WO2017146124A1 - 立体的細胞組織の製造方法 - Google Patents

立体的細胞組織の製造方法 Download PDF

Info

Publication number
WO2017146124A1
WO2017146124A1 PCT/JP2017/006691 JP2017006691W WO2017146124A1 WO 2017146124 A1 WO2017146124 A1 WO 2017146124A1 JP 2017006691 W JP2017006691 W JP 2017006691W WO 2017146124 A1 WO2017146124 A1 WO 2017146124A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
dimensional
tissue
producing
Prior art date
Application number
PCT/JP2017/006691
Other languages
English (en)
French (fr)
Inventor
典弥 松▲崎▼
新司 入江
史朗 北野
Original Assignee
国立大学法人大阪大学
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 凸版印刷株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2018501746A priority Critical patent/JP6639634B2/ja
Priority to CN201780013395.0A priority patent/CN108699512A/zh
Priority to EP17756562.9A priority patent/EP3421588B1/en
Priority to EP24159075.1A priority patent/EP4349972A3/en
Publication of WO2017146124A1 publication Critical patent/WO2017146124A1/ja
Priority to US16/105,625 priority patent/US20180355308A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/60Buffer, e.g. pH regulation, osmotic pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to a method for producing a three-dimensional cellular tissue.
  • Patent Documents 4 to 7 disclose a method in which cells isolated by enzyme treatment or the like are contacted with collagen or the like, which is a typical ECM and a water-soluble polymer having a cytoprotective action, and then cultured as a three-dimensional aggregate. Is disclosed. According to this method, a gel of a water-soluble polymer is formed around the cells during culture.
  • Patent Document 8 and Non-Patent Document 1 a cell sheet is prepared using a culture dish in which poly (N-isopropylamide) (PIPAAm), which is a temperature-responsive resin, is immobilized on the surface, and the prepared cell sheets are laminated.
  • PIPAAm poly (N-isopropylamide)
  • a method for constructing a three-dimensional structure is disclosed. Although this method requires peeling of the cell sheet, it is difficult to peel while maintaining the shape of the cells.
  • Non-Patent Document 2 discloses a method of constructing a three-dimensional tissue of a cell using magnetite cationic liposome (MCL) containing nanomagnetic fine particles that electrostatically interact with a cell membrane.
  • MCL magnetite cationic liposome
  • Patent Document 9 the formation of a cell layer and the step of alternately bringing the cell layer into contact with a first substance-containing liquid and a second substance-containing liquid are repeated, and an ECM (extracellular matrix) having a nanometer thickness is disclosed. ), And a method of constructing a three-dimensional tissue by laminating cell layers continuously. According to this method, since it is not necessary to peel off a single-layer cell sheet or to superimpose peeled cell sheets, it is said that a three-dimensional tissue can be produced with excellent reproducibility and efficiency. However, since cell layers are cultured one by one, it takes a long time to construct a three-dimensional tissue. In addition, since it is difficult to arrange multiple cells in the same plane, there is a limit to variations in three-dimensional arrangement.
  • Patent Document 10 discloses a method of constructing a three-dimensional tissue by preparing a coated cell in which the entire cell surface is coated with an adhesive film, and attaching the cell via the adhesive film. This method requires multiple centrifugation steps for the production of coated cells. Therefore, depending on the cell type, there is a possibility of physical damage. In addition, cells may be lost as the supernatant is removed during centrifugation, and the cell recovery rate may be reduced.
  • Non-patent Document 3 a three-dimensional tissue was constructed by using this gel-like cell aggregate in the method described in Patent Document 10. However, it is difficult to obtain a thick structure by the above method.
  • Japanese Patent No. 4159103 Specification Japanese Patent No. 5847733 Specification Japanese Patent No. 5669741 Specification Japanese Unexamined Patent Publication No. Sho 63-222585 Japanese Patent No. 2824081 Japanese Patent No. 5458259 specification Japanese Patent No. 5409909 International Publication No. 2002/008387 Japanese Patent No. 4919464 Japanese Patent No. 5850419
  • the problem to be solved by the present invention is to provide a method capable of producing a thicker three-dimensional cell tissue more quickly and easily than the prior art.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, by using a mixture obtained by mixing cells with a cationic substance, a polyelectrolyte, and an extracellular matrix component, many times, As a result, the present inventors have completed the present invention by finding a method capable of producing a thicker three-dimensional cell tissue more quickly and easily than the conventional technique requiring the centrifugal treatment.
  • the method for producing a three-dimensional cellular tissue comprises a step A in which cells are mixed with a cationic substance and an extracellular matrix component to obtain a mixture, and the cells are collected from the obtained mixture. B process which forms a cell aggregate on a base material, and C process which cultures the said cell and obtains a three-dimensional cell tissue.
  • the cells may be mixed with the cationic substance, the extracellular matrix component, and a polymer electrolyte.
  • the liquid part is removed from the obtained mixture to obtain a cell aggregate A′-1, and the cell aggregate is suspended in a solution to obtain a suspension.
  • the cell aggregate in the step B or the step A′-1 may be a slurry-like viscous body.
  • the method for removing the liquid portion in the step A′-1 may be centrifugation or filtration.
  • Said 1st aspect WHEREIN: Centrifugation, magnetic separation, or filtration may be sufficient as the method of collecting the said cell in the said B process or the said B 'process.
  • the cell aggregate in the step B or the cell aggregate in the step B ′ may be layered.
  • the polyelectrolyte includes glycosaminoglycan, dextran sulfate, rhamnan sulfate, fucoidan, carrageenan, polystyrene sulfonic acid, and polyacrylamide-2-methylpropane sulfonic acid, polyacrylic acid, and combinations thereof.
  • the extracellular matrix component may be selected from the group consisting of collagen, laminin, fibronectin, vitronectin, elastin, tenascin, entactin, fibrillin, proteoglycan, and combinations thereof.
  • the cationic substance may be Tris-HCl buffer, Tris-maleic acid buffer, bis-Tris-buffer, or HEPES.
  • the concentration of the polymer electrolyte may be 0.05 mg / mL or more and 0.1 mg / mL or less.
  • the concentration of the extracellular matrix component may be 0.05 mg / mL or more and 0.1 mg / mL or less.
  • the blending ratio of the polymer electrolyte and the extracellular matrix component may be 1: 2 to 2: 1.
  • the cells in the step A may be a plurality of types of cells.
  • the plurality of types of cells are nerve cells, dendritic cells, immune cells, vascular endothelial cells, lymphatic endothelial cells, fibroblasts, cancer cells, cancer stem cells, epithelial cells, cardiomyocytes, hepatocytes May be selected from the group consisting of islet cells, tissue stem cells, iPS cells, ES cells and smooth muscle cells.
  • the thickness of the obtained three-dimensional cell tissue may be 5 to 500 ⁇ m.
  • the number of cell layers in the obtained three-dimensional cellular tissue may be 1 to 100 layers.
  • the number of cells per area of the thickness direction of 100 ⁇ m and the width direction of 50 ⁇ m in the region where the thickness of the obtained three-dimensional cell tissue is maximum may be 70 or less.
  • the cells in the step C, may be cultured in the presence of a ROCK inhibitor.
  • the number of cell layers per 10 ⁇ m thickness of the obtained three-dimensional cell tissue may be 2.8 layers or less.
  • the obtained three-dimensional cellular tissue may contain a plurality of types of cells.
  • the obtained three-dimensional cellular tissue may have a vascular structure.
  • a kit according to the second aspect of the present invention is a kit for carrying out the method for producing the three-dimensional cellular tissue according to the first aspect, comprising the cell, the cationic substance, and the extracellular matrix component. Contains at least one selected reagent.
  • the kit according to the second aspect may further contain a polymer electrolyte.
  • the three-dimensional cellular tissue according to the third aspect of the present invention contains a cell and an extracellular matrix component, has a thickness of 150 ⁇ m or more, and has a width of 100 ⁇ m in the region where the thickness is maximum. The number of cells per area of 50 ⁇ m in the direction is 70 or less.
  • the three-dimensional cellular tissue according to the third aspect may further contain a polymer electrolyte.
  • the extracellular matrix component may be selected from the group consisting of collagen, laminin, fibronectin, vitronectin, elastin, tenascin, entactin, fibrillin, proteoglycan, and combinations thereof.
  • the polyelectrolyte comprises glycosaminoglycan, dextran sulfate, rhamnan sulfate, fucoidan, carrageenan, polystyrene sulfonic acid, polyacrylamide-2-methylpropane sulfonic acid, and polyacrylic acid and combinations thereof. It may be selected from the group consisting of
  • each aspect of the present invention it is possible to produce a three-dimensional cellular tissue more quickly and easily than in the prior art. Further, by using the method of each of the above aspects of the present invention, a thicker three-dimensional cellular tissue can be produced as compared with the prior art. This makes it possible to produce a three-dimensional cellular tissue having a thickness that could not be constructed so far.
  • the result of HE staining of a three-dimensional cell tissue constructed using heparin and collagen is shown.
  • the result of HE staining of a three-dimensional cell tissue constructed using heparin and collagen is shown.
  • sample A a mixture of cells, heparin and collagen was seeded on a cell culture insert as it was.
  • sample B a viscous material obtained by centrifuging a mixture of cells, heparin and collagen was used.
  • the result of HE staining of a three-dimensional cell tissue constructed using heparin and collagen is shown.
  • stacking is shown.
  • the results of HE staining and fluorescence microscope observation of a cancer tissue model are shown.
  • the examination result of the contraction suppression of a tissue body is shown.
  • tissue which has a vascular structure is shown.
  • a method for producing a three-dimensional cellular tissue includes: (A) mixing the cells with a cationic substance and extracellular matrix components;
  • the present invention relates to a method comprising the steps of (B) collecting cells from the obtained mixture to form a cell aggregate on a substrate, and (C) culturing the cells to obtain a three-dimensional cell tissue.
  • step (A) a cell is mixed with a cationic substance and an extracellular matrix component, and a cell aggregate is formed from this cell mixture, thereby obtaining a three-dimensional cellular tissue with few large voids inside. be able to.
  • the obtained three-dimensional cell tissue is relatively stable, it can be cultured for at least several days, and the tissue is difficult to collapse even when the medium is changed.
  • step (A) it is preferable to further mix the cells with a polymer electrolyte.
  • a polymer electrolyte By mixing the cells with a cationic substance, a polyelectrolyte and an extracellular matrix component, a three-dimensional cellular tissue with less voids and thickness can be obtained more efficiently.
  • step (A) (A′-1) a step of removing a liquid portion from the obtained mixture to obtain a cell aggregate, and (A′-2) a cell aggregate Suspending in a solution, and in place of step (B), including (B ′) precipitating cells from the resulting suspension to form cell precipitates on the substrate.
  • a desired tissue body can be obtained by performing the above steps (A) to (C).
  • step (A) (A′-1) and (A′-2) are performed, By carrying out the step (B ′) instead of (B), a more homogeneous tissue can be obtained.
  • the mixing of the cells with the cationic substance, the polyelectrolyte, and the extracellular matrix component may be performed in an appropriate container such as a dish, tube, flask, bottle, or plate. It may be carried out on the substrate used in (B).
  • the suspension in step (A′-2) may also be performed in a suitable container such as a dish, tube, flask, bottle, or plate, and is performed on the substrate used in step (B ′). Also good.
  • the term “stereocellular tissue” means a three-dimensional assembly including at least one type of cell.
  • the three-dimensional cellular tissue constructed by the present embodiment includes skin, hair, bone, cartilage, tooth, cornea, blood vessel, lymphatic vessel, heart, liver, pancreas, nerve, esophagus and other biological tissues, and solid cancer models ( Examples include, but are not limited to, gastric cancer, esophageal cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, renal cell cancer, liver cancer and the like.
  • cell aggregate means a population of cells.
  • Cell aggregates also include cell precipitates (cell aggregates formed by precipitating cells) obtained by centrifugation or filtration.
  • the cell aggregate is a slurry-like viscous body.
  • slurry viscous material refers to Akihiro Nishiguchi et al. , Macromol Biosci. 2015 Mar; 15 (3): 312-7 (Non-patent Document 3) refers to a gel-like cell aggregate.
  • Cationic substances include cationic buffers such as Tris-HCl buffer, Tris-maleic acid buffer, bis-Tris-buffer, and HEPES, as well as ethanolamine, diethanolamine, triethanolamine, polyvinylamine, polyallylamine , Polylysine, polyhistidine, and polyarginine, but are not limited thereto.
  • the cationic substance used in this embodiment is preferably a cationic buffer.
  • the cationic substance used in this embodiment is more preferably a Tris-HCl buffer.
  • the concentration of the cationic substance is not particularly limited as long as it does not adversely affect cell growth and cell aggregate formation.
  • the concentration of the cationic substance used in this embodiment is preferably 10 to 100 mM.
  • the concentration of the cationic substance used in this embodiment is preferably 20 to 90 mM, 30 to 80 mM, 40 to 70 mM, 45 to 60 mM.
  • the concentration of the cationic substance used in the present embodiment is more preferably 50 mM.
  • the pH of the cationic buffer is not particularly limited as long as it does not adversely affect cell growth and cell aggregate formation.
  • the pH of the cationic buffer used in this embodiment is preferably 6.0 to 8.0.
  • the pH of the cationic buffer used in the present embodiment is 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7. 8, 7.9, or 8.0.
  • the pH of the cationic buffer used in this embodiment is more preferably 7.2 to 7.6.
  • the pH of the cationic buffer used in the present embodiment is more preferably 7.4.
  • the “polymer electrolyte” means a polymer having a dissociable functional group in a polymer chain.
  • any polyelectrolyte can be used as long as it does not adversely affect the growth of cells and the formation of cell aggregates.
  • polymer electrolyte examples include heparin, chondroitin sulfate (eg, chondroitin 4-sulfate, chondroitin 6-sulfate), heparan sulfate, dermatan sulfate, keratan sulfate, hyaluronic acid and other glycosaminoglycans; dextran sulfate, rhamnan sulfate, Examples include, but are not limited to, fucoidan, carrageenan, polystyrene sulfonic acid, polyacrylamide-2-methylpropane sulfonic acid, and polyacrylic acid. These polymer electrolytes may be used alone or in combination.
  • the polymer electrolyte used in this embodiment is preferably a glycosaminoglycan.
  • the polymer electrolyte used in this embodiment is more preferably heparin, dextran sulfate, chondroitin sulfate, or dermatan sulfate. More preferably, the polymer electrolyte used in this embodiment is heparin.
  • the above-described polyelectrolyte derivatives may be used as long as they do not adversely affect cell growth and cell aggregate formation.
  • the concentration of the polyelectrolyte is not particularly limited as long as it does not adversely affect cell growth and cell aggregate formation.
  • the concentration of the polymer electrolyte used in this embodiment is preferably more than 0 mg / mL and less than 1.0 mg / mL.
  • the concentration of the polymer electrolyte used in the present embodiment is more preferably 0.025 mg / mL to 0.1 mg / mL. For example, 0.025, 0.05, 0.075, or 0.1 mg / mL.
  • the concentration of the polymer electrolyte used in the present embodiment is more preferably 0.05 mg / mL or more and 0.1 mg / mL or less.
  • the concentration of the polymer electrolyte used in this embodiment is 0.05 mg / mL.
  • the polymer electrolyte may be used after being dissolved in an appropriate solvent.
  • solvents include, but are not limited to water and buffers.
  • a cationic buffer is used as the above-mentioned cationic substance, the polymer electrolyte may be dissolved in the cationic buffer and used.
  • Extracellular matrix component any component constituting the extracellular matrix (ECM) can be used as long as it does not adversely affect the growth of cells and the formation of cell aggregates.
  • Extracellular matrix components include, but are not limited to, collagen, laminin, fibronectin, vitronectin, elastin, tenascin, entactin, fibrillin, and proteoglycan. These extracellular matrix components may be used alone or in combination.
  • Proteoglycans include, but are not limited to, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, keratan sulfate proteoglycan, dermatan sulfate proteoglycan.
  • the extracellular matrix components used in this embodiment are collagen, laminin, and fibronectin, and among them, collagen is preferable. Variants and variants of the extracellular matrix components described above may be used as long as they do not adversely affect cell growth and cell aggregate formation.
