WO2017122774A1 - 二軸延伸シートおよびその成形品 - Google Patents

二軸延伸シートおよびその成形品 Download PDF

Info

Publication number
WO2017122774A1
WO2017122774A1 PCT/JP2017/000999 JP2017000999W WO2017122774A1 WO 2017122774 A1 WO2017122774 A1 WO 2017122774A1 JP 2017000999 W JP2017000999 W JP 2017000999W WO 2017122774 A1 WO2017122774 A1 WO 2017122774A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
methacrylic acid
biaxially stretched
stretched sheet
acrylic resin
Prior art date
Application number
PCT/JP2017/000999
Other languages
English (en)
French (fr)
Inventor
学 横塚
大輔 吉村
大介 元井
英二 和泉
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020187013754A priority Critical patent/KR20180102540A/ko
Priority to CN201780005859.3A priority patent/CN108473697A/zh
Priority to JP2017561179A priority patent/JP6444539B2/ja
Publication of WO2017122774A1 publication Critical patent/WO2017122774A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3461Flexible containers, e.g. bags, pouches, envelopes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to a biaxially stretched sheet comprising a styrenic resin composition that can be suitably used for food packaging containers heated in a microwave oven, and a molded product thereof.
  • Polystyrene biaxially stretched sheets are excellent in transparency and rigidity, and thus are molded and used mainly in molded products such as lightweight containers. However, since these containers are inferior in heat resistance, they are rarely used for applications that directly contact boiling water or those that are heated in a microwave oven. Thus, attempts have been made to impart heat resistance to polystyrene as a raw material.
  • Examples of polystyrene having improved heat resistance include styrene-acrylic acid copolymer or styrene-methacrylic acid copolymer (Patent Document 1, Patent Document 2), styrene-maleic anhydride copolymer (Patent Document 3, Patent document 4) is mentioned. These are generally known as styrenic heat-resistant resins, and improve heat resistance without impairing transparency and rigidity.
  • the styrenic heat-resistant resin has lower fluidity during melt extrusion than ordinary polystyrene, and it is difficult to increase the resin production capacity and sheet production capacity.
  • a method of increasing the extrusion temperature and (ii) a method of decreasing the molecular weight of the resin can be considered.
  • the extrusion temperature is increased, the carboxylic acid group in the styrene heat-resistant resin reacts to form a gel-like foreign material, resulting in a reduction in sheet quality.
  • drawdown at the time of sheet extrusion tends to occur and film formation becomes difficult.
  • Patent Document 5 As a method for suppressing gel generation while increasing the extrusion temperature, for example, a method of adding an antigelling agent during extrusion has been proposed (Patent Document 5). However, since the anti-gelling agent described in Patent Document 5 also works as a plasticizer, the heat resistance and oil resistance of the resulting styrene resin sheet are lowered. Therefore, it is necessary to select an additive that does not easily lower these performances.
  • Patent Document 6 a method of imparting strain curability by adding a small amount of high molecular weight polystyrene is known (Patent Document 6).
  • the high molecular weight polystyrene described in Patent Document 6 has low compatibility with the styrenic heat-resistant resin, and has the disadvantages that the expected strain-hardening property is not easily obtained and the transparency of the resulting sheet is lowered. Therefore, it is necessary to select a combination of a styrene-based heat resistant resin and a high molecular weight polymer that are compatible with each other.
  • the styrenic heat-resistant resin has low sheet strength, particularly folding resistance and impact resistance, and is further reduced by lowering the molecular weight of the resin.
  • the styrenic heat-resistant resin has low folding resistance and impact resistance, so that it is difficult to pass paper especially in the molding process, it is difficult to remove the die, and chips are likely to be produced.
  • Container productivity is reduced. For these reasons, there is a need for a stretched sheet made of a styrene resin that has transparency and strength, has good film forming properties and moldability, is excellent in productivity, and is excellent in heat resistance and oil resistance.
  • An object of the present invention is to provide a biaxially stretched sheet made of a styrene-based resin composition and a molded product thereof having excellent transparency, strength, film-forming property, and moldability, and excellent productivity, heat resistance, and oil resistance. It is to be.
  • the present inventors have added a predetermined amount of a high molecular weight acrylic resin based on a styrene-methacrylic acid copolymer.
  • the inventors have found that the purpose is achieved by using a resin, and have completed the present invention.
  • a biaxially stretched sheet comprising a styrene resin composition containing a styrene-methacrylic acid copolymer (A) and an acrylic resin (B), the styrene-methacrylic acid copolymer (A) and The mass ratio (A) / (B) to the acrylic resin (B) is 90/10 to 97/3, and the styrene-methacrylic acid copolymer (A) is composed of a styrene monomer unit and methacrylic acid.
  • the monomer unit is contained in a mass ratio of 84/16 to 94/6, the weight average molecular weight of the acrylic resin (B) is 1 million to 7 million, and the Vicat softening temperature of the styrene resin composition is Biaxially stretched sheet in the range of 106 to 132 ° C.
  • the impact-resistant styrene resin (C) containing a rubber component is added in a proportion of 3% by mass or less with respect to the total of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B).
  • the biaxially stretched sheet according to any one of (1) to (4), which is further contained.
  • Thickness is 0.1 to 0.7 mm
  • longitudinal and transverse stretching ratios are both 1.8 to 3.2 times
  • longitudinal and transverse orientation relaxation stresses are both 0.3 to 1
  • a molded article comprising the biaxially stretched sheet according to any one of (1) to (8).
  • the biaxially stretched sheet of the present invention and its molded product have good transparency, strength, film-forming property and moldability, and are excellent in heat resistance and oil resistance. Since the biaxially stretched sheet and the molded product thereof according to the present invention are excellent in film formability and moldability, they are also excellent in productivity.
  • the biaxially stretched sheet and the molded product of the present invention can be suitably used for food packaging containers heated in a microwave oven.
  • the biaxially stretched sheet of the present invention comprises a styrene resin composition in which a styrene-methacrylic acid copolymer (A) and an acrylic resin (B) are mixed at a predetermined mass ratio.
  • the biaxially stretched sheet of the present invention can be obtained by extruding the styrene resin composition and biaxially stretching the obtained unstretched sheet.
  • each component of the styrene resin composition will be described.
  • the styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid.
  • a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid.
  • the copolymerization ratio of styrene and methacrylic acid can be variously set depending on the desired heat resistance and mechanical strength.
  • the total amount of styrene monomer units and methacrylic acid monomer units is 100% by mass, a resin excellent in balance of heat resistance, mechanical strength, and transparency when formed into a sheet can be easily obtained.
  • styrene monomer unit and a methacrylic acid monomer unit in a mass ratio of 84/16 to 94/6.
  • the content of the methacrylic acid monomer unit is preferably 8% by mass or more, more preferably 9% by mass or more.
  • the content of the methacrylic acid monomer unit exceeds 16% by mass, in addition to a decrease in processability such as a decrease in fluidity during film formation and a decrease in moldability during secondary molding, Appearance deterioration tends to occur.
  • the content of the methacrylic acid monomer unit is preferably 14% by mass or less, more preferably 13% by mass or less.
  • the styrene-methacrylic acid copolymer (A) may be appropriately copolymerized with other monomers other than styrene and methacrylic acid, if necessary, as long as the effects of the invention are not impaired.
  • the content of other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the content of other monomers exceeds 10% by mass, the ratio of styrene or methacrylic acid is lowered, and sufficient transparency, mechanical strength, and heat resistance may not be obtained.
  • the weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer (A) is preferably 120,000 to 250,000, more preferably 140,000 to 220,000, and still more preferably 150,000 to 200,000.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than 120,000, the fluidity is excessive, and film forming properties such as sheet drawdown and neck-in are likely to be deteriorated.
  • the weight average molecular weight exceeds 250,000, the fluidity is insufficient, and the thickness of the film during film formation and the appearance of the sheet such as die lines are liable to deteriorate.
  • the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the styrene-methacrylic acid copolymer (A) is preferably 2.0 to 3.0, more preferably. 2.2 to 2.8.
  • Mw / Mn exceeds 3.0, surface roughness due to hot plate contact during container molding tends to occur.
  • Mw / Mn is less than 2.0, unevenness in thickness at the time of film formation due to a decrease in fluidity and molding failure at the time of container molding tend to occur.
  • the ratio Mz / Mw between the Z average molecular weight (Mz) and Mw is preferably 1.5 to 2.0, more preferably 1.6 to 1.9.
  • Mz / Mw When Mz / Mw is less than 1.5, the sheet is likely to be drawn down, necking-in and the like, and the film-forming property is lowered, and the stretch orientation is insufficient. On the other hand, when Mz / Mw exceeds 2.0, sheet appearance deterioration such as unevenness of thickness during film formation and die line due to decrease in fluidity is likely to occur.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) described above are calculated by the GPC measurement and the molecular weight at each elution time from the elution curve of monodisperse polystyrene by the following method. And calculated as a molecular weight in terms of polystyrene.
  • Mobile phase Tetrahydrofuran Sample concentration: 0.2% by mass
  • Temperature 40 ° C oven, 35 ° C inlet, 35 ° C detector
  • Detector Differential refractometer
  • Examples of the polymerization method of the styrene-methacrylic acid copolymer (A) include known polymerization methods such as a bulk polymerization method, a solution polymerization method, and a suspension polymerization method that are industrialized with polystyrene and the like. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable.
