WO2015182702A1 - 含フッ素重合体の製造方法 - Google Patents

含フッ素重合体の製造方法 Download PDF

Info

Publication number
WO2015182702A1
WO2015182702A1 PCT/JP2015/065399 JP2015065399W WO2015182702A1 WO 2015182702 A1 WO2015182702 A1 WO 2015182702A1 JP 2015065399 W JP2015065399 W JP 2015065399W WO 2015182702 A1 WO2015182702 A1 WO 2015182702A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
functional group
polar functional
fluoropolymer
containing monomer
Prior art date
Application number
PCT/JP2015/065399
Other languages
English (en)
French (fr)
Inventor
茂 相田
大輔 田口
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016523555A priority Critical patent/JP6686883B2/ja
Priority to CN201580028658.6A priority patent/CN106459291B/zh
Priority to EP15799525.9A priority patent/EP3150645B1/en
Publication of WO2015182702A1 publication Critical patent/WO2015182702A1/ja
Priority to US15/350,809 priority patent/US9725542B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/184Monomers containing fluorine with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides

Definitions

  • the present invention relates to a method for producing a fluoropolymer.
  • Fluoropolymers are excellent in heat resistance, chemical resistance, weather resistance, non-adhesiveness, and the like, but it was difficult to form laminates and composite materials bonded to other materials.
  • techniques for imparting adhesiveness to other materials by introducing polar functional groups into the fluoropolymer have been developed (for example, Patent Documents 1 to 3).
  • a chain transfer agent having a function of a polymerization medium is used as a hydrophobic agent such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane.
  • Chlorofluorocarbons were used. However, since hydrochlorofluorocarbons are substances that cause ozone layer destruction, it is desired to use a fluorine-containing polymerization medium that does not contain chlorine. However, since a fluorine-containing polymerization medium not containing chlorine generally has low solubility of the polar functional group-containing monomer, it is difficult to supply the solid polar functional group-containing monomer in the polymerization tank in a solution state.
  • the polar functional group-containing monomer When fed into the polymerization tank as a solid, the polar functional group-containing monomer causes poor dispersion in the polymerization tank and is less likely to be taken into the fluoropolymer, so the adhesion of the obtained fluoropolymer is low. Become.
  • An object of the present invention is to provide a method for producing a fluorine-containing polymer, which can efficiently produce a fluorine-containing polymer excellent in adhesiveness using a polymerization medium having a small ozone layer depletion coefficient.
  • the present inventors have used a polymerization medium containing a specific medium compound for the polymerization reaction, and a solution in which the polar functional group-containing monomer is dissolved in the polymerization medium is continuously or intermittently contained in the polymerization reaction system. It has been found that the above-mentioned problems can be solved by adding to the above. That is, the present invention has the following configurations ⁇ 1> to ⁇ 8>.
  • a method for producing a fluorine-containing polymer wherein a monomer component containing a fluorine-containing monomer and a polar functional group-containing monomer (excluding those having a fluorine atom) is polymerized in a polymerization medium,
  • the polymerization medium includes a medium compound represented by the following formula (1), and a solution in which the polar functional group-containing monomer is dissolved in the polymerization medium is continuously or intermittently added to the polymerization reaction system.
  • the concentration of the polar functional group-containing monomer in the solution is:
  • the polymerization is performed in the presence of a chain transfer agent, and the chain transfer agent is selected from the group consisting of alcohols, hydrocarbons, hydrofluorocarbons, ketones, mercaptans, esters, and ethers.
  • the chain transfer agent is water-soluble, a slurry obtained by polymerizing the monomer component in the polymerization medium and water are mixed, the chain transfer agent is dissolved in water, and the fluorine-containing agent is mixed.
  • ⁇ 7> The method for producing a fluoropolymer according to ⁇ 6>, wherein the recovered polymerization medium is recycled as a polymerization medium used when the monomer component is polymerized.
  • ⁇ 8> The method for producing a fluoropolymer according to ⁇ 1> or ⁇ 2> above, wherein the monomer component contains tetrafluoroethylene as a fluorine-containing monomer and further contains ethylene as another monomer.
  • the polar functional group in the polar functional group-containing monomer is at least one selected from the group consisting of a hydroxyl group, a carboxy group, an epoxy group, and an acid anhydride residue
  • ⁇ 10> The method for producing a fluoropolymer according to ⁇ 9>, wherein the polar functional group is an acid anhydride residue.
  • a fluoropolymer having excellent adhesion can be efficiently produced using a polymerization medium having a small ozone layer destructive coefficient.
  • a repeating unit formed by polymerization of a monomer is referred to as a “unit”.
  • the method for producing a fluorinated polymer of the present invention is a method of polymerizing a monomer component containing a fluorinated monomer and a polar functional group-containing monomer (excluding those having a fluorine atom) in a polymerization medium.
  • the polymerization medium includes a medium compound represented by the following formula (1) (hereinafter also referred to as “medium compound (1)”), and the polar functional group-containing monomer is contained in the polymerization medium.
  • the dissolved solution is added continuously or intermittently into the polymerization reaction system.
  • the polymerization medium used in the present invention contains the medium compound (1). Since the medium compound (1) has high solubility of the polar functional group-containing monomer, the polymerization easily proceeds uniformly. When the polymerization proceeds uniformly, the adhesiveness of the obtained fluoropolymer increases. Further, since the medium compound (1) has a low chain transfer constant, it acts as a chain transfer agent unlike hydrochlorofluorocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane. Hard to do. Therefore, the medium compound (1) is less likely to affect the chain transfer agent concentration in the polymerization reaction system.
  • the medium compound (1) include CF 3 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CH 3 OCF 2 CF 2 CF 2 CF 3 , and CH 3 OCF 2 CF 2.
  • (CF 3 ) 2 , CF 3 CFHCF 2 OCF 3 and the like are particularly preferred because it can be granulated while evaporating and recovering.
  • C m H 2m + 1-x F x and “C n H 2n + 1-y F y ” in the general formula of the medium compound (1) may be linear or branched.
  • the total number of carbon atoms of “C m H 2m + 1-x F x ” and “C n H 2n + 1-y F y ” is preferably 3 to 8, and more preferably 4 to 6.
  • the total number is less than the lower limit, the boiling point is too low and it becomes difficult to handle.
  • the total number is larger than the upper limit, the boiling point is too high, and separation from the polymer becomes difficult.
  • the total number of fluorine atoms in “C m H 2m + 1-x F x ” and “C n H 2n + 1-y F y ” is preferably 60% or more with respect to the total number of hydrogen atoms and fluorine atoms, and is 65 to 80%. Is more preferable. Increasing the proportion of fluorine atoms is preferable because the chain transfer constant becomes small, but too much is not preferable because the global warming potential increases. Also, if the proportion of hydrogen atoms is too large, the chain transfer constant increases, which is not preferable.
  • the boiling point of the polymerization medium is preferably 20 to 120 ° C, more preferably 40 to 100 ° C, and most preferably 50 to 90 ° C.
  • the boiling point of the polymerization medium is 100 ° C. Less than is preferable.
  • the concentration of the medium compound (1) in the polymerization medium is preferably 50% by volume or more from the viewpoint that the solubility of the polar functional group-containing monomer is high and the dispersibility of the monomer in the polymerization tank can be secured. It is more preferably 80% by volume or more, and most preferably 90% by volume or more. In particular, as a polymerization medium, the medium compound (1) may be 100% by volume.
  • a compound having low chain transfer reactivity is preferable.
  • other media include perfluorocarbons such as n-perfluorohexane, n-perfluoroheptane, perfluorocyclobutane, perfluorocyclohexane, and perfluorobenzene, 1,1,2,2-tetrafluorocyclobutane, CF 3 CFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 4 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHCFHCCF 2 CF 3 , CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 4 CF 2 H , CF 3 CH (CF 3) CF 2 CF 2 CF 3, CF 3 CF (CF 3) CFHCF 2 CF 3, CF 3 CF (CF 3) CFHCFHCF 3, CF 3 CF (CF 3) CFHCFHCF 3, CF
  • the monomer component used in the present invention includes a fluorine-containing monomer.