  • the concentration of the extracellular matrix component is not particularly limited as long as it does not adversely affect the growth of cells and the formation of cell aggregates.
  • the concentration of the extracellular matrix component used in this embodiment is preferably more than 0 mg / mL and less than 1.0 mg / mL.
  • the concentration of the extracellular matrix component used in the present embodiment is more preferably 0.025 mg / mL or more and 0.1 mg / mL or less, for example, 0.025, 0.05, 0.075, or 0.1 mg. / ML.
  • the concentration of the extracellular matrix component used in the present embodiment is more preferably 0.05 mg / mL or more and 0.1 mg / mL or less.
  • the concentration of the extracellular matrix component used in the present embodiment is 0.05 mg / mL.
  • an extracellular matrix component may be dissolved in an appropriate solvent and used.
  • the solvent include, but are not limited to, water, buffer solution, acetic acid and the like.
  • the extracellular matrix component is preferably dissolved in a buffer or acetic acid.
  • the blending ratio of the polymer electrolyte and the extracellular matrix component is preferably 1: 2 to 2: 1.
  • the compounding ratio of the polyelectrolyte used in the present embodiment and the extracellular matrix component is more preferably 1: 1.5 to 1.5: 1.
  • the compounding ratio of the polyelectrolyte used in this embodiment and the extracellular matrix component is more preferably 1: 1.
  • the cells used in the method according to the present embodiment are not particularly limited, and are cells derived from animals such as humans, monkeys, dogs, cats, rabbits, pigs, cows, mice, rats, and the like.
  • the cell origin is not particularly limited, and it may be a somatic cell derived from bone, muscle, viscera, nerve, brain, bone, skin, blood or the like, or a germ cell.
  • the cell used in the method according to the present embodiment may be an induced pluripotent stem cell (iPS cell) or an embryonic stem cell (ES cell).
  • cultured cells such as primary cultured cells, subcultured cells, and cell line cells may be used.
  • One type of cell may be used, or a plurality of types of cells may be used.
  • Examples of cells used in the method according to the present embodiment include nerve cells, dendritic cells, immune cells, vascular endothelial cells, lymphatic endothelial cells, fibroblasts, liver cancer cells and other cancer cells, epithelial cells, myocardium. Examples include, but are not limited to, cells, hepatocytes, islet cells, tissue stem cells, and smooth muscle cells.
  • the three-dimensional cell tissue obtained by the method according to the present embodiment may include one type of cell or may include a plurality of types of cells.
  • cells included in the three-dimensional cellular tissue are nerve cells, dendritic cells, immune cells, vascular endothelial cells, lymphatic endothelial cells, fibroblasts, cancer cells, epithelial cells, cardiomyocytes, hepatocytes, Selected from the group consisting of islet cells, tissue stem cells, and smooth muscle cells.
  • the three-dimensional cellular tissue obtained by the method according to the present embodiment may have a vascular structure.
  • “Vascular structure” refers to a network-like structure such as a vascular network or a lymphatic network in living tissue.
  • the liquid portion may be removed by centrifugation or filtration. Centrifugation conditions are not particularly limited as long as they do not adversely affect cell growth and cell aggregate formation.
  • the liquid portion is removed by subjecting the microtube containing the mixture to centrifugation at 400 ⁇ g for 1 minute at room temperature to separate the liquid portion and the cell aggregate.
  • the liquid portion may be removed.
  • the solution used in step (A′-2) of the above method of the present embodiment is not particularly limited as long as it does not adversely affect cell growth and cell aggregate formation.
  • a cell culture medium or buffer suitable for the cells used is used.
  • Examples of the substrate used in step (B) or (B ′) of the above-described method of the present embodiment include a culture vessel for use in cell culture.
  • the culture container may be a container having a material and shape usually used for culturing cells and microorganisms.
  • Examples of the material for the culture vessel include, but are not limited to, glass, stainless steel, and plastic.
  • Examples of the culture container include, but are not limited to, a dish, a tube, a flask, a bottle, and a plate.
  • the substrate is, for example, a material that can pass a liquid without passing cells in the liquid.
  • the substrate used in this embodiment is preferably a permeable membrane.
  • Examples of the container having such a permeable membrane include cell culture inserts such as Transwell (registered trademark) insert, Netwell (registered trademark) insert, Falcon (registered trademark) cell culture insert, Millicell (registered trademark) cell culture insert, It is not limited to these.
  • a technique known to those skilled in the art can be used as a means for collecting cells in the step (B) or (B ′).
  • the cells may be collected by centrifugation, magnetic separation, or filtration. Centrifugation conditions are not particularly limited as long as they do not adversely affect cell growth.
  • cells are collected by seeding the mixture or suspension on a cell culture insert and subjecting to centrifugation at 10 ° C. and 400 ⁇ g for 1 minute.
  • cells may be collected by spontaneous sedimentation.
  • a cell precipitate may be formed on the substrate by removing the liquid portion from the suspension, for example, by centrifugation or filtration.
  • a precipitate of cells may be formed on the substrate by natural sedimentation.
  • the cell aggregate in the step (B) or the cell precipitate in the step (B ′) may be layered.
  • a substance for suppressing deformation of the constructed three-dimensional cellular tissue for example, tissue contraction, tissue end peeling, etc.
  • a substance for suppressing deformation of the constructed three-dimensional cellular tissue for example, tissue contraction, tissue end peeling, etc.
  • examples of such a substance include, but are not limited to, Y-27632 which is a selective ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor.
  • the step (C) is performed in the presence of the substance.
  • the contraction of the three-dimensional cell tissue constructed by culturing the cell aggregate in the presence of the substance is suppressed.
  • the constructed tissue is prevented from peeling off from the base material such as the cell culture insert.
  • such a substance may be further mixed in the step (A).
  • such a substance may be further added to the solution used in step (A′-2).
  • such a substance may be added to the medium when cells are cultured in step (C).
  • the cells can be cultured under culture conditions suitable for the cells to be cultured.
  • a person skilled in the art can select an appropriate medium according to the type of cell and the desired function.
  • Various conditions such as culture temperature and culture time can also be easily determined by those skilled in the art.
  • a three-dimensional cellular tissue having a plurality of layers can be constructed.
  • a three-dimensional cell tissue composed of different types of cells may be constructed using a plurality of types of cells.
  • the thickness of the three-dimensional cellular tissue to be constructed is about 5 to about 300, about 400, or about 500 ⁇ m.
  • it is 150 micrometers or more, More preferably, it is 200 micrometers or more, More preferably, it is 250 micrometers or more.
  • the thickness is 150 to 500 ⁇ m.
  • a three-dimensional cellular tissue is obtained.
  • the number of cell layers in the constructed three-dimensional cell tissue is preferably 1 to about 100 layers, and more preferably 10 to about 100 layers.
  • the cell layer is the magnification of the cell in which the cell nucleus can be recognized in the slice image of the cross section in the thickness direction of the three-dimensional cell tissue. When the cell nuclei do not overlap in the vertical direction, it is defined as another layer.
  • the field of view in the vertical (lateral) direction with respect to its own weight is secured at least 200 ⁇ m or more.
  • a slice image of the cross section in the thickness direction of the three-dimensional cell tissue is observed at a magnification of 100 to 200 times.
  • the three-dimensional cell tissue obtained by repeating steps (A) to (B) or (A) to (B ′) of the above method of the present embodiment is a three-dimensional cell obtained by a conventional cell stacking method. Compared with tissue, the number of cell layers per unit thickness is small. In this embodiment, the three-dimensional cellular tissue to be constructed is obtained in vitro. Further, the three-dimensional cellular tissue according to this embodiment contains cells and extracellular matrix components, and the number of cell layers per 10 ⁇ m thickness is 2.8 layers or less, preferably 2.5 layers or less. More preferably, it is 2.2 layers or less.
  • the number of cells per area in the thickness direction of 100 ⁇ m and the width direction of 50 ⁇ m in the region including the position where the thickness is maximum (maximum point) is 5 or more and 70 or less.
  • the number is preferably 10 or more and 60 or less, and more preferably 15 or more and 50 or less.
  • the thickness of the three-dimensional cellular tissue is the length of the tissue in its own weight direction.
  • the direction of gravity is the direction in which gravity is applied.
  • the number of cells can be measured as follows using a section consisting of a cross section in the thickness direction of the tissue.
  • a position (maximum point) at which the thickness of the three-dimensional cellular tissue is maximized is determined in an area where there is no gap of a predetermined size or more.
  • the number of cell nuclei contained in the measurement region is counted using a strip-like region (including from the top to the bottom of the tissue) having a width of 50 ⁇ m including the vicinity of the maximum thickness as a measurement region.
  • the measurement area should not contain voids.
  • the predetermined size of the gap means a maximum diameter of 50 ⁇ m or more.
  • the maximum diameter of the gap is the long side when the gap is rectangular, the diameter when it is spherical, the long diameter when it is elliptical, and the major axis when approximated to an ellipse when it is indefinite. Note that voids are not stained on the HE-stained sections. However, when the top surface of the region including the maximum thickness is convex, the tissue may be peeled off from the base material. In such a case, an area near the maximum value and having a relatively flat top surface is taken as a measurement area. In this case, a region of 100 ⁇ m to 650 ⁇ m in the width direction including the vicinity of the maximum thickness is set as a measurement region.
  • the cell nucleus in which at least a part is included in the counted measurement region is counted as a cell nucleus included in the measurement region. From the counted number of cells, the number of cells per area of 100 ⁇ m in the thickness direction and 50 ⁇ m in the width direction is calculated.
  • a kit according to an embodiment of the present invention is a kit for performing the method according to the above embodiment, and includes at least one reagent selected from a cell, a cationic substance, a polyelectrolyte, or an extracellular matrix component. Including. Usually, these reagents are provided in suitable containers. Such a kit may contain an appropriate reagent for simplifying the execution of the method of the above-described embodiment, such as a diluent, a buffer, and a washing reagent. Moreover, you may include suitable base materials, such as a dish and a cell culture insert, a tube, a flask, a bottle, and a plate. Furthermore, materials such as instructions necessary for carrying out the method of the above embodiment may be included.
  • the number of times that the cells are subjected to centrifugation is up to twice. Conventional methods are cumbersome and often use centrifugation. Therefore, by using the method according to the embodiment of the present invention, it is possible to reduce the number of centrifugations and reduce cell damage. In addition, cell loss during operation can be reduced, and a high cell recovery rate can be achieved.
  • Example 1 Construction of three-dimensional cellular tissue using heparin and collagen (1)
  • collagen I was used as collagen unless otherwise specified.
  • Normal human skin fibroblasts (NHDF) of 3.5 ⁇ 10 6 cells were mixed with 150 ⁇ L of heparin / 50 mM Tris-HCl buffer (pH 7.4) and 150 ⁇ L of collagen / 50 mM Tris-HCl buffer (pH 7.4).
  • NHDF normal human skin fibroblasts
  • the combinations of the final concentrations of heparin and collagen used are as shown in FIG.
  • the resulting suspension was seeded in a 24-well cell culture insert (Corning Inc, catalog number: 3470) and centrifuged at 10 ° C. and 400 ⁇ g for 1 minute.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • Example 2 Construction of three-dimensional cellular tissue using heparin and collagen (2) 3.5 ⁇ 10 6 cells of NHDF were mixed with 250 ⁇ L of a 0.1 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) solution and 250 ⁇ L of a 0.1 mg / mL collagen / acetic acid solution (pH 3.7). ) (That is, the final concentrations of collagen and heparin were each 0.05 mg / mL). Samples A and B were prepared as follows.
  • sample A the end of the constructed tissue was detached from the cell culture insert surface. Although a slight dissociation of the tissue near the center was observed, a three-dimensional cellular tissue was obtained as a whole.
  • sample B a uniform three-dimensional cellular tissue was obtained as compared with sample A. From these results, before seeding the mixture of cells, heparin, and collagen in the culture vessel, a viscous body is obtained from the mixture, and a more uniform three-dimensional cellular tissue is obtained by using this viscous body. It was shown that it can. Concerning sample B, a three-dimensional cellular tissue is constructed even when a cell layer is formed by natural sedimentation without centrifugation after seeding a viscous suspension in a cell culture insert. We were able to.
  • Example 3 Further Examination of Heparin and Collagen Concentrations 3.5 ⁇ 10 6 cells of NHDF were mixed with 250 ⁇ L of heparin / 50 mM Tris-HCl buffer (pH 7.4) solution and 250 ⁇ L of collagen / acetic acid solution (pH 3.7). It was suspended in the liquid. The combinations of heparin and collagen concentrations used are as shown in FIG. The obtained mixture was centrifuged at 400 ⁇ g for 1 minute at room temperature to obtain a viscous product. The obtained viscous material was suspended in DMEM containing 10% FBS. The resulting suspension was seeded in a 24-well cell culture insert and centrifuged at 10 ° C. and 400 ⁇ g for 1 minute.
  • Example 4 Construction of continuous laminated tissue body A continuous laminated tissue body was constructed using NHDF previously fluorescently stained with Cell Tracker Green and NHDF previously fluorescently stained with Cell Tracker Red. The procedure for constructing the organization is as follows.
  • a third cell layer was formed on the second cell layer using NHDF previously fluorescently stained with a cell tracker red of 1.0 ⁇ 10 6 cells by the same method. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a frozen section was prepared. A frozen section was prepared according to a known method.
  • a third cell layer was formed on the second cell layer by NHDF, which was previously fluorescently stained with a cell tracker green of 0.6 ⁇ 10 6 cells by the same method. Furthermore, a fourth cell layer was formed on the third cell layer by NHDF previously fluorescently stained with a cell tracker red of 0.6 ⁇ 10 6 cells by the same method. Furthermore, a fifth cell layer was formed on the fourth cell layer using NHDF previously fluorescently stained with a cell tracker green of 0.6 ⁇ 10 6 cells by the same method. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a frozen section was prepared. A frozen section was prepared according to a known method.
  • FIG. 1 The results of observation of the section with a fluorescence microscope are shown in FIG.
  • the upper figure is an overall view of the tissue, and the lower figure is an enlarged view thereof.
  • the layer structure can be observed in the constructed tissue.
  • Embodiment 5 Construction of cancer tissue model A cancer tissue model was constructed using NHDF and colon cancer cells (HT29 cells). NHDF was previously fluorescently stained with Cell Tracker Green. In addition, HT29 cells were fluorescently stained in advance with Cell Tracker Red. 3.5 ⁇ 10 6 cells (90% NHDF, 10% HT29 cells) were mixed with 250 ⁇ L of 0.1 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) solution and 250 ⁇ L of 0.1 mg / mL. It was suspended in a mixture with a collagen / acetic acid solution (pH 3.7) (ie, the final concentrations of collagen and heparin were each 0.05 mg / mL).
  • a cell layer was formed on the cell culture insert according to the procedure of Example 2 (ii). Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a frozen section was prepared. A frozen section was prepared according to a known method. HE sections were subjected to HE staining. HE staining followed a known method.
  • FIG. 5 shows the results of HE staining and the results of fluorescence microscope observation.
  • A shows the result of HE staining of a frozen section.
  • B shows the fluorescence microscope observation result of a frozen section.
  • C is an enlarged view of (a).
  • D is an enlarged view of (b).
  • HT29 cells stained in red were observed in the area surrounded by white circles.