  • the solvent for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used.
  • a polymerization initiator and a chain transfer agent can be used as necessary.
  • An organic peroxide can be used as the polymerization initiator. Specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3.
  • the acrylic resin (B) in the present invention is an ultrahigh molecular weight homopolymer or copolymer made of acrylic acid and its ester, or methacrylic acid and its ester.
  • acrylic ester examples include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and the like.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and the like.
  • the acrylic resin (B) may be a homopolymer of any of the above acrylic acid and its ester or methacrylic acid and its ester, or may be a copolymer of two or more. .
  • the content of methyl methacrylate is preferably 65 to 85% by mass, more preferably 70 to 80% by mass, and still more preferably 72 to 78%. % By mass.
  • the content of methyl methacrylate is less than 65% by mass, the transparency of the sheet is lowered during mixing with the styrene-methacrylic acid copolymer (A).
  • the content of methyl methacrylate exceeds 85% by mass, the content of butyl acrylate described later is lowered, and an insolubilized product of acrylic resin is likely to be generated.
  • the content of butyl acrylate is preferably 15 to 35% by mass, more preferably 20 to 30% by mass, and still more preferably 22 Is 28% by mass.
  • the content of butyl acrylate is less than 15% by mass, the fluidity of the acrylic resin (B) is lowered, so that an insoluble matter of the acrylic resin is easily generated.
  • content of butyl acrylate exceeds 35 mass%, content of the said methyl methacrylate will fall and the transparency of a sheet
  • the methyl methacrylate monomer unit and the butyl acrylate monomer unit are contained in a mass ratio of 65/35 to 85/15.
  • Acrylic resin (B) is preferable.
  • the glass transition point of the acrylic resin (B) is preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and further preferably 60 to 80 ° C. If the glass transition point is too low, the heat resistance may decrease when mixed with the styrene-methacrylic acid copolymer (A). On the other hand, if it is too high, the acrylic resin is difficult to melt when mixed with the styrene-methacrylic acid copolymer (A), and it may be difficult to mix uniformly.
  • the weight average molecular weight (Mw) of the acrylic resin (B) is 1 million to 7 million, preferably 1.2 million to 6 million, and more preferably 1.5 million to 5 million.
  • Mw The weight average molecular weight of the acrylic resin (B) is less than 1,000,000, the microwave oven heat resistance is not sufficiently exhibited.
  • the weight average molecular weight of the acrylic resin (B) exceeds 7 million, an insolubilized product of the acrylic resin (B) is generated as a gel, and the appearance of the biaxially stretched sheet is impaired.
  • the weight average molecular weight of the acrylic resin (B) can be measured according to the method for measuring the weight average molecular weight of the styrene-methacrylic acid copolymer (A).
  • Examples of the polymerization method of the acrylic resin (B) include known polymerization methods such as emulsion polymerization, soap-free emulsion polymerization, fine suspension polymerization, suspension polymerization, bulk polymerization, and solution polymerization. Among these polymerization methods, emulsion polymerization is preferable because it is easy to produce a high molecular weight product.
  • a known emulsifier can be used as an emulsifier when the acrylic resin (B) is produced by emulsion polymerization.
  • examples include an anionic emulsifier, a nonionic emulsifier, a polymer emulsifier, and a reactive emulsifier having an unsaturated double bond capable of radical polymerization in the molecule.
  • the styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) and an acrylic resin (B).
  • the mass ratio (A) / (B) of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B) in the styrene resin composition is 90/10 to 97/3.
  • the mass ratio (A) / (B) is preferably 91/9 to 96/4, and more preferably 93/7 to 95/5.
  • the content of the acrylic resin (B) is less than 3% by mass, the durability against microwave heating cannot be sufficiently exhibited.
  • the content of the acrylic resin (B) exceeds 10% by mass, an insolubilized product of the acrylic resin is generated as a gel, and the appearance of the biaxially stretched sheet is impaired.
  • the styrenic resin composition may contain an impact-resistant styrenic resin (C) containing a rubber component in an amount that does not impair the appearance and transparency.
  • C impact-resistant styrenic resin
  • the impact-resistant styrene resin (C) may be any styrene resin containing a rubber component.
  • the rubber component may be dispersed in the form of particles independently in the polystyrene or styrene-methacrylic acid copolymer used as the matrix resin, or the rubber component may be grafted with polystyrene or styrene-methacrylic acid copolymer. It may be polymerized and dispersed in the form of particles.
  • the rubber component examples include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, and the like. In particular, it is preferably contained as a polybutadiene or styrene-butadiene copolymer.
  • the content of the impact-resistant styrene resin (C) is 3% by mass with respect to the total of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B) in order to maintain the appearance and transparency of the sheet.
  • the following is preferable.
  • the content is 0.5% by mass or more based on the total amount of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B). It is preferable.
  • the content of the rubber component derived from the impact-resistant styrenic resin (C) is preferably 0.05 to 0.3% by mass as the content of the rubber component in the biaxially stretched sheet. If the content of the rubber component is less than 0.05% by mass, the effect of improving sheet brittleness may not be sufficiently exhibited. On the other hand, if the content of the rubber component exceeds 0.3% by mass, the transparency of the sheet may be lowered.
  • the average rubber particle diameter of the rubber component in the biaxially stretched sheet is preferably 1.2 to 12 ⁇ m. If the average rubber particle size is less than 1.2 ⁇ m, the effect of improving sheet brittleness may not be sufficiently exhibited. On the other hand, if the average rubber particle diameter exceeds 12 ⁇ m, the transparency of the sheet may be lowered.
  • the content of the rubber component in the biaxially stretched sheet is obtained by dissolving the biaxially stretched sheet in chloroform, adding iodine monochloride to react the double bond in the rubber component, and then adding potassium iodide and remaining. It is measured by the iodine monochloride method in which iodine monochloride is changed to iodine and back titrated with sodium thiosulfate.
  • the average rubber particle diameter of the rubber component in the biaxially stretched sheet is cut by an ultrathin section method so that the observation surface is parallel to the sheet plane, and the rubber component is dyed with osmium tetroxide (OsO 4 ).
  • the particle diameter of 100 particles is measured with a transmission microscope, and is a value calculated by the following equation.
  • Average rubber particle size ⁇ ni (Di) 4 / ⁇ ni (Di) 3
  • ni represents the number of measured particles
  • Di represents the measured particle size.
  • the content of the unreacted styrene monomer in the styrene-based resin composition is preferably 1000 ppm or less, and the content of the unreacted methacrylic acid monomer is preferably 150 ppm or less. If the content of these unreacted monomers is larger than the specified amount, the sheet will adhere to the mold of the molding machine when molding the sheet, impairing the appearance of the molded product, or causing mold contamination. There is a concern of damaging the appearance of the molded container thereafter.
  • the unreacted styrene monomer and unreacted methacrylic acid monomer were measured by the internal standard method using the gas chromatography described below.
  • the styrenic resin composition must have a Vicat softening temperature in the range of 106 to 132 ° C.
  • the Vicat softening temperature is preferably 108 ° C or higher, more preferably 110 ° C or higher.
  • the Vicat softening temperature exceeds 132 ° C., the workability during film formation and container molding may be reduced.
  • the Vicat softening temperature is preferably 128 ° C. or lower, more preferably 126 ° C. or lower.
  • the Vicat softening temperature was measured under the conditions of a heating rate of 50 ° C./hr and a test load of 50 N in accordance with JIS K 7206.
  • additives include antioxidants, anti-gelling agents, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mineral oils, glass fibers, and carbon fibers. And reinforcing fibers such as aramid fibers, and fillers such as talc, silica, mica and calcium carbonate.
  • blend antioxidant and an antigelling agent individually or in combination of 2 or more types from a viewpoint of the external appearance when the said styrene-type resin composition is sheeted.
  • additives may be added in the polymerization process or devolatilization process or granulation process of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B), or a styrene resin composition is produced. You may add when you do. Although there is no restriction
  • the gelation inhibitor has an effect of suppressing the gelation reaction due to the dehydration reaction of methacrylic acid.
  • an aliphatic alcohol is effective.
  • Common aliphatic alcohols include 7-methyl-2- (3-methylbutyl) -1-octanol, 5-methyl-2- (1-methylbutyl) -1-octanol, 5-methyl-2- (3-methylbutyl ) -1-octanol, 2-hexyl-1-decanol, 5,7,7-trimethyl-2- (1,3,3-trimethylbutyl) -1-octanol, 8-methyl-2- (4-methylhexyl) ) -1-decanol, 2-heptyl-1-undecanol, 2-heptyl-4-methyl-1-decanol, 2- (1,5-dimethylhexyl)-(5,9-dimethyl) -1-decanol, etc. It is done.
  • antioxidants examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4 -Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-tert-butylphenol) and 1,3,5-trimethyl-2,4,6 -Phenolic antioxidants such as tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, ditridecyl-3,3'-thiodipropione Dilauryl-3,3′-
  • the biaxially stretched sheet of the present invention can be produced by the following method. First, the styrene resin composition is melt-kneaded by an extruder and extruded from a die (particularly a T die). Next, the biaxially stretched sheet is stretched sequentially or simultaneously in the biaxial directions of the machine direction (sheet flow direction, MD; Machine Direction) and the transverse direction (direction perpendicular to the sheet flow direction, TD; Transverse Direction). Is manufactured.
  • the thickness of the biaxially stretched sheet is preferably 0.1 mm or more, more preferably 0.15 mm or more, and further preferably 0.2 mm or more in order to ensure the strength and particularly rigidity of the sheet and the container.