  • the fluorine-containing monomer is not particularly limited as long as it has fluorine.
  • Examples of such a fluorine-containing monomer include the following (1) to (7).
  • CTFE chlorotrifluoroethylene
  • FES a compound represented by the general formula CH 2 ⁇ CX (CF 2 ) n Y
  • X and Y are each independently hydrogen or a fluorine atom, and n is an integer of 2 to 8) (hereinafter referred to as “FAE”).
  • a fluoroolefin having a hydrogen atom in an unsaturated group such as vinylidene fluoride (VDF), vinyl fluoride (VF), trifluoroethylene, hexafluoroisobutylene (HFIB) or the like.
  • Fluoroolefin having no hydrogen atom in an unsaturated group such as hexafluoropropylene (hereinafter referred to as “HFP”) (excluding TFE and CTFE).
  • HFP hexafluoropropylene
  • PMVE Perfluoro (alkyl vinyl ether)
  • PEVE perfluoro (ethyl vinyl ether)
  • PEVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (butyl vinyl ether)
  • PBVE perfluoro (butyl vinyl ether)
  • PDA Perfluoro (2,2-dimethyl-1,3-dioxole)
  • PFD 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole
  • TFE is preferable.
  • a fluorine-containing monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fluorine-containing monomer should be used in combination with (1) above and any one or more of (2) to (7) above.
  • (1) is used in combination with any one or more of (2), (4) and (5), and (1) is combined with (4) and (5). And most preferably used.
  • n in the general formula CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are independently hydrogen or a fluorine atom, and n is an integer of 2 to 8). If it is less than 2, the properties of the molded body made of ETFE, which will be described later, may be insufficient (for example, the occurrence of stress cracks). On the other hand, when n in the formula exceeds 8, the polymerization reactivity may be insufficient. When n is from 2 to 8, a molded body made of ETFE, which will be described later, is excellent in characteristics such as heat resistance, chemical resistance, weather resistance, non-adhesiveness and the like, and is excellent in FAE polymerization reactivity.
  • FAE is preferably a compound represented by the general formula CH 2 ⁇ CH (CF 2 ) n Y.
  • N in the formula is preferably 2 to 6, and more preferably 2 to 4. If it exists in this range, the molded object which consists of ETFE mentioned later is remarkably excellent in stress crack resistance. 1 type (s) or 2 or more types can be used for FAE.
  • the monomer component used in the present invention includes a polar functional group-containing monomer.
  • the polar functional group-containing monomer is not particularly limited as long as it has a polar functional group and no fluorine atom.
  • Examples of the polar functional group in the polar functional group-containing monomer include a hydroxyl group, a carboxy group, an epoxy group, and an acid anhydride residue. Among them, an acid anhydride residue is preferable. When an acid anhydride residue is introduced into the fluoropolymer, it exhibits better adhesion to polyamide.
  • Specific polar functional group-containing monomers include vinyl ethers having a hydroxyl group and an epoxy group; maleic acid having a carboxy group, itaconic acid, citraconic acid, undecylenic acid, etc .; maleic anhydride having an acid anhydride residue, anhydrous Itaconic acid, citraconic anhydride, hymic anhydride and the like.
  • the polar functional group-containing monomer includes maleic anhydride, itaconic anhydride, anhydrous hymic acid, and the like because it is more easily dissolved in the polymerization medium containing the medium compound (1) and is easily added to the polymerization reaction system.
  • itaconic anhydride and / or hymic anhydride is preferable.
  • the solubility of the polar functional group-containing monomer in the polymerization medium at 25 ° C. is preferably 1% by mass or more, more preferably 2% by mass or more, and most preferably 5% by mass or more. If the solubility is less than 1% by mass, it is necessary to use a large amount of polymerization medium in order to dissolve the polar functional group-containing monomer, which is not preferable because the concentration of the polar functional group-containing monomer is lowered. Moreover, since it exists in a solvent with low solubility, dispersion
  • the polar functional group-containing monomers easily form oligomers, and the oligomer inhibits adhesion, so that sufficient adhesive strength cannot be obtained.
  • a fluorine-containing solvent has a very small polarity or no polarity, and thus it is often difficult to dissolve a compound having a polarity.
  • the above-mentioned medium compound (1) since the above-mentioned medium compound (1) has an oxygen atom in the molecule, it dissolves the polar functional group-containing monomer at a relatively high concentration. For this reason, the polymerization easily proceeds uniformly, and the adhesiveness of the fluoropolymer increases. Further, the medium compound (1) of the present invention has a low chain transfer constant.
  • a low chain transfer constant means that it is difficult to become a chain transfer agent, and since the concentration of the chain transfer agent in the reaction system is difficult to change, the molecular weight of the fluoropolymer is difficult to change, and It can be a factor to increase the adhesion of the coalesced.
  • the concentration of the polar functional group-containing monomer in the solution when the solution in which the polar functional group-containing monomer is dissolved in the polymerization medium containing the medium compound (1) is continuously or intermittently added to the polymerization reaction system is as follows. 1.0 to 20 mass% is preferable, 1.2 to 10 mass% is more preferable, and 1.3 to 5.0 mass% is most preferable. If the concentration of the polar functional group-containing monomer is too low, the amount of the polymerization medium added together with the monomer increases, and the polar functional group-containing monomer is difficult to be taken into the fluoropolymer, which is not preferable.
  • the concentration of the polar functional group-containing monomer is too high, the reactivity between the polar functional group-containing monomer and the fluorine-containing monomer is not high, so that the reaction between the polar functional group-containing monomers occurs preferentially. Therefore, an oligomer of a polar functional group-containing monomer that acts as an adhesion inhibitor is easily generated. Further, the target fluoropolymer has fewer units based on the polar functional group-containing monomer.
  • the monomer component used in the present invention may contain a monomer other than the fluorine-containing monomer and the polar functional group-containing monomer.
  • examples of other monomers include ethylene (hereinafter also referred to as “E”) and ⁇ -olefins such as propylene and butene.
  • E ethylene
  • propylene, 1-butene and the like are preferable, and ethylene is more preferable from the viewpoint that the obtained polymer is excellent in physical properties such as heat resistance and mechanical properties.
  • additives usually used for a polymerization reaction such as a chain transfer agent and a polymerization initiator may be added to the polymerization reaction system.
  • the polymerization reaction is preferably performed in the presence of a chain transfer agent.
  • the presence of the chain transfer agent makes it easy to adjust the molecular weight of the produced fluoropolymer.
  • the chain transfer agent may be a known one that is generally used in a polymerization reaction.
  • Chain transfer agents have a large chain transfer constant and a small amount of addition, so that methanol, ethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 1,1, Alcohols such as 1,3,3,3-hexafluoroisopropanol and 2,2,3,3,3-pentafluoropropanol; Hydrocarbons such as n-pentane, n-hexane and cyclohexane; CF 2 H 2 etc.
  • hydrofluorocarbons Preferred are hydrofluorocarbons; ketones such as acetone; mercaptans such as methyl mercaptan; esters such as methyl acetate and ethyl acetate; ethers such as diethyl ether and methyl ethyl ether; Among them, it is preferably at least one selected from the group consisting of alcohols, hydrocarbons, and hydrofluorocarbons from the viewpoint that the chain transfer constant is higher and the terminal group of the resulting polymer has high stability. And / or hydrocarbons are more preferred.
  • alcohols methanol or ethanol is most preferable because it is easily dissolved in water and easily separated from the obtained fluoropolymer after production.
  • n-pentane or cyclohexane is most preferred because it has a higher chain transfer constant, higher stability of the terminal group of the resulting polymer, and a boiling point sufficiently higher than room temperature and not higher than 100 ° C.
  • a polymerization initiator In the production of a fluoropolymer, a polymerization initiator is generally used for initiating a polymerization reaction.
  • a radical polymerization initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C. is preferable, and a radical polymerization initiator having a temperature of 20 to 90 ° C. is more preferable.
  • azo compounds such as azobisisobutyronitrile
  • peroxydicarbonates such as diisopropylperoxydicarbonate
  • peroxyesters such as tert-butylperoxypivalate, tert-butylperoxyisobutyrate, and tert-butylperoxyacetate.