  • Example 6 Inhibition of Contraction of Tissue The suppression of contraction of the constructed tissue was examined using Y-27632 (Calbiochem, catalog number: 688000). In this example, the concentration of heparin and collagen in which peeling from the cell culture insert surface at both ends of the tissue was observed in Example 3 (FIG. 3) was employed. A mixture of 250 ⁇ L 0.2 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) and 250 ⁇ L 0.2 mg / mL collagen / acetic acid solution (pH 3.7) (ie collagen and heparin) (The final concentration of each was 0.1 mg / mL). A cell layer was formed on the cell culture insert according to the procedure of Example 2 (ii).
  • the number of cells used and the solution used for suspension of the viscous body are as shown in the following table. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a paraffin-embedded section was prepared. A paraffin-embedded section was prepared according to a known method. HE sections were subjected to HE staining. HE staining followed a known method.
  • the result of HE staining is shown in FIG.
  • Y-27632 contraction of the constructed tissue body was suppressed, and a more uniform tissue was obtained. Further, even when 5.0 ⁇ 10 6 cells were used, both ends of the tissue were not detached from the surface of the cell culture insert (base material), and a more uniform tissue body could be obtained.
  • the average thickness of the tissue body was 270 ⁇ m.
  • Example 7 Construction of three-dimensional cellular tissue with vascular structure (1) 2.0 ⁇ 10 6 cells of NHDF and 3.0 ⁇ 10 4 cells of human umbilical vein endothelial cells (HUVEC), 150 ⁇ L of 0.2 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) After suspending in a mixture of the solution and 150 ⁇ L of a 0.2 mg / mL collagen / acetic acid solution (pH 3.7) (ie, the final concentrations of collagen and heparin were each 0.1 mg / mL), room temperature The mixture was centrifuged at 400 ⁇ g for 1 minute to obtain a viscous body.
  • HUVEC human umbilical vein endothelial cells
  • the obtained viscous material was suspended in 10% FBS-containing DMEM, and the obtained suspension was seeded in a 24-well cell culture insert and centrifuged at 400 ⁇ g for 1 minute at room temperature. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 8 days. After culture, anti-CD31 antibody (monoclonal mouse anti-human CD31 antibody, Clone JC70A, Code M0823, Dako) was used as a primary antibody, and goat anti-mouse IgG-AlexaFluor (registered trademark) 488 (Invitrogen TM) was used as a secondary antibody. The constructed tissue was immunostained. The method of immunostaining followed a known method.
  • FIG. 7 The results of immunostaining are shown in FIG. As shown in FIG. 7, a network vascular network was formed in the tissue.
  • Example 8 Construction of three-dimensional cellular tissue with vascular structure (2) 1.0 ⁇ 10 6 cells of NHDF and 1.0 ⁇ 10 5 cells of human umbilical vein endothelial cells (HUVEC), 250 ⁇ L of 0.1 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) The solution was suspended in a mixture of 250 ⁇ L of a 0.1 mg / mL collagen / acetic acid solution (pH 3.7) (ie, the final concentrations of collagen and heparin were each 0.05 mg / mL). A cell layer was formed on the cell culture insert according to the procedure of Example 2 (ii).
  • a paraffin-embedded section was prepared according to a known method.
  • HE sections were subjected to HE staining.
  • HE staining followed a known method.
  • immunostaining was performed using an anti-CD31 antibody (monoclonal mouse anti-human CD31 antibody, Clone JC70A, Code M0823, Dako). The method of immunostaining followed a known method. 3,3′-Diaminobenzodinine (DAB) was used as the chromogenic substrate, and hematoxylin was used as the nuclear staining reagent.
  • DAB 3,3′-Diaminobenzodinine
  • FIG. 8 The results of HE staining are shown in FIG. As shown in FIG. 8, a luminal structure surrounded by CD31 positive cells was observed in the tissue. From the results shown in FIGS. 7 and 8, it was shown that a three-dimensional cellular tissue having a vascular network can be formed by using a combination of fibroblasts and vascular endothelial cells.
  • Comparative Example 1 When heparin and collagen are not used NHDF of 3.5 ⁇ 10 6 cells suspended in DMEM containing 10% FBS is seeded in a 24 well cell culture insert, and 24 hours in a CO 2 incubator (37 ° C., 5% CO 2 ). Incubate for hours. After the culture, the constructed tissue was collected and a paraffin-embedded section was prepared. A paraffin-embedded section was prepared according to a known method. HE sections were subjected to HE staining. HE staining followed a known method.
  • Comparative Example 1 The result of HE staining in Comparative Example 1 is shown in FIG. In Comparative Example 1, only a thinner structure than that in Example could be constructed. Dissociation was seen in the central part of the tissue.
  • the cell aggregate was seeded on a cell culture insert and centrifuged at 400 ⁇ g for 1 minute at room temperature. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a paraffin-embedded section was prepared. A paraffin-embedded section was prepared according to a known method. HE sections were subjected to HE staining. HE staining followed a known method.
  • FIGS. 10 shows the results using 1 ⁇ 10 5 cells of NHDF.
  • the thickness of the obtained tissue was about 5 ⁇ m, and individual cells in the tissue could not be distinguished.
  • FIG. 11 shows the results using 1 ⁇ 10 6 cells of NHDF. Although the thickness of the obtained tissue was about 40 ⁇ m, many gaps were observed between cells in the tissue.
  • FIG. 12 shows the results using NHDF of 3.5 ⁇ 10 6 cells. Although the thickness of the obtained tissue was about 120 ⁇ m, many gaps were observed between cells in the tissue. That is, even if the method described in Patent Document 5 is adopted, a desired three-dimensional cell tissue cannot be obtained.
  • Comparative Example 3 LbL Method According to the method for producing a three-dimensional tissue disclosed in Patent Document 10 (LbL method), 3.5 ⁇ 10 6 cells of NHDF on which a fibronectin-gelatin thin film (FN-G thin film) was formed were seeded on a cell culture insert. . Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours. After the culture, the constructed tissue was collected and a paraffin-embedded section was prepared. A paraffin-embedded section was prepared according to a known method. HE sections were subjected to HE staining. HE staining followed a known method.
  • Example 9 Construction of three-dimensional cellular tissue using various cationic substances Tris, Bistris, and HEPES were used as cationic substances, and the cells were mixed with heparin and collagen to construct a three-dimensional cellular tissue.
  • 3.5 ⁇ 10 6 cells of NHDF were mixed with 250 ⁇ L of 0.2 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) solution and 250 ⁇ L of 0.2 mg / mL collagen / acetic acid solution (pH 3). .7) (ie, the final concentrations of collagen and heparin were each 0.1 mg / mL) to prepare a mixture.
  • 0.2 mg / mL heparin / 50 mM Tris-HCl buffer (pH 7.4) solution 0.2 mg / mL heparin / 50 mM Bistris-HCl buffer (pH 7.4) solution, 0.
  • 3.5 ⁇ 10 6 cells of NHDF were suspended in 500 ⁇ L of 50 mM Tris-HCl buffer (pH 7.4) solution to prepare a mixture in which the final concentrations of collagen and heparin were 0 mg / mL, respectively.
  • 50 mM Tris-HCl buffer (pH 7.4) solution instead of this 50 mM Tris-HCl buffer (pH 7.4) solution, a 50 mM Bistris-HCl buffer (pH 7.4) solution, a 50 mM Tris-maleic acid buffer (pH 7.4) solution, and a 50 mM HEPES buffer solution are used.
  • PH 7.4 or DMEM acetic acid added, pH 7.4 to 7.8 was used to prepare a mixture of collagen and heparin final concentrations of 0 mg / mL in the same manner.
  • the obtained mixture was centrifuged at 400 ⁇ g for 1 minute at room temperature to obtain a viscous product.
  • the obtained viscous material was suspended in DMEM containing 10% FBS.
  • the resulting suspension was seeded in a 24-well cell culture insert and centrifuged at 400 ⁇ g for 1 minute at room temperature. This formed a cell layer on the cell culture insert.
  • 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours.
  • the constructed tissue was fixed with 10% formalin, immersed in 70% ethanol, and a paraffin-embedded section was prepared.
  • a paraffin-embedded section was prepared according to a known method.
  • HE sections were subjected to HE staining.
  • HE staining followed a known method.
  • each constructed three-dimensional cell tissue was measured from each evaluation section stained with HE.
  • the measurement results are shown in Table 2.
  • the three-dimensional cellular tissue obtained by mixing the cationic substance, heparin, and collagen with the cells has a sufficient thickness regardless of which cationic substance is used, and Almost no voids were observed inside. Moreover, it was able to culture stably for several days, and there was no problem in the medium exchange.
  • the three-dimensional cellular tissue obtained by mixing DMEM, heparin, and collagen with cells without using a cationic substance had a certain thickness but had many fine voids inside. .
  • the tissue obtained by using only the cationic substance or only DMEM without containing heparin and collagen had many fine voids inside, and the tissue itself was fragile. For this reason, it could not withstand several days of culture, and the cells were separated when the medium was changed.
  • Example 10 Construction of three-dimensional cellular tissue with vascular structure (3) Using Tris as a cationic substance, a polyelectrolyte described in Table 3 and an extracellular matrix component, a three-dimensional cellular tissue having a vascular structure was constructed.
  • the obtained cell aggregate was suspended in DMEM containing 10% FBS, and the obtained suspension was seeded in a 24-well cell culture insert and centrifuged at 400 ⁇ g for 1 minute at room temperature. Subsequently, 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 5 days. After culture, anti-CD31 antibody (monoclonal mouse anti-human CD31 antibody, Clone JC70A, Code M0823, Dako) was used as a primary antibody, and goat anti-mouse IgG-AlexaFluor (registered trademark) 594 (Invitrogen (trademark)) was used as a secondary antibody. The constructed tissue was immunostained. The method of immunostaining followed a known method. As a result, a network vascular network was formed in the tissue in all evaluation sections.
  • the final concentration of polyelectrolyte and extracellular matrix component was constructed from a cell suspension of 0.1 mg / mL, respectively.
  • a network vascular network was formed in both the prepared tissue and the tissue constructed from the cell suspension having a final concentration of both components of 0.05 mg / mL.
  • the tissue constructed without using all three components and the tissue constructed using only Tris were three-dimensional cellular tissues in which a network vascular network was formed immediately after the construction, but the adhesion between cells was The cell was unwound and the tissue collapsed when the medium was changed.
  • the density of the cell layer of each constructed three-dimensional cellular tissue was measured. Specifically, 3.5 ⁇ 10 6 cells of NHDF were mixed with 250 ⁇ L of 0.2 mg / mL or 0.1 mg / mL polyelectrolyte / 50 mM Tris-HCl buffer (pH 7.4) solution and 250 ⁇ L of 0. A mixture of 2 mg / mL or 0.1 mg / mL extracellular matrix component / acetic acid solution (pH 3.7) (ie, the final concentration of polyelectrolyte and extracellular matrix component is 0.1 mg / mL or 0, respectively) .05 mg / mL).
  • the suspension was centrifuged at 400 ⁇ g for 1 minute at room temperature to obtain a viscous body.
  • the obtained viscous material was suspended in 10% FBS-containing DMEM, and the obtained suspension was seeded in a 24-well cell culture insert and centrifuged at 400 ⁇ g for 1 minute at room temperature.
  • 10% FBS-containing DMEM was added to the cell culture insert and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 24 hours.
  • the constructed tissue was fixed with 10% formalin, immersed in 70% ethanol, and a paraffin-embedded section was prepared.
  • a paraffin-embedded section was prepared according to a known method.
  • HE sections were subjected to HE staining.
  • HE staining followed a known method.
  • each constructed three-dimensional cell tissue was measured from each evaluation section stained with HE.
  • the tissue that was constructed without mixing all three components of the cationic substance, the polyelectrolyte, and the extracellular matrix component had the smallest maximum thickness.
  • the maximum thickness of the tissue constructed containing at least one of the cationic substance, the polyelectrolyte, and the extracellular matrix component was equal to or greater than that of the tissue constructed without mixing the three components.
  • the density of the cell layer of each constructed three-dimensional cell tissue was measured from each evaluation section stained with HE. Specifically, first, the maximum value of the cell layer number of the tissue in each evaluation section and the thickness ( ⁇ m) of the portion where the cell layer number becomes the maximum value were measured. From the maximum value of the number of cell layers and the measured value of the thickness, the number of cell layers per 10 ⁇ m thickness was calculated.
  • Table 3 shows the results of evaluation sections of tissues constructed from cell suspensions each having a final concentration of the polyelectrolyte and extracellular matrix components of 0.1 mg / mL. However, only when laminin is used as the extracellular matrix component and polystyrene sulfonic acid is used as the polymer electrolyte, the results of the tissues obtained with a final concentration of 0.05 mg / mL in the mixed solution are shown.
  • Table 3 shows the relative value of the maximum thickness of each tissue when the thickness (80 ⁇ m) of the tissue constructed without mixing all three components is 1.
  • the number of cell layers per 10 ⁇ m thickness calculated is shown in the middle row.
  • the lower part shows the number of cell layers obtained by subtracting the number of cell layers per 10 ⁇ m thickness of the tissue constructed without using all three components from the calculated number of cell layers per 10 ⁇ m thickness.
  • Table 3 shows the results for all three samples.
  • Tris indicates Tris-HCl buffer
  • PSS indicates polystyrene sulfonic acid
  • none in the column of “extracellular matrix” means that no extracellular matrix is added.
  • “None” on the vertical axis means that neither Tris nor polymer electrolyte is added.
  • Table 4 shows the results of evaluation sections of tissues constructed from cell suspensions each having a final concentration of the polyelectrolyte and extracellular matrix components of 0.1 mg / mL.
  • Tris and collagen I are used as the extracellular matrix component without using the polyelectrolyte
  • laminin is used as the extracellular matrix component
  • collagen I is used as the extracellular matrix component
  • chondroitin sulfate C is used as the polymer electrolyte
  • collagen IV is used as the extracellular matrix component
  • heparin is used as the polymer electrolyte.
  • fibronectin is used as the extracellular matrix component and polyacrylic acid is used as the polyelectrolyte
  • Table 4 shows the relative value of the thickness of the area where the number of cells of each tissue was counted, where the thickness of the area where the number of cells of the tissue constructed without mixing all three components was counted as 1.
  • the calculated number of cells per area of 100 ⁇ m in the thickness direction and 50 ⁇ m in the width direction is shown.
  • the lower row shows the number of cells obtained by subtracting the number of cells per area of the tissue constructed without using all three components from the number of cells per area.
  • the tissue constructed using Tris and extracellular matrix components and the tissue constructed using Tris, polyelectrolyte, and extracellular matrix components have a gap between them. It was a very good three-dimensional cellular tissue. On the other hand, in the tissue constructed without using the extracellular matrix component, there were many voids inside. In addition, a tissue constructed without using all three components and a tissue constructed using only Tris had low adhesion between cells, and the cells were unwound when the medium was replaced, causing the tissue to collapse. On the other hand, the tissue containing at least one of the polyelectrolyte and the extracellular matrix component was able to be exchanged without any problem, and could be cultured for a long time.
  • the tissue constructed using only Tris was about twice as thick as the tissue constructed without using all three components, but the cell layer and cell density were similar.
  • a tissue containing at least one of polyelectrolyte and extracellular matrix component together with Tris has a maximum thickness of 1.3 to 5.5 times that of a tissue constructed without using all three components.
  • both the cell layer and the cell density were smaller than the tissue constructed without using all three components.
  • the tissue containing Tris and extracellular matrix components not containing polyelectrolyte has a smaller number of layers per 10 ⁇ m and a similar number of cells than the tissue constructed with Tris alone. I found out. This is thought to be because the number of cells in the same position (position considered as the same layer) in the tissue is large. In other words, it is considered that the number of cells in the position where cells (nuclei) are regarded as the same layer in the tissue is large in the width direction (lateral direction) of the tissue.
  • the present invention a thicker three-dimensional cell tissue can be produced more quickly and easily. Therefore, the present invention is useful in the field of regenerative medicine. The present invention is also useful in pharmaceutical development.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Oncology (AREA)
  • Rheumatology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