  • the thickness of the biaxially stretched sheet is preferably 0.7 mm or less, more preferably 0.6 mm or less, and even more preferably 0.5 mm or less.
  • the stretching ratio in the machine direction and the transverse direction of the biaxially stretched sheet is preferably in the range of 1.8 to 3.2 times.
  • the draw ratio is less than 1.8 times, the folding resistance of the sheet tends to decrease.
  • the draw ratio exceeds 3.2 times, the shrinkage rate at the time of thermoforming is too large, and the formability is impaired.
  • the measuring method of the draw ratio of this invention is as follows. A straight line Y having a length of 100 mm is drawn in the machine direction (MD) and the transverse direction (TD) with respect to the test piece of the biaxially stretched sheet. The length Z [mm] of the straight line after the test piece is left to shrink for 60 minutes in an oven having a temperature 30 ° C.
  • Both the longitudinal and lateral orientation relaxation stresses of the biaxially stretched sheet are preferably in the range of 0.3 to 1.2 MPa. If the orientation relaxation stress is less than 0.3 MPa, the folding resistance of the sheet may be lowered. On the other hand, if the orientation relaxation stress exceeds 1.2 MPa, the shrinkage stress during thermoforming is too large, and the formability may be impaired.
  • the orientation relaxation stress of the biaxially stretched sheet of the present invention is a value measured as a peak stress value in silicone oil at a temperature 30 ° C. higher than the Vicat softening temperature of the resin composition constituting the sheet according to ASTM D1504. It is.
  • the biaxially stretched sheet of the present invention includes known release agents / release agents (for example, silicone oil), antifogging agents (for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.), an antistatic agent (for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.) You may apply
  • release agents / release agents for example, silicone oil
  • antifogging agents for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.
  • an antistatic agent for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.
  • the method for coating these coating agents on the biaxially stretched sheet is not particularly limited, and a method of coating using a roll coater, a knife coater, a gravure roll coater or the like can be simply mentioned. Moreover, spraying, immersion, etc. can also be employ
  • the method for obtaining a molded product from the biaxially stretched sheet of the present invention is not particularly limited, and a method commonly used in the conventional secondary molding method of a biaxially stretched sheet can be used.
  • the secondary molding can be performed by a thermoforming method such as a vacuum forming method or a pressure forming method. These methods are described in, for example, “Plastic Processing Technology Handbook” edited by the Society of Polymer Science, Nikkan Kogyo Shimbun (1995).
  • a use of the molded product of the biaxially stretched sheet of the present invention there are various containers, which can be widely used for packaging containers for various articles. Among these, a food packaging container for heating a microwave oven is particularly preferable because the features of the present invention are sufficiently exhibited.
  • Example 1 [Production of styrene-methacrylic acid copolymer (A-1)] 100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and the mixture was stirred at 130 rpm. Subsequently, 72.0 kg of styrene, 4.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was carried out for 5 hours (Step 1). Further, 4.0 kg of methacrylic acid was uniformly added over 2 hours from the time when the polymerization temperature reached 110 ° C.
  • Step 2 Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 3).
  • the obtained beads were washed, dehydrated, dried and then extruded to obtain pellet-shaped styrene-methacrylic acid copolymer (A-1) shown in Table 1.
  • the mass% ratio of styrene monomer unit / methacrylic acid monomer was 90/10.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.
  • Experimental Examples 2 to 11 [Production of styrene-methacrylic acid copolymer (A-2 to 11)] Various raw material charges in Experimental Example 1 were adjusted to obtain various styrene-methacrylic acid copolymers (A-2 to 11) shown in Table 1.
  • the atmosphere in the flask was replaced with nitrogen by passing a nitrogen stream through the separable flask.
  • the internal temperature was raised to 60 ° C., and 0.15 parts by mass of potassium persulfate and 5 parts by mass of deionized water were added. Thereafter, heating and stirring were continued for 2 hours to complete the polymerization, and an acrylic resin latex was obtained.
  • the obtained acrylic resin latex was cooled to 25 ° C., dropped into 500 parts by mass of 70 ° C. hot water containing 5 parts by mass of calcium acetate, and then heated to 90 ° C. for coagulation.
  • the obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an acrylic resin (B-1).
  • the glass transition point of the acrylic resin (B-1) was 60 ° C. when measured by differential scanning calorimetry (DSC) according to the transition temperature measurement method of JIS K 7121: 2012 plastic.
  • This polymerization raw material was supplied at 12.5 kg / hr to a 14-liter jacketed reactor (R-01) equipped with a vertical stirring blade having a blade diameter of 0.285 m.
  • the reaction was carried out at a reaction temperature of 140 ° C. and a rotation speed of 2.17 sec ⁇ 1 .
  • the obtained resin solution was introduced into two jacketed plug flow reactors having an internal volume of 21 liters arranged in series.
  • the reaction temperature is 120 to 140 ° C. in the flow direction of the resin liquid.
  • the reaction temperature is resin.
  • the jacket temperature was adjusted to have a gradient of 130 to 160 ° C. in the liquid flow direction.
  • the obtained resin liquid was heated to 230 ° C. and then sent to a devolatilization tank having a vacuum degree of 5 torr to separate and recover unreacted monomers and solvents. Then, after extracting with a gear pump from the devolatilization tank and making it a strand through a die plate, it pelletized through the water tank and collect
  • the resin ratio of the obtained resin (C-1) was 70%.
  • the obtained resin (C-1) had a rubber component content of 10.0% by mass and an average rubber particle size of 2.0 ⁇ m.
  • Example 1 Hand blend of 95.0% by mass of styrene-methacrylic acid copolymer (A-1) and 5.0% by mass of acrylic resin (B-1), pellet extruder (biaxial co-directional extruder with vacuum vent) TEM35B (manufactured by TOSHIBA MACHINE CO., LTD.) Using an extrusion temperature of 230 ° C., a rotation speed of 250 rpm, a vent devolatilization pressure of ⁇ 760 mmHg, made into a strand through a die plate, cooled in a water tank, pelletized through a pelletizer, and resin composition Got. In addition, the vent devolatilization pressure was shown as a differential pressure value with respect to normal pressure.
  • the content of the unreacted styrene monomer in the obtained resin composition was 500 ppm, and the content of the unreacted methacrylic acid monomer was 50 ppm. Further, the Vicat softening temperature was 116 ° C., and the melt flow index (MFI) under JIS K7210 H condition (200 ° C., 5 kg) was 1.0 g / 10 min.
  • the above resin composition was unstretched using a sheet extruder (T-die width 500 mm, lip opening 1.5 mm, ⁇ 40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd.)) at an extrusion temperature of 230 ° C. and a discharge rate of 20 kg / h. A sheet was obtained.
  • This sheet is preheated to (Vicat softening temperature +30) ° C. using a batch type biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.), MD 2.4 times, TD 2.4 times (surface) at a strain rate of 0.1 / sec.
  • the biaxially stretched sheet shown in Table 4 was obtained.
  • the thickness of the obtained sheet was 0.3 mm
  • the draw ratio (MD / TD) was 2.4 / 2.4 times
  • the orientation relaxation stress (MD / TD) was 0.6 / 0.6 MPa.
  • Examples 2 to 19 Comparative Examples 1 to 7> The compounding amount of the resin of Example 1 and the extrusion conditions of the resin composition were adjusted, and biaxially stretched sheets described in Table 4, Table 5, and Table 7 were obtained.
  • Example 20 to 26 The impact-resistant styrene resin (C) shown in Table 1 was added to 100% by mass of the total of the styrene-methacrylic acid copolymer (A-1) and the acrylic resin (B-1), and Example 1 was described. The pellets were obtained by an extruder and a styrene-based resin composition was obtained. Then, biaxially stretched sheets described in Tables 5 and 6 were obtained under the film forming conditions and stretching conditions described in Example 1.
  • Examples 27 to 33> After obtaining a resin composition comprising the styrene-methacrylic acid copolymer (A-1), the acrylic resin (B-1), and the impact-resistant styrene resin (C) in Example 21, the resin composition described in Example 1 was obtained. Using a sheet extruder and a biaxial stretching machine, adjusting the lip opening during film formation, the stretching ratio, and the preheating temperature, the biaxially stretched sheet having the thickness, stretching ratio, and orientation relaxation stress described in Table 6 Obtained.
  • Examples 1 to 33 all satisfy the provisions of the present invention, and film forming properties (film forming properties, fluidity, sheet appearance, stretchability), transparency, The sheet strength (rigidity, folding resistance), formability (moldability, mold stain resistance), heat resistance, oil resistance, and microwave heating resistance were all excellent.
  • Comparative Example 1 has a low Vicat softening temperature due to a low content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-10), and is inferior in heat resistance and microwave heating resistance.
  • Met. Comparative Example 2 was inferior in fluidity and moldability due to the high content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-11).
  • Comparative Example 3 since the weight average molecular weight of the acrylic resin (B-6) was small, the resistance to microwave heating was inferior.
  • Comparative Example 4 the content of the acrylic resin (B-1) was small, so that the heat resistance in the microwave oven was inferior.
  • Comparative Example 5 did not contain the acrylic resin (B), and was inferior in microwave oven heat resistance and oil resistance.
  • Comparative Example 6 since the content of the acrylic resin (B-1) was large, an insolubilized product of the acrylic resin was generated as a gel, and the fluidity and the sheet appearance were inferior.
  • Comparative Example 7 the content of the methacrylic acid monomer unit in the styrene-methacrylic acid copolymer (A-2) is relatively small, and the butyl acrylate monomer unit in the acrylic resin (B-4)
  • the blending ratio of the acrylic resin (B-4) since the blending ratio of the acrylic resin (B-4) is relatively large, the Vicat softening temperature is low, and the heat resistance and microwave heating resistance are poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