  • Non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide; (Z (CF 2 ) p COO) 2 (Z is a hydrogen atom, a fluorine atom or a chlorine atom, p is 1
  • a fluorine-containing diacyl peroxide such as perfluoro tert-butyl peroxide
  • inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate; and the like.
  • the fluorine-containing polymer produced by the present invention is obtained by polymerizing a monomer component containing a fluorine-containing monomer and a polar functional group-containing monomer (excluding those having a fluorine atom) in a polymerization medium. And having at least a unit based on the fluorine-containing monomer and a unit based on the polar functional group-containing monomer.
  • the fluorine-containing monomer that forms units based on the fluorine-containing monomer and the polar functional group-containing monomer that forms units based on the polar functional group-containing monomer are the same as those described above.
  • fluoropolymer examples include the following.
  • V A copolymer having units based on E, units based on CTFE, and units based on a polar functional group-containing monomer.
  • Vi A copolymer having units based on E, units based on TFE, units based on HFP, and units based on a polar functional group-containing monomer.
  • Vii A copolymer having units based on E, units based on TFE, units based on FAE, and units based on a polar functional group-containing monomer.
  • a copolymer having a unit based on E, a unit based on TFE, and a unit based on a polar functional group-containing monomer, such as (iv), (vi), and (vii), is collectively referred to as ETFE.
  • the molar ratio of E-based units to TFE-based units (E / TFE ratio) in ETFE is preferably 80/20 to 20/80, more preferably 70/30 to 30/70, and 50/50 to 35. / 65 is most preferred. If the E / TFE ratio is larger than the above upper limit, the heat resistance, weather resistance, chemical resistance, chemical solution permeation resistance, etc. of the molded body made of ETFE may be lowered. On the other hand, if the E / TFE ratio is smaller than the lower limit, the mechanical strength, melt moldability, etc. of the molded body made of ETFE may be lowered. When the E / TFE ratio is in the above range, a molded body made of ETFE is excellent in heat resistance, weather resistance, chemical resistance, chemical penetration prevention, mechanical strength, melt moldability, and the like.
  • the content of units based on FAE is preferably 0.01 to 20 mol%, more preferably 0.1 to 15 mol%, and more preferably 0.2 to 5 mol% is most preferred.
  • the content of the unit based on FAE is less than 0.01 mol%, the molded article made of the fluoropolymer has low stress crack resistance, and a fracture phenomenon such as cracking may occur under stress.
  • the mechanical strength of the molded article may be low.
  • the content of the unit based on FAE is in the above range, the molded article is excellent in properties such as stress crack resistance and mechanical strength.
  • the content of the units based on the polar functional group-containing monomer in the fluoropolymer is preferably 0.01 to 5 mol%, more preferably 0.05 to 3 mol%, and more preferably 0.1 to 1 mol, based on all units. % Is most preferred.
  • the content of the unit based on the polar functional group-containing monomer is less than the lower limit value, sufficient adhesiveness is not exhibited.
  • the content of the unit based on the polar functional group-containing monomer is larger than the upper limit, the original characteristics of the fluoropolymer are impaired, or the oligomer of the polar functional group-containing monomer is generated and the adhesiveness is lowered.
  • the adhesiveness of the fluoropolymer will be more excellent.
  • the volume flow rate of the fluorine-containing polymer (hereinafter, referred to as Q value.) Is preferably 0.1 ⁇ 500 mm 3 / sec, more preferably 1 ⁇ 100 mm 3 / sec, and most preferably 5 ⁇ 50 mm 3 / sec.
  • the Q value is an index representing the melt fluidity of the fluoropolymer and is a measure of the molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight.
  • the Q value of the fluoropolymer when extruded into an orifice of 2.1 mm in diameter and 8 mm in length under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the resin using a flow tester manufactured by Shimadzu Corporation Extrusion speed. When the Q value is in the above range, the fluoropolymer is excellent in extrudability, mechanical strength, and the like.
  • a solution in which a polar functional group-containing monomer is dissolved in a polymerization medium containing the medium compound (1) is continuously or intermittently added to the polymerization reaction system.
  • a polar functional group containing monomer in a polymerization reaction system it is preferable not to dissolve this monomer in a chain transfer agent.
  • the concentration change of the chain transfer agent in the polymerization tank becomes large, so that a fluoropolymer having a wide molecular weight distribution may be formed.
  • polymerization is performed before the solution in which the polar functional group-containing monomer is dissolved in the polymerization medium is first added to the polymerization reaction system. It is preferable that the polar functional group-containing monomer does not exist in the reaction system in advance. However, if the concentration does not produce an adhesion inhibitor, a small amount of polar functional groups are added to the polymerization reaction system before the solution in which the polar functional group-containing monomer is dissolved in the polymerization medium is first added to the polymerization reaction system.
  • the containing monomer may be present in advance.
  • the concentration of the polar functional group-containing monomer that may be present in advance in the polymerization reaction system is preferably 100 ppm or less, more preferably 50 ppm or less, and most preferably 20 ppm.
  • Examples of the method for producing the fluoropolymer of the present invention include suspension polymerization, solution polymerization, emulsion polymerization and the like, and among these, suspension polymerization or solution polymerization is preferable.
  • Polymerization conditions are not particularly limited.
  • the polymerization temperature is preferably from 0 to 100 ° C, more preferably from 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPaG, more preferably from 0.5 to 3 MPaG.
  • the polymerization time is preferably 1 to 30 hours, and more preferably 2 to 20 hours.
  • the fluorine-containing polymer produced by the present invention is excellent in adhesion to various materials.
  • the material to which the fluoropolymer is bonded include metals (iron, copper, stainless steel, etc.), glass, plastic, rubber, and the like.
  • plastic examples include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate; polyolefins such as polyethylene and polypropylene; ethylene / vinyl acetate copolymer, polyvinyl acetate, polyvinyl alcohol, Ethylene / vinyl alcohol copolymer, polystyrene, polyvinylidene chloride, polyacrylonitrile, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polycarbonate, polyamideimide, polyimide, polyetherimide, polysulfone, polyarylate, polyamide, polyurethane, etc. It is done.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate
  • polyolefins such as polyethylene and polypropylene
  • tubes or hoses underground tubes or hoses for painting lines, such as painting lines or hoses, chemical tubes or hoses, agrochemical tubes or hoses, beverage tubes or hoses, hydraulic tubes or hoses, gas stations, etc.
  • Tubing or hose for automobile fuel piping, filler neck hose, automobile radiator hose, brake hose, air conditioner hose, hose for fuel cell, electric parts, industrial hose for transportation of fruit juice, pasty food, ink tube Examples include chemical tubes, pneumatic tubes or hoses, hoses for transporting fuel such as gasoline, light oil, and alcohol, and hoses for hot water supply.
  • Tanks include automobile radiator tanks, chemical tanks, chemical liquid bags, multi-layer bottles for chemical storage containers, fuel tanks, chemical liquid containers and abrasives that are highly corrosive and corrosive to acids and alkalis such as chemical liquids for semiconductors, etc. And a container for urea water in a system for reducing NOX by spraying urea water on diesel engine exhaust gas.
  • Seals include LIB aluminum laminate seal layers, various automotive seals such as fuel pump O-rings, chemical seals such as chemical pumps and flow meter seals, and various mechanical seals such as hydraulic equipment seals. Etc.
  • Wire covering materials such as wires and cables can be suitably used for wrapping wires, automotive wires, aircraft wires, robot wires, motor coil wires, foamed wires, and the like.
  • coaxial cables for communication systems such as high-frequency transmission lines and base stations, cable applications such as LAN cables and flat cables, small electronic devices such as portable telephones, or printed wiring boards It can be suitably used for high-frequency transmission such as.
  • Examples of the film and sheets include a single layer or a multilayer film (or referred to as a laminate) used in at least a part thereof in the following applications.
