Du Pont Toray Co Ltd 共重合ポリイミドフィルム、その製造方法およびこれを基材とした金属配線回路板
JP2006248142A (ja) * 2005-03-14 2006-09-21 Amt Kenkyusho:Kk 積層体
JP2006278371A (ja) * 2005-03-28 2006-10-12 Nippon Steel Chem Co Ltd ポリイミド−金属層積層体の製造方法及びこの方法によって得たポリイミド−金属層積層体
JP2007203505A (ja) * 2006-01-31 2007-08-16 Nippon Steel Chem Co Ltd 両面金属張積層板の製造方法
JP2010125793A (ja) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd 2層両面フレキシブル金属積層板及びその製造方法
JP2012076278A (ja) * 2010-09-30 2012-04-19 Nippon Kayaku Co Ltd 銅張積層板及びその製造方法、並びに該銅張積層板を含む配線基板
JP2015515402A (ja) * 2012-04-24 2015-05-28 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. フレキシブル金属張積層体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031639B1 (ja) 1969-06-04 1975-10-13
JPS61143434A (ja) * 1984-12-15 1986-07-01 Nitto Electric Ind Co Ltd 耐湿性ポリイミド
JP3809684B2 (ja) * 1997-01-24 2006-08-16 Jsr株式会社 液晶配向剤
US7892651B2 (en) * 2004-09-14 2011-02-22 Mitsubishi Gas Chemical Company, Inc. Resin composite metal foil, laminate and process for the production of printed wiring board using the laminate
JP4652020B2 (ja) 2004-11-16 2011-03-16 新日鐵化学株式会社 銅張り積層板
KR100958466B1 (ko) * 2005-04-25 2010-05-17 가부시키가이샤 가네카 신규한 폴리이미드 필름 및 그의 이용
JP4918025B2 (ja) * 2007-12-21 2012-04-18 マナック株式会社 エステル基含有テトラカルボン酸二無水物、ポリエステルポリイミド前駆体、ポリエステルイミドおよびこれらの製造方法
JP5031639B2 (ja) 2008-03-31 2012-09-19 新日鐵化学株式会社 フレキシブル銅張積層板
KR102038137B1 (ko) * 2012-12-21 2019-10-30 주식회사 넥스플렉스 다층 연성금속박 적층체 및 이의 제조방법
KR101761448B1 (ko) 2013-11-21 2017-07-25 주식회사 엘지화학 다층 폴리이미드 필름의 층 분리방법, 그 모노머 조성 분석방법 및 분석시스템

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208690A (ja) * 1985-10-31 1987-09-12 三井東圧化学株式会社 フレキシブルプリント回路基板及びその製法
JPH04334089A (ja) * 1991-05-09 1992-11-20 Sumitomo Bakelite Co Ltd フレキシブル印刷回路板の製造方法
JPH05105755A (ja) * 1991-10-15 1993-04-27 Sumitomo Bakelite Co Ltd ポリイソイミドおよびそのフイルム
JPH0729670A (ja) * 1993-07-12 1995-01-31 Mitsui Toatsu Chem Inc 面状発熱体およびその製造方法
JPH07125134A (ja) * 1993-10-29 1995-05-16 Mitsui Toatsu Chem Inc ポリイミドフィルム・金属箔積層体およびその製造方法
JPH07300526A (ja) * 1993-12-21 1995-11-14 Mitsui Toatsu Chem Inc ポリイミド
JP2000119419A (ja) * 1998-10-16 2000-04-25 Du Pont Toray Co Ltd 共重合ポリイミドフィルム、その製造方法およびこれを基材とした金属配線回路板
JP2006248142A (ja) * 2005-03-14 2006-09-21 Amt Kenkyusho:Kk 積層体
JP2006278371A (ja) * 2005-03-28 2006-10-12 Nippon Steel Chem Co Ltd ポリイミド−金属層積層体の製造方法及びこの方法によって得たポリイミド−金属層積層体
JP2007203505A (ja) * 2006-01-31 2007-08-16 Nippon Steel Chem Co Ltd 両面金属張積層板の製造方法
JP2010125793A (ja) * 2008-11-28 2010-06-10 Arisawa Mfg Co Ltd 2層両面フレキシブル金属積層板及びその製造方法
JP2012076278A (ja) * 2010-09-30 2012-04-19 Nippon Kayaku Co Ltd 銅張積層板及びその製造方法、並びに該銅張積層板を含む配線基板
JP2015515402A (ja) * 2012-04-24 2015-05-28 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. フレキシブル金属張積層体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575283A (zh) * 2017-09-29 2019-04-05 日铁化学材料株式会社 聚酰亚胺膜、覆金属层叠板及电路基板
CN109575283B (zh) * 2017-09-29 2022-08-09 日铁化学材料株式会社 聚酰亚胺膜、覆金属层叠板及电路基板
CN112601656A (zh) * 2018-09-28 2021-04-02 日铁化学材料株式会社 覆金属层叠板的制造方法及电路基板的制造方法
KR20210038331A (ko) 2019-09-28 2021-04-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 필름, 금속 피복 적층판 및 회로 기판
KR20210118024A (ko) 2019-09-28 2021-09-29 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 금속 피복 적층판 및 회로 기판
KR20230117670A (ko) 2019-09-28 2023-08-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 금속 피복 적층판 및 회로 기판
KR20220134475A (ko) 2021-03-26 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 회로기판