透明性、強度、製膜性および成形性が良好で、生産性、耐熱性、耐油性に優れた、スチレン系樹脂組成物からなる二軸延伸シートおよびその成形品を提供する。 スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、前記スチレン-メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10~97/3であり、前記スチレン-メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を87/13~94/6の質量比で含有し、前記アクリル系樹脂(B)の重量平均分子量が100万~700万であり、前記スチレン系樹脂組成物のビカット軟化温度が106~132℃の範囲である二軸延伸シートとその成形品である。

Description

二軸延伸シートおよびその成形品
 本発明は、電子レンジで加熱する食品の包装容器の用途に好適に用いることができるスチレン系樹脂組成物からなる二軸延伸シートおよびその成形品に関するものである。
 ポリスチレンの二軸延伸シートは、その透明性、剛性に優れることから、型成形されて主に軽量容器等の成形品に大量に使用されている。しかしながら、これらの容器は、耐熱性に劣ることから、沸騰水に直接接触する用途や、電子レンジで加熱する用途へはあまり使用されていない。そこで、原料であるポリスチレンに耐熱性を付与する試みがなされてきた。耐熱性を向上させたポリスチレンとしては、例えば、スチレン-アクリル酸共重合体またはスチレン-メタクリル酸共重合体(特許文献1、特許文献2)、スチレン-無水マレイン酸共重合体(特許文献3、特許文献4)が挙げられる。これらは一般的にスチレン系耐熱性樹脂として知られており、透明性、剛性を損なわずに耐熱性を向上させている。
 しかし、上記スチレン系耐熱性樹脂は通常のポリスチレンよりも溶融押出時の流動性が低く、樹脂の生産能力やシートの生産能力を上げることが難しい。上記スチレン系耐熱性樹脂の流動性を上げるためには、(i)押出温度を高くする方法、(ii)樹脂の分子量を下げる方法が考えられる。押出温度を高くすると、上記スチレン系耐熱性樹脂中のカルボン酸基が反応し、ゲル状の異物となってシートの品質低下を招く。また、樹脂の分子量を下げると、シート押出時のドローダウンが発生しやすくなり製膜が難しくなる。
 押出温度を高くしつつ、ゲル発生を抑える方法としては、例えば押出時にゲル化防止剤を添加する方法が提案されている(特許文献5)。しかし、特許文献5に記載のゲル化防止剤は可塑剤としても働くため、得られるスチレン系樹脂シートの耐熱性、耐油性が低下する。そのため、これらの性能を低下させにくい添加剤を選定する必要がある。
 また、スチレン系樹脂の分子量を下げつつ、製膜性を維持する方法としては、高分子量のポリスチレンを少量添加することにより、歪み硬化性を与える方法(特許文献6)が知られている。しかし、特許文献6に記載の高分子量のポリスチレンは前記スチレン系耐熱性樹脂とは相溶性が低く、期待する歪み硬化性が出にくいほか、得られるシートの透明性が低下する欠点を持つ。そこで、互いに相溶性を有するスチレン系耐熱性樹脂と高分子量ポリマーの組み合わせを選定する必要がある。
 また、前記スチレン系耐熱性樹脂はシート強度、特に耐折性、耐衝撃性が低く、樹脂の分子量を下げることによって更に低下する。前記スチレン系耐熱性樹脂は、耐折性、耐衝撃性が低いことにより、特に成形工程において通紙が難しい、型抜きが困難である、切り粉が出やすいなどの不具合が発生しやすく、成形容器の生産性が低下する。
 これらの理由から、透明性、強度を有しつつ、製膜性、成形性が良好で、生産性に優れ、耐熱性、耐油性に優れたスチレン系樹脂からなる延伸シートが求められている。
米国特許第3035033号公報 特開2003-12734公報 特公昭59-15133号公報 特開昭55-71530号公報 特開昭56-161409号公報 特開2011-225866号公報
 本発明の課題は、透明性、強度、製膜性および成形性が良好で、生産性、耐熱性、耐油性に優れた、スチレン系樹脂組成物からなる二軸延伸シートおよびその成形品を提供することである。
 本発明者らは、上記の課題を解決すべくスチレン系樹脂シートの成分や組成について鋭意検討を重ねた結果、スチレン-メタクリル酸共重合体をベースとし、高分子量アクリル系樹脂を所定量添加した樹脂を用いることよって、その目的が達成されることを見出し、本発明を完成するに至った。
 すなわち本発明は以下の通りである。
(1)スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、前記スチレン-メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10~97/3であり、前記スチレン-メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を84/16~94/6の質量比で含有し、前記アクリル系樹脂(B)の重量平均分子量が100万~700万であり、前記スチレン系樹脂組成物のビカット軟化温度が106~132℃の範囲である二軸延伸シート。
(2)前記スチレン-メタクリル酸共重合体(A)の重量平均分子量が12万~25万である前記(1)に記載の二軸延伸シート。
(3)前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を含有する前記(1)または前記(2)に記載の二軸延伸シート。
(4)前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35~85/15の質量比で含有する前記(3)に記載の二軸延伸シート。
(5)ゴム成分を含有する耐衝撃性スチレン系樹脂(C)を、前記スチレン-メタクリル酸共重合体(A)および前記アクリル系樹脂(B)の合計に対して3質量%以下の割合で更に含有する前記(1)~(4)のいずれか1項に記載の二軸延伸シート。
(6)前記二軸延伸シート中のゴム成分の含有量が0.05~0.3質量%であり、平均ゴム粒子径が1.2~12μmである前記(5)に記載の二軸延伸シート。
(7)前記スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下、未反応メタクリル酸単量体の含有量が150ppm以下である前記(1)~(6)のいずれか1項に記載の二軸延伸シート。
(8)厚みが0.1~0.7mm、縦方向と横方向の延伸倍率がいずれも1.8~3.2倍、縦方向と横方向の配向緩和応力がいずれも0.3~1.2MPaである前記(1)~(7)のいずれか1項に記載の二軸延伸シート。
(9)前記(1)~(8)のいずれか1項に記載の二軸延伸シートからなる成形品。
(10)電子レンジ加熱用食品包装容器である前記(9)に記載の成形品。
 本発明の二軸延伸シートおよびその成形品は、透明性、強度、製膜性および成形性が良好であり、耐熱性、耐油性に優れている。本発明の二軸延伸シートおよびその成形品は、成膜性および成形性に優れていることから生産性にも優れている。本発明の二軸延伸シートおよびその成形品は、電子レンジで加熱する食品の包装容器に好適に用いることができる。
 本発明の実施形態について以下説明する。但し、本発明の実施形態は、以下の実施形態に限定されるものではない。
 本発明の二軸延伸シートは、スチレン-メタクリル酸共重合体(A)とアクリル系樹脂(B)とを所定の質量比で混合したスチレン系樹脂組成物からなる。本発明の二軸延伸シートは、前記スチレン系樹脂組成物を押出成形し、得られた未延伸シートを二軸延伸することによって得ることができる。以下、スチレン系樹脂組成物の各成分について説明する。
(スチレン-メタクリル酸共重合体(A))
 本発明におけるスチレン系樹脂組成物は、スチレンとメタクリル酸とを共重合させてなるスチレン-メタクリル酸共重合体(A)を含有する。本発明に用いるスチレン-メタクリル酸共重合体(A)において、スチレンとメタクリル酸の共重合比率は、所望とする耐熱性と機械的強度等によって種々設定可能である。耐熱性、機械的強度、シートにしたときの透明性のバランスに優れた樹脂が容易に得られる点から、スチレン単量体単位とメタクリル酸単量体単位の合計量を100質量%としたときに、スチレン単量体単位とメタクリル酸単量体単位を84/16~94/6の質量比で含有することが必要である。メタクリル酸単量体単位の含有量が6質量%未満であると、耐熱性が不足し、また電子レンジ加熱時に穴あき、変形が起こりやすくなる。メタクリル酸単量体単位の含有量は、好ましくは8質量%以上、さらに好ましくは9質量%以上である。一方、メタクリル酸単量体単位の含有量が16質量%を超えると、製膜時の流動性の低下、二次成形時の賦型性の低下などの加工性の低下に加え、ゲル発生による外観低下が起こりやすくなる。メタクリル酸単量体単位の含有量は、好ましくは14質量%以下、さらに好ましくは13質量%以下である。また、スチレン-メタクリル酸共重合体(A)は、必要に応じて、発明の効果を損なわない限りにおいて、スチレンとメタクリル酸以外の他の単量体を適宜、共重合させてもよい。他の単量体の含有率は10質量%以下であることが好ましく、より好ましくは5%質量以下、さらに好ましくは3質量%以下である。他の単量体の含有率が10質量%を超えるとスチレンまたはメタクリル酸の比率が低下し、十分な透明性、機械的強度及び耐熱性が得られない場合がある。
 スチレン-メタクリル酸共重合体(A)の重量平均分子量(Mw)は、12万~25万であることが好ましく、より好ましくは14万~22万、さらに好ましくは15万~20万である。重量平均分子量が12万未満であると、流動性が過剰であるほか、シートのドローダウン、ネックインが発生するなどの製膜性の低下が発生しやすくなる。また、重量平均分子量が25万を超えると、流動性が不足するほか、製膜時の厚みムラ、ダイラインなどのシート外観低下が発生しやすくなる。
 また、スチレン-メタクリル酸共重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnは、2.0~3.0であることが好ましく、より好ましくは2.2~2.8である。Mw/Mnが3.0を超えると、容器成形時の熱板接触による表面荒れが発生し易くなる。一方、Mw/Mnが2.0未満であると、流動性低下による製膜時の厚みムラや容器成形時の賦型不良が発生し易くなる。また、Z平均分子量(Mz)とMwとの比Mz/Mwは、1.5~2.0であることが好ましく、より好ましくは1.6~1.9である。Mz/Mwが1.5未満であると、シートのドローダウン、ネックインが発生するなどの製膜性の低下、延伸配向の不足が発生し易くなる。一方、Mz/Mwが2.0を超えると、流動性低下による製膜時の厚みムラやダイラインなどのシート外観低下が発生し易くなる。
 なお、上述の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)は、GPC測定にて、以下の方法にて単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
 機種:昭和電工株式会社製Shodex GPC-101
 カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED-B
 移動相:テトラヒドロフラン
 試料濃度:0.2質量%
 温度:オーブン40℃、注入口35℃、検出器35℃
 検出器:示差屈折計
 スチレン-メタクリル酸共重合体(A)の重合方法としては、ポリスチレン等で工業化されている塊状重合法、溶液重合法、懸濁重合法等の公知の重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒としては例えば、ベンゼン、トルエン、エチルベンゼンおよびキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素類が使用できる。
 スチレン-メタクリル酸共重合体(A)の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、有機過酸化物を使用することができる。有機過酸化物の具体例としては、過酸化ベンゾイル、t-ブチルパーオキシベンゾネート、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、t-ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)、エチル-3,3-ジ(t-ブチルパーオキシ)ブチレート、t-ブチルパーオキシイソブチレート等が挙げられる。連鎖移動剤の具体例としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマーおよびテルピノーレン等が挙げられる。
(アクリル系樹脂(B))
 本発明におけるアクリル系樹脂(B)は、アクリル酸およびそのエステルや、メタクリル酸およびそのエステルからなる、超高分子量の単独重合体または共重合体である。
 上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル等が挙げられる。上記メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル等が挙げられる。これらのうち、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルが好ましく、アクリル酸ブチル、メタクリル酸メチルが特に好ましい。アクリル系樹脂(B)は、上記のアクリル酸およびそのエステルや、メタクリル酸およびそのエステルの中のいずれかの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 メタクリル酸エステルとしてメタクリル酸メチルを用いたアクリル系樹脂(B)の場合、メタクリル酸メチルの含有量は、65~85質量%が好ましく、より好ましくは70~80質量%、さらに好ましくは72~78質量%である。メタクリル酸メチルの含有量が65質量%未満であると、前記スチレン-メタクリル酸共重合体(A)との混合時にシートの透明性が低下する。一方、メタクリル酸メチルの含有量が85質量%を超えると、後述のアクリル酸ブチルの含有量が低下し、アクリル系樹脂の不溶化物が発生しやすくなる。