  • Interlayer insulation film for electronic substrates steel sheet laminating film used for building materials and solvents, iron making for solution storage, battery packaging such as lithium ion battery laminated with metal foil such as aluminum as soft moisture proof packaging, polyethylene, polypropylene, ethylene ⁇ Medical or chemical liquid packaging materials laminated with vinyl acetate copolymer, laminated films for infusion bags and blood bags, industrial films such as agricultural houses and membrane structures, release films, specifically cast films Single layer or multilayer release film for production, release film for production of wiring board or IC chip, release film composed of laminate with polyethylene terephthalate, release film used for molding of light emitting diode sealing material, etc.
  • Heat seal packaging material consisting of laminates of materials, aluminum foil, etc., multilayer film for whiteboard, high Protective film for road noise barrier, laminated film for shower shielding curtain, laminated film for wallpaper, heat-resistant pouch film, laminated glass interlayer film, agricultural house film, adhesive film, chemical coating film for rubber plug, solar cell Rolls for office automation (OA) and OA belts made by laminating protective films, motor insulating films, fluoropolymer films, laminates of fluoropolymers and polyimides, and metal foils and laminates such as copper foils.
  • Printed wiring boards using metal or composite laminates of fluoropolymers and fiber substrates are also printed wiring boards using metal foils and laminates, radars that require high-
  • the flexible printed wiring board makes use of the features of low dielectric constant and high bending resistance, so that it can be used for mobile phones, mobile devices, notebook personal computers, digital cameras, video cameras, memory audio players. It can also be used for hard disk drives, various optical drives, and the like.
  • laminated printed wiring boards multilayer monofilaments, wiring / pipe cover ducts (protection pipes), protection of outdoor parts of building parts called exteriors, building parts such as outer wall protection and inner layer walls, rubber hose mandrel core materials, light guides Applications include ropes, food machine belts, food conveyor belts, carburetor flange gaskets, gears, and the like.
  • the shape of the molded product is not particularly limited, and may be various shapes such as a sheet shape, a film shape, a rod shape, and a pipe shape.
  • Typical examples of applications in these shapes include: CMP retainer ring, etching ring, silicon wafer carrier, semiconductor / liquid crystal manufacturing equipment parts such as IC chip tray, small button battery, cable connector, aluminum electrolytic capacitor body case, thrust washer, Oil filter, automatic air conditioner control unit gear, throttle body gear, ABS parts, AT seal ring, MT shift fork pad, bearing, seal, clutch ring compressor parts, mass transit system cable, conveyor belt chain, oil field development, machinery Connectors, hydraulic drive system pump parts (bearings, port plates, piston ball joints, etc.), gears, piston seal rings, aircraft cabin interior parts, fuel pipe protective materials, food ⁇ Beverage production equipment parts and medical equipment parts (sterilization equipment, gas / liquid chromatograph equipment parts, etc.), aquatic organism adhesion prevention molded products, hydrogen station materials, fuel cell materials, organic EL materials, sensors, LED
  • Office electrical product parts Office computer related parts, telephone related parts, facsimile related parts, copying machine related parts, cleaning jigs, motor parts, lighters, typewriters and other machine related parts, microscopes, binoculars, Optical equipment such as cameras and watches, precision machinery-related parts, water faucet tops, mixing faucets, pump parts, pipe joints, water volume control valves, relief valves, hot water temperature sensors, water volume sensors, water meter housings, etc.
  • valve alternator terminal Luminator connector
  • IC regulator light meter potentiometer base
  • various valves such as exhaust gas valve, fuel-related / exhaust / intake system pipes, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, Carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, radiator Brush holder for motor, water pump impeller, turbine vane, wiper motor related parts, distributor, Starter switch, starter relay, transmission wire harness, window washer nozzle, air conditioner panel switch board, fuel-related electromagnetic valve coil, fuse connector, horn terminal, electrical component insulation plate, step motor rotor, lamp socket, lamp reflector, lamp housing Brake pistons, solenoid bobbins, engine oil filters, ignition device cases, vehicle speed sensors, cable liners and other automobile / vehicle-related parts, medical products, and other various applications.
  • the fluoropolymer obtained in the present invention can be powdered and used as a coating material.
  • Applications of articles coated with fluoropolymer powder include cooking utensils such as frying pans, pressure cookers, pans, grill pans, rice cookers, ovens, hot plates, baking molds, kitchen knives, gas tables; electric pots, ice trays Kitchen supplies such as molds and range hoods; food industry parts such as kneading rolls, rolling rolls, conveyors, hoppers, etc .; office automation (OA) rolls, OA belts, OA separation nails, paper rolls, film production Industrial articles such as calender rolls; molds for molding foamed polystyrene, molds, mold release such as molds, release plates for producing plywood and decorative boards, industrial containers (especially for the semiconductor industry), and the like.
  • Slippers that make use of tools such as saws and files; household items such as irons, scissors, and kitchen knives; sliding bearings for metal foil, electric wires, food processing machines, packaging machines, textile machines, cameras and clock slides Examples thereof include automobile parts such as moving parts, pipes, valves, and bearings, snow shovels, plows, chutes, coil wires for motors, sealing materials for electric / electronic parts, exhaust ducts, and the like.
  • the fluoropolymer obtained by the present invention is also useful as an additive for FRP, particularly carbon fiber reinforced plastic (CFRP) using carbon fiber as the reinforcing fiber (fiber substrate).
  • FRP and CFRP you may use a fluoropolymer as a main component in a resin component as a powder, a pellet, and a film.
  • Applications of FRP and CFRP include, for example, personal computers, displays, OA equipment, mobile phones, personal digital assistants, facsimile machines, compact discs, portable MDs, portable radio cassettes, PDAs (mobile information terminals such as electronic notebooks), video cameras, etc.
  • the fluorine-containing monomer is excessively present, the reaction between the polar functional group-containing monomer and the fluorine-containing monomer proceeds sufficiently. Therefore, the unit based on the polar functional group-containing monomer can be appropriately taken into the fluoropolymer. As a result, the fluoropolymer of the present invention having high adhesiveness can be obtained.
  • the polar functional group-containing monomer is charged all at once in the initial stage of polymerization, or the polar functional group-containing monomer is continuously or intermittently added to the polymerization reaction system without dissolving it in the polymerization medium, The concentration of the polar functional group-containing monomer is increased.
  • the concentration of the polar functional group-containing monomer in the polymerization reaction system becomes too high, the polar functional group-containing monomer is generally not highly reactive with the fluorine-containing monomer, so the reaction between the polar functional group-containing monomers is preferential. Occur. Therefore, an oligomer of a polar functional group-containing monomer that acts as an adhesion inhibitor is easily generated. In the target fluoropolymer, the number of units based on the polar functional group-containing monomer is reduced. As a result, the adhesive strength of the fluoropolymer cannot be sufficiently obtained.
  • the chain transfer agent when a chain transfer agent that requires a small amount of addition is used and no additional chain transfer agent is added together with the polar functional group-containing monomer, a polymerization medium and a chain transfer agent recovered after polymerization are added. In the mixed liquid containing, the concentration of the chain transfer agent is unlikely to be high. Furthermore, if the chain transfer agent is water-soluble, when applying the step of granulating the slurry obtained by polymerization in water, the chain transfer agent dissolves in the aqueous layer when the fluoropolymer is recovered. Easy to be separated and removed.
  • the polymerization medium and the chain transfer agent are once separated and readjusted so that the chain transfer agent becomes a predetermined amount, or the concentration of the chain transfer agent is reduced. There is no need to add a new step. Therefore, in the present invention, if a chain transfer agent that requires a small amount is used and no additional chain transfer agent is added together with the polar functional group-containing monomer, the production efficiency can be improved even when the polymerization medium is recycled. Is hard to decline. Further, if a water-soluble chain transfer agent is used, the production efficiency is further unlikely to decrease.
  • (A) layer a polyimide resin having a thickness of 25 ⁇ m and a width of 380 mm (manufactured by Ube Industries, Upilex (registered trademark) VT), and as the (C) layer, a rolled copper foil having a thickness of 12 ⁇ m, a width of 380 mm, and an Rz of 1.0 ⁇ m
  • As a (B) layer a fluoropolymer film having a thickness of 25 ⁇ m and a width of 380 mm was manufactured in the order of (A) / (B) / (C).
