WO2017122743A1 - 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品 - Google Patents

硬化性組成物、硬化物、プリプレグおよび繊維強化成形品 Download PDF

Info

Publication number
WO2017122743A1
WO2017122743A1 PCT/JP2017/000874 JP2017000874W WO2017122743A1 WO 2017122743 A1 WO2017122743 A1 WO 2017122743A1 JP 2017000874 W JP2017000874 W JP 2017000874W WO 2017122743 A1 WO2017122743 A1 WO 2017122743A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
group
curable composition
mass
fiber
Prior art date
Application number
PCT/JP2017/000874
Other languages
English (en)
French (fr)
Inventor
細田 朋也
佐藤 崇
正登志 阿部
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2017561169A priority Critical patent/JP6794996B2/ja
Priority to DE112017000397.0T priority patent/DE112017000397T5/de
Priority to CN201780006652.8A priority patent/CN108884324A/zh
Priority to KR1020187017075A priority patent/KR102647945B1/ko
Publication of WO2017122743A1 publication Critical patent/WO2017122743A1/ja
Priority to US15/997,191 priority patent/US20180298155A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/102Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08J2400/105Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/08Copolymers with vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a curable composition, a cured product obtained by curing the curable composition, a prepreg using the curable composition, and a fiber reinforced molded product using the prepreg.
  • Fiber reinforced molded products are used in a wide range of applications such as transportation equipment (vehicles (automobiles, railcars, etc.), airplanes, etc.), building components, and electronic equipment.
  • transportation equipment vehicles (automobiles, railcars, etc.), airplanes, etc.
  • building components and electronic equipment.
  • a cured product of a thermosetting resin has been often used as a matrix resin for fiber-reinforced molded products.
  • Wear resistance is required for members used for sliding parts in transportation equipment and the like.
  • conventional fiber reinforced molded products do not necessarily have sufficient wear resistance, and further improvements in wear resistance are required.
  • the present invention provides a curable composition capable of obtaining a cured product excellent in appearance and wear resistance, a cured product excellent in appearance and wear resistance, and a fiber-reinforced molded product excellent in appearance and wear resistance. And a fiber-reinforced molded article excellent in appearance and wear resistance.
  • the present invention has the following aspects. ⁇ 1> a thermosetting resin, a fluororesin powder, and a curing agent; the fluororesin powder has a melting point of 100 ° C. or more and 325 ° C. or less, a carbonyl group-containing group, a hydroxy group, an epoxy group, and A resin material containing a melt-moldable fluororesin having at least one functional group selected from the group consisting of isocyanate groups; out of a total of 100% by mass of the thermosetting resin and the fluororesin powder, The curable composition whose ratio of a thermosetting resin is 92 to 99.9 mass%, and whose ratio of the said fluororesin powder is 0.1 to 8 mass%.
  • thermosetting resin Of the total 100% by mass of the thermosetting resin and the fluororesin powder, the ratio of the thermosetting resin is 92% by mass or more and 99.9% by mass or less.
  • curable composition whose ratio is 0.1 mass% or more and 8 mass% or less.
  • ⁇ 3> The curable composition according to ⁇ 1> or ⁇ 2>, wherein the fluororesin powder has an average particle size of 0.02 to 200 ⁇ m.
  • ⁇ 4> The curable composition according to any one of ⁇ 1> to ⁇ 3>, wherein the fluororesin has a melting point of 100 or more and less than 260 ° C.
  • the melt flow rate of the fluororesin is 0.5 to 100 g / 10 min at a temperature 20 ° C. or higher than the melting point of the fluororesin (B) under a load of 49 N
  • the fluororesin has a functional group (f) derived from at least one selected from the group consisting of a monomer, a chain transfer agent and a polymerization initiator used in the production of the fluoropolymer.
  • the fluororesin is a unit derived from tetrafluoroethylene or chlorotrifluoroethylene, a unit derived from a cyclic hydrocarbon monomer having an acid anhydride group, and a fluorine-containing monomer (TFE and CTFE).
  • the ratio of the curing agent is 25 to 45 parts by mass with respect to 100 parts by mass in total of the thermosetting resin (A) and the fluororesin powder (X). Any curable composition.
  • ⁇ 10> The cured product according to ⁇ 8>, wherein the thickness is 5 mm or less.
  • a metal laminate comprising a metal layer on one or both sides of a layer made of the cured product of ⁇ 9> or ⁇ 10>.
  • a prepreg comprising ⁇ 12> reinforcing fibers and a matrix resin, wherein the matrix resin is formed of any one of the curable compositions ⁇ 1> to ⁇ 8>.
  • ⁇ 13> A fiber-reinforced molded article using the prepreg of ⁇ 13>.
  • a cured product excellent in appearance and abrasion resistance can be obtained.
  • the cured product of the present invention is excellent in appearance and wear resistance.
  • the prepreg of the present invention it is possible to obtain a fiber-reinforced molded article having excellent appearance and wear resistance.
  • the fiber-reinforced molded product of the present invention is excellent in appearance and wear resistance.
  • melting point is a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • Melt moldable means exhibiting melt fluidity.
  • Melowing melt flowability means that there is a temperature at which the melt flow rate is 0.1 to 1000 g / 10 minutes at a temperature higher than the melting point of the resin by 20 ° C. or more under the condition of a load of 49 N. .
  • the “melt flow rate” is a melt mass flow rate (MFR) defined in JIS K 7210: 1999 (ISO 1133: 1997).
  • the “unit” means a portion (polymerized unit) derived from the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • the “average particle diameter of powder” is a volume-based cumulative 50% diameter (D50) determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles being 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
  • the curable composition of this invention contains a thermosetting resin (A), fluororesin powder (X), and a hardening
  • the curable composition of the present invention may contain a thermoplastic resin (D) as long as the effects of the present invention are not impaired, and the thermosetting resin (A), the fluororesin powder (X), and the curing agent. Components other than (C) and the thermoplastic resin (D) may be included.
  • thermosetting resin (A) examples include epoxy resins, cyanate ester resins, unsaturated polyester resins, vinyl ester resins, phenol resins, urea / melamine resins, polyimides, bismaleimide resins, etc. (Except the same as (B)).
  • thermosetting resin an epoxy resin or a cyanate ester resin is preferable, and an epoxy resin is more preferable from the viewpoint of mechanical properties of a cured product or a fiber-reinforced molded product.
  • Epoxy resins include glycidyl ether type epoxy resins (bisphenol type epoxy resins, (poly) alkylene glycol type epoxy resins, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, etc.), glycidyl ester type epoxy resins, glycidyl amine type epoxy resins.
  • Resin N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl isocyanurate, etc.
  • alicyclic epoxy resin dicyclopentadiene type, etc.
  • sulfur atom in the main chain And epoxy resin having urethane, urethane-modified epoxy resin, rubber-modified epoxy resin, and the like.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the thermosetting resin may be in a form dissolved in a liquid medium.
  • the liquid medium is not particularly limited, but alcohol solvents such as methanol and ethanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ether solvents such as methyl cellosolve and ethyl cellosolve, sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide.
  • Solvents N, N-dimethylformamide, N, N-diethylformamide and other formamide solvents, N, N-dimethylacetamide, N, N-diethylacetamide and other acetamide solvents, N-methyl-2-pyrrolidone, N -Pyrrolidone solvents such as vinyl-2-pyrrolidone, hexamethylphosphoramide, ⁇ -butyrolactone and the like.
  • the fluororesin powder (X) is made of a resin material ( ⁇ ) containing the fluororesin (B). Resin material ((alpha)) may contain other components other than a fluororesin (B) in the range which does not impair the effect of this invention.
  • the proportion of the fluororesin (B) in 100% by mass of the resin material ( ⁇ ) is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, and further preferably 90 to 100% by mass. If the said ratio is in the said range, the effect of this invention will be hard to be impaired.
  • the total proportion of the other components in the resin material ( ⁇ ) of 100% by mass is preferably more than 0 to 20% by mass, more than 0 to 15% by mass. Is more preferable, and more than 0 to 10% by mass is even more preferable. If the said ratio is in the said range, the effect of this invention will be hard to be impaired. It is also preferable that the resin material ( ⁇ ) does not contain other components.
  • the average particle diameter of the fluororesin powder (X) is preferably 0.02 to 200 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the average particle diameter is not less than the lower limit of the above range, the workability of the powder is excellent.
  • the average particle diameter is not more than the upper limit of the above range, the appearance and abrasion resistance of the cured product and fiber reinforced molded product are remarkably excellent.
  • the fluororesin powder (X) can be produced, for example, by the following procedure.
  • the fluororesin (B) and other components are melt-kneaded as necessary.
  • the melt of the resin material ( ⁇ ) is extruded into a strand shape.
  • the strand is cut with a pelletizer and pelletized.
  • the pellet is mechanically pulverized.
  • the pulverized product is classified to obtain fluororesin powder (X).
  • Equipment that can mechanically pulverize pellets includes hammer mill, pin mill, disc mill, rotary mill, jet mill, fluidized bed air jet mill, jaw crusher, gyrate leak crusher, cage mill, pan crusher, ball mill, pebble mill, rod mill, A tube mill, a disc attrition mill, an attritor, a disc refiner, etc. are mentioned.
  • the pulverization of the pellet is preferably performed by cooling the pellet to a temperature of ⁇ 40 ° C. or less from the viewpoint of easily reducing the average particle size of the pulverized product.
  • the cooling temperature is more preferably ⁇ 100 ° C. or less, and further preferably ⁇ 160 ° C. or less.
  • Examples of the cooling method include a method using dry ice or liquid nitrogen.
  • the fluororesin (B) is a fluororesin having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group (hereinafter referred to as a functional group (f)). is there.
  • a functional group (f) By having the functional group (f), the fluororesin powder (X) is easily dispersed in the thermosetting resin (A), and the appearance and wear resistance of the cured product and fiber-reinforced molded product are excellent.
  • the functional group (f) is present as either or both of the end group of the main chain and the pendant group of the main chain of the fluororesin (B) from the viewpoint of excellent appearance and abrasion resistance of the cured product or fiber-reinforced molded product. It is preferable to do.
  • the functional group (f) may be one type or two or more types.
  • the fluororesin (B) preferably has at least a carbonyl group-containing group as the functional group (f) from the viewpoint of excellent appearance and abrasion resistance of the cured product or fiber-reinforced molded product.
  • the carbonyl group-containing group include a group having a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride group, and the like.
  • Examples of the hydrocarbon group in the group having a carbonyl group between carbon atoms of the hydrocarbon group include alkylene groups having 2 to 8 carbon atoms.
  • carbon number of this alkylene group is carbon number in the state which does not contain carbon which comprises a carbonyl group.
  • the alkylene group may be linear or branched.
  • the haloformyl group is represented by —C ( ⁇ O) —X (where X is a halogen atom).
  • Examples of the halogen atom in the haloformyl group include a fluorine atom and a chlorine atom, and a fluorine atom is preferable.
  • the haloformyl group is preferably a fluoroformyl group (also referred to as a carbonyl fluoride group).
  • the alkoxy group in the alkoxycarbonyl group may be linear or branched and is preferably an alkoxy group having 1 to 8 carbon atoms, particularly preferably a methoxy group or an ethoxy group.
  • the content of the functional group (f) in the fluororesin (B) is preferably 10 to 60000, more preferably 100 to 50000, with respect to 1 ⁇ 10 6 main chain carbon atoms of the fluororesin (B). More preferably, 10000 is preferable, and 300 to 5000 is particularly preferable.
  • the content is at least the lower limit of the above range, the appearance and wear resistance of the cured product and fiber reinforced molded product are remarkably excellent. If the content is not more than the upper limit of the above range, the appearance and wear resistance of the cured product and fiber reinforced molded product are excellent even if the temperature at which the prepreg is molded is lowered.
  • the content of the functional group (f) can be measured by methods such as nuclear magnetic resonance (NMR) analysis and infrared absorption spectrum analysis. For example, as described in Japanese Patent Application Laid-Open No. 2007-314720, using a method such as infrared absorption spectrum analysis, the proportion of units having a functional group (f) in all units constituting the fluororesin (B) (moles) %) And the content of the functional group (f) can be calculated from the ratio.
  • NMR nuclear magnetic resonance
  • infrared absorption spectrum analysis the proportion of units having a functional group (f) in all units constituting the fluororesin (B) (moles) %)
  • the content of the functional group (f) can be calculated from the ratio.
  • the melting point of the fluororesin (B) is 100 to 325 ° C., preferably less than 100 to 260 ° C., more preferably 120 to 220 ° C. If the said melting
  • the melting point of the fluororesin (B) is preferably 120 to 220 ° C, more preferably 120 to 200 ° C.
  • the melting point of the fluororesin (B) can be adjusted by the type and ratio of units constituting the fluororesin (B), the molecular weight of the fluororesin (B), and the like. For example, the melting point tends to increase as the proportion of the unit (u1) described later increases.
  • fluororesin (B) one that can be melt-molded is used because it is easy to produce a powder, a resin film, and a prepreg.