立体的細胞組織を製造する方法は、細胞をカチオン性物質および細胞外マトリックス成分と混合して混合物を得るA工程と、得られた前記混合物から前記細胞を集め、基材上に細胞集合体を形成するB工程と、前記細胞を培養し、立体的細胞組織を得るC工程とを含む。

Description

立体的細胞組織の製造方法
 本発明は、立体的細胞組織の製造方法に関する。
 本願は、2016年2月22日に日本に出願された特願2016-030916号に基づき優先権を主張し、その内容をここに援用する。
 近年、再生医療はもとより、生体に近い環境が求められる薬剤のアッセイ系において、平板上で成育させた細胞よりも立体的に組織化させた三次元細胞組織を使用することの優位性が示されている。そのため、生体外で細胞の三次元組織を構築するための様々な技術が開発されている。例えば、細胞が付着できない表面基板上で塊を形成させる方法(特許文献1)や液滴中で塊を形成させる方法(特許文献2)、透過性膜上に細胞を集積させる方法(特許文献3)等が開発されている。このような細胞の組織化を維持するためには、生体自身が産生するコラーゲンなどの細胞外マトリックス(ECM)が細胞間の結合や足場形成に必要である。そのため、人為的に細胞組織を構築する際、ECMを外部から添加することが検討されてきた(特許文献4~7)。特許文献5には、酵素処理等により単離した細胞を、代表的なECMであって細胞保護作用を有する水溶性高分子であるコラーゲン等と接触させた後、三次元集合体として培養する方法が開示されている。この方法によれば、培養中に細胞周辺で水溶性高分子のゲルが形成される。
 特許文献8および非特許文献1には、温度応答性の樹脂であるpoly(N-isopropylacrylamide)(PIPAAm)を表面に固定化した培養皿を用いて細胞シートを作製し、作製した細胞シートを積層することで三次元組織を構築する方法が開示されている。この方法は細胞シートの剥離を必須とするが、細胞の形状を維持させつつ剥離するのは困難である。 
  非特許文献2には、細胞膜と静電相互作用をするナノ磁性微粒子を含むマグネタイトカチオニックリポソーム(MCL)を用いて細胞の三次元組織を構築する方法が開示されている。しかしながら、この方法では、細胞層の厚みや三次元配置の制御が困難である。
 特許文献9には、細胞層の形成と、前記細胞層を第1物質含有液と第2物質含有液とに交互に接触させる工程とを繰り返し行い、ナノメートルサイズの厚みのECM(細胞外マトリックス)を介して連続的に細胞層を積層することで、三次元組織を構築する方法が開示されている。この方法では、単層の細胞シートの剥離や剥離した細胞シートの重ね合わせ等が不要であるため、優れた再現性・効率で三次元組織を製造できるとされている。しかしながら、細胞層を一層ずつ培養するため、三次元組織の構築に長時間を要する。また、同一平面内に多種細胞の配置をさせることが困難であるため、三次元配置のバリエーションに限界がある。
 特許文献10には、細胞の表面全体が接着膜で被覆された被覆細胞を作製し、接着膜を介して細胞を接着させることにより、三次元組織を構築する方法が開示されている。この方法では、被覆細胞の作製のために多数回の遠心分離工程が必要とされる。そのため、細胞の種類によっては物理的ダメージを受ける可能性がある。また、遠心分離時の上清除去と共に細胞が失われ、細胞の回収率が低下する場合もある。
 本発明者らは、以前に、正常ヒト皮膚線維芽細胞(NHDF)をフィブロネクチン(FN)、ヘパリン(Hep)、またはデキストラン硫酸(DS)と混合し、次いで混合物を遠心分離に供することよって、ゲル様の細胞集合体が形成されることを見出した(非特許文献3)。また、このゲル様の細胞集合体を特許文献10に記載の方法に用いることで、三次元組織を構築した。しかし、上記方法では、厚い組織を得ることは困難である。
日本国特許第4159103号明細書 日本国特許第5847733号明細書 日本国特許第5669741号明細書 日本国特開昭63-222685号公報 日本国特許第2824081号明細書 日本国特許第5458259号明細書 日本国特許第5409009号明細書 国際公開第2002/008387号 日本国特許第4919464号明細書 日本国特許第5850419号明細書
Joseph  Yang  et  al.,Biomaterials,26,2005,6415-6422 Akira  Ito  et  al.,Tissue  engineering,10(5-6),2004,833-840 Akihiro Nishiguchi et  al., Macromol Biosci. 2015 Mar;15(3):312-7
 本発明の解決すべき課題は、従来技術と比較して、より迅速かつ簡便に、より厚い立体的細胞組織を製造できる方法を提供すること等である。
 本発明者らは、上記課題を解決せんと鋭意研究を重ねたところ、細胞をカチオン性物質、高分子電解質、および細胞外マトリックス成分と混合することにより得られた混合物を用いることにより、多数回の遠心処理を要するような従来技術と比較してより迅速かつ簡便に、より厚い立体的細胞組織を製造できる方法を見出し、本発明を完成するに至った。
 本発明の第一態様に係る立体的細胞組織を製造する方法は、細胞をカチオン性物質および細胞外マトリックス成分と混合して混合物を得るA工程と、得られた前記混合物から前記細胞を集め、基材上に細胞集合体を形成するB工程と、前記細胞を培養し、立体的細胞組織を得るC工程とを含む。
 上記第一態様において、前記A工程において、前記細胞を前記カチオン性物質および前記細胞外マトリックス成分並びに高分子電解質と混合してもよい。
 上記第一態様において、前記A工程の後に、得られた前記混合物から液体部分を除去し、細胞集合体を得るA’-1工程、および前記細胞集合体を溶液に懸濁して懸濁液を得るA’-2工程、をさらに含み、かつ前記B工程に代えて、得られた前記懸濁液から前記細胞を沈殿させ、前記基材上に細胞集合体を形成するB’工程を含んでもよい。
 上記第一態様において、前記B工程または前記A’-1工程における前記細胞集合体がスラリー状の粘稠体であってもよい。
 上記第一態様において、前記A’-1工程における液体部分を除去する方法が、遠心分離またはろ過であってもよい。
 上記第一態様において、前記B工程または前記B’工程における前記細胞を集める方法が、遠心分離、磁性分離、またはろ過であってもよい。
 上記第一態様において、前記B工程における前記細胞集合体または前記B’工程における前記細胞集合体が層状であってもよい。
 上記第一態様において、前記高分子電解質が、グリコサミノグリカン、デキストラン硫酸、ラムナン硫酸、フコイダン、カラギナン、ポリスチレンスルホン酸、およびポリアクリルアミド-2-メチルプロパンスルホン酸、ポリアクリル酸、ならびにそれらの組み合わせからなる群から選択されてもよい。
 上記第一態様において、前記細胞外マトリックス成分が、コラーゲン、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、プロテオグリカン、およびそれらの組み合わせからなる群から選択されてもよい。
 上記第一態様において、前記カチオン性物質がトリス-塩酸緩衝液、トリス-マレイン酸緩衝液、ビス-トリス-緩衝液、またはHEPESであってもよい。
 上記第一態様において、前記高分子電解質の濃度が0.05mg/mL以上0.1mg/mL以下であってもよい。
 上記第一態様において、前記細胞外マトリックス成分の濃度が0.05mg/mL以上0.1mg/mL以下であってもよい。
 上記第一態様において、前記高分子電解質と前記細胞外マトリックス成分との配合比が1:2~2:1であってもよい。
 上記第一態様において、前記A工程における前記細胞が複数種類の細胞であってもよい。
 上記第一態様において、前記複数種類の細胞が、神経細胞、樹状細胞、免疫細胞、血管内皮細胞、リンパ管内皮細胞、線維芽細胞、癌細胞、癌幹細胞、上皮細胞、心筋細胞、肝細胞、膵島細胞、組織幹細胞、iPS細胞、ES細胞および平滑筋細胞からなる群から選択されてもよい。
 上記第一態様において、得られた前記立体的細胞組織の厚さが5~500μmであってもよい。
 上記第一態様において、得られた前記立体的細胞組織における細胞層の数が1~100層であってもよい。 
 上記第一態様において、得られた前記立体的細胞組織の厚みが最大となる領域における前記厚み方向100μm幅方向50μmの面積あたりの前記細胞数が70個以下であってもよい。
 上記第一態様において、前記C工程において、前記細胞をROCK阻害剤の存在下で培養してもよい。
 上記第一態様において、得られた立体的細胞組織の厚み10μmあたりの細胞層の数が2.8層以下であってもよい。
 上記第一態様において、得られた前記立体的細胞組織が複数種類の細胞を含んでいてもよい。
 上記第一態様において、得られた前記立体的細胞組織が脈管構造を有していてもよい。
 本発明の第二態様に係るキットは、上記第一態様に係る立体的細胞組織を製造する方法を実施するためのキットであって、前記細胞、前記カチオン性物質、および前記細胞外マトリックス成分から選択される少なくとも1つの試薬を含んでいる。
 上記第二態様に係るキットは、さらに、高分子電解質を含んでいてもよい。
 本発明の第三態様に係る立体的細胞組織は、細胞と、細胞外マトリックス成分とを含有し、厚さが150μm以上であり、かつ前記厚さが最大となる領域における前記厚さ方向100μm幅方向50μmの面積あたりの前記細胞数が70個以下である。
 上記第三態様に係る立体的細胞組織は、さらに、高分子電解質を含有していてもよい。
 上記第三態様において、前記細胞外マトリックス成分が、コラーゲン、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、プロテオグリカン、およびそれらの組み合わせからなる群から選択されてもよい。
 上記第三態様において、前記高分子電解質が、グリコサミノグリカン、デキストラン硫酸、ラムナン硫酸、フコイダン、カラギナン、ポリスチレンスルホン酸、ポリアクリルアミド-2-メチルプロパンスルホン酸、およびポリアクリル酸ならびにそれらの組み合わせからなる群から選択されてもよい。
 本発明の上記各態様によれば、従来技術と比較してより迅速かつ簡便に立体的細胞組織を製造することができる。また、本発明の上記各態様の方法を用いることで、従来技術と比較してより厚い立体的細胞組織を製造することができる。これにより、これまで構築できなかった厚さの立体的細胞組織を製造することが可能になる。
ヘパリンおよびコラーゲンを用いて構築された立体的細胞組織のHE染色の結果を示す。 ヘパリンおよびコラーゲンを用いて構築された立体的細胞組織のHE染色の結果を示す。サンプルAでは、細胞とヘパリンおよびコラーゲンの混合物をそのままセルカルチャーインサートに播種した。サンプルBでは、細胞とヘパリンおよびコラーゲンの混合物を遠心して得られた粘稠体を用いた。 ヘパリンおよびコラーゲンを用いて構築された立体的細胞組織のHE染色の結果を示す。 連続積層によって構築した、3層組織体および5層組織体の蛍光顕微鏡観察結果を示す。 癌組織モデルのHE染色の結果および蛍光顕微鏡観察結果を示す。 組織体の収縮抑制の検討結果を示す。(a)3.5×10細胞/10%FBS含有DMEM、(b)3.5×10細胞/10%FBS含有DMEM(5μM Y-27632添加)、(c)5.0×10細胞/10%FBS含有DMEM(5μM Y-27632添加)。 脈管構造を有する立体的細胞組織の蛍光顕微鏡観察結果を示す。(a)セルカルチャーインサートの全体像、(b)(a)において四角で囲った領域の拡大図。 脈管構造を有する立体的細胞組織のHE染色および免疫染色の結果を示す。 ヘパリンおよびコラーゲンを用いずに構築した組織体(比較例1)を示す。 特許文献5に記載の方法を用いた場合の組織体(比較例2)を示す。(a)は得られた組織の全体図、(b)はその拡大図を示す。1×10細胞のNHDFを用いた。 特許文献5に記載の方法を用いた場合の組織体(比較例2)を示す。(a)は得られた組織の全体図、(b)はその拡大図を示す。1×10細胞のNHDFを用いた。 特許文献5に記載の方法を用いた場合の組織体(比較例2)を示す。(a)は得られた組織の全体図、(b)はその拡大図を示す。3.5×10細胞のNHDFを用いた。
 本発明の一実施形態に係る立体的細胞組織を製造する方法は、
(A)細胞をカチオン性物質および細胞外マトリックス成分と混合する工程、
(B)得られた混合物から細胞を集め、基材上に細胞集合体を形成する工程、および
(C)細胞を培養し、立体的細胞組織を得る工程
を含む方法に関する。
 本発明においては、工程(A)において、細胞をカチオン性物質および細胞外マトリックス成分と混合し、この細胞混合物から細胞集合体を形成することにより、内部に大きな空隙が少ない立体的細胞組織を得ることができる。また、得られた立体的細胞組織は、比較的安定であるため、少なくとも数日間の培養が可能であり、かつ培地交換時にも組織が崩壊し難い。
 工程(A)において、細胞をさらに高分子電解質と混合することが好ましい。細胞をカチオン性物質、高分子電解質および細胞外マトリックス成分と混合することにより、より効率良く空隙が少なく厚みのある立体的細胞組織が得られる。
 本実施形態に係る方法は、工程(A)の後に、(A’-1)得られた混合物から液体部分を除去し、細胞集合体を得る工程、および(A’-2)細胞集合体を溶液に懸濁する工程、を含み、かつ工程(B)に代えて、(B’)得られた懸濁液から細胞を沈殿し、基材上に細胞の沈殿体を形成する工程を含んでもよい。上述の工程(A)~(C)を実施することで所望の組織体を得ることができるが、工程(A)の後に(A’-1)および(A’-2)を実施し、工程(B)に代えて工程(B’)を実施することで、より均質な組織体を得ることができる。
 本実施形態の方法において、細胞とカチオン性物質、高分子電解質、および細胞外マトリックス成分との混合は、ディッシュ、チューブ、フラスコ、ボトル、プレートなどの適当な容器中で行われてもよく、工程(B)において用いられる基材上で行われてもよい。工程(A’-2)における懸濁もまた、ディッシュ、チューブ、フラスコ、ボトル、プレートなどの適当な容器中で行われてもよく、工程(B’)において用いられる基材上で行われてもよい。
 本明細書において、「立体的細胞組織」とは、少なくとも一種類の細胞を含む立体的な集合体を意味する。本実施形態によって構築される立体的細胞組織には、皮膚、毛髪、骨、軟骨、歯、角膜、血管、リンパ管、心臓、肝臓、膵臓、神経、食道などの生体組織、ならびに固形癌モデル(例えば、胃癌、食道癌、大腸癌、結腸癌、直腸癌、膵臓癌、乳癌、卵巣癌、前立腺癌、腎細胞癌、肝癌など)が挙げられるが、これらに限定されない。
 本明細書において、「細胞集合体」とは細胞の集団を意味する。細胞集合体には、遠心分離やろ過などによって得られる細胞の沈殿体(細胞を沈殿させることにより形成された細胞の集合体)も含まれる。ある実施形態では、細胞集合体はスラリー状の粘稠体である。本明細書において、「スラリー状の粘稠体」とは、Akihiro Nishiguchi et  al., Macromol Biosci. 2015 Mar;15(3):312-7(非特許文献3)に記載されるようなゲル様の細胞集合体を指す。
 本実施形態で用いられるカチオン性物質としては、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、任意の正電荷を有する物質を用いることができる。カチオン性物質には、トリス-塩酸緩衝液、トリス-マレイン酸緩衝液、ビス-トリス-緩衝液、およびHEPESなどのカチオン性緩衝液、ならびにエタノールアミン、ジエタノールアミン、トリエタノールアミン、ポリビニルアミン、ポリアリルアミン、ポリリシン、ポリヒスチジン、およびポリアルギニンが挙げられるが、これらに限定されない。本実施形態で用いられるカチオン性物質はカチオン性緩衝液であることが好ましい。本実施形態で用いられるカチオン性物質はトリス-塩酸緩衝液であることがより好ましい。
 カチオン性物質の濃度は、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。本実施形態で用いられるカチオン性物質の濃度は10~100mMであることが好ましい。例えば、本実施形態で用いられるカチオン性物質の濃度は、20~90mM、30~80mM、40~70mM、45~60mMであることが好ましい。本実施形態で用いられるカチオン性物質の濃度は50mMであることがより好ましい。
 カチオン性物質としてカチオン性緩衝液が用いられる場合、カチオン性緩衝液のpHは、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。本実施形態で用いられるカチオン性緩衝液のpHは6.0~8.0であることが好ましい。例えば、本実施形態で用いられるカチオン性緩衝液のpHは、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、または8.0である。本実施形態で用いられるカチオン性緩衝液のpHは7.2~7.6であることがより好ましい。本実施形態で用いられるカチオン性緩衝液のpHは7.4であることがさらに好ましい。
 本明細書において、「高分子電解質」とは、高分子鎖中に解離可能な官能基を有する高分子を意味する。本実施形態で用いられる高分子電解質としては、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、任意の高分子電解質を用いることができる。高分子電解質には、ヘパリンや、コンドロイチン硫酸(例えば、コンドロイチン4-硫酸、コンドロイチン6-硫酸)、ヘパラン硫酸、デルマタン硫酸、ケラタン硫酸、ヒアルロン酸等のグリコサミノグリカン;デキストラン硫酸や、ラムナン硫酸、フコイダンや、カラギナン、ポリスチレンスルホン酸、およびポリアクリルアミド-2-メチルプロパンスルホン酸、ポリアクリル酸等が挙げられるが、これらに限定されない。これらの高分子電解質は、単独で用いてもよく、組み合わせて用いてもよい。本実施形態で用いられる高分子電解質はグリコサミノグリカンであることが好ましい。また、本実施形態で用いられる高分子電解質はヘパリンまたはデキストラン硫酸、コンドロイチン硫酸、またはデルマタン硫酸であることがより好ましい。本実施形態で用いられる高分子電解質はヘパリンであることがさらに好ましい。細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、上述の高分子電解質の誘導体を用いてもよい。
 高分子電解質の濃度は、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。本実施形態で用いられる高分子電解質の濃度は0mg/mL超1.0mg/mL未満であることが好ましい。本実施形態で用いられる高分子電解質の濃度は0.025mg/mL以上0.1mg/mL以下がより好ましい。例えば、0.025、0.05、0.075、または0.1mg/mLである。本実施形態で用いられる高分子電解質の濃度は0.05mg/mL以上0.1mg/mL以下であることがさらに好ましい。本実施形態で用いられる高分子電解質の濃度は0.05mg/mLであることがさらに好ましい。本実施形態において、高分子電解質を適切な溶媒に溶解して用いてもよい。溶媒の例としては、水および緩衝液が挙げられるが、これらに限定されない。上述のカチオン性物質としてカチオン性緩衝液が用いられる場合、高分子電解質をカチオン性緩衝液に溶解して用いてもよい。
 本実施形態で用いられる細胞外マトリックス成分としては、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、細胞外マトリックス(ECM)を構成する任意の成分を用いることができる。細胞外マトリックス成分には、コラーゲンや、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、およびプロテオグリカン等が挙げられるが、これらに限定されない。これらの細胞外マトリックス成分は、単独で用いてもよく、組み合わせて用いてもよい。プロテオグリカンには、コンドロイチン硫酸プロテオグリカン、ヘパラン硫酸プロテオグリカン、ケラタン硫酸プロテオグリカン、デルマタン硫酸プロテオグリカンが挙げられるが、これらに限定されない。本実施形態で用いられる細胞外マトリックス成分はコラーゲン、ラミニン、フィブロネクチンであり、中でもコラーゲンであることが好ましい。細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、上述の細胞外マトリックス成分の改変体およびバリアントを用いてもよい。