 また、アクリル酸エステルとしてアクリル酸ブチルを用いたアクリル系樹脂(B)の場合、アクリル酸ブチルの含有量は、15~35質量%が好ましく、より好ましくは20~30質量%、さらに好ましくは22~28質量%である。アクリル酸ブチルの含有量が15質量%未満であると、アクリル系樹脂(B)の流動性が低下することにより、アクリル系樹脂の不溶化物が発生しやすくなる。一方、アクリル酸ブチルの含有量が35質量%を超えると、上記メタクリル酸メチルの含有量が低下し、シートの透明性が低下する。
 従って、メタクリル酸メチルとアクリル酸ブチルを用いたアクリル系樹脂(B)の場合、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35~85/15の質量比で含有するアクリル系樹脂(B)が好ましい。
 また、アクリル系樹脂(B)のガラス転移点は、40~100℃が好ましく、より好ましくは50~90℃、さらに好ましくは60~80℃である。ガラス転移点が低すぎると前記スチレン-メタクリル酸共重合体(A)との混合時に耐熱性が低下する可能性がある。また、高すぎると前記スチレン-メタクリル酸共重合体(A)との混合時にアクリル樹脂が溶融しにくくなり、均一に混合しにくくなる可能性がある。
 アクリル系樹脂(B)の重量平均分子量(Mw)は、100万~700万であり、好ましくは120万~600万、更に好ましくは150万~500万である。アクリル系樹脂(B)の重量平均分子量が100万未満では電子レンジ加熱耐性を発揮が十分でない。一方、アクリル系樹脂(B)の重量平均分子量が700万を超えるとアクリル系樹脂(B)の不溶化物がゲルとして発生し、二軸延伸シートの外観を損ねる。アクリル系樹脂(B)の重量平均分子量の測定は、前記のスチレン-メタクリル酸共重合体(A)の重量平均分子量の測定方法に準じて行うことができる。
 アクリル系樹脂(B)の重合方法としては、例えば、乳化重合、ソープフリー乳化重合、微細懸濁重合、懸濁重合、塊状重合、溶液重合等の公知の重合方法が挙げられる。これらの重合方法の中でも、高分子量体の生成が容易であることから、乳化重合が好ましい。
 アクリル系樹脂(B)を乳化重合によって製造するときの乳化剤としては、公知の乳化剤を用いることができる。例えば、アニオン性乳化剤、ノニオン性乳化剤、高分子乳化剤、分子内にラジカル重合可能な不飽和二重結合を有する反応性乳化剤が挙げられる。
(スチレン系樹脂組成物)
 本発明におけるスチレン系樹脂組成物は、スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有している。スチレン系樹脂組成物におけるスチレン-メタクリル酸共重合体(A)とアクリル系樹脂(B)との質量比(A)/(B)は、90/10~97/3である。質量比(A)/(B)は、好ましくは91/9~96/4であり、より好ましくは93/7~95/5である。アクリル系樹脂(B)の含有量が3質量%未満では電子レンジ加熱に対する耐久性を十分発揮できない。一方、アクリル系樹脂(B)の含有量が10質量%を超えると、アクリル系樹脂の不溶化物がゲルとして発生し、二軸延伸シートの外観を損ねる。
 スチレン系樹脂組成物には、外観および透明性を損ねない程度の量のゴム成分を含有する耐衝撃性スチレン系樹脂(C)を添加してもよい。耐衝撃性スチレン系樹脂(C)を添加することにより、シートの脆性、容器のブロッキング性を改善することができる。
 耐衝撃性スチレン系樹脂(C)としては、ゴム成分が含まれるスチレン系樹脂であれば良く、スチレンの単独重合体中にゴム成分が含まれているもの、スチレン-メタクリル酸共重合体中にゴム成分が含まれているもの等、いずれも好適に用いることができる。ゴム成分は、マトリックス樹脂となるポリスチレンやスチレン-メタクリル酸共重合体中に、独立して粒子状になって分散していてもよいし、ゴム成分にポリスチレンやスチレン-メタクリル酸共重合体がグラフト重合して粒子状に分散しているものであってもよい。
 ゴム成分としては、例えば、ポリブタジエン、スチレン-ブタジエン共重合体、ポリイソプレン、ブタジエン-イソプレン共重合体などが挙げられる。特に、ポリブタジエン、スチレン-ブタジエン共重合体として含まれていることが好ましい。
 耐衝撃性スチレン系樹脂(C)の含有量は、シートの外観および透明性を維持するため、スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)の合計に対して3質量%以下であることが好ましい。また、シートの脆性、容器のブロッキング性の改善効果を十分に与えるため、スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)の合計量に対して0.5質量%以上であることが好ましい。
 耐衝撃性スチレン系樹脂(C)に由来するゴム成分の含有量は、二軸延伸シート中のゴム成分の含有量として0.05~0.3質量%であることが好ましい。ゴム成分の含有量が0.05質量%未満ではシート脆性の改善効果が十分発揮できないおそれがある。一方、ゴム成分の含有量が0.3質量%を超えるとシートの透明性が低下するおそれがある。また、二軸延伸シート中のゴム成分の平均ゴム粒子径は、1.2~12μmであることが好ましい。平均ゴム粒子径が1.2μm未満ではシート脆性の改善効果が十分発揮できないおそれがある。一方、平均ゴム粒子径が12μmを超えるとシートの透明性が低下するおそれがある。
 二軸延伸シート中のゴム成分の含有量は、二軸延伸シートをクロロホルムに溶解し、一塩化ヨウ素を加えてゴム成分中の二重結合を反応させた後、ヨウ化カリウムを加え、残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定する一塩化ヨウ素法によって測定される。
 二軸延伸シート中のゴム成分の平均ゴム粒子径は、超薄切片法にて観察面がシート平面と平行方向となるよう切削し、四酸化オスミウム(OsO)にてゴム成分を染色した後、透過型顕微鏡にて粒子100個の粒子径を測定し、以下の式により算出した値である。
 平均ゴム粒子径=Σni(Di)/Σni(Di)
 ここで、niは測定個数、Diは測定した粒子径を示す。
 スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下であり、未反応メタクリル酸単量体の含有量が150ppm以下であることが好ましい。これらの未反応単量体の含有量が規定量よりも多いと、シートを成形加工する際に成形加工機の金型等に付着し、成形品の外観を損ねたり、金型汚れを引き起こしてその後の成形容器の外観を損なう懸念がある。
 なお、未反応スチレン単量体および未反応メタクリル酸単量体の定量は、下記記載のガスクロマトグラフィーを用い、内部標準法にて測定した。
 装置名:GC-12A(島津製作所社製)
 カラム:ガラスカラム φ3[mm]×3[m]
 定量法:内部標準法(シクロペンタノール)
 スチレン系樹脂組成物は、ビカット軟化温度が106~132℃の範囲であることが必須である。ビカット軟化温度が106℃未満であると、シートの耐熱性が不足し、電子レンジ加熱時に変形が起こりやすくなる。ビカット軟化温度は、好ましくは108℃以上、さらに好ましくは110℃以上である。一方、ビカット軟化温度が132℃を超えると、製膜時および容器成形時の加工性が低下するおそれがある。ビカット軟化温度は、好ましくは128℃以下、さらに好ましくは126℃以下である。なお、ビカット軟化温度は、JIS K7206に準拠し、昇温速度50℃/hr、試験荷重50Nの条件で測定した。
 さらに、本発明におけるスチレン系樹脂組成物には、用途に応じて各種添加剤を配合してもよい。添加剤としては、例えば、酸化防止剤、ゲル化防止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、着色剤、帯電防止剤、難燃剤、鉱油等の添加剤、ガラス繊維、カーボン繊維およびアラミド繊維等の補強繊維、タルク、シリカ、マイカ、炭酸カルシウムなどの充填剤が挙げられる。また、上記スチレン系樹脂組成物をシート化したときの外観の観点から、酸化防止剤およびゲル化防止剤を単独または2種類以上を併用して配合することが好ましい。これらの添加剤は、スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)の重合工程または脱揮工程、造粒工程にて添加しても良いし、スチレン系樹脂組成物を製造するときに添加しても良い。
 上記添加剤の添加量に制限はないが、スチレン系樹脂組成物のビカット軟化温度および透明性の範囲から外れないように添加することが好ましい。
 ゲル化防止剤は、メタクリル酸の脱水反応によるゲル化反応を抑制する効果を有する。ゲル化防止剤としては、例えば、脂肪族アルコール等が有効である。一般的な脂肪族アルコールとして、7-メチル-2-(3-メチルブチル)-1-オクタノール、5-メチル-2-(1-メチルブチル)-1-オクタノール、5-メチル-2-(3-メチルブチル)-1-オクタノール、2-ヘキシル-1-デカノール、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)-1-オクタノール、8-メチル-2-(4-メチルヘキシル)-1-デカノール、2-ヘプチル-1-ウンデカノール、2-ヘプチル-4メチル-1-デカノール、2-(1,5-ジメチルヘキシル)-(5,9-ジメチル)-1-デカノールなどが挙げられる。
 酸化防止剤としては、例えば、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチルテトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-t-ブチルフェノール)および1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノール系酸化防止剤、ジトリデシル-3,3’-チオジプロピオネート、ジラウリル-3,3’-チオジプロピオネート、ジテトラデシル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ジオクチル-3,3’-チオジプロピオネート等の硫黄系酸化防止剤、トリスノニルフェニルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルージートリデシル)ホスファイト、(トリデシル)ペンタエリスリトールジホスファイト、ビス(オクタデシル)ペンタエリスリトールジホスファイト、ビス(ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ジノニルフェニルオクチルホスフォナイト、テトラキス(2,4-ジ-t-ブチルフェニル)1,4-フェニレンージーホスフォナイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジ-ホスフォナイト、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン等の燐系酸化防止剤が挙げられる。
(二軸延伸シート)
 本発明の二軸延伸シートは、次のような方法で製造することができる。まず、前記スチレン系樹脂組成物を押出機により溶融混練して、ダイ(特にTダイ)から押し出す。次に、縦方向(シート流れ方向、MD;Machine Direction)および横方向(シート流れ方向に垂直な方向、TD;Transverse Direction)の二軸方向に逐次又は同時で延伸することによって、二軸延伸シートが製造される。
 二軸延伸シートの厚みは、シートおよび容器の強度、特に剛性を確保するために、0.1mm以上であることが好ましく、より好ましくは0.15mm以上、さらに好ましくは0.2mm以上である。一方、賦型性および経済性の観点から、二軸延伸シートの厚みは、0.7mm以下であることが好ましく、より好ましくは0.6mm以下、さらに好ましくは0.5mm以下である。
 二軸延伸シートの縦方向および横方向の延伸倍率はいずれも、1.8~3.2倍の範囲にあることが好ましい。延伸倍率が1.8倍未満では、シートの耐折性が低下し易い。一方、延伸倍率が3.2倍を超えると、熱成形時の収縮率が大きすぎることにより賦形性が損なわれる。
 なお、本発明の延伸倍率の測定方法は、以下のとおりである。二軸延伸シートの試験片に対して、縦方向(MD)および横方向(TD)に100mm長の直線Yを引く。JIS K7206に準拠して測定したシートのビカット軟化温度より30℃高い温度のオーブンに、上記試験片を60分間静置し収縮させた後の、上記直線の長さZ[mm]を測定する。縦方向および横方向の延伸倍率(倍)は、それぞれ次式によって算出した数値である。
  延伸倍率(倍)=100/Z
 二軸延伸シートの縦方向および横方向の配向緩和応力はいずれも、0.3~1.2MPaの範囲にあることが好ましい。配向緩和応力が0.3MPa未満ではシートの耐折性が低下するおそれがある。一方、配向緩和応力が1.2MPaを超えると熱成形時の収縮応力が大きすぎることにより賦形性が損なわれるおそれがある。
 なお、本発明の二軸延伸シートの配向緩和応力は、ASTM D1504に準じて、シートを構成する樹脂組成物のビカット軟化温度より30℃高い温度のシリコーンオイル中でのピーク応力値として測定した値である。
 本発明の二軸延伸シートには、公知の離型剤・剥離剤(例えばシリコーンオイル)、防曇剤(例えばショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル等のノニオン系界面活性剤、ポリエーテル変性シリコーンオイル、二酸化珪素等)、帯電防止剤(例えば各種ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等)の内の1種または2種以上を混合して、シートの片面または両面に塗布してもよい。