  • fluororesin (B) that can be melt-molded known fluororesins that can be melt-molded (tetrafluoroethylene / fluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene) Copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene / chlorotrifluoroethylene copolymer, etc.), a fluororesin in which a functional group (f) is introduced; a fluoropolymer (B11) described later, etc. .
  • the fluororesin (B) has a temperature at which the melt flow rate is 0.1 to 1000 g / 10 min at a temperature higher by 20 ° C. than the melting point of the fluororesin (B) under a load of 49 N. Use.
  • the melt flow rate is preferably 0.5 to 100 g / 10 minutes, more preferably 1 to 30 g / 10 minutes, and further preferably 5 to 20 g / 10 minutes.
  • the melt flow rate is at least the lower limit of the above range, the moldability of the fluororesin (B) is excellent.
  • the melt flow rate is equal to or less than the upper limit of the above range, the cured product and the fiber reinforced molded product have excellent mechanical properties.
  • Fluororesin (B1) Fluorine-containing heavy having a functional group (f) derived from at least one selected from the group consisting of monomers, chain transfer agents and polymerization initiators used in the production of the fluorinated polymer Coalescence.
  • the fluororesin (B1) is also referred to as a polymer (B1).
  • Fluororesin (B2) A fluororesin in which a functional group (f) is introduced into a fluororesin having no functional group (f) by surface treatment such as corona discharge treatment or plasma treatment.
  • Fluororesin (B3) A fluororesin obtained by graft polymerization of a monomer having a functional group (f) to a fluororesin having no functional group (f).
  • a polymer (B1) is preferable for the following reasons.
  • the functional group (f) is present in either one or both of the end group of the main chain and the pendant group of the main chain of the polymer (B1). It is remarkably excellent in appearance and wear resistance.
  • -Since the functional group (f) in a fluororesin (B2) is formed by surface treatment, it is unstable and is easy to lose
  • the polymer (B1) can be produced by the following method (i).
  • the functional group (f) is present in a unit derived from the monomer formed by polymerization of the monomer during production.
  • the polymer (B1) can be produced by the following method (ii).
  • the functional group (f) exists as an end group of the main chain of the polymer (B1).
  • the chain transfer agent having a functional group (f) include acetic acid, acetic anhydride, methyl acetate, ethylene glycol, propylene glycol and the like.
  • the polymer (B1) can be produced by the following method (iii).
  • the functional group (f) exists as an end group of the main chain of the polymer (B1).
  • radical polymerization initiator having a functional group (f) examples include di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, tert-butyl peroxyisopropyl carbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2 -Ethylhexyl peroxydicarbonate and the like.
  • the polymer ( B1) can be produced by using two or more of the methods (i) to (iii) in combination.
  • the fluororesin (B) As the fluororesin (B), the content of the functional group (f) can be easily controlled. Therefore, from the viewpoint of easily adjusting the appearance of the cured product or the fiber-reinforced molded product, the heavy resin produced by the method (i) is used. Combined (B1) is preferred.
  • a monomer having a functional group (f) a monomer having a carboxy group (maleic acid, itaconic acid, citraconic acid, undecylenic acid, etc.); a monomer having an acid anhydride group (itaconic anhydride (hereinafter referred to as “itaconic acid anhydride”)) , "IAH”), citraconic anhydride (hereinafter also referred to as "CAH”), 5-norbornene-2,3-dicarboxylic acid anhydride (hereinafter also referred to as "NAH”), maleic anhydride, etc. ), Monomers having a hydroxyl group or an epoxy group (such as hydroxybutyl vinyl ether and glycidyl vinyl ether).
  • Polymer (B11) As the polymer (B1) having a functional group (f) derived from a monomer, the following polymer (B11) is particularly preferable from the viewpoint that the appearance and the wear resistance of a cured product and a fiber-reinforced molded product are remarkably excellent. .
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • a polymer (B11) A polymer (B11).
  • the acid anhydride group of the unit (u2) corresponds to the functional group (f).
  • Examples of the acid anhydride group-containing cyclic hydrocarbon monomer constituting the unit (u2) include IAH, CAH, NAH, and maleic anhydride.
  • the acid anhydride group-containing cyclic hydrocarbon monomer one type may be used alone, or two or more types may be used in combination.
  • the acid anhydride group-containing cyclic hydrocarbon monomer is preferably at least one selected from the group consisting of IAH, CAH and NAH.
  • acid anhydride can be used without using a special polymerization method required when maleic anhydride is used (see JP-A-11-193132).
  • a polymer (B11) having a physical group can be easily produced.
  • IAH or NAH is preferable from the viewpoint that the appearance and abrasion resistance of the cured product and fiber-reinforced molded product are remarkably excellent.
  • the fluorine-containing monomer is preferably at least one selected from the group consisting of HFP, PAVE, and FAE, from the viewpoint of excellent polymer (B11) moldability, flexibility of the fluororesin layer, and the like. FAE and HFP Any one or both of these are more preferable.
  • the FAE is preferably CH 2 ⁇ CH (CF 2 ) q1 X 4 (where q1 is 2 to 6, preferably 2 to 4), and CH 2 ⁇ CH (CF 2 ) 2 F, CH 2 ⁇ CH (CF 2 ) 3 F, CH 2 ⁇ CH (CF 2 ) 4 F, CH 2 ⁇ CF (CF 2 ) 3 H, CH 2 ⁇ CF (CF 2 ) 4 H is more preferred, and CH 2 ⁇ CH ( CF 2 ) 4 F or CH 2 ⁇ CH (CF 2 ) 2 F is particularly preferred.
  • the polymer (B11) is a unit (u4) derived from a monomer having no fluorine (excluding an acid anhydride group-containing cyclic hydrocarbon monomer). ).
  • a monomer having no fluorine a compound having no polymerizable fluorine having one polymerizable carbon-carbon double bond is preferable, and examples thereof include olefins (ethylene (hereinafter also referred to as “E”), propylene, 1- Butene and the like) and vinyl esters (vinyl acetate and the like).
  • Monomers having no fluorine may be used alone or in combination of two or more.
  • ethylene, propylene, and 1-butene are preferable, and ethylene is particularly preferable from the viewpoint of excellent mechanical properties of a cured product or a fiber-reinforced molded product.
  • the preferable ratio of each unit when it does not have the unit (u4) is as follows.
  • the proportion of the unit (u1) is preferably 90 to 99.89 mol%, more preferably 95 to 99.47 mol%, out of the total 100 mol% of the unit (u1), the unit (u2) and the unit (u3). 96 to 98.95 mol% is more preferable.
  • the proportion of the unit (u2) is preferably 0.01 to 3 mol%, more preferably 0.03 to 2 mol%, out of a total of 100 mol% of the unit (u1), the unit (u2) and the unit (u3).
  • 0.05 to 1 mol% is more preferable.
  • the proportion of the unit (u3) is preferably from 0.1 to 9.99 mol%, out of the total 100 mol% of the unit (u1), the unit (u2) and the unit (u3), and preferably from 0.5 to 9.97. Mole% is more preferable, and 1 to 9.95 mol% is more preferable.
  • the preferred ratio of each unit when the unit (u4) is ethylene is as follows.
  • the proportion of the unit (u1) is preferably 25 to 80 mol%, preferably 40 to 65 mol%, out of a total of 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4). More preferred is 45 to 63 mol%.
  • the proportion of the unit (u2) is preferably from 0.01 to 5 mol% out of a total of 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4), preferably 0.03 to 3 mol% is more preferable, and 0.05 to 1 mol% is more preferable.
  • the proportion of the unit (u3) is preferably 0.2 to 20 mol% out of a total of 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4), 0.5 to 15 mol% is more preferable, and 1 to 12 mol% is more preferable.
  • the proportion of the unit (u4) is preferably from 20 to 75 mol%, preferably from 35 to 50 mol%, based on the total of 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4). Is more preferable, and 37 to 55 mol% is more preferable.
  • the ratio of each unit is within the above range, the cured product and the fiber reinforced molded product are remarkably excellent in flame retardancy and chemical resistance.
  • the ratio of the unit (u2) is within the above range, the amount of the acid anhydride group in the polymer (B11) is appropriate, and the appearance and abrasion resistance of the cured product and fiber-reinforced molded product are remarkably excellent.
  • the proportion of the unit (u3) is within the above range, the moldability of the polymer (B11) and the bending resistance of the cured product or fiber-reinforced molded product are remarkably excellent.
  • the ratio of each unit can be calculated by melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis, etc. of the polymer (B11).
  • a part of the acid anhydride group in the unit (u2) is hydrolyzed, and as a result, a dicarboxylic acid (itaconic acid, citraconic acid) corresponding to the acid anhydride group-containing cyclic hydrocarbon monomer is obtained.
  • a dicarboxylic acid (itaconic acid, citraconic acid) corresponding to the acid anhydride group-containing cyclic hydrocarbon monomer is obtained.
  • Units derived from 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc. When a unit derived from the dicarboxylic acid is included, the ratio of the unit is included in the ratio of the unit (u2).
  • the fluororesin (B) can be produced by an existing method.
  • the polymerization method is preferably a polymerization method using a radical polymerization initiator.
  • Polymerization methods include bulk polymerization, solution polymerization using organic solvents (fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols, hydrocarbons, etc.), aqueous media and appropriate organic solvents as required.
  • suspension polymerization methods using an aqueous medium and an emulsion polymerization method using an emulsifier and a solution polymerization method are preferred.
  • thermosetting resin (C) What is necessary is just to select a hardening
  • the thermosetting resin (A) is an epoxy resin
  • examples of the curing agent (C) include 4,4′-diaminodiphenyl sulfone, dicyandiamide, diaminodiphenylmethane, diaminodiphenyl ether, bisaniline, benzyldimethylaniline, and the like.
  • the thermosetting resin (A) is a cyanate ester resin
  • a diepoxy compound or the like is preferable as the curing agent (C) from the viewpoint of improving the toughness of the cured product or fiber-reinforced molded product.
  • thermosetting resin (A) is other than an epoxy resin and a cyanate ester resin
  • a known curing agent may be used as the curing agent (C).
  • curing agent (C) may be used individually by 1 type, and may use 2 or more types together.
  • thermoplastic resin (D) examples include a crystalline resin, an amorphous resin, a thermoplastic elastomer, and others (except the same as the fluororesin (B)).
  • polyester resins polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, liquid crystal polyester, etc.
  • polyolefin resins polyethylene, polypropylene, polybutylene, acid-modified polyethylene, acid-modified polypropylene, acid) Modified polybutylene
  • polyoxymethylene polyamide, polyarylene sulfide resin (polyphenylene sulfide, etc.)
  • polyketone polyetherketone, polyetheretherketone, polyetherketoneketone, polyethernitrile, fluororesin other than fluororesin (B) (Polytetrafluoroethylene and the like), liquid crystal polymers and the like.
  • Amorphous resins include styrene resins (polystyrene, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, etc.), polycarbonate, polymethyl methacrylate, polyvinyl chloride, unmodified or modified polyphenylene ether, thermoplastic polyimide, polyamideimide, Examples include polyetherimide, polysulfone, polyethersulfone, and polyarylate.
  • thermoplastic elastomer polystyrene-based elastomer, polyolefin-based elastomer, polyurethane-based elastomer, polyester-based elastomer, polyamide-based elastomer, polybutadiene-based elastomer, polyisoprene-based elastomer, fluorine-based elastomer (except for fluororesin (B)). And acrylonitrile-based elastomer.
  • Other examples include phenolic resins and phenoxy resins.
  • composition of the present invention includes inorganic fillers, organic fillers, organic pigments, metal soaps, surfactants, ultraviolet absorbers, lubricants, silane coupling agents, organic compounds (for example, organic monomers) , Organic oligomers having a polymerization degree of 50 or less, etc.).
  • an inorganic filler is preferable.
  • thermosetting resin (A) The ratio of the thermosetting resin (A) is 70.0 to 99.9% by mass in the total 100% by mass of the thermosetting resin (A) and the fluororesin powder (X), and 92 to 99 9.9% by mass, more preferably 93 to 99.5% by mass, and particularly preferably 95 to 99.2% by mass. If this ratio is more than the lower limit of the said range, fluororesin powder (X) will be easy to disperse
  • the ratio of the fluororesin powder (X) is 0.1 to 30% by mass, and 0.1 to 8%. % By mass is preferable, 0.5 to 7% by mass is more preferable, and 0.8 to 5% by mass is particularly preferable. If this ratio is more than the lower limit of the said range, it will be excellent in the impact resistance and abrasion resistance of hardened
  • the content of the curing agent (C) is preferably 25 to 45 parts by mass and more preferably 30 to 35 parts by mass with respect to a total of 100 parts by mass of the thermosetting resin (A) and the fluororesin powder (X). If the addition amount of a hardening
  • the total ratio of the thermosetting resin (A), the fluororesin powder (X) and the curing agent (C) in 100% by mass of the curable composition of the present invention is preferably 80 to 100% by mass, and 85 Is more preferably from 100 to 100% by mass, and further preferably from 90 to 100% by mass. If the ratio is within the above range, the effects of the present invention are hardly impaired.
  • the total proportion of the thermoplastic resin (D) and other components in 100% by mass of the curable composition of the present invention is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, and 0 to 10%. More preferred is mass%. If the total ratio of the thermoplastic resin (D) and other components is within the above range, the effects of the present invention are not easily impaired.
  • thermosetting resin (A) includes a liquid medium
  • the ratio of each component described above is based on the mass excluding the liquid medium.
  • the fluororesin powder (X) and the curing agent (C) also include a liquid medium
  • the mass excluding the liquid medium is a standard.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention. It is good also as a laminated body which forms the hardened