  • a three-layer laminated film consisting of a polyimide resin layer / a fluorine-containing polymer layer / a rolled copper foil layer having a thickness of 62 ⁇ m is vacuum-pressed under the conditions of a temperature of 360 ° C. and a pressure of 3.7 MPaG for 10 minutes. It was.
  • a test piece having a length of 150 mm and a width of 10 mm obtained by cutting the three-layer laminated film was prepared, and peeled from the end in the length direction of the test piece to a position of 50 mm.
  • the residual monomer gas is purged from the polymerization tank to atmospheric pressure, the slurry is transferred to a container with an internal volume of 2 L, water having the same volume as the slurry is added, and the polymerization medium and chain transfer agent are heated (30 to 90 ° C.). The residual monomer and the polymer were separated. The obtained polymer was dried in an oven at 150 ° C. to obtain a white powdery polymer 1.
  • the mol%, the melting point was 239 ° C., and the interlayer adhesion between the fluoropolymer and the polyamide was 19 N / cm.
  • the obtained polymer was dried in an oven at 150 ° C. to obtain a white powdery polymer 2.
  • the mol%, the melting point was 255 ° C., and the interlayer adhesion between the fluoropolymer and the polyamide was 22 N / cm.
  • the polymerization tank was cooled to complete the polymerization. Thereafter, the residual monomer gas is purged from the polymerization tank to atmospheric pressure, the slurry is transferred to a container having an internal volume of 2 L, water having the same volume as the slurry is added, and the polymerization medium and residual monomer are heated and heated (20 to 73 ° C.). The polymer was separated. The obtained polymer was dried in an oven at 120 ° C. to obtain a white powdery polymer 3. The volume flow rate of polymer 3 at 220 ° C.
  • Example 4 The polymerization medium initially charged in the polymerization tank was changed to 1120 g of CF 3 CH 2 OCF 2 CF 2 H and 67 g of CF 3 (CF 2 ) 4 CF 2 H, in the same manner as in Example 1, Methanol and monomer components were charged, and the polymerization tank internal temperature was stabilized at 66 ° C. Subsequently, 9 mL of a CF 3 CH 2 OCF 2 CF 2 H solution containing 2% by mass of tert-butylperoxypivalate and 2% by mass of CF 3 (CF 2 ) 4 CF 2 H is injected and polymerization is started. Obtained a polymer 5 in the same manner as in Example 1.
  • the mol%, the melting point was 239 ° C., and the interlayer adhesion between the fluoropolymer and the polyamide was 18 N / cm.
  • Example 5 After vacuuming a stainless steel polymerization tank equipped with a stirrer and a jacket having an internal volume of 1.3 L, 1124 g of CF 3 CH 2 OCF 2 CF 2 H, 2.0 g of methanol, CF 2 ⁇ CF—O— (CF 2 ) 84.8 g of 3 F was charged, and 159 g of TFE was charged while stirring the inside of the polymerization tank, and then warm water was passed through the jacket to bring the internal temperature of the polymerization tank to 50 ° C. The polymerization tank internal pressure at this time was 0.91 MPaG.
  • a 0.05 mass% CF 3 CH 2 OCF 2 CF 2 H solution of bis (perfluorobutyryl) peroxide was injected to initiate polymerization.
  • TFE gas was added so that the internal pressure was constant at 0.91 MPaG.
  • a 0.05 mass% CF 3 CH 2 OCF 2 CF 2 H solution of bis (perfluorobutyryl) peroxide was intermittently added so that the consumption rate of TFE gas was maintained at 0.5 g / min.
  • the residual monomer gas is purged from the polymerization tank to atmospheric pressure, the slurry is transferred to a container having an internal volume of 2 L, water having the same volume as the slurry is added, and the polymerization medium and chain transfer agent are heated (40 to 90 ° C.).
  • the residual monomer and the polymer were separated.
  • the obtained polymer was dried in an oven at 150 ° C. to obtain a white powdery polymer 6.
  • the capacity flow rate of polymer 6 at 380 ° C.
  • the melting point is At 300 ° C., the interlayer adhesion between the fluoropolymer and the copper foil was 32 N / cm, and the interlayer adhesion between the fluoropolymer and the polyimide resin was 30 N / cm.
  • Example 1 is the same as Example 1 except that the same amount of a 1.8% by mass CF 3 CH 2 OCF 2 CF 2 H solution of itaconic anhydride that was intermittently added during the polymerization in Example 1 was added at the beginning of the polymerization. Polymerization was conducted in the same manner to obtain Polymer 5. The volumetric flow rate of polymer 5 at 297 ° C.