 これら塗工剤を二軸延伸シートに塗工する方法は特に限定されることはなく、簡便にはロールコーター、ナイフコーター、グラビアロールコーター等を用い塗工する方法が挙げられる。また、噴霧、浸漬等を採用することも出来る。
 本発明の二軸延伸シートから成形品を得る方法としては、特に制限はなく、従来の二軸延伸シートの二次成形方法において慣用されている方法を用いることができる。例えば、真空成形法や圧空成形法等の熱成形方法によって二次成形を行うことができる。これらの方法は例えば高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社(1995)に記載されている。本発明の二軸延伸シートの成形品の用途としては、各種の容器があり、各種物品の包装容器等に広く用いることができる。中でも、電子レンジ加熱用食品包装容器等が本発明の特徴が十分に発揮されるため、特に好ましい。
 以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。
(実験例1)[スチレン-メタクリル酸共重合体(A-1)の製造]
 内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビニルアルコール100gを加え、130rpmで攪拌した。続いてスチレン72.0kg、メタクリル酸4.0kgおよびt-ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。また、4.0kgのメタクリル酸を、重合温度が110℃に達した時点から2時間かけて、均等に追加添加した(ステップ2)。さらに140℃で3時間保持し、重合を完結させた(ステップ3)。得られたビーズを洗浄、脱水、乾燥した後、押出し、表1に記載のペレット状のスチレン-メタクリル酸共重合体(A-1)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/メタクリル酸単量体の質量%比は、90/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(実験例2~11)[スチレン-メタクリル酸共重合体(A-2~11)の製造]
 実験例1の各種原料仕込み量を調整し、表1に記載の各種スチレン-メタクリル酸共重合体(A-2~11)を得た。
(実験例12)[アクリル系樹脂(B-1)の製造]
 温度計、窒素導入管、冷却管および攪拌装置を備えたセパラブルフラスコ(容量5リットル)に、分散媒としてイオン交換水300質量部(3000グラム)、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.1質量部、連鎖移動剤としてn-オクチルメルカプタン0.01質量部、単量体としてメタクリル酸メチル75質量部、アクリル酸ブチル25質量部を投入した。このセパラブルフラスコに窒素気流を通じることにより、フラスコ内雰囲気の窒素置換を行なった。次いで、内温を60℃まで昇温させ、過硫酸カリウム0.15質量部、脱イオン水5質量部を加えた。その後、加熱攪拌を2時間継続して重合を終了し、アクリル系樹脂ラテックスを得た。
 得られたアクリル系樹脂ラテックスを25℃まで冷却後、酢酸カルシウム5質量部を含む70℃の温水500質量部中に滴下した後、90℃まで昇温させて凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて、アクリル系樹脂(B-1)を得た。アクリル系樹脂(B-1)のガラス転移点を、JIS K 7121:2012プラスチックの転移温度測定方法に準じた示差走査熱量測定(DSC)により測定したところ、60℃であった。
(実験例13~17)[アクリル系樹脂(B-2~6)の製造]
 実験例12の各種単量体、連鎖移動剤の仕込み量を調整し、表2に記載の各種アクリル樹脂(B-2~6)を得た。
(実験例18)[耐衝撃性スチレン系樹脂(C-1)の製造]
 ゴム状重合体として3.4質量%のローシスポリブタジエンゴム(旭化成製、商品名ジエン55AS)を使用し、91.6質量%のスチレンと、溶剤として5.0質量%のエチルベンゼンに溶解して重合原料とした。また、ゴムの酸化防止剤(チバガイギー製、商品名イルガノックス1076)0.1質量部を添加した。この重合原料を翼径0.285mの錨型撹拌翼を備えた14リットルのジャケット付き反応器(R-01)に12.5kg/hrで供給した。反応温度は140℃、回転数は2.17sec-1で反応させた。得られた樹脂液を直列に配置した2基の内容積21リットルのジャケット付きプラグフロー型反応器に導入した。1基目のプラグフロー型反応器(R-02)では、反応温度が樹脂液の流れ方向に120~140℃、2基目のプラグフロー型反応器(R-03)では、反応温度が樹脂液の流れ方向に130~160℃の勾配を持つようにジャケット温度を調整した。得られた樹脂液は230℃に加熱後、真空度5torrの脱揮槽に送られ、未反応単量体、溶剤を分離・回収した。その後、脱揮槽からギヤポンプで抜き出し、ダイプレートを通してストランドとした後、水槽を通してペレット化し、製品として回収した。得られた樹脂(C-1)の樹脂率は70%であった。ここで、樹脂率とは、下記式によって算出される。
 樹脂率(%)=100×(生成したポリマー量)/{(仕込んだモノマー量)+(溶剤量)}
 また、得られた樹脂(C-1)中のゴム成分含有量は10.0質量%、平均ゴム粒子径は2.0μmであった。
(実験例19~22)[耐衝撃性スチレン系樹脂(C-2~5)の製造]
 実験例18の各種原料仕込み量を調整し、表3に記載の各種耐衝撃性スチレン系樹脂(C-2~5)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<実施例1>
 スチレン-メタクリル酸共重合体(A-1)95.0質量%に、アクリル系樹脂(B-1)5.0質量%をハンドブレンドし、ペレット押出機(真空ベント付き二軸同方向押出機 TEM35B (東芝機械製))を用い、押出温度230℃、回転数250rpm、ベント脱揮圧力-760mmHgにてダイプレートを通してストランドとした後、水槽にて冷却したのち、ペレタイザーを通してペレット化し、樹脂組成物を得た。なお、ベント脱揮圧力は、常圧に対する差圧値として示した。得られた樹脂組成物中の未反応スチレン単量体の含有量は500ppm、未反応メタクリル酸単量体の含有量は50ppmであった。また、ビカット軟化温度は116℃、JIS K7210のH条件(200℃、5kg)におけるメルトフローインデックス(MFI)は1.0g/10minであった。上記樹脂組成物をシート押出機(Tダイ幅500mm、リップ開度1.5mm、φ40mmのエキストルーダー(田辺プラスチック機械社製))を用い、押出温度230℃、吐出量20kg/hにて未延伸シートを得た。このシートをバッチ式二軸延伸機(東洋精機社製)を用いて、(ビカット軟化温度+30)℃に予熱し、歪み速度0.1/secで、MD2.4倍、TD2.4倍(面倍率5.8倍)に延伸し、表4に記載の二軸延伸シートを得た。得られたシートの厚みは0.3mm、延伸倍率(MD/TD)は2.4/2.4倍、配向緩和応力(MD/TD)は0.6/0.6MPaであった。
<実施例2~19、比較例1~7>
 実施例1の樹脂の配合量、樹脂組成物の押出条件を調整し、表4、表5、表7に記載の二軸延伸シートを得た。
<実施例20~26>
 スチレン-メタクリル酸共重合体(A-1)およびアクリル系樹脂(B-1)の合計100質量%に対して表1に記載の耐衝撃性スチレン系樹脂(C)を加え、実施例1記載の押出機にてペレット化し、スチレン系樹脂組成物を得た後、実施例1記載の製膜条件および延伸条件にて、表5、表6に記載の二軸延伸シートを得た。
<実施例27~33>
 実施例21のスチレン-メタクリル酸共重合体(A-1)、アクリル系樹脂(B-1)、耐衝撃性スチレン系樹脂(C)からなる樹脂組成物を得た後、実施例1記載のシート押出機、二軸延伸機を用い、製膜時のリップ開度、延伸時の倍率、予熱温度を調整し、表6に記載の厚み、延伸倍率、配向緩和応力を有する二軸延伸シートを得た。
 得られたシートについて、以下に記載した方法にて各種性能を測定し、評価を行った。○、△、×の相対評価においては、○または△のときを合格と判定した。結果は表4~表7に記載した。
(1)製膜性
 未延伸シートにMD方向およびTD方向に20mm間隔で直線を5本ずつ格子状に引いた時の交点25点についてマイクロゲージを用いて厚みを測定し、その標準偏差σを下記基準で評価した。
  ○:σが0.03mm未満
  △:σが0.03mm以上、0.07mm未満
  ×:σが0.07mm以上
(2)流動性(メルトフローレート)
 JIS K7210のH条件(200℃、5kg)に従って測定した。
  ○:1.0g/10分以上かつ3.0g/10分未満
  △:0.5g/10分以上かつ1.0g/10分未満、または、
    3.0g/10分以上かつ5.0g/10分未満
  ×:0.5g/10分未満または5.0g/10分以上
(3)シート外観
 二軸延伸シート350mm×350mmの範囲について、1)面積100mm以上のロール付着跡、2)面積10mm以上の気泡、3)透明および不透明異物、4)付着欠陥、5)幅3mm以上のダイライン(製膜時にTダイ出口で発生するシート流れ方向に走る欠陥)を欠点とし、欠点の個数を下記基準で評価した。
  ○:0個
  △:1~2個
  ×:3個以上
(4)延伸性
 二軸延伸シートにMD方向およびTD方向に50mm間隔で直線を5本ずつ格子状に引いた時の交点25点についてマイクロゲージを用いて厚みを測定し、その標準偏差σを下記基準で評価した。
  ○:σが0.05mm未満
  △:σが0.05mm以上、0.10mm未満
  ×:σが0.10mm以上
(5)透明性
 JIS K-7361-1に準じ、ヘーズメーターNDH5000(日本電色社)を用いて、二軸延伸シートのヘーズを測定した。
  ○:ヘーズ1.5%未満
  △:ヘーズ1.5%以上、3.0%未満
  ×:ヘーズ3.0%以上
(6)剛性
 後記されるフードパックの本体に500gの錘を入れ、蓋をした弁当容器を5段重ね、24時間静置後の蓋材の変形状態を確認した。
  ○: 形状変化なし。
  △: 変形有り。
  ×: 割れ有り。
(7)耐折性
 ASTM D2176に準じて、シート押出方向(縦方向)とそれに垂直な方向(横方向)の耐折曲げ強さを測定し、最小値を求め、以下のように評価した。
  ○:5回以上
  △:2回以上、5回未満
  ×:2回未満
(8)賦型性
 熱板成形機HPT?400A(脇坂エンジニアリング社製)にて、熱板温度150℃、加熱時間2.0秒の条件で、フードパック(寸法 蓋:縦150×横130×高さ30mm、本体:縦150×横130×高さ20mm)を成形し、賦型性を下記基準にて評価した。
  ○:良好
  △:コーナー部に僅かな形状不良
  ×:寸法と異なる形状またはコーナー部に著しい形状不良
(9)金型汚れ性
 上記フードパックの成形時、金型等の汚れの転写を下記基準にて評価した。
  ○:転写なし(透明、白濁なし)
  △:一部に転写あり(不透明、表面が白濁)
  ×:全体に転写あり(不透明、表面が白濁)
(10)耐熱性
 上記成形条件で得られたフードパックを110℃に設定した熱風乾燥機に60分間入れた後、容器の変形を目視で観察した。
  ○:変形なし
  △:軽微な変形、外寸変化5%未満
  ×:大変形、外寸変化5%以上
(11)耐油性
 上記フードパックのヒンジ部にサラダ油(日清製油社製)、マヨネーズ(味の素社製)、ココナードML(登録商標、花王社製)の試験液をしみ込ませたガーゼ10×10mmを貼り付け、60℃オーブンにて24時間静置し、付着部の表面観察を行った。
  ○:変化無し
  △:わずかに白化あり
  ×:著しい白化、割れあり
(12)電子レンジ加熱耐性
 上記フードパックの蓋中央に5mm×5mmの範囲でマヨネーズを9点付着させ、容器本体に水300gを入れ、蓋容器をかぶせて1500Wの電子レンジで90秒間加熱した後、マヨネーズ付着部分の様子を目視で評価した。
  ○:変化なし
  △:白化あり、容器がわずかに変形
  ×:穴あきあり、容器が著しく変形
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4~表7の結果から、実施例1~33はいずれも、本発明の規定を満足するものであり、製膜性(製膜性、流動性、シート外観、延伸性)、透明性、シート強度(剛性、耐折性)、成形性(賦型性、金型汚れ性)、耐熱性、耐油性、電子レンジ加熱耐性のいずれの性能においても、優れた性能を有するものであった。
 一方、比較例1は、スチレン-メタクリル酸共重合体(A-10)中のメタクリル酸単量体単位の含有量が少ないため、ビカット軟化温度が低く、耐熱性と電子レンジ加熱耐性に劣るものであった。比較例2は、スチレン-メタクリル酸共重合体(A-11)中のメタクリル酸単量体単位の含有量が多いため、流動性と賦型性に劣るものであった。比較例3は、アクリル系樹脂(B-6)の重量平均分子量が小さいため、電子レンジ加熱耐性に劣るものであった。比較例4は、アクリル系樹脂(B-1)の含有量が少ないため、電子レンジ加熱耐性に劣るものであった。比較例5は、アクリル系樹脂(B)を含有しないものであり、電子レンジ加熱耐性および耐油性に劣るものであった。比較例6は、アクリル系樹脂(B-1)の含有量が多いため、アクリル系樹脂の不溶化物がゲルとして発生し、流動性やシート外観に劣るものであった。比較例7は、スチレン-メタクリル酸共重合体(A-2)中のメタクリル酸単量体単位の含有量が比較的少なく、アクリル系樹脂(B-4)中のアクリル酸ブチル単量体単位の含有量が比較的多く、さらにアクリル系樹脂(B-4)の配合比率がやや多いため、ビカット軟化温度が低いものであり、耐熱性および電子レンジ加熱耐性に劣るものであった。