  • the thickness of the cured product is preferably 5 mm or less, and more preferably 4 mm or less. If the thickness of the cured product is less than or equal to the above upper limit, when the cured product is produced by curing the curable composition, the fluororesin powder (X) is difficult to phase separate in the curable composition, Difficult to settle. Therefore, it is easy to obtain a cured product having an excellent appearance.
  • cured material is not specifically limited, From the point of abrasion resistance of hardened
  • Method for producing cured product As a method for producing the cured product of the present invention, a method of injecting a curable composition into a mold cavity and curing the curable composition to form a cured product; a curable composition on the surface of a substrate And a method of curing the curable composition to form a layer made of a cured product.
  • a metal laminated board is mentioned as a use of a curable composition and its hardened
  • Other examples include the following, and a matrix resin of a prepreg or a fiber-reinforced molded product is preferable.
  • Resin materials for electronic parts, etc . Laminated boards for printed wiring boards, build-up board layers, interlayer insulation materials, build-up adhesive films, semiconductor sealing materials, die attach agents, flip-chip mounting underfill materials, grab top materials, Liquid sealing material for TCP, conductive adhesive, liquid crystal sealing material, flexible substrate coverlay, resist ink, etc.
  • Optical materials optical waveguides, optical films, etc. Cast molding resin material. Coating material: Adhesive, insulating paint, etc. Resin material for optical semiconductor devices (LED, phototransistor, photodiode, photocoupler, CCD, EPROM, photosensor, etc.).
  • the prepreg of the present invention has reinforcing fibers and a matrix resin. Specifically, it is a sheet-like material in which reinforcing fibers are impregnated with a matrix resin. It can also be said that the reinforcing resin is embedded in the matrix resin. In the present invention, the matrix resin is preferably in a semi-cured state.
  • the reinforcing fiber is preferably a continuous long fiber having a length of 10 mm or more from the viewpoint of the mechanical properties of the fiber-reinforced molded product.
  • the reinforcing fibers do not need to be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
  • the reinforcing fiber sheet includes a reinforcing fiber bundle composed of a plurality of reinforcing fibers, a cloth formed by weaving the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction, and the unidirectional reinforcement. Examples thereof include a unidirectional cloth composed of fiber bundles, a combination thereof, and a stack of a plurality of reinforcing fiber bundles.
  • Examples of reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
  • Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, and boron fiber.
  • Examples of the metal fiber include aluminum fiber, brass fiber, and stainless steel fiber.
  • Examples of the organic fiber include aromatic polyamide fiber, polyaramid fiber, polyparaphenylene benzoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber, and the like.
  • the reinforcing fiber may be subjected to a surface treatment. Reinforcing fibers may be used alone or in combination of two or more.
  • the reinforcing fiber carbon fiber is preferable from the viewpoint of low specific gravity, high strength, and high elastic modulus. Examples of the carbon fiber include those described in WO2013 / 129169, and those described in [0018] to [0026] are particularly preferable. Examples of the carbon fiber production method include those described in [0028] to [0033].
  • the matrix resin is the curable composition of the present invention.
  • the prepreg of the present invention can be produced by impregnating a reinforcing fiber sheet with the curable composition of the present invention.
  • the fiber-reinforced molded product of the present invention is formed using the prepreg of the present invention.
  • the fiber-reinforced molded article of the present invention may be formed using only the prepreg of the present invention; a laminate formed using the prepreg of the present invention and a prepreg other than the prepreg of the present invention. It may be a body; it may be a laminate formed using the prepreg of the present invention and, if necessary, another prepreg and another member other than the prepreg.
  • the matrix resin contains a thermosetting resin (A) and does not contain a fluororesin (B); the matrix resin contains a fluororesin (B) and does not contain a thermosetting resin (A)
  • a prepreg etc. are mentioned.
  • Examples of the member other than the prepreg include a metal member; a resin film containing a thermosetting resin (A); and a resin film containing a fluororesin (B).
  • Examples of the metal member include metal foil and various metal parts. Examples of the metal include iron, stainless steel, aluminum, copper, brass, nickel, and zinc.
  • the shape of the metal member is not particularly limited, and can be appropriately selected according to the fiber reinforced molded product to be obtained.
  • the fiber-reinforced molded product of the present invention is, for example, a stack of two or more of the prepregs of the present invention, or one or more of the prepregs of the present invention and other prepregs and prepregs. It can obtain by shape
  • the molding method include a press molding method using a mold.
  • Examples of the use of the fiber reinforced molded product include the following. Electrical / electronic devices (PCs, displays, OA devices, mobile phones, personal digital assistants, facsimiles, compact discs, portable MDs, portable radio cassettes, PDAs (mobile information terminals such as electronic notebooks), video cameras, digital still cameras, Optical equipment, audio equipment, air conditioners, lighting equipment, entertainment goods, toy goods, other household appliances, etc.) casings, internal members (tray, chassis, etc.), internal member cases, mechanical parts, etc. Building materials (panels) etc.
  • Automobiles, motorcycle-related parts, parts and outer plates motor parts, alternator terminals, alternator connectors, IC regulators, light-depot potentiometer bases, suspension parts, various valves (exhaust gas valves, etc.), fuel-related, exhaust system or various intake systems Pipe, air intake nozzle snorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pump, gasoline tank, CNG tank, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor , Oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad Wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, wiper motor related parts, distributor, starter switch, starter relay, transmission wire harness, window Washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, battery tray, AT bracket, headlamp support, pedal housing, handle, door beam, protector, chassis,
  • Aircraft related parts, components and skins landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, ribs, etc.
  • Other Windmill blades, etc.
  • the fiber reinforced molded article is particularly preferably used for aircraft members, windmill blades, automobile outer plates, casings of electronic devices, trays, chassis, and the like.
  • Examples 1, 2, 6, and 7 are examples, and examples 3 to 5, and 8 are comparative examples.
  • the proportion of units derived from NAH having the functional group (f) in the fluororesin (B) was determined by the following infrared absorption spectrum analysis.
  • the fluororesin (B) was press-molded to obtain a 200 ⁇ m film.
  • an absorption peak in a unit derived from NAH in the fluororesin (B) appears at 1778 cm ⁇ 1 .
  • the absorbance of the absorption peak was measured, and the ratio (mol%) of units derived from NAH was determined using the NAH molar extinction coefficient of 20810 mol ⁇ 1 ⁇ l ⁇ cm ⁇ 1 .
  • the ratio to a (mol%) the number of main-chain functional groups to the number 1 ⁇ 10 6 carbon (f) (acid anhydride group) is calculated as [a ⁇ 10 6/100] Pieces.
  • the cured product was visually observed and the appearance was evaluated according to the following criteria. ⁇ (Good): The fluororesin powder (X) is uniformly dispersed in the cured product, the surface is smooth, and the appearance is excellent. X (defect): The fluororesin powder (X) aggregates in the cured product, the surface is not smooth, and the appearance is poor.
  • the cured product was cut using a contour machine (manufactured by Amada, V-400) to obtain a circular test piece having a diameter of 46 mm.
  • the test piece was subjected to a friction and wear test using a Matsubara type friction and wear tester (Orientec).
  • a test piece is fixed to a test jig, and a ring (material: SUS304, contact area: 2 cm 2 ) as a mating member is applied to the test piece.
  • Pressure 7 kg / cm 2 (686.49 kPa)
  • rotation speed 0.5 m / Second
  • test time 1 hour contact
  • the amount of wear was measured. The smaller the amount of wear, the better the wear resistance.
  • Thermosetting resin (A) Thermosetting resin (A-1): Bisphenol A type epoxy resin (manufactured by Adeka, Adeka Resin EP-4100).
  • Thermosetting resin (A-2) Dicyclopentadiene type epoxy resin (manufactured by DIC, EPICLON HP-7200H-75M. Liquid medium: MEK, solid content concentration: 75% by mass)
  • Fluororesin (B) Fluororesin (B-1): Fluoropolymer having functional group (f) (functional group (f) content: 1000 per 1 ⁇ 10 6 main chain carbon atoms of fluororesin (B-1) Melting point: 300 ° C., melt flow rate (372 ° C., load 49 N): 17.6 g / 10 min).
  • the resin was produced in the same manner as in Example 5 of International Publication No. 2015/182702, and the molar ratio of TFE / NAH / PPVE was 97.9 / 0.1 / 2.
  • Fluororesin (B′-2) tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer having no functional group (f) (Fluon (registered trademark of Asahi Glass Co., Ltd.) PFA) P-63P, melting point: 300 ° C., melt flow rate (372 ° C., load 49 N): 12.8 g / 10 min).
  • Fluororesin powder (X) Fluororesin powder (X-1): The pellets of fluororesin (B-1) were pulverized to obtain fluororesin powder (X-1) having an average particle size of 3 ⁇ m.
  • Curing agent (C) Curing agent (C-1): 4,4′-diaminodiphenyl sulfone (manufactured by Wako Pure Chemical Industries, Ltd.). Curing agent (C-2): Phenol novolac resin (manufactured by DIC, trade name: Phenolite TD-2090-60M, solvent: MEK, solid content: 60% by mass)
  • Thermoplastic resin (D) Thermoplastic resin (D-1): polyethersulfone, Veradel (trade name, 3000P, Solvay Advanced Polymers).
  • Example 1 After mixing thermosetting resin (A-1) and fluororesin powder (X-1) at the ratio shown in Table 1 for 1.5 hours at 125 ° C., add curing agent (C-1) and mix. A curable composition was obtained. The curable composition was defoamed and then poured into a mold (cavity size: thickness 4 mm, width 16 cm, length 12 cm). The mold was placed in a heat circulation oven, heated at 110 ° C. for 2 hours, and then heated at 200 ° C. for 4 hours. The mold was gradually cooled to obtain a cured product. Table 1 shows the appearance and wear amount of the cured product.
  • Example 2 A cured product was obtained in the same manner as in Example 1 except that the type and amount of each resin and the amount of the curing agent (C-1) were changed as shown in Table 1. Table 1 shows the appearance and wear amount of the cured product.
  • Examples 1 and 2 including the fluororesin powder (X) having the functional group (f) had a better appearance than Example 4 including the fluororesin powder having no functional group (f).
  • Examples 1 and 2 containing fluororesin powder (X) were superior in wear resistance compared to Examples 3 and 5 not containing fluororesin powder (X).
  • Example 6 To the fluororesin powder (X-1), a surfactant (Newcol 1308, trade name of Nippon Emulsifier Co., Ltd.) was added so as to be 3% by mass with respect to the fluororesin powder (X-1). , Referred to as “MEK”) to a solid content concentration of 40% by mass, followed by stirring with a stirrer at 300 rpm for 1 hour, followed by stirring at 1500 rpm for 15 minutes. Next, after ultrasonic treatment for 5 minutes with an ultrasonic homogenizer, a dispersion of fluororesin resin powder was obtained.
  • a surfactant Newcol 1308, trade name of Nippon Emulsifier Co., Ltd.
  • thermosetting resin (A-2) is added to thermosetting resin (A-2) with respect to a total of 100% by mass of thermosetting resin (A-2) and fluorine resin powder (X-1).
  • the resin powder (X-1) was added so that the ratio was 20% by mass.
  • the epoxy curing agent (C-2) was added so that the mass ratio of the thermosetting resin (A-2) and the epoxy curing agent (C-2) was 26: 9, and the condition of 1000 rpm was obtained with a stirrer. Under stirring for 20 minutes, a liquid composition was obtained. Next, the liquid composition obtained by filtering the obtained liquid composition through a 100-mesh filter was used to obtain a 12 ⁇ m-thick electrolytic copper foil (Fukuda Metal Foil Powder Co., Ltd., CF-T4X-SVR-12, surface roughness (Rz) 1 2 ⁇ m) and dried in a hot air circulation oven to obtain a copper foil / film single-sided copper-clad laminate (1) having a thickness of 60 ⁇ m. Table 2 shows the appearance and the amount of wear of the obtained cured product. In the mass calculation of (X-1), (A-2), and (C-2), the solvent was not taken into account, and the mass of only the solid content was used.
  • Example 7 After obtaining a dispersion of the fluororesin powder in the same procedure as in Example 7, the fluororesin powder (X-1) is 100% by mass in total of the thermosetting resin (A-2) and the fluororesin powder (X-1). Of these, a single-sided copper-clad laminate of 60 ⁇ m thick copper foil / film was obtained in the same manner as in Example 6 except that the proportion of the fluororesin powder (X-1) was 25% by mass. Table 2 shows the appearance and the amount of wear of the obtained cured product.
  • Example 8 A copper foil / film single-sided copper clad laminate was obtained in the same procedure as in Example 6 except that the fluororesin powder (X-1) was not used. Table 2 shows the appearance and the amount of wear of the obtained cured product. The amount of wear in Table 2 was in accordance with the above “wear amount” test method except for the following points.
  • a test piece obtained by cutting a copper foil / film single-sided copper clad laminate using a cutter is fixed to a test jig, and a ring as a mating member is pressured to this test piece: 1.5 kg / Contact was performed under conditions of cm 2 (147.10 kPa), rotation speed: 0.5 m / sec, and test time: 3 min.
  • Examples 6 and 7 containing fluororesin powder (X) were superior in wear resistance compared to Example 8 not containing fluororesin powder (X).
  • the fiber-reinforced molded product of the present invention is useful as a member constituting transportation equipment (vehicles (automobiles, railway vehicles, etc.), aircrafts, etc.), architecture, electrical / electronic equipment, and the like. It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-005275 filed on January 14, 2016 are cited herein as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