  • Table 1 summarizes the types of polymerization media and monomers used in Examples 1 to 4 and Comparative Examples 1 and 2, the method of supplying the polar functional group-containing monomer, and the interlayer adhesion.
  • the polymerization medium, the kind of monomer, the method for supplying the polar functional group-containing monomer, and the interlayer adhesion used in Example 5 are summarized in Table 2 below.
  • Comparative Example 1 in which a solution of itaconic anhydride dissolved in CF 3 CH 2 OCF 2 CF 2 H as a polymerization medium of the present invention was charged into a polymerization tank at the beginning of the reaction, a fluoropolymer was used. The adhesive strength was 1 N / cm.
  • Comparative Example 2 in which itaconic anhydride was dissolved in CF 3 (CF 2 ) 4 CF 2 H as a polymerization medium different from that of the present invention, was intermittently added to the polymerization reaction system. The adhesive strength was 5 N / cm.
  • the fluoropolymer obtained by the method for producing a fluoropolymer of the present invention is excellent in adhesion to various materials, it is easy to make a laminate or a composite material bonded to other materials. . It should be noted that the entire content of the specification, claims, and abstract of Japanese Patent Application No. 2014-112770 filed on May 30, 2014 is incorporated herein as a disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 オゾン層破壊係数の小さい重合媒体を用い、接着性に優れた含フッ素重合体の効率的な製造方法の提供。 重合媒体中で含フッ素モノマーと極性官能基含有モノマー(ただし、フッ素原子を有するものを除く。)とを含むモノマー成分を重合する、含フッ素重合体の製造方法であって、前記重合媒体はC2m+1-x-O-C2n+1-y(ただし、mは1~6の整数、nは1~6の整数、xは0~(2m+1)、yは0~2n、(x+y)は1以上である。)で表される媒体化合物を含み、前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加する含フッ素重合体の製造方法。

Description

含フッ素重合体の製造方法
 本発明は、含フッ素重合体の製造方法に関する。
 含フッ素重合体は、耐熱性、耐薬品性、耐候性、非粘着性等に優れる半面、他材料と接着させた積層体や複合材料とすることが困難であった。そこで、含フッ素重合体に極性官能基を導入することで、他材料との接着性を付与する技術が開発されている(例えば、特許文献1~3)。
 従前、極性官能基を有する含フッ素重合体を製造する際、重合媒体の機能を兼ね備えた連鎖移動剤として、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等のハイドロクロロフルオロカーボン類が使われていた。しかし、ハイドロクロロフルオロカーボン類はオゾン層破壊の原因物質であるため、塩素を含まない含フッ素重合媒体を用いることが望まれている。
 しかし、塩素を含まない含フッ素重合媒体は、一般に、極性官能基含有モノマーの溶解性が低いため、固体状の極性官能基含有モノマーを、溶液の状態で重合槽内に供給するのが難しい。固体のまま重合槽内に供給した場合、重合槽内で極性官能基含有モノマーが分散不良を引き起こして、含フッ素重合体に取り込まれにくくなるため、得られた含フッ素重合体の接着性は低くなる。
 また、近年、環境保護や原材料コストの低下の観点から、含フッ素重合体の製造に用いられる重合媒体は、リサイクルされることが多い。
 しかし、特許文献3に記載されるように、連鎖移動剤に極性官能基含有モノマーを溶解して重合反応系に連続的に追加すると、重合後に回収された重合媒体と連鎖移動剤とを含む混合液中において連鎖移動剤の濃度が高くなる。そのため、重合後に回収された重合媒体と連鎖移動剤の混合液をリサイクルする場合、重合媒体と連鎖移動剤とを一旦分離し、連鎖移動剤が所定量となるように再調整するステップや、連鎖移動剤の濃度を薄くするため、重合媒体を新たに添加するステップが必要になり、製造効率が悪くなる。
特開2004-238405号公報 特開2006-152234号公報 国際公開第2006/134764号
 本発明は、オゾン層破壊係数の小さい重合媒体を用い、接着性に優れた含フッ素重合体を効率的に製造できる、含フッ素重合体の製造方法を提供することを目的とする。
 本発明者等は、鋭意検討したところ、重合反応に特定の媒体化合物を含む重合媒体を用い、該重合媒体に極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加することにより、上記課題を解決し得ることを見出した。
 すなわち、本発明は、以下の<1>~<8>の構成を有する。
 <1>重合媒体中で含フッ素モノマーと極性官能基含有モノマー(ただし、フッ素原子を有するものを除く。)とを含むモノマー成分を重合する、含フッ素重合体の製造方法であって、
 前記重合媒体は下記式(1)で表される媒体化合物を含み、前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加することを特徴とする、含フッ素重合体の製造方法。
 C2m+1-x-O-C2n+1-y ・・・(1)
(式(1)中、mは1~6の整数、nは1~6の整数、xは0~(2m+1)、yは0~2n、(x+y)は1以上である。)
 <2>前記媒体化合物の重合媒体中の濃度が50体積%以上である、上記<1>に記載の含フッ素重合体の製造方法。
 <3>前記重合媒体に対する前記極性官能基含有モノマーの25℃における溶解度が、1質量%以上である、上記<1>又は<2>に記載の含フッ素重合体の製造方法。
 <4>前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、前記重合反応系内に連続的又は断続的に添加する際の、該溶液中の前記極性官能基含有モノマーの濃度が、1.3~5.0質量%である、上記<1>又は<2>に記載の含フッ素重合体の製造方法。
 <5>前記重合が、連鎖移動剤の存在下で行われ、前記連鎖移動剤が、アルコール類、ハイドロカーボン類、ハイドロフルオロカーボン類、ケトン類、メルカプタン類、エステル類、及びエーテル類からなる群から選ばれる1種以上である、上記<1>又は<2>に記載の含フッ素重合体の製造方法。
 <6>前記連鎖移動剤が水溶性であり、前記重合媒体中で前記モノマー成分を重合して得られたスラリーと水とを混合し、前記連鎖移動剤を水に溶解させて、前記含フッ素重合体及び前記重合媒体を回収する、上記<5>に記載の含フッ素重合体の製造方法。
 <7>回収された前記重合媒体を、前記モノマー成分を重合する際に用いる重合媒体としてリサイクルする、上記<6>に記載の含フッ素重合体の製造方法。
 <8>前記モノマー成分が、含フッ素モノマーとしてテトラフルオロエチレンを含み、さらに、他のモノマーとしてエチレンを含む、上記<1>又は<2>に記載の含フッ素重合体の製造方法。
 <9>前記極性官能基含有モノマー中の極性官能基が水酸基、カルボキシ基、エポキシ基及び酸無水物残基からなる群から選ばれる1種以上である、上記<1>~<8>のいずれかに記載の含フッ素重合体の製造方法。
 <10>前記極性官能基が酸無水物残基である、上記<9>に記載の含フッ素重合体の製造方法。
 <11>上記<1>~<10>のいずれかに記載の製造方法で製造され、極性官能基含有モノマーに基づく単位の含有量が、全単位中0.01~5モル%である含フッ素重合体。
 本発明の含フッ素重合体の製造方法によれば、オゾン層破壊係数の小さい重合媒体を用い、接着性に優れた含フッ素重合体を効率的に製造できる。
 本明細書においては、モノマーが重合することで形成される繰り返し単位を「単位」という。
(含フッ素重合体の製造方法)
 本発明の含フッ素重合体の製造方法は、重合媒体中で含フッ素モノマーと極性官能基含有モノマー(ただし、フッ素原子を有するものを除く。)とを含むモノマー成分を重合する、含フッ素重合体の製造方法であって、前記重合媒体は下記式(1)で表される媒体化合物(以下、「媒体化合物(1)」ともいう。)を含み、前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加することを特徴とする。
 C2m+1-x-O-C2n+1-y ・・・(1)
(式(1)中、mは1~6の整数、nは1~6の整数、xは0~(2m+1)、yは0~2n、(x+y)は1以上である。)
 以下、本発明の各構成について説明する。
(重合媒体)
 本発明に用いる重合媒体は、媒体化合物(1)を含む。
 媒体化合物(1)は、極性官能基含有モノマーの溶解性が高いため、重合が均一に進みやすい。重合が均一に進むと、得られた含フッ素重合体の接着性が高くなる。