Claims (10)

  1.  スチレン-メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、
     前記スチレン-メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10~97/3であり、
     前記スチレン-メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を84/16~94/6の質量比で含有し、
     前記アクリル系樹脂(B)の重量平均分子量が100万~700万であり、
     前記スチレン系樹脂組成物のビカット軟化温度が106~132℃の範囲である
     二軸延伸シート。
  2.  前記スチレン-メタクリル酸共重合体(A)の重量平均分子量が12万~25万である請求項1に記載の二軸延伸シート。
  3.  前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を含有する請求項1または請求項2に記載の二軸延伸シート。
  4.  前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35~85/15の質量比で含有する請求項3に記載の二軸延伸シート。
  5.  ゴム成分を含有する耐衝撃性スチレン系樹脂(C)を、前記スチレン-メタクリル酸共重合体(A)および前記アクリル系樹脂(B)の合計に対して3質量%以下の割合で更に含有する請求項1~4のいずれか1項に記載の二軸延伸シート。
  6.  前記二軸延伸シート中の前記ゴム成分の含有量が0.05~0.3質量%であり、平均ゴム粒子径が1.2~12μmである請求項5に記載の二軸延伸シート。
  7.  前記スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下、未反応メタクリル酸単量体の含有量が150ppm以下である請求項1~6のいずれか1項に記載の二軸延伸シート。
  8.  厚みが0.1~0.7mm、縦方向と横方向の延伸倍率がいずれも1.8~3.2倍、縦方向と横方向の配向緩和応力がいずれも0.3~1.2MPaである請求項1~7のいずれか1項に記載の二軸延伸シート。
  9.  請求項1~8のいずれか1項に記載の二軸延伸シートからなる成形品。
  10.  電子レンジ加熱用食品包装容器である請求項9に記載の成形品。
PCT/JP2017/000999 2016-01-13 2017-01-13 二軸延伸シートおよびその成形品 WO2017122774A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187013754A KR20180102540A (ko) 2016-01-13 2017-01-13 이축연신 시트 및 그 성형품
CN201780005859.3A CN108473697A (zh) 2016-01-13 2017-01-13 双轴拉伸片及其成形品
JP2017561179A JP6444539B2 (ja) 2016-01-13 2017-01-13 二軸延伸シートおよびその成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004052 2016-01-13
JP2016-004052 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122774A1 true WO2017122774A1 (ja) 2017-07-20