外観および耐摩耗性に優れた硬化物を得ることができる硬化性組成物、外観および耐摩耗性に優れた硬化物、外観および耐摩耗性に優れた繊維強化成形品を得ることができるプリプレグ、外観および耐摩耗性に優れた繊維強化成形品の提供。 熱硬化性樹脂と、フッ素樹脂粉体と、硬化剤とを含み;フッ素樹脂粉体が、融点が100~325℃であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する溶融成形可能なフッ素樹脂を含む樹脂材料からなり;熱硬化性樹脂とフッ素樹脂粉体との合計100質量%のうち、熱硬化性樹脂の割合が70.0~99.9質量%であり、前記フッ素樹脂粉体の割合が0.1~30質量%である、硬化性組成物。

Description

硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
 本発明は、硬化性組成物、硬化性組成物を硬化した硬化物、硬化性組成物を用いたプリプレグおよびプリプレグを用いた繊維強化成形品に関する。
 繊維強化成形品は、輸送機器(車両(自動車、鉄道車両等)、航空機等)、建築部材、電子機器等の幅広い用途に用いられるようになっている。繊維強化成形品のマトリックス樹脂としては、従来から、熱硬化性樹脂の硬化物がよく用いられている。
 しかし、熱硬化性樹脂の硬化物が脆いため、マトリックス樹脂として熱硬化性樹脂の硬化物を用いた繊維強化成形品には、耐衝撃性や靭性が不充分であるという問題がある。
 繊維強化成形品の耐衝撃性や靭性を改善するプリプレグとしては、熱硬化性樹脂に樹脂粉体や熱可塑性樹脂を添加した硬化性組成物をマトリックス樹脂としたものが提案されている(たとえば、特許文献1、2)。
特開昭63-162732号公報 特開2007-191633号公報
 輸送機器等において摺動部分に用いられる部材には、耐摩耗性が求められる。しかし、従来の繊維強化成形品は、耐摩耗性が必ずしも充分とはいえず、さらなる耐摩耗性の向上が求められている。
 本発明は、外観および耐摩耗性に優れた硬化物を得ることができる硬化性組成物、外観および耐摩耗性に優れた硬化物、外観および耐摩耗性に優れた繊維強化成形品を得ることができるプリプレグ、ならびに外観および耐摩耗性に優れた繊維強化成形品を提供する。
 本発明は、下記の態様を有する。
 <1>熱硬化性樹脂と、フッ素樹脂粉体と、硬化剤とを含み;前記フッ素樹脂粉体が、融点が100℃以上325℃以下であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する溶融成形可能なフッ素樹脂を含む樹脂材料からなり;前記熱硬化性樹脂と前記フッ素樹脂粉体との合計100質量%のうち、前記熱硬化性樹脂の割合が92質量%以上99.9質量%以下であり、前記フッ素樹脂粉体の割合が0.1質量%以上8質量%以下である、硬化性組成物。
 <2>前記熱硬化性樹脂と前記フッ素樹脂粉体との合計100質量%のうち、前記熱硬化性樹脂の割合が92質量%以上99.9質量%以下であり、前記フッ素樹脂粉体の割合が0.1質量%以上8質量%以下である、<1>の硬化性組成物。
 <3>前記フッ素樹脂粉体の平均粒子径が、0.02以上200μm以下である、<1>または<2>の硬化性組成物。
 <4>前記フッ素樹脂の融点が、100以上260℃未満である、<1>~<3>のいずれかの硬化性組成物。
 <5>前記フッ素樹脂の溶融流れ速度が、荷重49Nの条件下、フッ素樹脂(B)の融点よりも20℃以上高い温度にて0.5以上100g/10分以下である、<1>~<4>のいずれかの硬化性組成物。
 <6>前記フッ素樹脂が、含フッ素重合体の製造の際に用いた単量体、連鎖移動剤および重合開始剤からなる群から選ばれる少なくとも1種に由来する官能基(f)を有する含フッ素重合体である、<1>~<5>のいずれかの硬化性組成物。
 <7>前記フッ素樹脂が、テトラフルオロエチレンまたはクロロトリフルオロエチレンに由来する単位と、酸無水物基を有する環状炭化水素単量体に由来する単位と、含フッ素単量体(TFEおよびCTFEを除く。)に由来する単位と、を有する含フッ素重合体である、<1>~<6>のいずれかの硬化性組成物。
 <8>前記硬化剤の割合が、熱硬化性樹脂(A)とフッ素樹脂粉体(X)との合計100質量部に対して25~45質量部である、<1>~<7>のいずれかの硬化性組成物。
 <9>前記<1>~<8>のいずれかの硬化性組成物の硬化物。
 <10>厚さが5mm以下である、<8>の硬化物。
 <11>前記<9>または<10>の硬化物からなる層の片面または両面に金属層を備えた金属積層板。
 <12>強化繊維と、マトリックス樹脂とを有し、前記マトリックス樹脂が、<1>~<8>のいずれかの硬化性組成物からなる、プリプレグ。
 <13>前記<13>のプリプレグを用いた、繊維強化成形品。
 本発明の硬化性組成物によれば、外観および耐摩耗性に優れた硬化物を得ることができる。本発明の硬化物は、外観および耐摩耗性に優れる。本発明のプリプレグによれば、外観および耐摩耗性に優れた繊維強化成形品を得ることができる。本発明の繊維強化成形品は、外観および耐摩耗性に優れる。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「溶融成形可能」であるとは、溶融流動性を示すことを意味する。
 「溶融流動性を示す」とは、荷重49Nの条件下、樹脂の融点よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在することを意味する。
 「溶融流れ速度」は、JIS K 7210:1999(ISO 1133:1997)に規定されるメルトマスフローレート(MFR)である。
 「単位」とは、単量体が重合することによって形成された該単量体に由来する部分(重合単位)を意味する。単位は、重合反応によって直接形成された単位であってもよく、重合体を処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 「粉体の平均粒子径」は、レーザー回折・散乱法によって求められる体積基準累積50%径(D50)である。すなわち、レーザー回折・散乱法により粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
<硬化性組成物>
 本発明の硬化性組成物は、熱硬化性樹脂(A)と、フッ素樹脂粉体(X)と、硬化剤(C)とを含む。
 本発明の硬化性組成物は、本発明の効果を損なわない範囲において、熱可塑性樹脂(D)を含んでいてもよく、熱硬化性樹脂(A)、フッ素樹脂粉体(X)、硬化剤(C)および熱可塑性樹脂(D)以外の他の成分を含んでいてもよい。
 (熱硬化性樹脂(A))
 熱硬化性樹脂(A)としては、エポキシ樹脂、シアネートエステル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ユリア・メラミン樹脂、ポリイミド、ビスマレイミド樹脂等が挙げられる(ただし、後述するフッ素樹脂(B)と同じものを除く)。
 熱硬化性樹脂としては、硬化物や繊維強化成形品の機械的特性の点から、エポキシ樹脂、またはシアネートエステル樹脂が好ましく、エポキシ樹脂がより好ましい。
 エポキシ樹脂としては、グリシジルエーテル系エポキシ樹脂(ビスフェノール型エポキシ樹脂、(ポリ)アルキレングリコール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等)、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂(N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、トリグリシジルイソシアヌレート等)、脂環型エポキシ樹脂(ジシクロペンタジエン型等)、主鎖に硫黄原子を有するエポキシ樹脂、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱硬化性樹脂は液状媒体に溶解された形態であってもよい。液状媒体としては特に制限されないが、メタノール、エタノールなどのアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ等のエーテル系溶剤、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、ヘキサメチルホスホルアミド、γ-ブチロラクトンなどを挙げることができる。
 (フッ素樹脂粉体(X))
 フッ素樹脂粉体(X)は、フッ素樹脂(B)を含む樹脂材料(α)からなる。樹脂材料(α)は、本発明の効果を損なわない範囲においてフッ素樹脂(B)以外の他の成分を含んでいてもよい。
 樹脂材料(α)100質量%のうち、フッ素樹脂(B)の割合は、80~100質量%が好ましく、85~100質量%がより好ましく、90~100質量%がさらに好ましい。上記割合が前記範囲内であれば、本発明の効果が損なわれにくい。
 樹脂材料(α)に他の成分が含まれる場合は、樹脂材料(α)100質量%のうち、他の成分の合計の割合は、0超~20質量%が好ましく、0超~15質量%がより好ましく、0超~10質量%がさらに好ましい。上記割合が前記範囲内であれば、本発明の効果が損なわれにくい。樹脂材料(α)は、他の成分を含まないことも好ましい。
 フッ素樹脂粉体(X)の平均粒子径は、0.02~200μmが好ましく、1~100μmがより好ましい。該平均粒子径が前記範囲の下限値以上であれば、粉体の作業取扱性に優れる。該平均粒子径が前記範囲の上限値以下であれば、硬化物や繊維強化成形品の外観および耐摩耗性が著しく優れる。
 フッ素樹脂粉体(X)は、たとえば、下記の手順にて製造できる。
 フッ素樹脂(B)および必要に応じて他の成分を溶融混練する。樹脂材料(α)の溶融物をストランド状に押し出す。ストランドをペレタイザで切断してペレット化する。ペレットを機械的に粉砕する。粉砕物を分級し、フッ素樹脂粉体(X)を得る。
 ペレットを機械的に粉砕できる装置としては、ハンマーミル、ピンミル、ディスクミル、ロータリーミル、ジェットミル、流動床エアジェットミル、ジョークラッシャ、ジャイレートリークラッシャ、ケージミル、パンクラッシャ、ボールミル、ペブルミル、ロッドミル、チューブミル、ディスクアトリションミル、アトライター、ディスクリファイナ等が挙げられる。
 ペレットの粉砕は、粉砕物の平均粒子径を小さくしやすい点から、ペレットを-40℃以下の温度に冷却して行うことが好ましい。冷却温度は、-100℃以下がより好ましく、-160℃以下がさらに好ましい。冷却方法としては、ドライアイスまたは液体窒素を用いる方法が挙げられる。
 (フッ素樹脂(B))
 フッ素樹脂(B)は、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基(以下、官能基(f)と記す。)を有するフッ素樹脂である。官能基(f)を有することによって、フッ素樹脂粉体(X)が熱硬化性樹脂(A)に分散しやすく、硬化物や繊維強化成形品の外観および耐摩耗性が優れる。
 官能基(f)は、硬化物や繊維強化成形品の外観および耐摩耗性に優れる点から、フッ素樹脂(B)の主鎖の末端基および主鎖のペンダント基のいずれか一方または両方として存在することが好ましい。官能基(f)は、1種でもあってもよく、2種以上であってもよい。
 フッ素樹脂(B)は、硬化物や繊維強化成形品の外観および耐摩耗性に優れる点から、官能基(f)として少なくともカルボニル基含有基を有することが好ましい。
 カルボニル基含有基としては、たとえば、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物基等が挙げられる。
 炭化水素基の炭素原子間にカルボニル基を有する基における炭化水素基としては、たとえば、炭素数2~8のアルキレン基等が挙げられる。なお、該アルキレン基の炭素数は、カルボニル基を構成する炭素を含まない状態での炭素数である。アルキレン基は、直鎖状であってもよく、分岐状であってもよい。
 ハロホルミル基は、-C(=O)-X(ただし、Xはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、フッ素原子が好ましい。すなわちハロホルミル基としてはフルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
 アルコキシカルボニル基におけるアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、炭素数1~8のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。
 フッ素樹脂(B)中の官能基(f)の含有量は、フッ素樹脂(B)の主鎖炭素数1×10個に対し10~60000個が好ましく、100~50000個がより好ましく、100~10000個がさらに好ましく、300~5000個が特に好ましい。該含有量が前記範囲の下限値以上であれば、硬化物や繊維強化成形品の外観および耐摩耗性に著しく優れる。該含有量が前記範囲の上限値以下であれば、プリプレグを成形する際の温度を低くしても、硬化物や繊維強化成形品の外観および耐摩耗性に優れる。
 官能基(f)の含有量は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法によって測定できる。たとえば、特開2007-314720号公報に記載のように赤外吸収スペクトル分析等の方法を用いて、フッ素樹脂(B)を構成する全単位中の官能基(f)を有する単位の割合(モル%)を求め、該割合から、官能基(f)の含有量を算出できる。