 細胞外マトリックス成分の濃度は、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。本実施形態で用いられる細胞外マトリックス成分の濃度は0mg/mL超1.0mg/mL未満であることが好ましい。本実施形態で用いられる細胞外マトリックス成分の濃度は0.025mg/mL以上0.1mg/mL以下であることがより好ましく、例えば、0.025、0.05、0.075、または0.1mg/mLである。本実施形態で用いられる細胞外マトリックス成分の濃度は0.05mg/mL以上0.1mg/mL以下であることがさらに好ましい。本実施形態で用いられる細胞外マトリックス成分の濃度は0.05mg/mLであることがさらに好ましい。本実施形態において、細胞外マトリックス成分を適切な溶媒に溶解して用いてもよい。溶媒の例としては、水、緩衝液、酢酸などが挙げられるが、これらに限定されない。本実施形態では、細胞外マトリックス成分は緩衝液または酢酸に溶解されることが好ましい。
 本実施形態では、高分子電解質と細胞外マトリックス成分との配合比は1:2~2:1であることが好ましい。本実施形態で用いられる高分子電解質と細胞外マトリックス成分との配合比は1:1.5~1.5:1であることがより好ましい。本実施形態で用いられる高分子電解質と細胞外マトリックス成分との配合比は1:1であることがさらに好ましい。
 本実施形態に係る方法に用いられる細胞は特に限定されないが、例えば、ヒトや、サル、イヌ、ネコ、ウサギ、ブタ、ウシ、マウス、ラット等の動物に由来する細胞である。細胞の由来部位も特に限定されず、骨や、筋肉、内臓、神経、脳、骨、皮膚、血液等などに由来する体細胞であってもよく、生殖細胞であってもよい。さらに、本実施形態に係る方法に用いられる細胞は、誘導多能性幹細胞細胞(iPS細胞)、胚性幹細胞(ES細胞)であってもよい。あるいは、初代培養細胞や、継代培養細胞、および細胞株細胞などの培養細胞であってもよい。一種類の細胞を用いてもよいし、複数種類の細胞を用いてもよい。本実施形態に係る方法に用いられる細胞には、例えば、神経細胞や、樹状細胞、免疫細胞、血管内皮細胞、リンパ管内皮細胞、線維芽細胞、肝癌細胞等の癌細胞、上皮細胞、心筋細胞、肝細胞、膵島細胞、組織幹細胞、平滑筋細胞等が挙げられるが、これらに限定されない。
 本実施形態に係る方法により得られる立体的細胞組織は、一種類の細胞を含んでいてもよく、複数種類の細胞を含んでいてもよい。本実施形態では、立体的細胞組織に含まれる細胞は、神経細胞、樹状細胞、免疫細胞、血管内皮細胞、リンパ管内皮細胞、線維芽細胞、癌細胞、上皮細胞、心筋細胞、肝細胞、膵島細胞、組織幹細胞、および平滑筋細胞からなる群から選択される。また、本実施形態に係る方法により得られる立体的細胞組織は、脈管構造を有していてもよい。「脈管構造」とは、生体組織における血管網やリンパ管網のような、ネットワーク状の構造を指す。
 本実施形態の上記方法では、工程(A’-1)における液体部分を除去する手段として、当業者に公知の手法を用いることができる。例えば、遠心分離やろ過によって、液体部分を除去してもよい。遠心分離の条件は、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。例えば、混合物の入ったマイクロチューブを室温、400×gで1分間の遠心分離に供して液体部分と細胞集合体とを分離することによって、液体部分を除去する。あるいは、自然沈降によって細胞を集めた後、液体部分を除去してもよい。
 本実施形態の上記方法の工程(A’-2)において用いられる溶液は、細胞の生育および細胞集合体の形成に悪影響を及ぼさない限り、特に限定されない。例えば、使用される細胞に適した細胞培養培地または緩衝液が用いられる。
 本実施形態の上記方法の工程(B)または(B’)において用いられる基材には、細胞の培養に用いるための培養容器が挙げられる。培養容器は、細胞や微生物の培養に通常用いられている素材、形状を有する容器であってよい。培養容器の素材としては、ガラスや、ステンレス、プラスチックなどが挙げられるが、これらに限定されない。培養容器としては、ディッシュや、チューブ、フラスコ、ボトル、プレートなどが挙げられるが、これらに限定されない。基材は、例えば、液体中の細胞を通過させず、液体を通すことが可能な材料である。
 本実施形態で用いられる基材は透過膜であることが好ましい。かかる透過膜を有する容器としては、Transwell(登録商標)インサート、Netwell(登録商標)インサート、Falcon(登録商標)セルカルチャーインサート、Millicell(登録商標)セルカルチャーインサートなどのセルカルチャーインサートが挙げられるが、これらに限定されない。
 本実施形態の上記方法では、工程(B)または(B’)における細胞を集める手段として、当業者に公知の手法を用いることができる。例えば、遠心分離、磁性分離、またはろ過によって、細胞を集めてもよい。遠心分離の条件は、細胞の生育に悪影響を及ぼさない限り、特に限定されない。例えば、混合物または懸濁液をセルカルチャーインサートに播種し、10℃、400×gで1分間の遠心分離に供することで、細胞を集める。あるいは、自然沈降によって細胞を集めてもよい。工程(B’)では、例えば遠心分離やろ過によって懸濁液から液体部分を除去することで、基材上に細胞の沈殿体を形成してもよい。あるいは、自然沈降によって基材上に細胞の沈殿体を形成してもよい。工程(B)における細胞集合体または工程(B’)における細胞の沈殿体は層状であってもよい。
 本実施形態では、構築された立体的細胞組織の変形(例えば、組織の収縮、組織末端の剥離等)を抑制するための物質が用いられる。このような物質としては、選択的ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤であるY-27632が挙げられるが、これに限定されない。本実施形態では、当該物質の存在下で工程(C)を行う。当該物質の存在下で細胞集合体を培養することにより構築された立体的細胞組織の収縮が抑制される。その結果、構築された組織がセルカルチャーインサート等の基材から剥離することが抑制される。例えば、工程(A)において、このような物質をさらに混合してもよい。あるいは、工程(A’-2)において用いる溶液に、このような物質をさらに添加してもよい。あるいは、工程(C)で細胞を培養する際に、このような物質を培地に添加してもよい。
 本実施形態の上記方法の工程(C)において、細胞の培養は、培養される細胞に適した培養条件下で行うことができる。当業者は、細胞の種類や所望の機能に応じて適切な培地を選択することができる。培養温度や培養時間等の諸条件もまた、当業者が容易に定めうる。
 本実施形態の上記方法の工程(A)~(B)または(A)~(B’)を繰り返すことで、細胞集合体または細胞の沈殿体を積層することが可能である。これにより、複数の層を有する立体的細胞組織を構築することができる。この場合、複数種類の細胞を用いて、異なる種類の細胞によって構成される立体的細胞組織を構築してもよい。本実施形態では、構築される立体的細胞組織の厚さは約5~約300、約400、あるいは約500μmである。好ましくは、150μm以上、より好ましくは200μm以上、さらに好ましくは250μm以上である。本発明の上記方法の工程(A)~(B)または(A)~(B’)を繰り返すことにより、例えば、厚さが150~500μmと厚みがあるにもかかわらず、内部に空隙の少ない立体的細胞組織が得られる。本実施形態では、構築される立体的細胞組織における細胞層の数は1~約100層であることが好ましく、10~約100層であることがより好ましい。細胞層とは、立体的細胞組織の厚み方向の断面の切片画像において、細胞核を認識できる倍率、つまり、染色した切片の厚みの全体が視野に入る倍率で観察した際に、細胞の自重、高さ方向に対して細胞核が重ならない時に別の層と定義する。なお、その際、自重と垂直(横)方向の視野は、少なくとも200μm以上は確保する。なお、本実施形態においては、100~200倍の倍率で立体的細胞組織の厚み方向の断面の切片画像を観察する。
 本実施形態の上記方法の工程(A)~(B)または(A)~(B’)を繰り返すことで得られた立体的細胞組織は、従来の細胞の積層方法により得られた立体的細胞組織と比較して、単位厚み当たりの細胞層の数が少ない。本実施形態において、構築される立体的細胞組織は、生体外で得られる。また、本実施形態に係る立体的細胞組織は、細胞と、細胞外マトリックス成分とを含有し、厚み10μm当たりの細胞層の数が、2.8層以下であり、好ましくは2.5層以下であり、より好ましくは2.2層以下である。本実施形態において、得られた立体的細胞組織において、厚みが最大となる位置(最大地点)を含む領域における厚み方向100μm、幅方向50μmの面積あたりの細胞数が5個以上70個以下であることが好ましく、10個以上60個以下であることがより好ましく、15個以上50個以下であることがさらに好ましい。
 本明細書において、立体的細胞組織の厚みとは組織の自重方向の長さである。自重方向とは重力のかかる方向である。本実施形態においては、組織の厚み方向の断面からなる切片を用いて、細胞数を以下のように測定することができる。当該切片において、所定の大きさ以上の空隙がない領域のうち、立体的細胞組織の厚みが最大になる位置(最大地点)を決定する。厚みの最大値付近を含む幅50μmの短冊状(組織の天面から底面までを含む)の領域を測定領域として、当該測定領域中に含まれる細胞核の数を計数する。当該測定領域には空隙を含まないようにする。なお、空隙の所定の大きさとは、最大径50μm以上をいう。空隙の最大径とは空隙が矩形の場合は長辺、球形の場合は直径、楕円形の場合は長径、不定形の場合は略楕円に近似した場合の長径をいう。なお、HE染色した切片上で空隙は染色されない。但し、厚みの最大値を含む領域の天面が凸形状の場合、組織が基材から剥離している場合もある。このような場合はその最大値近傍でかつ天面が比較的平坦な領域を測定領域とする。この場合、厚みの最大値付近を含む幅方向100μm~650μmの領域を測定領域とする。
 計数した当該測定領域に少なくとも一部分が含まれている細胞核は、測定領域に含まれる細胞核として計数する。計数した細胞数から、厚み方向100μm、幅方向50μmの面積あたりの前記細胞数を算出する。
 本発明の一実施形態に係るキットは、上記実施形態に係る方法を実施するためのキットであって、細胞、カチオン性物質、高分子電解質または細胞外マトリックス成分から選択される少なくとも1つの試薬を含む。通常、これらの試薬は適切な容器に入れて提供される。かかるキットは、上記実施形態の方法の実施を簡便にするための適当な試薬、例えば希釈液や、バッファー、および洗浄試薬などを含んでもよい。また、ディッシュや、セルカルチャーインサート、チューブ、フラスコ、ボトル、プレートなどの適当な基材を含んでもよい。さらに、上記実施形態の方法の実施に必要な説明書などの資材を含んでもよい。
 本発明の上記実施形態に係る方法によれば、細胞を遠心分離に供する回数は2回までで済む。従来法は操作が煩雑であり、遠心分離も多用する。したがって、本発明の上記実施形態に係る方法を用いることで、遠心分離の回数を減らすことができ、細胞のダメージを低減できる。また、操作中の細胞のロスを減らすことができ、高い細胞回収率を達成することができる。
 以下に実施例を示して本発明をより詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものではない。
実施例1.ヘパリンおよびコラーゲンを用いた立体的細胞組織の構築(1)
 以下の実施例において、特に説明がない限り、コラーゲンとしてコラーゲンIを用いた。
 3.5×10細胞の正常ヒト皮膚線維芽細胞(NHDF)を、150μLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLのコラーゲン/50mM トリス-塩酸緩衝液(pH7.4)溶液との混合液に懸濁した。用いたヘパリンおよびコラーゲンの終濃度の組み合わせは図1に示す通りである。得られた懸濁液を24well セルカルチャーインサート(Corning Inc、カタログ番号:3470)内に播種し、10℃、400×gで1分間、遠心した。これにより、セルカルチャーインサート上に細胞層を形成した。次いで、10%ウシ胎児血清(FBS)含有ダルベッコ改変イーグル培地(DMEM)をセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片について、ヘマトキシリン・エオジン染色(HE染色)を行った。HE染色は公知の方法に従った。
 HE染色の結果を図1に示す。ヘパリン単独およびコラーゲン単独の場合では、組織の形成は見られなかった。ヘパリン濃度が1.0mg/mL以上かつコラーゲン濃度が1.0mg/mL以上の場合では、コラーゲンの凝集形成と組織の収縮が観察された。これらの結果から、NHDFを用いる場合には、ヘパリン濃度およびコラーゲン濃度は、いずれも、0mg/mL超1.0mg/mL未満が好ましいことが示された。なお、コラーゲンの凝集形成は、コラーゲン/50mM トリス-塩酸緩衝液(pH7.4)溶液の代わりに、コラーゲン/酢酸溶液(pH3.7)を用いることで改善された。また、ヘパリン、コラーゲン、及び細胞の懸濁液をセルカルチャーインサート内に播種した後、遠心操作をせずに自然沈降よって細胞層を形成させた場合であっても、立体的細胞組織を構築することができた。
実施例2.ヘパリンおよびコラーゲンを用いた立体的細胞組織の構築(2)
 3.5×10細胞のNHDFを、250μLの0.1mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.1mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.05mg/mLであった)に懸濁した。以下の通り、サンプルAおよびBを作製した。
 (i)サンプルA
 得られた混合物を24well セルカルチャーインサート内に播種し、10℃、400×gで1分間、遠心した。これにより、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 (ii)サンプルB
 得られた混合物を室温、400×gで1分間、遠心し、粘稠体を得た。得られた粘稠体を10%FBS含有DMEMに懸濁した。得られた懸濁液を24well セルカルチャーインサート内に播種し、10℃、400×g(重力加速度)で1分間、遠心した。これにより、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色の結果を図2に示す。サンプルAでは、構築された組織の末端がセルカルチャーインサート表面から剥離していた。中央付近の組織の解離もわずかながら観察されたが、全体として立体的細胞組織を得ることができた。サンプルBでは、サンプルAに比べて均一な立体的細胞組織が得られた。これらの結果から、細胞、ヘパリン、およびコラーゲンの混合物を培養容器に播種する前に、混合物から粘稠体を得て、この粘稠体を使用することで、より均一な立体的細胞組織を得ることができることが示された。また、サンプルBに関して、粘稠体の懸濁液をセルカルチャーインサート内に播種した後、遠心操作をせずに自然沈降によって細胞層を形成させた場合であっても、立体的細胞組織を構築することができた。
実施例3.ヘパリンおよびコラーゲンの濃度のさらなる検討
 3.5×10細胞のNHDFを、250μLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLのコラーゲン/酢酸溶液(pH3.7)との混合液に懸濁した。用いたヘパリンおよびコラーゲンの濃度の組み合わせは図3に示す通りである。得られた混合物を室温、400×gで1分間、遠心し、粘稠体を得た。得られた粘稠体を10%FBS含有DMEMに懸濁した。得られた懸濁液を24well セルカルチャーインサート内に播種し、10℃、400×gで1分間、遠心した。これにより、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。
 パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色の結果を図3に示す。コラーゲンの終濃度が0.075mg/mL以上の場合、構築された組織の両端のセルカルチャーインサート表面からの剥離が顕著に観察された。
実施例4.連続積層組織体の構築
 セルトラッカーグリーンで予め蛍光染色したNHDFとセルトラッカーレッドで予め蛍光染色したNHDFとを用いて、連続積層組織体を構築した。組織体の構築手順は以下の通りである。
 (i)3層組織体
 1.0×10細胞のセルトラッカーレッドで予め蛍光染色したNHDFを、150μLの0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLの0.2mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.1mg/mLであった)に懸濁した。実施例2の(ii)の手順に従って、セルカルチャーインサート上に第1の細胞層を形成した。同様の手法により、1.0×10細胞のセルトラッカーグリーンで予め蛍光染色したNHDFを用いて、第1の細胞層上に第2の細胞層を形成した。さらに、同様の手法により、1.0×10細胞のセルトラッカーレッドで予め蛍光染色したNHDFを用いて、第2の細胞層上に第3の細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、凍結切片を作製した。凍結切片の作製は公知の方法に従った。
 (ii)5層組織体
 0.6×10細胞のセルトラッカーグリーンで予め蛍光染色したNHDFを、150μLの0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLの0.2mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液に懸濁した。実施例2の(ii)の手順に従って、セルカルチャーインサート上に第1の細胞層を形成した。同様の手法により、0.6×10細胞のセルトラッカーレッドで予め蛍光染色したNHDFを用いて、第1の細胞層上に第2の細胞層を形成した。さらに、同様の手法により、0.6×10細胞のセルトラッカーグリーンで予め蛍光染色したNHDFを用いて、第2の細胞層上に第3の細胞層を形成した。さらに、同様の手法により、0.6×10細胞のセルトラッカーレッドで予め蛍光染色したNHDFを用いて、第3の細胞層上に第4の細胞層を形成した。さらに、同様の手法により、0.6×10細胞のセルトラッカーグリーンで予め蛍光染色したNHDFを用いて、第4の細胞層上に第5の細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、凍結切片を作製した。凍結切片の作製は公知の方法に従った。
 切片の蛍光顕微鏡観察結果を図4に示す。それぞれ、上図が組織体の全体図、下図がその拡大図である。構築された組織中に層構造が観察できる。
実施例5.癌組織モデルの構築
 NHDFと大腸癌細胞(HT29細胞)とを用いて、癌組織モデルを構築した。NHDFを予めセルトラッカーグリーンで蛍光染色した。また、HT29細胞を予めセルトラッカーレッドで蛍光染色した。3.5×10細胞(90% NHDF、10% HT29細胞)を、250μLの0.1mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.1mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.05mg/mLであった)に懸濁した。実施例2の(ii)の手順に従って、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。
 培養後、構築された組織を採取し、凍結切片を作製した。凍結切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色の結果および蛍光顕微鏡観察結果を図5に示す。(a)は凍結切片のHE染色の結果を示す。(b)は凍結切片の蛍光顕微鏡観察結果を示す。(c)は(a)の拡大図である。(d)は(b)の拡大図である。(d)中、白丸で囲った領域に、赤色で染色されたHT29細胞が観察された。
実施例6.組織体の収縮抑制
 Y-27632(Calbiochem、カタログ番号:688000)を用いて、構築された組織の収縮の抑制を検討した。本実施例では、実施例3(図3)において組織の両端のセルカルチャーインサート表面からの剥離が観察された、ヘパリンおよびコラーゲンの濃度を採用した。250μLの0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.2mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.1mg/mLであった)にNHDFを懸濁した。実施例2の(ii)の手順に従って、セルカルチャーインサート上に細胞層を形成した。用いた細胞数および粘稠体の懸濁に用いた溶液は、以下の表の通りである。