Family

ID=59311802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000999 WO2017122774A1 (ja) 2016-01-13 2017-01-13 二軸延伸シートおよびその成形品

Country Status (5)

Country Link
JP (1) JP6444539B2 (ja)
KR (1) KR20180102540A (ja)
CN (1) CN108473697A (ja)
TW (1) TWI697507B (ja)
WO (1) WO2017122774A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014814A (ja) * 2017-07-06 2019-01-31 デンカ株式会社 延伸シート及びその成形品
JP2019196415A (ja) * 2018-05-07 2019-11-14 デンカ株式会社 二軸延伸シートおよびその成形品
JP2020059832A (ja) * 2018-10-12 2020-04-16 Psジャパン株式会社 スチレン系共重合樹脂、樹脂組成物、そのシート及び成形品
JP2020111649A (ja) * 2019-01-09 2020-07-27 デンカ株式会社 組成物、発泡シート及び成形体
JP7512504B1 (ja) 2023-11-16 2024-07-08 デンカ株式会社 熱可塑性離型フィルムの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340875A (en) * 1991-08-15 1994-08-23 Arco Chemical Technology Blends of polybutylene terephthalate resins and methacrylic acid-containing styrenic copolymers
WO2005028572A1 (en) * 2003-09-19 2005-03-31 Sigmakalon B.V. Styrene acrylic copolymer based waterborne coatings
JP2008050550A (ja) * 2005-10-07 2008-03-06 Asahi Kasei Chemicals Corp 光学補償フィルム
JP2008146003A (ja) * 2006-09-14 2008-06-26 Asahi Kasei Chemicals Corp アクリル系樹脂およびスチレン系樹脂を含む位相差フィルム
JP2008216586A (ja) * 2007-03-02 2008-09-18 Asahi Kasei Chemicals Corp 機械的性質及び熱的性質に優れる光学フィルム
JP2009282146A (ja) * 2008-05-20 2009-12-03 Asahi Kasei E-Materials Corp 機械強度に優れた光学フィルム
JP2013221128A (ja) * 2012-04-18 2013-10-28 Cp Kasei Kk スチレン系樹脂耐熱発泡シート、およびこの発泡シート製容器
JP2015229330A (ja) * 2014-06-06 2015-12-21 デンカ株式会社 耐油性ポリスチレン系樹脂シートおよびその成形容器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225031A (ja) * 1985-07-26 1987-02-03 Asahi Chem Ind Co Ltd 二軸延伸スチレン系耐熱性シ−ト
JP3621973B2 (ja) * 1998-11-27 2005-02-23 出光興産株式会社 ガス注入射出成形用ポリカーボネート系樹脂、中空成形品の製造方法および中空成形品
CN1210323C (zh) * 2002-02-11 2005-07-13 大日本油墨化学工业株式会社 耐冲击性透明苯乙烯系树脂组合物
JP4053022B2 (ja) * 2004-06-08 2008-02-27 電気化学工業株式会社 ポリスチレン系二軸延伸積層シート、成形体および容器
JP5191667B2 (ja) * 2007-01-29 2013-05-08 旭化成イーマテリアルズ株式会社 スチレン系樹脂異方性フィルム
JP4990995B2 (ja) * 2010-03-26 2012-08-01 サンディック株式会社 二軸延伸スチレン系樹脂シート及びこれを用いた成形品
WO2014034049A1 (ja) 2012-08-30 2014-03-06 パナソニック株式会社 スタイラス検出装置およびスタイラス検出方法
JP6188307B2 (ja) * 2012-11-16 2017-08-30 Psジャパン株式会社 耐熱スチレン系樹脂組成物、押出シート及び成形品
JP6104677B2 (ja) * 2013-04-01 2017-03-29 Psジャパン株式会社 耐熱スチレン系樹脂組成物、押出シート及び成形品
JP6085533B2 (ja) * 2013-07-19 2017-02-22 サンディック株式会社 二軸延伸スチレン系樹脂シート及びその成形品
JP2015042735A (ja) * 2013-07-23 2015-03-05 ユニチカ株式会社 ポリ乳酸系樹脂組成物及び成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340875A (en) * 1991-08-15 1994-08-23 Arco Chemical Technology Blends of polybutylene terephthalate resins and methacrylic acid-containing styrenic copolymers
WO2005028572A1 (en) * 2003-09-19 2005-03-31 Sigmakalon B.V. Styrene acrylic copolymer based waterborne coatings
JP2008050550A (ja) * 2005-10-07 2008-03-06 Asahi Kasei Chemicals Corp 光学補償フィルム
JP2008146003A (ja) * 2006-09-14 2008-06-26 Asahi Kasei Chemicals Corp アクリル系樹脂およびスチレン系樹脂を含む位相差フィルム
JP2008216586A (ja) * 2007-03-02 2008-09-18 Asahi Kasei Chemicals Corp 機械的性質及び熱的性質に優れる光学フィルム
JP2009282146A (ja) * 2008-05-20 2009-12-03 Asahi Kasei E-Materials Corp 機械強度に優れた光学フィルム
JP2013221128A (ja) * 2012-04-18 2013-10-28 Cp Kasei Kk スチレン系樹脂耐熱発泡シート、およびこの発泡シート製容器
JP2015229330A (ja) * 2014-06-06 2015-12-21 デンカ株式会社 耐油性ポリスチレン系樹脂シートおよびその成形容器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014814A (ja) * 2017-07-06 2019-01-31 デンカ株式会社 延伸シート及びその成形品
JP7008436B2 (ja) 2017-07-06 2022-01-25 デンカ株式会社 延伸シート及びその成形品
JP2019196415A (ja) * 2018-05-07 2019-11-14 デンカ株式会社 二軸延伸シートおよびその成形品
JP2020059832A (ja) * 2018-10-12 2020-04-16 Psジャパン株式会社 スチレン系共重合樹脂、樹脂組成物、そのシート及び成形品
JP7336840B2 (ja) 2018-10-12 2023-09-01 Psジャパン株式会社 スチレン系共重合樹脂、樹脂組成物、そのシート及び成形品
JP2020111649A (ja) * 2019-01-09 2020-07-27 デンカ株式会社 組成物、発泡シート及び成形体
JP7208799B2 (ja) 2019-01-09 2023-01-19 デンカ株式会社 組成物、発泡シート及び成形体
JP7512504B1 (ja) 2023-11-16 2024-07-08 デンカ株式会社 熱可塑性離型フィルムの製造方法

Also Published As

Publication number Publication date
KR20180102540A (ko) 2018-09-17
JP6444539B2 (ja) 2018-12-26
TW201736414A (zh) 2017-10-16
JPWO2017122774A1 (ja) 2018-09-13
CN108473697A (zh) 2018-08-31
TWI697507B (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6444539B2 (ja) 二軸延伸シートおよびその成形品
JP6389574B2 (ja) 二軸延伸シートおよびその成形品
RU2397992C2 (ru) Улучшенные модифицированные каучуком моновинилиденароматические полимеры и изготовленные из них изделия
JP7019353B2 (ja) 延伸シ-ト及び包装容器、並びにそれらの製造方法
JP2018203837A (ja) スチレン系樹脂組成物、延伸シートおよび成形品
JP6854819B2 (ja) 二軸延伸シートおよびその成形品
JP2018090753A (ja) 耐熱スチレン系樹脂組成物、押出シート、成形品
JP6941487B2 (ja) 延伸シート及びその成形品
JP7002264B2 (ja) 二軸延伸シートおよびその成形品
JP7025998B2 (ja) 二軸延伸シートおよびその成形品
JP2018203838A (ja) スチレン系樹脂組成物、延伸シートおよび成形品
KR20160086871A (ko) 고무 변성 스티렌계 수지 및 이것을 이용하여 이루어지는 시트, 식품용기, 식품용기 뚜껑재
JP7008436B2 (ja) 延伸シート及びその成形品
JP4582765B2 (ja) ポリスチレン系2軸延伸シート及びその製造方法
JP3662025B2 (ja) スチレン系樹脂シート及び成形体
JP2019196415A (ja) 二軸延伸シートおよびその成形品
JP6978355B2 (ja) 二軸延伸シートおよびその成形品
JP2007177120A (ja) ビニル芳香族炭化水素系共重合体
JP7470565B2 (ja) フィルム用スチレン-メタクリル酸系共重合体樹脂組成物、フィルム、及び成形品
JP7085933B2 (ja) スチレン系樹脂シートおよび成形品
JP3947419B2 (ja) 芳香族ビニル化合物系樹脂組成物
JP2018048319A (ja) 延伸シ−ト及び包装容器、並びにそれらの製造方法
JP2023061603A (ja) 二軸延伸シート及び包装容器
KR20230170784A (ko) 투명한 고무 변성 스티렌계 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561179

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013754

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738526

Country of ref document: EP

Kind code of ref document: A1