 フッ素樹脂(B)の融点は、100~325℃であり、100~260℃未満が好ましく、120~220℃がより好ましい。上記融点が前記範囲の下限値以上であれば、硬化物や繊維強化成形品の耐熱性に優れる。上記融点が前記範囲の上限値以下であれば、硬化物や繊維強化成形品を製造する際に汎用的な装置を使用でき、かつ硬化物や繊維強化成形品の外観および耐摩耗性に優れる。
 融点が比較的低いフッ素樹脂(B)を用いた場合、プリプレグを成形する際の温度を低くしても、繊維強化成形品の外観および耐摩耗性に優れる。したがって、該場合においては、フッ素樹脂(B)の融点は、120~220℃が好ましく、120~200℃がより好ましい。
 フッ素樹脂(B)の融点は、フッ素樹脂(B)を構成する単位の種類や割合、フッ素樹脂(B)の分子量等によって調整できる。たとえば、後述する単位(u1)の割合が多くなるほど、融点が上がる傾向がある。
 フッ素樹脂(B)としては、粉体、樹脂フィルムおよびプリプレグを製造しやすい点から、溶融成形が可能なものを用いる。
 溶融成形が可能なフッ素樹脂(B)としては、公知の溶融成形が可能なフッ素樹脂(テトラフルオロエチレン/フルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、エチレン/クロロトリフルオロエチレン共重合体等)に官能基(f)を導入したフッ素樹脂;後述する含フッ素重合体(B11)等が挙げられる。
 フッ素樹脂(B)としては、荷重49Nの条件下、フッ素樹脂(B)の融点よりも20℃以上高い温度において、溶融流れ速度が0.1~1000g/10分となる温度が存在するものを用いる。溶融流れ速度は、好ましくは0.5~100g/10分、より好ましくは1~30g/10分、さらに好ましくは5~20g/10分、である。溶融流れ速度が前記範囲の下限値以上であれば、フッ素樹脂(B)の成形性に優れる。溶融流れ速度が前記範囲の上限値以下であれば、硬化物や繊維強化成形品の機械的特性に優れる。
 フッ素樹脂(B)としては、製造方法の違いによって、たとえば、下記のものが挙げられる。
 フッ素樹脂(B1):含フッ素重合体の製造の際に用いた単量体、連鎖移動剤および重合開始剤からなる群から選ばれる少なくとも1種に由来する官能基(f)を有する含フッ素重合体。以下、フッ素樹脂(B1)を重合体(B1)ともいう。
 フッ素樹脂(B2):コロナ放電処理、プラズマ処理等の表面処理によって官能基(f)を有しないフッ素樹脂に官能基(f)を導入したフッ素樹脂。
 フッ素樹脂(B3):官能基(f)を有しないフッ素樹脂に、官能基(f)を有する単量体をグラフト重合して得られたフッ素樹脂。
 フッ素樹脂(B)としては、下記の理由から、重合体(B1)が好ましい。
 ・重合体(B1)においては、重合体(B1)の主鎖の末端基および主鎖のペンダント基のいずれか一方または両方に官能基(f)が存在するため、硬化物や繊維強化成形品の外観および耐摩耗性に著しく優れる。
 ・フッ素樹脂(B2)における官能基(f)は、表面処理によって形成されるため不安定であり、時間とともに消失しやすい。
 重合体(B1)における官能基(f)が、重合体(B1)の製造に用いられた単量体に由来する場合、重合体(B1)は、下記方法(i)によって製造できる。この場合、官能基(f)は、製造時に単量体が重合することによって形成された該単量体に由来する単位中に存在する。
 方法(i):単量体の重合によって重合体(B1)を製造する際に、官能基(f)を有する単量体を用いる。
 重合体(B1)における官能基(f)が、重合体(B1)の製造に用いられた連鎖移動剤に由来する場合、重合体(B1)は、下記方法(ii)によって製造できる。この場合、官能基(f)は、重合体(B1)の主鎖の末端基として存在する。
 方法(ii):官能基(f)を有する連鎖移動剤の存在下に、単量体の重合によって重合体(B1)を製造する。
 官能基(f)を有する連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコール等が挙げられる。
 重合体(B1)における官能基(f)が、重合体(B1)の製造に用いられた重合開始剤に由来する場合、重合体(B1)は、下記方法(iii)によって製造できる。この場合、官能基(f)は、重合体(B1)の主鎖の末端基として存在する。
 方法(iii):官能基(f)を有するラジカル重合開始剤等の重合開始剤の存在下に、単量体の重合によって重合体(B1)を製造する。
 官能基(f)を有するラジカル重合開始剤としては、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、tert-ブチルペルオキシイソプロピルカーボネート、ビス(4-tert-ブチルシクロヘキシル)ペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート等が挙げられる。
 重合体(B1)における官能基(f)が、重合体(B1)の製造に用いられた単量体、連鎖移動剤、および重合開始剤のうちの2種以上に由来する場合、重合体(B1)は前記方法(i)~(iii)のうちの2種以上を併用することによって製造できる。
 フッ素樹脂(B)としては、官能基(f)の含有量を容易に制御でき、そのため、硬化物や繊維強化成形品の外観を調整しやすい点から、方法(i)で製造された、重合体(B1)が好ましい。
 官能基(f)を有する単量体としては、カルボキシ基を有する単量体(マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等);酸無水物基を有する単量体(無水イタコン酸(以下、「IAH」とも記す。)、無水シトラコン酸(以下、「CAH」とも記す。)、5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)、無水マレイン酸等)、水酸基またはエポキシ基を有する単量体(ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル等)等が挙げられる。
 重合体(B11):
 単量体に由来する官能基(f)を有する重合体(B1)としては、硬化物や繊維強化成形品の外観および耐摩耗性に著しく優れる点から、下記の重合体(B11)が特に好ましい。
 テトラフルオロエチレン(以下、「TFE」とも記す。)またはクロロトリフルオロエチレン(以下、「CTFE」とも記す。)に由来する単位(u1)と、酸無水物基を有する環状炭化水素単量体(以下、「酸無水物基含有環状炭化水素単量体」とも記す。)に由来する単位(u2)と、含フッ素単量体(ただし、TFEおよびCTFEを除く。)に由来する単位(u3)とを有する重合体(B11)。
 ここで、単位(u2)の有する酸無水物基が官能基(f)に相当する。
 単位(u2)を構成する酸無水物基含有環状炭化水素単量体としては、IAH、CAH、NAH、無水マレイン酸等が挙げられる。酸無水物基含有環状炭化水素単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 酸無水物基含有環状炭化水素単量体としては、IAH、CAHおよびNAHからなる群から選ばれる1種以上が好ましい。IAH、CAHおよびNAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11-193312号公報参照)を用いることなく、酸無水物基を有する重合体(B11)を容易に製造できる。
 酸無水物基含有環状炭化水素単量体としては、硬化物や繊維強化成形品の外観および耐摩耗性に著しく優れる点から、IAHまたはNAHが好ましい。
 単位(u3)を構成する含フッ素単量体としては、重合性炭素-炭素二重結合を1つ有する含フッ素化合物が好ましく、たとえば、フルオロオレフィン(フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)、ヘキサフルオロイソブチレン等。ただし、TFEを除く。)、CF=CFORf1(ただし、Rf1は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキル基である。)(以下、「PAVE」とも記す。)、CF=CFORf2SO(ただし、Rf2は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xはハロゲン原子または水酸基である。)、CF=CFORf3CO(ただし、Rf3は炭素数1~10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xは水素原子または炭素数1~3のアルキル基である。)、CF=CF(CFOCF=CF(ただし、pは1または2である。)、CH=CX(CF(ただし、Xは水素原子またはフッ素原子であり、qは2~10の整数であり、Xは水素原子またはフッ素原子である。)(以下、「FAE」とも記す。)、環構造を有する含フッ素単量体(ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等)等が挙げられる。
 含フッ素単量体としては、重合体(B11)の成形性、フッ素樹脂層の耐屈曲性等に優れる点から、HFP、PAVEおよびFAEからなる群から選ばれる少なくとも1種が好ましく、FAEおよびHFPのいずれか一方または両方がより好ましい。
 PAVEとしては、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、CF=CFOCFCFCF(以下、「PPVE」とも記す。)が好ましい。
 FAEとしては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
 FAEとしては、CH=CH(CFq1(ただし、q1は、2~6であり、2~4が好ましい。)が好ましく、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHがより好ましく、CH=CH(CFFまたはCH=CH(CFFが特に好ましい。
 重合体(B11)は、単位(u1)~(u3)に加えて、フッ素を有しない単量体(ただし、酸無水物基含有環状炭化水素単量体を除く。)に由来する単位(u4)を有していてもよい。
 フッ素を有しない単量体としては、重合性炭素-炭素二重結合を1つ有するフッ素を有しない化合物が好ましく、たとえば、オレフィン(エチレン(以下、「E」とも記す。)、プロピレン、1-ブテン等)、ビニルエステル(酢酸ビニル等)等が挙げられる。フッ素を有しない単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フッ素を有しない単量体としては、硬化物や繊維強化成形品の機械的特性等に優れる点から、エチレン、プロピレン、1-ブテンが好ましく、エチレンが特に好ましい。
 単位(u4)を有しない場合の各単位の好ましい割合は下記のとおりである。
 単位(u1)の割合は、単位(u1)と単位(u2)と単位(u3)との合計100モル%のうち、90~99.89モル%が好ましく、95~99.47モル%がより好ましく、96~98.95モル%がさらに好ましい。
 単位(u2)の割合は、単位(u1)と単位(u2)と単位(u3)との合計100モル%のうち、0.01~3モル%が好ましく、0.03~2モル%がより好ましく、0.05~1モル%がさらに好ましい。
 単位(u3)の割合は、単位(u1)と単位(u2)と単位(u3)との合計100モル%のうち、0.1~9.99モル%が好ましく、0.5~9.97モル%がより好ましく、1~9.95モル%がさらに好ましい。
 単位(u4)がエチレンである場合の各単位の好ましい割合は下記のとおりである。
 単位(u1)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、25~80モル%が好ましく、40~65モル%がより好ましく、45~63モル%がさらに好ましい。
 単位(u2)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、0.01~5モル%が好ましく、0.03~3モル%がより好ましく、0.05~1モル%がさらに好ましい。
 単位(u3)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、0.2~20モル%が好ましく、0.5~15モル%がより好ましく、1~12モル%がさらに好ましい。
 単位(u4)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%に対して、20~75モル%が好ましく、35~50モル%がより好ましく、37~55モル%がさらに好ましい。
 各単位の割合が前記範囲内であれば、硬化物や繊維強化成形品の難燃性、耐薬品性等に著しく優れる。
 単位(u2)の割合が前記範囲内であれば、重合体(B11)における酸無水物基の量が適切になり、硬化物や繊維強化成形品の外観および耐摩耗性に著しく優れる。
 単位(u3)の割合が前記範囲内であれば、重合体(B11)の成形性、硬化物や繊維強化成形品の耐屈曲性等に著しく優れる。
 各単位の割合は、重合体(B11)の溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等により算出できる。