Figure JPOXMLDOC01-appb-T000001
  次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色の結果を図6に示す。Y-27632を添加することで、構築された組織体の収縮が抑制され、より均一な組織が得られた。また、5.0×10細胞を用いた場合であっても、組織の両端はセルカルチャーインサート(基材)の表面から剥離せず、より均一な組織体を得ることができた。組織体の平均厚さは270μmであった。
実施例7.脈管構造を有する立体的細胞組織の構築(1)
 2.0×10細胞のNHDFと3.0×10細胞のヒト臍帯静脈内皮細胞(HUVEC)とを、150μLの0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLの0.2mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.1mg/mLであった)に懸濁した後、室温、400×gで1分間、遠心し、粘稠体を得た。得られた粘稠体を10%FBS含有DMEMに懸濁後、得られた懸濁液を24well セルカルチャーインサート内に播種し、室温、400×gで1分間、遠心した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて8日間、培養した。培養後、抗CD31抗体(モノクローナルマウス抗ヒトCD31抗体、Clone JC70A、Code M0823、Dako)を一次抗体として、ヤギ抗マウスIgG-AlexaFluor(登録商標)488(Invitrogen(商標))を二次抗体として用いて、構築された組織を免疫染色した。免疫染色の方法は公知の方法に従った。
 免疫染色の結果を図7に示す。図7に示される通り、組織中にネットワーク血管網が形成された。
実施例8.脈管構造を有する立体的細胞組織の構築(2)
 1.0×10細胞のNHDFと1.0×10細胞のヒト臍帯静脈内皮細胞(HUVEC)とを、250μLの0.1mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.1mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.05mg/mLであった)に懸濁した。実施例2の(ii)の手順に従って、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて3日間、培養した。
 培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。また、抗CD31抗体(モノクローナルマウス抗ヒトCD31抗体、Clone JC70A、Code M0823、Dako)を用いて免疫染色を行った。
 免疫染色の方法は公知の方法に従った。発色基質には3,3’-Diaminobenzidine(DAB)、核染色試薬にはヘマトキシリンを用いた。
 HE染色の結果を図8に示す。図8に示される通り、CD31陽性細胞に囲まれた管腔構造が組織中に観察された。図7および図8に示される結果から、線維芽細胞と血管内皮細胞とを組み合わせて用いることで、血管網を有する立体的細胞組織を形成できることが示された。
比較例1.ヘパリンおよびコラーゲンを用いない場合
 10%FBS含有DMEMに懸濁した3.5×10細胞のNHDFを24well セルカルチャーインサート内に播種し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 比較例1のHE染色の結果を図9に示す。比較例1では、実施例よりも薄い組織しか構築できなかった。また組織の中央部分で解離が見られた。
比較例2.特許文献5に記載の方法を用いた場合
 特許文献5に記載の方法を採用した場合に、立体的細胞組織が構築できるかどうかを検証した。NHDFの培養液をマイクロチューブにて遠心し、上清を除去して細胞を回収した。回収した細胞を0.1%コラーゲン溶液(10%FBS含有DMEMに溶解したもの)と混合し、4℃で10分間、回転撹拌することによって細胞の懸濁液を得た。用いた細胞数は1×10細胞、1×10細胞、および3.5×10細胞であった。細胞懸濁液を室温、400×gで1分間、遠心し、上清を除去して、細胞集合体を得た。この細胞集合体をセルカルチャーインサートに播種し、室温、400×gで1分間、遠心した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 比較例2のHE染色の結果を図10~12に示す。各々の図において、(a)は得られた組織の全体図、(b)はその拡大図を示す。図10は1×10細胞のNHDFを用いた結果である。得られた組織の厚さは約5μmであり、組織中の個々の細胞は判別できなかった。図11は1×10細胞のNHDFを用いた結果である。得られた組織の厚さは約40μmであったが、組織中、細胞間に多数の隙間が見られた。図12は3.5×10細胞のNHDFを用いた結果である。得られた組織の厚さは約120μmであったが、組織中、細胞間に多数の隙間が見られた。すなわち、特許文献5に記載の方法を採用しても、所望の立体的細胞組織を得ることはできなかった。
比較例3.LbL法
 特許文献10に開示される三次元組織の製造方法(LbL法)に従って、フィブロネクチン-ゼラチン薄膜(FN-G薄膜)を形成した3.5×10細胞のNHDFをセルカルチャーインサートに播種した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を採取し、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 比較例3では、得られた組織の中央部分で解離が見られた。すなわち、3.5×10細胞以上の細胞を用いて、100μmを超える厚さの組織体を形成することができなかった。
実施例9.様々なカチオン性物質を用いた立体的細胞組織の構築
 カチオン性物質として、トリス、ビストリス、およびHEPESを用いて、ヘパリンとコラーゲンと共に細胞と混合し、立体的細胞組織を構築した。
 3.5×10細胞のNHDFを、250μLの0.1mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.1mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.05mg/mLであった)に懸濁し混合物を調製した。
 0.1mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液に代えて、0.1mg/mLのヘパリン/50mM ビストリス-塩酸緩衝液(pH7.4)溶液、0.1mg/mLのヘパリン/50mM トリス-マレイン酸緩衝液(pH7.4)溶液、0.1mg/mLのヘパリン/50mM HEPES緩衝液(pH7.4)、または0.1mg/mLのヘパリン/DMEM(酢酸添加、pH7.4-7.8)を用いて、同様にして、コラーゲンおよびヘパリンの終濃度がそれぞれ0.05mg/mLの混合物を調製した。
 また、3.5×10細胞のNHDFを、250μLの0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.2mg/mLのコラーゲン/酢酸溶液(pH3.7)との混合液(すなわち、コラーゲンおよびヘパリンの終濃度はそれぞれ0.1mg/mLであった)に懸濁し混合物を調製した。
 さらに、この0.2mg/mLのヘパリン/50mM トリス-塩酸緩衝液(pH7.4)溶液に代えて、0.2mg/mLのヘパリン/50mM ビストリス-塩酸緩衝液(pH7.4)溶液、0.2mg/mLのヘパリン/50mM トリス-マレイン酸緩衝液(pH7.4)溶液、0.2mg/mLのヘパリン/50mM HEPES緩衝液(pH7.4)、または0.2mg/mLのヘパリン/DMEM(酢酸添加、pH7.4-7.8)を用いて、同様にして、コラーゲンおよびヘパリンの終濃度がそれぞれ0.1mg/mLの混合物を調製した。
 対照として、3.5×10細胞のNHDFを、500μLの50mM トリス-塩酸緩衝液(pH7.4)溶液に懸濁し、コラーゲンおよびヘパリンの終濃度がそれぞれ0mg/mLである混合物を調製した。さらに、この50mM トリス-塩酸緩衝液(pH7.4)溶液に代えて、50mM ビストリス-塩酸緩衝液(pH7.4)溶液、50mM トリス-マレイン酸緩衝液(pH7.4)溶液、50mM HEPES緩衝液(pH7.4)、またはDMEM(酢酸添加、pH7.4-7.8)を用いて、同様にして、コラーゲンおよびヘパリンの終濃度がそれぞれ0mg/mLの混合物を調製した。
 得られた混合物を室温、400×gで1分間、遠心し、粘稠体を得た。得られた粘稠体を10%FBS含有DMEMに懸濁した。得られた懸濁液を24well セルカルチャーインサート内に播種し、室温、400×gで1分間、遠心した。これにより、セルカルチャーインサート上に細胞層を形成した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を10%ホルマリンで固定し、70%エタノールで浸漬後、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色した各評価切片から、構築された各立体的細胞組織の最大厚みを測定した。測定結果を表2に示す。この結果、カチオン性物質、ヘパリン、およびコラーゲンを細胞と混合して得られた立体的細胞組織は、いずれのカチオン性物質を用いた組織であっても、充分な厚みを有しており、かつ内部に空隙がほとんど観察されなかった。また、数日間安定して培養することができ、培地交換にも問題がなかった。これに対して、カチオン性物質を用いずにDMEM、ヘパリン、およびコラーゲンを細胞と混合して得られた立体的細胞組織は、ある程度の厚みはあるものの、内部に細かい空隙が多数存在していた。また、ヘパリンおよびコラーゲンを含まずにカチオン性物質のみ、あるいはDMEMのみで得られた組織は、内部に細かい空隙が多数存在しており、さらに組織自体が脆かった。そのため、数日間の培養にも耐えられず、培地交換時には細胞がばらばらになってしまった。
Figure JPOXMLDOC01-appb-T000002
実施例10.脈管構造を有する立体的細胞組織の構築(3)
 カチオン性物質としてトリスと、表3に記載の高分子電解質および細胞外マトリックス成分とをそれぞれ用いて、脈管構造を有する立体的細胞組織を構築した。
 2.0×10細胞のNHDFと3.0×10細胞のHUVECを、150μLの0.2mg/mLまたは0.1mg/mLの高分子電解質/50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLの0.2mg/mLまたは0.1mg/mLの細胞外マトリックス成分/酢酸溶液(pH3.7)との混合液(すなわち、高分子電解質および細胞外マトリックス成分の終濃度はそれぞれ0.1mg/mLまたは0.05mg/mLであった)に懸濁した。その後、懸濁液を室温、400×gで1分間、遠心し、粘稠体を得た。
 また、高分子電解質および細胞外マトリックス成分を用いない対照として、2.0×10細胞のNHDFと3.0×10細胞のHUVECを、150μLの50mM トリス-塩酸緩衝液(pH7.4)溶液と150μLの酢酸溶液(pH3.7)との混合液に懸濁した。その後、懸濁液を室温、400×gで1分間、遠心し、細胞集合体を得た。
 さらに、カチオン性物質をも用いない対照として、2.0×10細胞のNHDFと3.0×10細胞のHUVECとを、150μLのDMEMと150μLの酢酸溶液(pH3.7)との混合液に懸濁した。その後、懸濁液を室温、400×gで1分間、遠心し、細胞集合体を得た。
 得られた細胞集合体を10%FBS含有DMEMに懸濁後、得られた懸濁液を24well セルカルチャーインサート内に播種し、室温、400×gで1分間、遠心した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて5日間、培養した。培養後、抗CD31抗体(モノクローナルマウス抗ヒトCD31抗体、Clone JC70A、Code M0823、Dako)を一次抗体として、ヤギ抗マウスIgG-AlexaFluor(登録商標)594(Invitrogen(商標))を二次抗体として用いて、構築された組織を免疫染色した。免疫染色の方法は公知の方法に従った。この結果、全ての評価切片において、組織中にネットワーク血管網が形成されていた。
 この結果、全ての評価切片において、すなわち、高分子電解質と細胞外マトリックス成分の種類にかかわらず、高分子電解質および細胞外マトリックス成分の終濃度がそれぞれ0.1mg/mLの細胞懸濁液から構築した組織と両成分の終濃度がそれぞれ0.05mg/mLの細胞懸濁液から構築した組織のいずれも、組織中にネットワーク血管網が形成されていた。ただし、3成分全てを用いずに構築した組織と、トリスのみを用いて構築した組織とは、構築直後はネットワーク血管網が形成された立体的細胞組織であったが、細胞同士の接着性が低く、培地交換時には細胞がほどけて組織が崩れてしまった。
 次いで、構築された各立体的細胞組織の細胞層の密度を測定した。
 具体的には、3.5×10細胞のNHDFを、250μLの0.2mg/mLまたは0.1mg/mLの高分子電解質/50mM トリス-塩酸緩衝液(pH7.4)溶液と250μLの0.2mg/mLまたは0.1mg/mLの細胞外マトリックス成分/酢酸溶液(pH3.7)との混合液(すなわち、高分子電解質および細胞外マトリックス成分の終濃度はそれぞれ0.1mg/mLまたは0.05mg/mLであった)に懸濁した。その後、懸濁液を室温、400×gで1分間、遠心し、粘稠体を得た。得られた粘稠体を10%FBS含有DMEMに懸濁後、得られた懸濁液を24well セルカルチャーインサート内に播種し、室温、400×gで1分間、遠心した。次いで、10%FBS含有DMEMをセルカルチャーインサートに添加し、COインキュベーター(37℃、5%CO)にて24時間、培養した。培養後、構築された組織を10%ホルマリンで固定し、70%エタノールで浸漬後、パラフィン包埋切片を作製した。パラフィン包埋切片の作製は公知の方法に従った。作製した切片についてHE染色を行った。HE染色は公知の方法に従った。
 HE染色した各評価切片から、構築された各立体的細胞組織の最大厚みを測定した。この結果、カチオン性物質と高分子電解質と細胞外マトリックス成分の3成分いずれも混合せずに構築した組織が、最大厚みが最も薄かった。カチオン性物質、高分子電解質、および細胞外マトリックス成分の少なくとも1種を含んで構築した組織の最大厚みはいずれも、最大厚みが3成分いずれも混合せずに構築した組織以上であった。
 また、HE染色した各評価切片から、構築された各立体的細胞組織の細胞層の密度を測定した。具体的には、まず、各評価切片にある組織の細胞層数の最大値と、細胞層数が最大値となる部分の厚み(μm)とを測定した。細胞層数の最大値と厚みの測定値とから、厚み10μm当たりの細胞層数を算出した。
 表3に、高分子電解質および細胞外マトリックス成分の終濃度がそれぞれ0.1mg/mLの細胞懸濁液から構築した組織の評価切片の結果を示す。ただし、細胞外マトリックス成分としてラミニンを、高分子電解質としてポリスチレンスルホン酸を用いた場合のみ、混合液におけるそれぞれの終濃度が0.05mg/mLとして得た組織の結果を示す。
 表3の上段に、3成分いずれも混合せずに構築した組織の厚み(80μm)を1とした場合の各組織の最大厚みの相対値を示す。中段に、算出した厚み10μm当たりの細胞層数を示す。下段に、算出した厚み10μm当たりの細胞層数から、3成分全てを用いずに構築した組織の厚み10μm当たりの細胞層数を差し引いた細胞層数を示す。なお、トリス、ヘパリン、およびコラーゲンを細胞に混合して構築した組織のみ、3検体行ったため、表3には3検体分全ての結果を示した。表中、「Tris」はトリス-塩酸緩衝液を示し、「PSS」はポリスチレンスルホン酸を示し、「細胞外マトリックス」の欄中の「none」は細胞外マトリックスを添加していないことを意味し、縦軸の「none」はトリスと高分子電解質のいずれも添加していないことを意味する。
Figure JPOXMLDOC01-appb-T000003
 また、HE染色した各評価切片から、上記実施形態に記載の方法を用いて構築された各立体的細胞組織の細胞数を計数した。
 表4に、高分子電解質および細胞外マトリックス成分の終濃度がそれぞれ0.1mg/mLの細胞懸濁液から構築した組織の評価切片の結果を示す。ただし、高分子電解質を用いずにトリスと細胞外マトリックス成分としてコラーゲンIとを用いた場合、細胞外マトリックス成分としてラミニンを、高分子電解質としてデキストラン硫酸、コンドロイチン硫酸A、デルマタン硫酸、コンドロイチン硫酸C、ポリスチレンスルホン酸、ポリアクリル酸を用いた場合、細胞外マトリックス成分としてコラーゲンIを、高分子電解質としてコンドロイチン硫酸Cを用いた場合、細胞外マトリックス成分としてコラーゲンIVを、高分子電解質としてヘパリンを用いた場合、細胞外マトリックス成分としてフィブロネクチンを、高分子電解質としてポリアクリル酸を用いた場合は、混合液におけるそれぞれの終濃度が0.05mg/mLとして得た組織の結果を示す。
 表4の上段に、3成分いずれも混合せずに構築した組織の細胞数を計数した領域の厚みを1として、各組織の細胞数を計数した領域の厚みの相対値を示す。中段に、算出した厚み方向100μm、幅方向50μmの面積当たりの細胞数を示す。下段に、上記面積当たりの細胞数から、3成分全てを用いずに構築した組織の上記面積当たりの細胞数を差し引いた細胞数を示す。
Figure JPOXMLDOC01-appb-T000004
 この結果、トリスおよび細胞外マトリックス成分を用いて構築した組織と、トリス、高分子電解質、および細胞外マトリックス成分を用いて構築した組織とは、充分な厚みがあるにもかかわらず、内部に空隙がほとんどなく、非常に良好な立体的細胞組織であった。これに対して、細胞外マトリックス成分を用いずに構築した組織では、内部に空隙が多数存在していた。また、3成分全てを用いずに構築した組織と、トリスのみを用いて構築した組織とは、細胞同士の接着性が低く、培地交換時には細胞がほどけて組織が崩れてしまった。これに対して、少なくとも高分子電解質および細胞外マトリックス成分のいずれかを含む組織は、培地交換も問題なく実施でき、長期間の培養が可能であった。
 トリスのみを用いて構築した組織は、3成分全てを用いずに構築した組織よりも最大厚みが約2倍も厚くなったが、細胞層及び細胞の密度は同程度であった。これに対して、トリスと共に少なくとも高分子電解質と細胞外マトリックス成分のいずれかを含む組織は、3成分全てを用いずに構築した組織よりも最大厚みは1.3~5.5倍と厚くなっているが、細胞層及び細胞の密度はいずれも3成分全てを用いずに構築した組織よりも小さくなっていた。なお、高分子電解質および細胞外マトリックス成分の終濃度がそれぞれ0.05mg/mLの細胞懸濁液から構築した組織の評価切片においても、ほぼ同様の結果が得られた。これらの結果から、カチオン性物質に加えて少なくとも細胞外マトリックス成分を細胞と混合することにより、細胞層密度の低く、かつ厚みのある立体的細胞組織が得られることがわかった。
 表3及び表4の数値を比較すると、高分子電解質を含まずトリス及び細胞外マトリックス成分を含む組織は、トリスのみで構築した組織よりも、10μmあたりの層数が少なく細胞数は同程度であることがわかった。これは当該組織中で、細胞核の高さが同じ位置(同一層と見なされる位置)にある細胞数が多いからと考えられる。言い換えると、当該組織中で細胞(核)が同一層とみなされる位置にある細胞数が当該組織の幅方向(横方向)に多いからであると考えられる。このことから、高分子電解質を含まずトリス及び細胞外マトリックス成分を含む組織は、トリスのみで構築した組織よりも、細胞が同じ階層に集合しやすいのに対し、トリスのみで構築した組織はより自重方向に密に集合している。
 生体内の細胞はマトリックス成分に囲まれているが、ランダムに分散しているのではなく互いに隣接して存在している。この点に鑑みて、本発明によれば、互いに細胞が適切に隣接した状態でかつ自重方向につぶれずに存在した立体的組織が構築できる。 
 本発明によれば、より迅速かつ簡便に、より厚い立体的細胞組織を製造することができる。したがって、本発明は、再生医療分野において有用である。本発明はまた、医薬品開発においても有用である。