 また、媒体化合物(1)は、連鎖移動定数が低いため、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等のハイドロクロロフルオロカーボン類とは異なり、連鎖移動剤として作用しにくい。そのため、媒体化合物(1)は重合反応系内の連鎖移動剤濃度に影響を及ぼしにくくなる。そして、該媒体化合物(1)による、得られる含フッ素重合体の分子量の変動は、生じにくくなる。
 さらに、媒体化合物(1)は、水への溶解性が低いため、得られた含フッ素重合体を水中で造粒した場合も、水で回収されにくい。
 媒体化合物(1)としては、具体的にCFCHOCFCFH、HCFCFCHOCFCFH、CHOCFCFCFCF、CHOCFCF(CF、CFCFHCFOCF等が挙げられる。中でも、連鎖移動定数が充分に小さく、連鎖移動剤として作用しない点、沸点が室温より充分に高く100℃以下であるため、取り扱いが容易である点、含フッ素重合体のスラリーを水中で重合媒体を蒸発回収しながら造粒できる点等から、CFCHOCFCFHが特に好ましい。
 媒体化合物(1)の一般式中の「C2m+1-x」及び「C2n+1-y」は、直鎖状でもよく、分岐状でもよい。「C2m+1-x」及び「C2n+1-y」の炭素原子の合計数は、3~8が好ましく、4~6がより好ましい。該合計数が前記下限値より少ないと、沸点が低すぎて取扱いにくくなる。一方、該合計数が前記上限値より多いと、沸点が高すぎて重合体との分離が困難になる。
 「C2m+1-x」及び「C2n+1-y」のフッ素原子の合計数は、水素原子とフッ素原子の合計数に対して60%以上が好ましく、65~80%がより好ましい。フッ素原子の割合が多くなると連鎖移動定数が小さくなるので好ましいが、多すぎると地球温暖化係数が高くなるので好ましくない。また、水素原子の割合が多すぎると連鎖移動定数が大きくなるので好ましくない。
 また、フッ素原子と水素原子が混在すると連鎖移動定数がより小さくなる点から、「C2m+1-x」及び「C2n+1-y」の両方にフッ素原子と水素原子を含むこと、すなわち、xが1以上かつyが1以上であることが好ましい。ただし、mが1又は2である場合には、xが0であっても、連鎖移動定数は充分に小さい。
 また、媒体化合物(1)のエーテル性酸素原子の両側にフッ素原子及び水素原子が存在すると、つまり、「C2m+1-x」及び「C2n+1-y」の両方にフッ素原子と水素原子を含むと、媒体化合物(1)の極性が高くなり、極性官能基含有モノマーの溶解性がより高くなるため好ましい。
 重合媒体の沸点は、20~120℃が好ましく、40~100℃がより好ましく、50~90℃が最も好ましい。特に、重合で得られた極性官能基を有する含フッ素重合体のスラリーを、水とともに攪拌しながら加熱し、造粒しながら重合媒体等を回収する工程を行う場合、重合媒体の沸点は100℃未満が好ましい。
 重合媒体中の媒体化合物(1)の濃度は、極性官能基含有モノマーの溶解性が高く、当該モノマーの重合槽内での分散性を確保できる点から、50体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが最も好ましい。特に、重合媒体としては、媒体化合物(1)が100体積%であってもよい。
 重合媒体中の媒体化合物(1)以外の他の媒体としては、連鎖移動反応性の低い化合物が好ましい。他の媒体としては、具体的には、n-ペルフルオロヘキサン、n-ペルフルオロヘプタン、ペルフルオロシクロブタン、ペルフルオロシクロヘキサン、ペルフルオロベンゼン等のペルフルオロカーボン類、1,1,2,2-テトラフルオロシクロブタン、CFCFHCFCFCF、CF(CFH、CFCFCFHCFCF、CFCFHCFHCFCF、CFHCFHCFCFCF、CF(CFCFH、CFCH(CF)CFCFCF、CFCF(CF)CFHCFCF、CFCF(CF)CFHCFHCF、CFCH(CF)CFHCFCF、CFCFCHCH、CF(CFCHCH等のハイドロフルオロカーボン類が挙げられる。
(含フッ素モノマー)
 本発明に用いるモノマー成分には、含フッ素モノマーが含まれる。
 含フッ素モノマーは、フッ素を有していれば、特に限定されない。そのような含フッ素モノマーとしては、以下の(1)~(7)が挙げられる。
 (1)テトラフルオロエチレン(以下、「TFE」という。)、又はクロロトリフルオロエチレン(以下、「CTFE」という。))。
 (2)一般式CH=CX(CFY(X及びYは、独立に水素又はフッ素原子、nは2~8の整数である。)で表される化合物(以下、「FAE」ともいう。)。
 (3)フッ化ビニリデン(VDF)、フッ化ビニル(VF)、トリフルオロエチレン、ヘキサフルオロイソブチレン(HFIB)等の不飽和基に水素原子を有するフルオロオレフィン。
 (4)ヘキサフルオロプロピレン(以下、「HFP」という。)等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFE、CTFEを除く。)。
 (5)ペルフルオロ(メチルビニルエーテル)(PMVE)、ペルフルオロ(エチルビニルエーテル)(PEVE)、ペルフルオロ(プロピルビニルエーテル)(PPVE)、ペルフルオロ(ブチルビニルエーテル)(PBVE)等のペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」という。)。
 (6)CF=CFOCFCF=CF、CF=CFO(CFCF=CF等の不飽和結合を2個有するペルフルオロビニルエーテル類。
 (7)ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)(PDD)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類。
 上記(1)~(7)の中でも、耐熱性、耐薬品性、耐候性、非粘着性等がさらに優れる点から、(1)が好ましく、(1)の中でも、TFEが好ましい。
 含フッ素モノマーは、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。
 耐熱性、耐薬品性、耐候性、非粘着性等により優れる点から、含フッ素モノマーは、上記(1)と、上記(2)~(7)のいずれか1種以上とを組合せて用いることが好ましく、(1)と、(2)、(4)及び(5)のいずれか1種以上とを組合せて用いることがより好ましく、(1)と、(4)及び(5)とを組合せて用いることが最も好ましい。
 上記(2)のFAEについては、一般式CH=CX(CFY(ここで、X及びYは独立に水素又はフッ素原子、nは2~8の整数である。)におけるnが2未満であると、後述するETFEからなる成形体の特性が不充分(例えば、ストレスクラック発生等)になることがある。一方、該式中のnが8を超えると重合反応性が不充分になることがある。nが2~8であれば、後述するETFEからなる成形体は、耐熱性、耐薬品性、耐候性、非粘着性等の特性に優れ、FAEの重合反応性にも優れる。
 FAEとしては、具体的には、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
 中でも、FAEは、一般式CH=CH(CFYで表される化合物が好ましい。該式中のnは、2~6が好ましく、2~4がより好ましい。この範囲にあれば、後述するETFEからなる成形体が耐ストレスクラック性に著しく優れる。
 FAEは1種又は2種以上を用いることができる。
(極性官能基含有モノマー)
 本発明に用いるモノマー成分には、極性官能基含有モノマーが含まれる。
 極性官能基含有モノマーは、極性官能基を有し、フッ素原子を有していなければ、特に限定されない。
 極性官能基含有モノマー中の極性官能基としては、水酸基、カルボキシ基、エポキシ基、酸無水物残基が挙げられ、中でも、酸無水物残基が好ましい。含フッ素重合体に酸無水物残基が導入されると、ポリアミドとより良好な接着性を発揮する。
 具体的な極性官能基含有モノマーとしては、水酸基とエポキシ基を有するビニルエーテル類等;カルボキシ基を有するマレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等;酸無水物残基を有する無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸等;が挙げられる。中でも、媒体化合物(1)を含む重合媒体に対して、より溶解しやすく、重合反応系に添加しやすい点から、極性官能基含有モノマーは、無水マレイン酸、無水イタコン酸、無水ハイミック酸等が好ましく、無水イタコン酸及び/又は無水ハイミック酸であることが好ましい。
 重合媒体に対する極性官能基含有モノマーの25℃における溶解度は、1質量%以上が好ましく、2質量%以上がより好ましく、5質量%以上が最も好ましい。溶解度が1質量%未満であると、極性官能基含有モノマーを溶解するために多量の重合媒体を使用する必要があり、極性官能基含有モノマーの濃度が低くなるので好ましくない。また、溶解度の低い溶媒中に存在するため、極性官能基含有モノマーの分散が不均一となり、含フッ素モノマーと共重合しにくくなる。
 また、極性官能基含有モノマーの溶解度が低い重合媒体中では、極性官能基含有モノマー同士がオリゴマーを生成しやすくなり、当該オリゴマーが接着を阻害するので充分な接着強度が得られなくなる。
 一般に、含フッ素溶媒は、極性が極めて小さいか極性を有さないため、極性を有する化合物を溶解しにくいことが多い。しかし、上述の媒体化合物(1)は、分子内に酸素原子を有するため、極性官能基含有モノマーを比較的高濃度で溶解する。そのため、重合が均一に進みやすくなり、含フッ素重合体の接着性が高くなる。
 また、本発明の媒体化合物(1)は、連鎖移動定数が低い。連鎖移動定数が低いことは、連鎖移動剤になりにくいことを意味し、反応系内の連鎖移動剤濃度が変化しにくくなることから、含フッ素重合体の分子量が変化しにくくなり、含フッ素重合体の接着性を高める要因となり得る。
 極性官能基含有モノマーを、媒体化合物(1)を含む重合媒体に溶解した溶液を、重合反応系内に連続的又は断続的に添加する際の、該溶液中の極性官能基含有モノマーの濃度は、1.0~20質量%が好ましく、1.2~10質量%がより好ましく、1.3~5.0質量%が最も好ましい。極性官能基含有モノマーの濃度が低すぎると、該モノマーとともに添加される重合媒体の量が多くなり、極性官能基含有モノマーが含フッ素重合体に取り込まれにくくなるので好ましくない。極性官能基含有モノマーの濃度が高すぎると、極性官能基含有モノマーと含フッ素モノマーとの反応性が高くないため、極性官能基含有モノマー同士の反応が優先的に起こる。そのため、接着阻害物質として作用する、極性官能基含有モノマーのオリゴマーが生成しやすくなる。また、目的の含フッ素重合体には、極性官能基含有モノマーに基づく単位が少なくなる。
(他のモノマー)