 重合体(B11)には、単位(u2)における酸無水物基の一部が加水分解し、その結果、酸無水物基含有環状炭化水素単量体に対応するジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等)に由来する単位が含まれる場合がある。該ジカルボン酸に由来する単位が含まれる場合、該単位の割合は、単位(u2)の割合に含めるものとする。
 重合体(B11)の好ましい具体例としては、TFE/NAH/PPVE共重合体、TFE/IAH/PPVE共重合体、TFE/CAH/PPVE共重合体、TFE/IAH/HFP共重合体、TFE/CAH/HFP共重合体、TFE/IAH/CH=CH(CFF/E共重合体、TFE/CAH/CH=CH(CFF/E共重合体、TFE/IAH/CH=CH(CFF/E共重合体、TFE/CAH/CH=CH(CFF/E共重合体、TFE/IAH/HFP/CH=CH(CFF/E共重合体等が挙げられる。
 フッ素樹脂(B)の製造方法:
 フッ素樹脂(B)は、既存の方法により製造できる。単量体の重合によってフッ素樹脂(B)を製造する場合、重合方法としては、ラジカル重合開始剤を用いる重合方法が好ましい。
 重合方法としては、塊状重合法、有機溶媒(フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等)を用いる溶液重合法、水性媒体と必要に応じて適当な有機溶媒とを用いる懸濁重合法、水性媒体と乳化剤とを用いる乳化重合法が挙げられ、溶液重合法が好ましい。
 (硬化剤(C))
 硬化剤(C)は、熱硬化性樹脂(A)の種類に応じて適宜選択すればよい。
 熱硬化性樹脂(A)がエポキシ樹脂の場合、硬化剤(C)としては、4,4’-ジアミノジフェニルスルホン、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ビスアニリン、ベンジルジメチルアニリン等が挙げられる。
 熱硬化性樹脂(A)がシアネートエステル樹脂の場合、硬化剤(C)としては、硬化物や繊維強化成形品の靭性が向上する点から、ジエポキシ化合物等が好ましい。
 熱硬化性樹脂(A)がエポキシ樹脂およびシアネートエステル樹脂以外の場合、硬化剤(C)としては、公知の硬化剤が挙げられる。硬化剤(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。また、硬化剤(C)とともに、一般に知られた硬化触媒を併用することも好ましい。
 (熱可塑性樹脂(D))
 熱可塑性樹脂(D)としては、結晶性樹脂、非晶性樹脂、熱可塑性エラストマー、その他が挙げられる(ただし、フッ素樹脂(B)と同じものを除く)。
 結晶性樹脂としては、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリブチレン、酸変性ポリエチレン、酸変性ポリプロピレン、酸変性ポリブチレン等)、ポリオキシメチレン、ポリアミド、ポリアリーレンスルフィド樹脂(ポリフェニレンスルフィド等)、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルニトリル、フッ素樹脂(B)以外のフッ素樹脂(ポリテトラフルオロエチレン等)、液晶ポリマー等が挙げられる。
 非晶性樹脂としては、スチレン系樹脂(ポリスチレン、アクリロニトリルスチレン樹脂、アクリロニトリルブタジエンスチレン樹脂等)、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、未変性または変性されたポリフェニレンエーテル、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリアリレート等が挙げられる。
 熱可塑エラストマーとしては、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリブタジエン系エラストマー、ポリイソプレン系エラストマー、フッ素系エラストマー(ただし、フッ素樹脂(B)を除く。)およびアクリロニトリル系エラストマー等が挙げられる。
 その他としては、フェノール系樹脂、フェノキシ樹脂等が挙げられる。
 (他の成分)
 本発明の硬化性組成物に含まれる他の成分としては、無機フィラー、有機フィラー、有機顔料、金属せっけん、界面活性剤、紫外線吸収剤、潤滑剤、シランカップリング剤、有機化合物(たとえば有機モノマー、重合度50以下の有機オリゴマー等。)等が挙げられる。特に、無機フィラーが好ましい。
 (各成分の(含有)割合)
 熱硬化性樹脂(A)とフッ素樹脂粉体(X)との合計100質量%のうち、熱硬化性樹脂(A)の割合は、70.0~99.9質量%であり、92~99.9質量が好ましく、、93~99.5質量%がより好ましく、95~99.2質量%が特に好ましい。該割合が前記範囲の下限値以上であれば、フッ素樹脂粉体(X)が熱硬化性樹脂(A)に分散しやすく、硬化物や繊維強化成形品の外観に優れる。該割合が前記範囲の上限値以下であれば、硬化物や繊維強化成形品の外観および耐摩耗性に優れる。
 熱硬化性樹脂(A)とフッ素樹脂粉体(X)との合計100質量%のうち、フッ素樹脂粉体(X)の割合は、0.1~30質量%であり、0.1~8質量%が好ましく、0.5~7質量%がより好ましく、0.8~5質量%が特に好ましい。該割合が前記範囲の下限値以上であれば、硬化物や繊維強化成形品の耐衝撃性および耐摩耗性に優れる。該割合が前記範囲の上限値以下であれば、フッ素樹脂粉体(X)が熱硬化性樹脂(A)に分散しやすく、硬化物や繊維強化成形品の外観および耐摩耗性に優れる。
 熱硬化性樹脂(A)とフッ素樹脂粉体(X)との合計100質量部に対する、硬化剤(C)の含有量は、25~45質量部が好ましく、30~35質量部がより好ましい。硬化剤(C)の添加量が前記範囲内であれば、硬化物や繊維強化成形品の耐熱性、機械的特性に優れる。
 本発明の硬化性組成物100質量%のうち、熱硬化性樹脂(A)とフッ素樹脂粉体(X)と硬化剤(C)との合計の割合は、80~100質量%が好ましく、85~100質量%がより好ましく、90~100質量%がさらに好ましい。該割合が前記範囲内であれば、本発明の効果が損なわれにくい。
 本発明の硬化性組成物100質量%のうち、熱可塑性樹脂(D)と他の成分との合計の割合は、0~20質量%が好ましく、0~15質量%がより好ましく、0~10質量%がさらに好ましい。熱可塑性樹脂(D)と他の成分との合計の割合が前記範囲内であれば、本発明の効果が損なわれにくい。
 なお、上記の各成分の割合は、熱硬化性樹脂(A)が液状媒体を含む場合は、当該液状媒体を除外した質量が基準である。また、フッ素樹脂粉体(X)、硬化剤(C)についても液状媒体を含む場合は当該液状媒体を除外した質量が基準である。
<硬化物>
 本発明の硬化物は、本発明の硬化性組成物を硬化したものである。本発明の硬化物を基材の表面に形成して、本発明の硬化物からなる層と基材からなる層とを有する積層体としてもよい。
 硬化物の厚さは、5mm以下が好ましく、4mm以下がより好ましい。硬化物の厚さが前記上限値以下であれば、硬化性組成物を硬化して硬化物を製造する際に、硬化性組成物中にてフッ素樹脂粉体(X)が相分離しにくく、沈降しにくい。そのため、外観に優れる硬化物を得やすい。硬化物の厚さの下限は特に限定されないが、硬化物の耐摩耗性の点から、0.01mm以上が好ましい。
 (硬化物の製造方法)
 本発明の硬化物を製造する方法としては、モールドのキャビティ内に硬化性組成物を注入し、該硬化性組成物を硬化させて硬化物を形成する方法;基材の表面に硬化性組成物を塗布し、該硬化性組成物を硬化させて硬化物からなる層を形成する方法等が挙げられる。
 (用途)
 硬化性組成物およびその硬化物の用途としては、金属積層板が挙げられる。具体的用途としては後述する電子部品用樹脂材料等が挙げられる。他には、たとえば、下記のものが挙げられ、プリプレグまたは繊維強化成形品のマトリクス樹脂が好ましい。
 後述するプリプレグまたは繊維強化成形品のマトリクス樹脂。電子部品用樹脂材料等:プリント配線基板用積層板、ビルドアップ基板用層、層間絶縁材料、ビルドアップ用接着フィルム、半導体封止材料、ダイアタッチ剤、フリップチップ実装用アンダーフィル材、グラブットプ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキ等。光学用材料:光導波路、光学フィルム等。注型成形用樹脂材料。コーティング材料:接着剤、絶縁塗料等。光半導体装置(LED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサー等)用樹脂材料。
<プリプレグ>
 本発明のプリプレグは、強化繊維と、マトリックス樹脂とを有する。具体的には、強化繊維にマトリックス樹脂を含浸したシート状の材料である。また、マトリックス樹脂に強化繊維が埋め込まれた材料ともいえる。本発明において、マトリックス樹脂が半硬化状態であることが好ましい。
 (強化繊維)
 強化繊維としては、繊維強化成形品の機械的特性の点から、長さが10mm以上の連続した長繊維が好ましい。強化繊維は、強化繊維シートの長さ方向の全長または幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
 強化繊維の加工形態としては、繊維強化成形品の機械的特性の点から、シートに加工されたもの(以下、強化繊維シートと記す。)が好ましい。
 強化繊維シートとしては、複数の強化繊維からなる強化繊維束、該強化繊維束を織成してなるクロス、複数の強化繊維が一方向に引き揃えられた一方向性強化繊維束、該一方向
性強化繊維束から構成された一方向性クロス、これらを組み合わせたもの、複数の強化繊維束を積み重ねたもの等が挙げられる。
 強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
 無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。
 金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。
 有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
 強化繊維は、表面処理が施されているものであってもよい。強化繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。強化繊維としては、比重が小さく、高強度、高弾性率である点から、炭素繊維が好ましい。
 炭素繊維としては、例えばWO2013/129169号公報に記載されたものが挙げられ、特に[0018]~[0026]に記載されたものが好ましい。また、炭素繊維の製法としては[0028]~[0033]に記載されたものが挙げられる。
 (マトリックス樹脂)
 マトリックス樹脂は、本発明の硬化性組成物である。
 本発明のプリプレグは、本発明の硬化性組成物を強化繊維シートに含浸させることによって製造できる。
<繊維強化成形品>
 本発明の繊維強化成形品は、本発明のプリプレグを用いて形成されたものである。
 本発明の繊維強化成形品は、本発明のプリプレグのみを用いて形成されたものであってもよく;本発明のプリプレグと、本発明のプリプレグ以外の他のプリプレグとを用いて形成された積層体であってもよく;本発明のプリプレグおよび必要に応じて他のプリプレグと、プリプレグ以外の他の部材とを用いて形成された積層体であってもよい。
 他のプリプレグとしては、マトリックス樹脂が熱硬化性樹脂(A)を含み、フッ素樹脂(B)を含まないプリプレグ;マトリックス樹脂がフッ素樹脂(B)を含み、熱硬化性樹脂(A)を含まないプリプレグ等が挙げられる。
 プリプレグ以外の他の部材としては、金属部材;熱硬化性樹脂(A)を含む樹脂フィルム;フッ素樹脂(B)を含む樹脂フィルム等が挙げられる。
 金属部材としては、金属箔、各種金属製部品等が挙げられる。金属としては、鉄、ステンレス鋼、アルミニウム、銅、黄銅、ニッケル、亜鉛等が挙げられる。金属部材の形状は、特に限定されず、得ようとする繊維強化成形品に合わせて適宜選択できる。
 (繊維強化成形品の製造方法)
 本発明の繊維強化成形品は、たとえば、本発明のプリプレグの1つのみ、本発明のプリプレグの2つ以上を積み重ねた積重物、または本発明のプリプレグの1つ以上と他のプリプレグおよびプリプレグ以外の他の部材のいずれか一方または両方の1つ以上とを積み重ねた積重物を、加熱しながら成形することによって得ることができる。
 成形方法としては、金型を用いたプレス成形法等が挙げられる。
 (用途)
 繊維強化成形品の用途としては、たとえば、下記のものが挙げられる。
 電気・電子機器(パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳等の携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品等)の筐体、内部部材(トレイ、シャーシ等)、内部部材のケース、機構部品等。建材(パネル)等。
 自動車、二輪車関連部品、部材および外板:モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、各種バルブ(排気ガスバルブ等)、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラー、各種モジュール等。
 航空機関連部品、部材および外板:ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブ等。
 その他:風車の羽根等。