Claims (27)

  1.  立体的細胞組織を製造する方法であって、
     細胞をカチオン性物質および細胞外マトリックス成分と混合して混合物を得るA工程と、
     得られた前記混合物から前記細胞を集め、基材上に細胞集合体を形成するB工程と、
     前記細胞を培養し、立体的細胞組織を得るC工程と
    を含む、立体的細胞組織を製造する方法。
  2.  前記A工程において、前記細胞を前記カチオン性物質および前記細胞外マトリックス成分並びに高分子電解質と混合する
    請求項1に記載の立体的細胞組織を製造する方法。
  3.  前記A工程の後に、得られた前記混合物から液体部分を除去し、細胞集合体を得るA’-1工程、および前記細胞集合体を溶液に懸濁して懸濁液を得るA’-2工程、をさらに含み、かつ
     前記B工程に代えて、得られた前記懸濁液から前記細胞を沈殿させ、前記基材上に細胞集合体を形成するB’工程を含む、
    請求項1または2に記載の立体的細胞組織を製造する方法。
  4.  前記B工程または前記A’-1工程における前記細胞集合体がスラリー状の粘稠体である、請求項1~3のいずれか一項に記載の立体的細胞組織を製造する方法。
  5.  前記A’-1工程における液体部分を除去する方法が、遠心分離またはろ過である、請求項3または4に記載の立体的細胞組織を製造する方法。
  6.  前記B工程または前記B’工程における前記細胞を集める方法が、遠心分離、磁性分離、またはろ過である、請求項1~5のいずれか一項に記載の立体的細胞組織を製造する方法。
  7.  前記B工程における前記細胞集合体または前記B’工程における前記細胞集合体が層状である、請求項1~6のいずれか一項に記載の立体的細胞組織を製造する方法。
  8.  前記高分子電解質が、グリコサミノグリカン、デキストラン硫酸、ラムナン硫酸、フコイダン、カラギナン、ポリスチレンスルホン酸、ポリアクリルアミド-2-メチルプロパンスルホン酸、ポリアクリル酸、ならびにそれらの組み合わせからなる群から選択される、請求項2~7のいずれか一項に記載の立体的細胞組織を製造する方法。
  9.  前記細胞外マトリックス成分が、コラーゲン、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、プロテオグリカン、およびそれらの組み合わせからなる群から選択される、請求項1~8のいずれか一項に記載の立体的細胞組織を製造する方法。
  10.  前記カチオン性物質がトリス-塩酸緩衝液、トリス-マレイン酸緩衝液、ビス-トリス-緩衝液、またはHEPESである、請求項1~9のいずれか一項に記載の立体的細胞組織を製造する方法。
  11.  前記高分子電解質の濃度が0.05mg/mL以上0.1mg/mL以下である、請求項1~10のいずれか一項に記載の立体的細胞組織を製造する方法。
  12.  前記細胞外マトリックス成分の濃度が0.05mg/mL以上0.1mg/mL以下である、請求項1~11のいずれか一項に記載の立体的細胞組織を製造する方法。
  13.  前記高分子電解質と前記細胞外マトリックス成分との配合比が1:2~2:1である、請求項1~12のいずれか一項に記載の立体的細胞組織を製造する方法。
  14.  前記A工程における前記細胞が複数種類の細胞である、請求項1~13のいずれか一項に記載の立体的細胞組織を製造する方法。
  15.  前記複数種類の細胞が、神経細胞、樹状細胞、免疫細胞、血管内皮細胞、リンパ管内皮細胞、線維芽細胞、癌細胞、癌幹細胞、上皮細胞、心筋細胞、肝細胞、膵島細胞、組織幹細胞、iPS細胞、ES細胞および平滑筋細胞からなる群から選択される、請求項14に記載の立体的細胞組織を製造する方法。
  16.  得られた前記立体的細胞組織の厚さが5~500μmである、請求項1~15のいずれか一項に記載の立体的細胞組織を製造する方法。
  17.  得られた前記立体的細胞組織における細胞層の数が1~100層である、請求項1~16のいずれか一項に記載の立体的細胞組織を製造する方法。
  18.  得られた前記立体的細胞組織の前記厚さが最大となる位置を含む領域における前記厚さ方向100μm幅方向50μmの面積あたりの細胞数が70個以下である、請求項1~16のいずれか一項に記載の立体的細胞組織を製造する方法。
  19.  前記C工程において、前記細胞をROCK阻害剤の存在下で培養する、請求項1~18のいずれか一項に記載の立体的細胞組織を製造する方法。
  20.  得られた前記立体的細胞組織が複数種類の細胞を含む、請求項1~19のいずれか一項に記載の立体的細胞組織を製造する方法。
  21.  得られた前記立体的細胞組織が脈管構造を有する、請求項1~20のいずれか一項に記載の立体的細胞組織を製造する方法。
  22.  前記細胞、前記カチオン性物質、および前記細胞外マトリックス成分から選択される少なくとも1つの試薬を含む、請求項1~21のいずれか一項に記載の方法を実施するためのキット。
  23.  さらに、高分子電解質を含む、請求項22に記載のキット。
  24.  細胞と、細胞外マトリックス成分とを含有し、
     厚さが150μm以上であり、かつ前記厚さが最大となる位置を含む領域における前記厚さ方向100μm幅方向50μmの面積あたりの細胞数が70個以下である、立体的細胞組織。
  25.  さらに、高分子電解質を含有する、請求項24に記載の立体的細胞組織。
  26.  前記細胞外マトリックス成分が、コラーゲン、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、プロテオグリカン、およびそれらの組み合わせからなる群から選択される、請求項24又は25に記載の立体的細胞組織。
  27.  前記高分子電解質が、グリコサミノグリカン、デキストラン硫酸、ラムナン硫酸、カラギナン、ポリスチレンスルホン酸、およびポリアクリルアミド-2-メチルプロパンスルホン酸、ポリアクリル酸ならびにそれらの組み合わせからなる群から選択される、請求項24~26のいずれか一項に記載の立体的細胞組織。
     
PCT/JP2017/006691 2016-02-22 2017-02-22 立体的細胞組織の製造方法 WO2017146124A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018501746A JP6639634B2 (ja) 2016-02-22 2017-02-22 立体的細胞組織の製造方法
CN201780013395.0A CN108699512A (zh) 2016-02-22 2017-02-22 立体细胞组织的制造方法
EP17756562.9A EP3421588B1 (en) 2016-02-22 2017-02-22 Method for producing three-dimensional cell tissue
EP24159075.1A EP4349972A3 (en) 2016-02-22 2017-02-22 Method for producing three-dimensional cell tissue
US16/105,625 US20180355308A1 (en) 2016-02-22 2018-08-20 Method of producing three-dimensional cell tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-030916 2016-02-22
JP2016030916 2016-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/105,625 Continuation US20180355308A1 (en) 2016-02-22 2018-08-20 Method of producing three-dimensional cell tissue

Publications (1)

Publication Number Publication Date
WO2017146124A1 true WO2017146124A1 (ja) 2017-08-31

Family

ID=59686259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006691 WO2017146124A1 (ja) 2016-02-22 2017-02-22 立体的細胞組織の製造方法

Country Status (5)