Also Published As

Publication number Publication date
TWI721133B (zh) 2021-03-11
CN108699243B (zh) 2021-05-18
US20190100624A1 (en) 2019-04-04
TW201739791A (zh) 2017-11-16
KR20180124859A (ko) 2018-11-21
US10844175B2 (en) 2020-11-24
JP6908590B2 (ja) 2021-07-28
CN108699243A (zh) 2018-10-23
KR102374975B1 (ko) 2022-03-16
JPWO2017159274A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6908590B2 (ja) ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板
JP7382447B2 (ja) 両面金属張積層板及び回路基板
TW201825295A (zh) 聚醯亞胺膜、銅張積層板及電路基板
JP6767759B2 (ja) ポリイミド、樹脂フィルム及び金属張積層板
JP2016188298A (ja) ポリイミド、樹脂フィルム、金属張積層体及び回路基板
TW202108664A (zh) 樹脂膜、覆金屬積層體及其製造方法
KR20240049536A (ko) 금속 피복 적층판, 접착 시트, 접착성 폴리이미드 수지 조성물 및 회로 기판
JP2019065180A (ja) ポリイミドフィルム、金属張積層板及び回路基板
JP7428646B2 (ja) 金属張積層板及び回路基板
JP7453432B2 (ja) 金属張積層板及び回路基板
JP7248394B2 (ja) ポリイミドフィルム及び金属張積層体
JP7230148B2 (ja) 金属張積層板及び回路基板
JP2020104390A (ja) 金属張積層板、その製造方法及び回路基板
JP7405644B2 (ja) 金属張積層板及び回路基板
JP2020015237A (ja) 金属張積層板の製造方法及び回路基板の製造方法
KR20220092412A (ko) 폴리이미드 필름, 금속박적층판, 그 제조방법 및 회로기판
JP7195848B2 (ja) ポリアミド酸、ポリイミド、樹脂フィルム、金属張積層体及びその製造方法
TWI753196B (zh) 覆金屬層疊板、黏接片、黏接性聚醯亞胺樹脂組合物及電路基板
JP6767751B2 (ja) ポリアミド酸、ポリイミド、樹脂フィルム及び金属張積層板
JP7453434B2 (ja) 金属張積層板及び回路基板
JP7453433B2 (ja) 金属張積層板及び回路基板
JP7252728B2 (ja) 樹脂フィルム及び金属張積層体
JP2023006387A (ja) ポリアミド酸、ポリイミド、ポリイミドフィルム、金属張積層板及び回路基板
TW202325550A (zh) 樹脂層疊體、覆金屬層疊板、電路基板、電子元件及電子設備
JP2023051810A (ja) 金属張積層板、回路基板、電子デバイス及び電子機器

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018505394

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025946

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766279

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766279

Country of ref document: EP

Kind code of ref document: A1