 繊維強化成形品は、特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体、トレイ、シャーシ等に好ましく用いられる。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定して解釈されない。なお、例1、2、6、7は実施例であり、例3~5、8は比較例である。
 (重合体(B1)における単位の割合)
 溶融NMR分析、フッ素含有量分析および赤外吸収スペクトル分析により求めた。
 (官能基(f)の含有量)
 下記の赤外吸収スペクトル分析によって、フッ素樹脂(B)における、官能基(f)を有するNAHに由来する単位の割合を求めた。
 フッ素樹脂(B)をプレス成形して200μmのフィルムを得た。赤外吸収スペクトルにおいて、フッ素樹脂(B)中のNAHに由来する単位における吸収ピークは、1778cm-1に現れる。該吸収ピークの吸光度を測定し、NAHのモル吸光係数20810mol-1・l・cm-1を用いて、NAHに由来する単位の割合(モル%)を求めた。
 前記割合をa(モル%)とすると、主鎖炭素数1×10個に対する官能基(f)(酸無水物基)の個数は、[a×10/100]個と算出される。
 (融点)
 示差走査熱量計(DSC装置、セイコーインスツル社製)を用い、重合体を10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点とした。
 (溶融流れ速度)
 メルトインデクサー(テクノセブン社製)を用い、372℃、荷重49Nの条件下で直径2mm、長さ8mmのノズルから10分間に流出する重合体の質量(g)を測定した。
 (平均粒子径)
 フッ素樹脂粉体(X)をイソプロピルアルコールに超音波によって分散させた後、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製、LA-920)によって体積基準累積50%径(D50)を求め、これを平均粒子径とした。
 (外観)
 硬化物を目視で観察し、下記の基準にて外観を評価した。
 〇(良好):硬化物中にフッ素樹脂粉体(X)が均一に分散し、表面が平滑で、外観が優れる。
 ×(不良):硬化物中にてフッ素樹脂粉体(X)が凝集し、表面が平滑でなく、外観が悪い。
 (摩耗量)
 コンターマシン(アマダ社製、V-400)を用いて硬化物を切断し、直径:46mmの円形状の試験片を得た。
 試験片について、松原式による摩擦摩耗試験機(オリエンテック社製)を用いて摩擦摩耗試験を行った。試験用冶具に試験片を固定し、試験片に、相手材であるリング(材質:SUS304、接触面積:2cm)を圧力:7kg/cm(686.49kPa)、回転速度:0.5m/秒、試験時間:1時間の条件で接触させ、磨耗量を測定した。摩耗量が少ないほど、耐摩耗性に優れる。
 (熱硬化性樹脂(A))
 熱硬化性樹脂(A-1):ビスフェノールA型エポキシ樹脂(アデカ社製、アデカレジンEP-4100)。
 熱硬化性樹脂(A-2):ジシクロペンタジエン型エポキシ樹脂(DIC社製、EPICLON HP-7200H-75M。液状媒体:MEK、固形分濃度:75質量%)
 (フッ素樹脂(B))
 フッ素樹脂(B-1):官能基(f)を有する含フッ素重合体(官能基(f)の含有量:フッ素樹脂(B-1)の主鎖炭素数1×10個に対し1000個、融点:300℃、溶融流れ速度(372℃、荷重49N):17.6g/10分)。該樹脂は、国際公開第2015/182702号の実施例5と同様に製造し、TFE/NAH/PPVEのモル比は、97.9/0.1/2であった。
 フッ素樹脂(B’-2):官能基(f)を有しないテトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体(Fluon(旭硝子社登録商標)PFA
 P-63P、融点:300℃、溶融流れ速度(372℃、荷重49N):12.8g/10分)。
 (フッ素樹脂粉体(X))
 フッ素樹脂粉体(X-1):
 フッ素樹脂(B-1)のペレットを粉砕し、平均粒子径が3μmのフッ素樹脂粉体(X-1)を得た。
 フッ素樹脂粉体(X’-2):
 フッ素樹脂(B’-2)のペレットを粉砕し、平均粒子径が5μmのフッ素樹脂粉体(X’-2)を得た。
 (硬化剤(C))
 硬化剤(C-1):4,4’-ジアミノジフェニルスルホン(和光純薬社製)。
 硬化剤(C-2):フェノールノボラック樹脂(DIC社製、商品名:フェノライト TD-2090-60M、溶媒:MEK、固形分:60質量%)
 (熱可塑性樹脂(D))
 熱可塑性樹脂(D-1):ポリエーテルサルホン、Veradel(ソルベイアドバンストポリマーズ社商品名、3000P)。
 (例1)
 熱硬化性樹脂(A-1)とフッ素樹脂粉体(X-1)を表1に示す割合で125℃で1.5時間混合した後、硬化剤(C-1)を添加し、混合し、硬化性組成物を得た。硬化性組成物を脱泡処理した後、金型(キャビティのサイズ:厚さ4mm、横16cm、縦12cm)に注入した。金型を熱循環式オーブンに入れ、110℃で2時間加熱した後、200℃で4時間加熱した。金型を徐冷し、硬化物を得た。硬化物の外観、および摩耗量を表1に示す。
 (例2~5)
 各樹脂の種類および量、ならびに硬化剤(C-1)の量を表1に示すように変更した以外は、例1と同様にして硬化物を得た。硬化物の外観、および摩耗量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 官能基(f)を有するフッ素樹脂粉体(X)を含む例1、2は、官能基(f)を有しないフッ素樹脂粉体を含む例4に比べ、外観が良かった。
 フッ素樹脂粉体(X)を含む例1、2は、フッ素樹脂粉体(X)を含まない例3、5に比べ、耐摩耗性に優れていた。
(例6)
 フッ素樹脂紛体(X-1)に、界面活性剤(ニューコール1308、日本乳化剤社商品名)をフッ素樹脂紛体(X-1)に対して3質量%となるように添加し、さらにメチルエチルケトン(以下、「MEK」という。)を添加して固形分濃度を40質量%とし、撹拌機により300rpmの条件下で1時間撹拌した後、1500rpmで15分撹拌した。次いで、超音波ホモジナイザーにて5分超音波処理した後、フッ素樹脂樹脂紛体の分散液を得た。その後、熱硬化性樹脂(A-2)に、フッ素樹脂紛体(X-1)を熱硬化性樹脂(A-2)とフッ素樹脂紛体(X-1)の合計100質量%に対して、フッ素樹脂紛体(X-1)の割合が20質量%となるように添加した。
 その後、エポキシ硬化剤(C-2)を、熱硬化性樹脂(A-2)とエポキシ硬化剤(C-2)の質量比が26:9となるように添加し、撹拌機により1000rpmの条件下で20分撹拌して液状組成物を得た。次いで、得られた液状組成物を100メッシュのフィルタにてろ過した液状組成物を厚み12μmの電解銅箔(福田金属箔粉社製、CF-T4X-SVR-12、表面粗さ(Rz)1.2μm)上に塗布し、これを熱風循環式のオーブンで乾燥して厚み60μmの銅箔/フィルムの片面銅張積層体(1)を得た。得られた硬化物の外観、および摩耗量を表2に示す。尚、(X-1)、(A-2)、(C-2)の質量計算では溶剤は考慮せず、固形分のみの質量を用いた。
(例7)
 例7と同様の手順でフッ素樹脂紛体の分散液を得た後、フッ素樹脂紛体(X-1)を熱硬化性樹脂(A-2)とフッ素樹脂紛体(X-1)の合計100質量%のうち、フッ素樹脂紛体(X-1)の割合を25質量%とした以外は例6と同様の手順で厚み60μmの銅箔/フィルムの片面銅張積層体を得た。得られた硬化物の外観、および摩耗量を表2に示す。
(例8)
 フッ素樹脂紛体(X-1)を用いなかった点以外は例6と同様の手順で銅箔/フィルムの片面銅張積層体を得た。得られた硬化物の外観、および摩耗量を表2に示す。
 なお、表2における摩耗量は、下記の点を除いて上記「摩耗量」の試験方法に従った。
 カッターを用いて銅箔/フィルムの片面銅張積層体を切断して得た試験片を試験用冶具に試験片を固定し、この試験片に、相手材であるリングを圧力:1.5kg/cm(147.10kPa)および回転速度:0.5m/sec、試験時間:3min の条件で接触させた。
Figure JPOXMLDOC01-appb-T000002
 フッ素樹脂粉体(X)を含む例6、7は、フッ素樹脂粉体(X)を含まない例8に比べ、耐摩耗性に優れていた。
 本発明の繊維強化成形品は、輸送機器(車両(自動車、鉄道車両等)、航空機等)、建築、電気・電子機器等を構成する部材として有用である。
 なお、2016年1月14日に出願された日本特許出願2015-005275号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  熱硬化性樹脂と、フッ素樹脂粉体と、硬化剤とを含み、
     前記フッ素樹脂粉体が、融点が100~325℃であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する溶融成形可能なフッ素樹脂を含む樹脂材料からなり、
     前記熱硬化性樹脂と前記フッ素樹脂粉体との合計100質量%のうち、前記熱硬化性樹脂の割合が70.0~99.9質量%であり、前記フッ素樹脂粉体の割合が0.1~30質量%である、硬化性組成物。
  2.  前記熱硬化性樹脂と前記フッ素樹脂粉体との合計100質量%のうち、前記熱硬化性樹脂の割合が92~99.9質量%であり、前記フッ素樹脂粉体の割合が0.1~8質量%である、請求項1に記載の硬化性組成物。
  3.  前記フッ素樹脂粉体の平均粒子径が、0.02~200μmである、請求項1または2に記載の硬化性組成物。
  4.  前記フッ素樹脂の融点が、100~260℃未満である、請求項1~3のいずれか1項に記載の硬化性組成物。
  5.  前記フッ素樹脂の溶融流れ速度が、荷重49Nの条件下、フッ素樹脂(B)の融点よりも20℃以上高い温度にて0.5~100g/10分である、請求項1~4のいずれか1項に記載の硬化性組成物。
  6.  前記フッ素樹脂が、含フッ素重合体の製造の際に用いた単量体、連鎖移動剤および重合開始剤からなる群から選ばれる少なくとも1種に由来する官能基(f)を有する含フッ素重合体である、請求項1~5のいずれか1項に記載の硬化性組成物。
  7.  前記フッ素樹脂が、テトラフルオロエチレンまたはクロロトリフルオロエチレンに由来する単位と、酸無水物基を有する環状炭化水素単量体に由来する単位と、含フッ素単量体(TFEおよびCTFEを除く。)に由来する単位と、を有する含フッ素重合体である、請求項1~6のいずれか1項に記載の硬化性組成物。
  8.  前記硬化剤の割合が、熱硬化性樹脂(A)とフッ素樹脂粉体(X)との合計100質量部に対して、25~45質量部である、請求項1~7のいずれか1項に記載の硬化性組成物。
  9.  請求項1~8のいずれか1項に記載の硬化性組成物の硬化物。
  10.  厚さが5mm以下である、請求項9に記載の硬化物。
  11.  請求項9または10に記載の硬化物からなる層の片面または両面に金属層を備えた金属積層板。
  12.  強化繊維と、マトリックス樹脂とを有し、前記マトリックス樹脂が、請求項1~8のいずれか1項に記載の硬化性組成物からなる、プリプレグ。
  13.  請求項12に記載のプリプレグを用いた、繊維強化成形品。
PCT/JP2017/000874 2016-01-14 2017-01-12 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品 WO2017122743A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017561169A JP6794996B2 (ja) 2016-01-14 2017-01-12 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
DE112017000397.0T DE112017000397T5 (de) 2016-01-14 2017-01-12 Härtbare Zusammensetzung, gehärtetes Produkt, Prepreg und Faser-verstärktes Formprodukt
CN201780006652.8A CN108884324A (zh) 2016-01-14 2017-01-12 固化性组合物、固化物、预浸料以及纤维强化成形品
KR1020187017075A KR102647945B1 (ko) 2016-01-14 2017-01-12 경화성 조성물, 경화물, 프리프레그 및 섬유 강화 성형품
US15/997,191 US20180298155A1 (en) 2016-01-14 2018-06-04 Curable composition, cured product, prepreg and fiber-reinforced molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016005275 2016-01-14
JP2016-005275 2016-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/997,191 Continuation US20180298155A1 (en) 2016-01-14 2018-06-04 Curable composition, cured product, prepreg and fiber-reinforced molded product