Country Link
US (1) US20180355308A1 (ja)
EP (2) EP4349972A3 (ja)
JP (3) JP6639634B2 (ja)
CN (1) CN108699512A (ja)
WO (1) WO2017146124A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203579A1 (ja) 2019-04-01 2020-10-08 凸版印刷株式会社 三次元組織体及びその製造方法並びに細胞含有組成物の製造方法
WO2020203369A1 (ja) 2019-04-01 2020-10-08 凸版印刷株式会社 細胞構造体及び細胞構造体の製造方法
CN112041332A (zh) * 2018-04-27 2020-12-04 凸版印刷株式会社 含细胞外基质的组合物、三维组织体形成用临时支架材料及三维组织体形成剂以及从三维组织体中回收细胞的方法
WO2021054079A1 (ja) 2019-09-17 2021-03-25 凸版印刷株式会社 細胞構造体及びその製造方法
EP3674394A4 (en) * 2017-08-21 2021-05-26 Toppan Printing Co., Ltd. PRIMARY CULTURE PROCESS
WO2021100709A1 (ja) 2019-11-19 2021-05-27 凸版印刷株式会社 細胞構造体及びその製造方法並びに被験物質の肝毒性の評価方法
JPWO2021149661A1 (ja) * 2020-01-20 2021-07-29
CN113661174A (zh) * 2019-04-01 2021-11-16 凸版印刷株式会社 含细胞外基质组合物及其制造方法、以及三维组织体及其制造方法
WO2022039219A1 (ja) * 2020-08-21 2022-02-24 凸版印刷株式会社 患者由来癌細胞培養用コンディションドメディウムの製造方法
WO2022039209A1 (ja) * 2020-08-21 2022-02-24 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2022039261A1 (ja) * 2020-08-20 2022-02-24 凸版印刷株式会社 立体的細胞構造体の製造方法、及び立体的細胞構造体
WO2022050393A1 (ja) * 2020-09-03 2022-03-10 凸版印刷株式会社 三次元組織体の製造方法及び三次元組織体
WO2022091822A1 (ja) 2020-10-29 2022-05-05 国立大学法人大阪大学 細胞構造体の凍結方法
WO2022107544A1 (ja) 2020-11-17 2022-05-27 凸版印刷株式会社 画像処理方法及び画像処理プログラム
WO2022113540A1 (ja) 2020-11-26 2022-06-02 凸版印刷株式会社 組織体の製造方法、及び脂肪由来幹細胞の分化促進方法
JPWO2022114128A1 (ja) * 2020-11-26 2022-06-02
WO2022173058A1 (ja) 2021-02-15 2022-08-18 凸版印刷株式会社 三次元組織体の製造方法及び脂肪由来幹細胞の分化促進方法
WO2023017800A1 (ja) * 2021-08-11 2023-02-16 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2023074814A1 (ja) 2021-10-29 2023-05-04 凸版印刷株式会社 組織体の製造方法及びヒト由来の脂肪由来幹細胞の血管内皮細胞への分化促進方法
WO2023120573A1 (ja) * 2021-12-22 2023-06-29 凸版印刷株式会社 立体的細胞組織の培養方法
US11850261B2 (en) 2009-11-17 2023-12-26 Astellas Institute For Regenerative Medicine Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
JP7480476B2 (ja) 2019-06-19 2024-05-10 Toppanホールディングス株式会社 立体的細胞組織の培養方法及びキット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699512A (zh) * 2016-02-22 2018-10-23 国立大学法人大阪大学 立体细胞组织的制造方法
CN112852738B (zh) * 2019-11-27 2023-02-28 四川省肿瘤医院 一种前列腺癌细胞膜片的制备方法
US11713441B2 (en) 2020-12-31 2023-08-01 Academia Sinica Cell culture substrates, methods and uses thereof
WO2023037940A1 (ja) 2021-09-13 2023-03-16 凸版印刷株式会社 遊走細胞の遊走能の評価方法
WO2023059555A1 (en) * 2021-10-05 2023-04-13 ACADEMIA, Sinica Cell culture platforms, methods and uses thereof
JP2023104174A (ja) * 2022-01-17 2023-07-28 凸版印刷株式会社 立体的細胞組織の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919464B1 (ja) 1969-07-23 1974-05-17
JPS549009B1 (ja) 1971-02-17 1979-04-20
JPS5847733B2 (ja) 1981-03-23 1983-10-24 エス・シ−・エム・コ−ポレ−ション 音響伝達部材
JPS5850419B2 (ja) 1975-04-16 1983-11-10 松下電器産業株式会社 圧電性薄膜の製造方法
JPS63222685A (ja) 1987-01-22 1988-09-16 サノフイ インビトロにおける組織再構成の方法
JP2824081B2 (ja) 1989-05-25 1998-11-11 株式会社バイオマテリアル研究所 細胞培養方法
WO2002008387A1 (fr) 2000-07-21 2002-01-31 Cellseed Inc. Feuille cellulaire du type muscle cardiaque, construction tridimensionnelle, tissu du type muscle cardiaque et procede de production associe
JP4159103B2 (ja) 2006-02-21 2008-10-01 Scivax株式会社 細胞培養構造体、細胞培養容器、スフェロイド付き構造体、スフェロイド付き容器およびこれらの製造方法
JP2012115254A (ja) * 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
JP2012205516A (ja) * 2011-03-29 2012-10-25 Osaka Univ 人工皮膚モデルの製造方法、及び人工皮膚モデル
JP5458259B2 (ja) 2009-06-25 2014-04-02 富士フイルム株式会社 細胞積層体
WO2014174899A1 (ja) * 2013-04-23 2014-10-30 国立大学法人徳島大学 病的状態の細胞モデルとしての圧縮細胞又は圧縮組織とその製法
JP5669741B2 (ja) 2008-10-22 2015-02-12 リジーンメッド インコーポレイテッド 培養システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372494B1 (en) * 1999-05-14 2002-04-16 Advanced Tissue Sciences, Inc. Methods of making conditioned cell culture medium compositions
WO2007064305A1 (en) 2005-12-01 2007-06-07 Agency For Science, Technology And Research Three-dimensional reconstituted extracellular matrices as scaffolds for tissue engineering
JP4919464B2 (ja) 2006-03-02 2012-04-18 国立大学法人大阪大学 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。
EP2021035B1 (en) * 2006-05-19 2020-08-05 Versitech Limited Cell-matrix microspheres, methods for preparation and applications
JP4981374B2 (ja) * 2006-07-10 2012-07-18 パーパス株式会社 細胞又は組織の培養装置及び培養方法
US8906685B2 (en) 2010-01-28 2014-12-09 The Regents Of The University Of Michigan Hanging drop devices, systems and/or methods
JP6312138B2 (ja) 2014-07-28 2018-04-18 オムロンオートモーティブエレクトロニクス株式会社 扉開閉制御装置
CN108699512A (zh) * 2016-02-22 2018-10-23 国立大学法人大阪大学 立体细胞组织的制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919464B1 (ja) 1969-07-23 1974-05-17
JPS549009B1 (ja) 1971-02-17 1979-04-20
JPS5850419B2 (ja) 1975-04-16 1983-11-10 松下電器産業株式会社 圧電性薄膜の製造方法
JPS5847733B2 (ja) 1981-03-23 1983-10-24 エス・シ−・エム・コ−ポレ−ション 音響伝達部材
JPS63222685A (ja) 1987-01-22 1988-09-16 サノフイ インビトロにおける組織再構成の方法
JP2824081B2 (ja) 1989-05-25 1998-11-11 株式会社バイオマテリアル研究所 細胞培養方法
WO2002008387A1 (fr) 2000-07-21 2002-01-31 Cellseed Inc. Feuille cellulaire du type muscle cardiaque, construction tridimensionnelle, tissu du type muscle cardiaque et procede de production associe
JP4159103B2 (ja) 2006-02-21 2008-10-01 Scivax株式会社 細胞培養構造体、細胞培養容器、スフェロイド付き構造体、スフェロイド付き容器およびこれらの製造方法
JP5669741B2 (ja) 2008-10-22 2015-02-12 リジーンメッド インコーポレイテッド 培養システム
JP5458259B2 (ja) 2009-06-25 2014-04-02 富士フイルム株式会社 細胞積層体
JP2012115254A (ja) * 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
JP2012205516A (ja) * 2011-03-29 2012-10-25 Osaka Univ 人工皮膚モデルの製造方法、及び人工皮膚モデル
WO2014174899A1 (ja) * 2013-04-23 2014-10-30 国立大学法人徳島大学 病的状態の細胞モデルとしての圧縮細胞又は圧縮組織とその製法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AKIHIRO NISHIGUCHI ET AL., MACROMOL BIOSCI., vol. 15, no. 3, March 2015 (2015-03-01), pages 312 - 7
AKIRA ITO ET AL., TISSUE ENGINEERING, vol. 10, no. 5-6, 2004, pages 833 - 840
JOSEPH YANG ET AL., BIOMATERIALS, vol. 26, 2005, pages 6415 - 6422
MATSUZAWA A. ET AL.: "Effectiveness of nanometer-sized extracellular matrix layer-by- layer assembled films for a cell membrane coating protecting cells from physical stress", LANGMUIR, vol. 29, 2013, pages 7362 - 7368, XP055540440 *
NISHIGUCHI A. ET AL.: "Cell - cell crosslinking by bio-molecular recognition of heparin-based layer-by-layer nanofilms", MACROMOLECULAR BIOSCIENCE, vol. 15, 2015, pages 312 - 317, XP055540432 *
PANORCHAN P. ET AL.: "Microrheology and ROCK signaling of human endothelial cells embedded in a 3D Matrix", BIOPHYSICAL JOURNAL, vol. 91, 2006, pages 3499 - 3507, XP055540441 *
See also references of EP3421588A4
STRUDWICK ET AL.: "Combination of Low Calcium with Y-27632 Rock Inhibitor Increases the Proliferative Capacity, Expansion Potential and Lifespan of Primary Human Keratinocytes while Retaining Their Capacity to Differentiate into Stratified Epidermis in a 3D Skin Model", PLOS ONE, vol. 10, no. 4, 2015, pages 1 - 12, XP055315198 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850261B2 (en) 2009-11-17 2023-12-26 Astellas Institute For Regenerative Medicine Methods of producing human RPE cells and pharmaceutical preparations of human RPE cells
EP3674394A4 (en) * 2017-08-21 2021-05-26 Toppan Printing Co., Ltd. PRIMARY CULTURE PROCESS
US11781115B2 (en) 2017-08-21 2023-10-10 Toppan Printing Co., Ltd. Primary culture method
CN112041332A (zh) * 2018-04-27 2020-12-04 凸版印刷株式会社 含细胞外基质的组合物、三维组织体形成用临时支架材料及三维组织体形成剂以及从三维组织体中回收细胞的方法
CN113661174A (zh) * 2019-04-01 2021-11-16 凸版印刷株式会社 含细胞外基质组合物及其制造方法、以及三维组织体及其制造方法
WO2020203579A1 (ja) 2019-04-01 2020-10-08 凸版印刷株式会社 三次元組織体及びその製造方法並びに細胞含有組成物の製造方法
WO2020203369A1 (ja) 2019-04-01 2020-10-08 凸版印刷株式会社 細胞構造体及び細胞構造体の製造方法
JP7480476B2 (ja) 2019-06-19 2024-05-10 Toppanホールディングス株式会社 立体的細胞組織の培養方法及びキット
WO2021054079A1 (ja) 2019-09-17 2021-03-25 凸版印刷株式会社 細胞構造体及びその製造方法
WO2021100709A1 (ja) 2019-11-19 2021-05-27 凸版印刷株式会社 細胞構造体及びその製造方法並びに被験物質の肝毒性の評価方法
EP4063486A1 (en) 2019-11-19 2022-09-28 Toppan Inc. Cell structure, production method thereof, and method for evaluating hepatotoxicity of substance to be tested
JPWO2021149661A1 (ja) * 2020-01-20 2021-07-29
WO2021149661A1 (ja) * 2020-01-20 2021-07-29 凸版印刷株式会社 立体的細胞構造体の製造方法
JP2023021274A (ja) * 2020-01-20 2023-02-10 凸版印刷株式会社 立体的細胞構造体の製造方法
JP7416185B2 (ja) 2020-01-20 2024-01-17 Toppanホールディングス株式会社 立体的細胞構造体の製造方法
EP4095237A4 (en) * 2020-01-20 2023-07-19 Toppan Inc. METHOD FOR PRODUCING A THREE-DIMENSIONAL CELLULAR STRUCTURE
JP7107450B1 (ja) * 2020-08-20 2022-07-27 凸版印刷株式会社 立体的細胞構造体の製造方法
EP4202039A4 (en) * 2020-08-20 2024-03-06 Toppan Inc PRODUCTION PROCESS FOR THREE-DIMENSIONAL CELL STRUCTURE AND THREE-DIMENSIONAL CELL STRUCTURE
WO2022039261A1 (ja) * 2020-08-20 2022-02-24 凸版印刷株式会社 立体的細胞構造体の製造方法、及び立体的細胞構造体
WO2022039209A1 (ja) * 2020-08-21 2022-02-24 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2022039219A1 (ja) * 2020-08-21 2022-02-24 凸版印刷株式会社 患者由来癌細胞培養用コンディションドメディウムの製造方法
WO2022050393A1 (ja) * 2020-09-03 2022-03-10 凸版印刷株式会社 三次元組織体の製造方法及び三次元組織体
WO2022091822A1 (ja) 2020-10-29 2022-05-05 国立大学法人大阪大学 細胞構造体の凍結方法
WO2022107544A1 (ja) 2020-11-17 2022-05-27 凸版印刷株式会社 画像処理方法及び画像処理プログラム
JPWO2022114128A1 (ja) * 2020-11-26 2022-06-02
JP7239068B2 (ja) 2020-11-26 2023-03-14 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2022114128A1 (ja) * 2020-11-26 2022-06-02 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2022113540A1 (ja) 2020-11-26 2022-06-02 凸版印刷株式会社 組織体の製造方法、及び脂肪由来幹細胞の分化促進方法
WO2022173058A1 (ja) 2021-02-15 2022-08-18 凸版印刷株式会社 三次元組織体の製造方法及び脂肪由来幹細胞の分化促進方法
WO2023017800A1 (ja) * 2021-08-11 2023-02-16 凸版印刷株式会社 立体的細胞組織の製造方法及び立体的細胞組織
WO2023074814A1 (ja) 2021-10-29 2023-05-04 凸版印刷株式会社 組織体の製造方法及びヒト由来の脂肪由来幹細胞の血管内皮細胞への分化促進方法
WO2023120573A1 (ja) * 2021-12-22 2023-06-29 凸版印刷株式会社 立体的細胞組織の培養方法

Also Published As

Publication number Publication date
US20180355308A1 (en) 2018-12-13
JPWO2017146124A1 (ja) 2018-07-26
JP6639634B2 (ja) 2020-02-05
JP7018635B2 (ja) 2022-02-14
EP3421588B1 (en) 2024-04-10
EP4349972A3 (en) 2024-05-29
JP2019187443A (ja) 2019-10-31
CN108699512A (zh) 2018-10-23
JP6427836B2 (ja) 2018-11-28
EP3421588A4 (en) 2019-07-24
EP4349972A2 (en) 2024-04-10
JP2018113959A (ja) 2018-07-26
EP3421588A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
JP6427836B2 (ja) 立体的細胞組織の製造方法
US11781115B2 (en) Primary culture method
CN106459925B (zh) 培养方法和细胞团
JP6953894B2 (ja) 立体的肝臓組織構造体及びその製造方法
JP7416185B2 (ja) 立体的細胞構造体の製造方法
JP7239068B2 (ja) 立体的細胞組織の製造方法及び立体的細胞組織
JP7480476B2 (ja) 立体的細胞組織の培養方法及びキット
WO2023120573A1 (ja) 立体的細胞組織の培養方法
WO2022039261A1 (ja) 立体的細胞構造体の製造方法、及び立体的細胞構造体
WO2022039209A1 (ja) 立体的細胞組織の製造方法及び立体的細胞組織
JP2023156998A (ja) 立体的細胞組織の製造方法及び立体的細胞組織
WO2023136278A1 (ja) 立体的細胞組織の製造方法
WO2023037940A1 (ja) 遊走細胞の遊走能の評価方法
WO2024034576A1 (ja) がんオルガノイドの培養方法及び被験物質のスクリーニング方法
WO2022039219A1 (ja) 患者由来癌細胞培養用コンディションドメディウムの製造方法
JP2023118400A (ja) 細胞構造体及びその製造方法
JP2023036084A (ja) 細胞構造体及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756562

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756562

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756562

Country of ref document: EP

Kind code of ref document: A1