Publications (1)

Publication Number Publication Date
WO2017122743A1 true WO2017122743A1 (ja) 2017-07-20

Family

ID=59311050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000874 WO2017122743A1 (ja) 2016-01-14 2017-01-12 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品

Country Status (7)

Country Link
US (1) US20180298155A1 (ja)
JP (1) JP6794996B2 (ja)
KR (1) KR102647945B1 (ja)
CN (1) CN108884324A (ja)
DE (1) DE112017000397T5 (ja)
TW (1) TWI730033B (ja)
WO (1) WO2017122743A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065061A (ja) * 2017-09-28 2019-04-25 Agc株式会社 プリント基板用樹脂組成物および製造方法
WO2019098202A1 (ja) * 2017-11-16 2019-05-23 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法
JP2019143087A (ja) * 2018-02-23 2019-08-29 フクビ化学工業株式会社 Cfrpシート、frp−金属複合体及びその製造方法
WO2019163913A1 (ja) * 2018-02-23 2019-08-29 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
EP3816226A4 (en) * 2018-06-27 2022-03-09 Agc Inc. POWDER DISPERSION LIQUID, LAMINATE, FILM AND IMPREGNATED WOVEN FABRIC

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099886A (ko) 2016-01-21 2018-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 플루오로탄성중합체의 적층 가공
US20230272209A1 (en) * 2020-07-07 2023-08-31 Ppg Industries Ohio, Inc. Curable coating compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273321A (ja) * 1999-03-24 2000-10-03 Cci Corp 耐摩耗潤滑性熱硬化性樹脂組成物
JP2002302609A (ja) * 2001-04-05 2002-10-18 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP2007269878A (ja) * 2006-03-30 2007-10-18 Daikin Ind Ltd プライマー用水性分散組成物
WO2015182702A1 (ja) * 2014-05-30 2015-12-03 旭硝子株式会社 含フッ素重合体の製造方法
WO2016017801A1 (ja) * 2014-08-01 2016-02-04 旭硝子株式会社 樹脂パウダー、その製造方法、複合体、成形体、セラミックス成形体の製造方法、金属積層板、プリント基板及びプリプレグ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694515B2 (ja) 1986-12-25 1994-11-24 東レ株式会社 プリプレグ
US4770922A (en) * 1987-04-13 1988-09-13 Japan Gore-Tex, Inc. Printed circuit board base material
JP3940820B2 (ja) * 1995-10-27 2007-07-04 ダイキン工業株式会社 樹脂組成物およびそれを用いた成形品とその製法
DE69835649T2 (de) 1997-10-15 2007-09-13 E.I. Dupont De Nemours And Co., Wilmington Copolymere aus Maleinsäure oder dessen Anhydrid und fluorierten Olefinen
JP5023498B2 (ja) 2006-01-20 2012-09-12 横浜ゴム株式会社 プリプレグシート用樹脂組成物およびプリプレグシート
JP2007302609A (ja) * 2006-05-12 2007-11-22 Pola Chem Ind Inc 低酸素性細胞放射線増感剤における放射線増感能の増強剤
JP4957079B2 (ja) 2006-05-29 2012-06-20 旭硝子株式会社 プリント回路基板およびその製造方法
JP5176375B2 (ja) * 2007-04-12 2013-04-03 ダイキン工業株式会社 水性分散体の製造方法及び水性分散体
CN102209754B (zh) * 2008-11-10 2013-07-17 味之素株式会社 印刷线路板用树脂组合物
TW201204548A (en) * 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
CN105949716B (zh) * 2011-11-29 2019-01-04 三菱化学株式会社 环氧树脂组合物、预浸料以及纤维强化复合材料
WO2013125468A1 (ja) * 2012-02-22 2013-08-29 旭硝子株式会社 含フッ素共重合体組成物、成型品および電線
JP5995150B2 (ja) 2012-03-02 2016-09-21 東レ株式会社 炭素繊維複合材料
CN102807658B (zh) * 2012-08-09 2014-06-11 广东生益科技股份有限公司 聚苯醚树脂组合物及使用其制作的半固化片与覆铜箔层压板
JP5804398B2 (ja) 2013-05-22 2015-11-04 株式会社Leonis&Co. 電子チケットシステムおよびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273321A (ja) * 1999-03-24 2000-10-03 Cci Corp 耐摩耗潤滑性熱硬化性樹脂組成物
JP2002302609A (ja) * 2001-04-05 2002-10-18 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP2007269878A (ja) * 2006-03-30 2007-10-18 Daikin Ind Ltd プライマー用水性分散組成物
WO2015182702A1 (ja) * 2014-05-30 2015-12-03 旭硝子株式会社 含フッ素重合体の製造方法
WO2016017801A1 (ja) * 2014-08-01 2016-02-04 旭硝子株式会社 樹脂パウダー、その製造方法、複合体、成形体、セラミックス成形体の製造方法、金属積層板、プリント基板及びプリプレグ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065061A (ja) * 2017-09-28 2019-04-25 Agc株式会社 プリント基板用樹脂組成物および製造方法
WO2019098202A1 (ja) * 2017-11-16 2019-05-23 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法
CN111344335A (zh) * 2017-11-16 2020-06-26 Agc株式会社 树脂粉末的制造方法、树脂粉末和层叠体的制造方法
KR20200078471A (ko) * 2017-11-16 2020-07-01 에이지씨 가부시키가이샤 수지 파우더의 제조 방법, 수지 파우더 및 적층체의 제조 방법
JPWO2019098202A1 (ja) * 2017-11-16 2020-12-03 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法
JP7205487B2 (ja) 2017-11-16 2023-01-17 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法
KR102673931B1 (ko) * 2017-11-16 2024-06-10 에이지씨 가부시키가이샤 수지 파우더의 제조 방법, 수지 파우더 및 적층체의 제조 방법
JP2019143087A (ja) * 2018-02-23 2019-08-29 フクビ化学工業株式会社 Cfrpシート、frp−金属複合体及びその製造方法
WO2019163633A1 (ja) * 2018-02-23 2019-08-29 フクビ化学工業株式会社 Cfrpシート、frp-金属複合体及びその製造方法
WO2019163913A1 (ja) * 2018-02-23 2019-08-29 Agc株式会社 積層体及びその製造方法、ならびに成形体及びその製造方法
JP7043290B2 (ja) 2018-02-23 2022-03-29 フクビ化学工業株式会社 Cfrpシート、frp-金属複合体及びその製造方法
EP3816226A4 (en) * 2018-06-27 2022-03-09 Agc Inc. POWDER DISPERSION LIQUID, LAMINATE, FILM AND IMPREGNATED WOVEN FABRIC

Also Published As

Publication number Publication date
KR102647945B1 (ko) 2024-03-14
US20180298155A1 (en) 2018-10-18
JPWO2017122743A1 (ja) 2018-11-01
DE112017000397T5 (de) 2018-10-25
JP6794996B2 (ja) 2020-12-02
TW201736495A (zh) 2017-10-16
TWI730033B (zh) 2021-06-11
KR20180102070A (ko) 2018-09-14
CN108884324A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6794996B2 (ja) 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
US10836877B2 (en) Prepreg, method for its production and fiber-reinforced molded product
US10920030B2 (en) Prepreg, method for its production, and fiber-reinforced molded product
US11041053B2 (en) Resin powder, method for its production, composite, molded product, method for producing ceramic molded product, metal laminated plate, printed circuit board and prepreg
JP6904347B2 (ja) フッ素樹脂パウダーを含む液状組成物の製造方法
WO2017030190A1 (ja) 積層基材およびその成形体の製造方法
US11642874B2 (en) Laminate and method for its production
TWI776955B (zh) 樹脂組成物、成形品及其製造方法、預浸體及其製造方法、以及纖維強化成形品及其等之製造方法
JP7119362B2 (ja) 混繊糸、布帛、繊維強化成形品及びその製造方法
JP2018178073A (ja) プリプレグ、その製造方法および繊維強化成形品
JP2019183069A (ja) 樹脂付き強化繊維基材及びその製造方法、プリプレグの製造方法、繊維強化成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017075

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017561169

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000397

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738497

Country of ref document: EP

Kind code of ref document: A1