 本発明に用いるモノマー成分には、含フッ素モノマー及び極性官能基含有モノマー以外の他のモノマーが含まれていてもよい。
 他のモノマーとしては、エチレン(以下、「E」ともいう。)の他、プロピレン、ブテン等のα-オレフィン類等が挙げられる。中でも、得られるポリマーの耐熱性、機械特性等の物性に優れる点から、エチレン、プロピレン、1-ブテン等が好ましく、エチレンがより好ましい。
(添加剤)
 本発明の含フッ素重合体の製造方法においては、連鎖移動剤や重合開始剤等の重合反応に通常用いられる添加剤が、重合反応系に添加されてもよい。
 <連鎖移動剤>
 本発明の含フッ素重合体の製造方法においては、重合反応が連鎖移動剤の存在下で行われることが好ましい。連鎖移動剤を存在させることにより、製造される含フッ素重合体の分子量が調整しやすくなる。
 連鎖移動剤は、一般に重合反応に用いられる公知のものでよい。
 連鎖移動剤は、連鎖移動定数が大きく、添加量が少なくてすむ点から、メタノール、エタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,3-ペンタフルオロプロパノール等のアルコール類;n-ペンタン、n-ヘキサン、シクロヘキサン等のハイドロカーボン類;CF等のハイドロフルオロカーボン類;アセトン等のケトン類;メチルメルカプタン等のメルカプタン類;酢酸メチル、酢酸エチル等のエステル類;ジエチルエーテル、メチルエチルエーテル等のエーテル類;などが好ましい。
 中でも、連鎖移動定数がより高く、得られるポリマーの末端基の安定性が高い点から、アルコール類、ハイドロカーボン類、及びハイドロフルオロカーボン類からなる群から選ばれる1種以上であることが好ましく、アルコール類及び/又はハイドロカーボン類がより好ましい。
 アルコール類の中でも、水に溶解しやすく、製造後、得られた含フッ素重合体と分離しやすい点から、メタノール又はエタノールが最も好ましい。
 ハイドロカーボン類の中でも、連鎖移動定数がより高く、得られるポリマーの末端基の安定性が高く、沸点が室温より充分に高く100℃以下である点から、n-ペンタン又はシクロヘキサンが最も好ましい。
 <重合開始剤>
 含フッ素重合体の製造においては、一般に、重合反応を開始させるために重合開始剤が用いられる。
 重合開始剤としては、半減期が10時間である温度が0~100℃であるラジカル重合開始剤が好ましく、20~90℃であるラジカル重合開始剤がより好ましい。具体例としては、アゾビスイソブチロニトリル等のアゾ化合物;ジイソプロピルペルオキシジカーボネート等のペルオキシジカーボネート;tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等のペルオキシエステル;イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド;(Z(CFCOO)(Zは水素原子、フッ素原子又は塩素原子であり、pは1~10の整数である。)等の含フッ素ジアシルペルオキシド;ペルフルオロtert-ブチルペルオキシド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物;等が挙げられる。
(含フッ素重合体)
 本発明により製造される含フッ素重合体は、重合媒体中で含フッ素モノマーと極性官能基含有モノマー(ただし、フッ素原子を有するものを除く。)とを含むモノマー成分を重合して得られるものであり、少なくとも前記含フッ素モノマーに基づく単位と前記極性官能基含有モノマーに基づく単位とを有する。
 含フッ素モノマーに基づく単位を形成する含フッ素モノマー、及び極性官能基含有モノマーに基づく単位を形成する極性官能基含有モノマーは、上述したものと同様である。
 含フッ素重合体としては、例えば、以下のものが挙げられる。
 (i)TFEに基づく単位とPAVEに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (ii)TFEに基づく単位とHFPに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (iii)TFEに基づく単位とPAVEに基づく単位とHFPに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (iv)Eに基づく単位とTFEに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (v)Eに基づく単位とCTFEに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (vi)Eに基づく単位とTFEに基づく単位とHFPに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 (vii)Eに基づく単位とTFEに基づく単位とFAEに基づく単位と極性官能基含有モノマーに基づく単位とを有する共重合体。
 以下、上記(iv)、(vi)、(vii)等の、Eに基づく単位、TFEに基づく単位及び極性官能基含有モノマーに基づく単位を有する共重合体を、まとめてETFEと称する。
 ETFEにおける、Eに基づく単位とTFEに基づく単位とのモル比(E/TFE比)は、80/20~20/80が好ましく、70/30~30/70がより好ましく、50/50~35/65が最も好ましい。
 E/TFE比が前記上限値より大きいと、ETFEからなる成形体の耐熱性、耐候性、耐薬品性、薬液透過防止性等が低下する場合がある。一方、E/TFE比が前記下限値より小さいと、ETFEからなる成形体の機械的強度、溶融成形性等が低下する場合がある。E/TFE比が前記範囲にあると、ETFEからなる成形体が、耐熱性、耐候性、耐薬品性、薬液透過防止性、機械的強度、溶融成形性等に優れたものとなる。
 ETFEがFAEに基づく単位を有する場合における、FAEに基づく単位の含有量は、全単位に対して、0.01~20モル%が好ましく、0.1~15モル%より好ましく、0.2~5モル%が最も好ましい。FAEに基づく単位の含有量が0.01モル%未満であると、含フッ素重合体からなる成形体の耐ストレスクラック性が低く、ストレス下において、割れる等の破壊現象が発生する場合がある。一方、20モル%を超えると、当該成形体の機械的強度が低い場合がある。FAEに基づく単位の含有量が前記範囲にあると、当該成形体は耐ストレスクラック性、機械的強度等の特性に優れる。
 含フッ素重合体における極性官能基含有モノマーに基づく単位の含有量は、全単位に対して0.01~5モル%が好ましく、0.05~3モル%がより好ましく、0.1~1モル%が最も好ましい。極性官能基含有モノマーに基づく単位の含有量が前記下限値より少ないと、充分な接着性が発現しない。一方、極性官能基含有モノマーに基づく単位の含有量が前記上限値よりも多いと、含フッ素重合体本来の特性が損なわれたり、極性官能基含有モノマーのオリゴマーが生成して接着性が低下したりする。極性官能基含有モノマーに基づく単位の含有量が前記範囲内にあると、含フッ素重合体の接着性がより優れたものになる。
 含フッ素重合体の容量流速(以下、Q値という。)は、0.1~500mm/秒が好ましく、1~100mm/秒がより好ましく、5~50mm/秒が最も好ましい。Q値は、含フッ素重合体の溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。Q値は、島津製作所社製のフローテスターを用いて、樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出すときの含フッ素重合体の押出し速度である。Q値が上記範囲にあると、含フッ素重合体は、押出し成形性、機械的強度等に優れる。
(製造方法)
 本発明の含フッ素重合体の製造方法においては、媒体化合物(1)を含む重合媒体に極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加する。
 なお、極性官能基含有モノマーを重合反応系内に添加する際、該モノマーを連鎖移動剤に溶解しない方が好ましい。該モノマーを連鎖移動剤に溶解すると、重合槽内の連鎖移動剤の濃度変化が大きくなるため、分子量分布の広い含フッ素重合体が生成するおそれがある。
 また、接着阻害物質(極性官能基含有モノマーのオリゴマー)の生成を抑える点からは、重合媒体に極性官能基含有モノマーを溶解した溶液を重合反応系内に最初に添加するよりも前に、重合反応系内に極性官能基含有モノマーがあらかじめ存在しないことが好ましい。ただし、接着阻害物質を生成しない濃度であれば、重合媒体に極性官能基含有モノマーを溶解した溶液を重合反応系内に最初に添加するよりも前に、重合反応系内に微量の極性官能基含有モノマーがあらかじめ存在してもよい。重合反応系内にあらかじめ存在してもよい極性官能基含有モノマーの濃度は、100ppm以下が好ましく、50ppm以下がより好ましく、20ppmが最も好ましい。
 本発明の含フッ素重合体の製造方法としては、懸濁重合、溶液重合、乳化重合等の方法が挙げられ、中でも、懸濁重合又は溶液重合が好ましい。
 重合条件は、特に限定されない。重合温度は、0~100℃が好ましく、20~90℃がより好ましい。重合圧力は、0.1~10MPaGが好ましく、0.5~3MPaGがより好ましい。重合時間は、1~30時間が好ましく、2~20時間がより好ましい。
(用途)
 本発明によって製造される含フッ素重合体は、様々な材料への接着性に優れる。
 含フッ素重合体を接着させる材料としては、金属(鉄、銅、ステンレス等)、硝子、プラスチック、ゴム等が挙げられる。
 プラスチックの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル類;ポリエチレン、ポリプロピレン等のポリオレフィン類;エチレン/酢酸ビニル共重合体、ポリ酢酸ビニル、ポリビニルアルコール、エチレン/ビニルアルコール共重合体、ポリスチレン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリオキシメチレン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリカーボネート、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリアリレート、ポリアミド、ポリウレタン;等が挙げられる。
 これらのプラスチックと本発明によって製造された含フッ素重合体とを積層、又は含フッ素重合体を単独で使用し、チューブ、ホース、タンク、シール、ワイヤー、ケーブル、フィルム、シート、ボトル、繊維等の成形体が得られる。
 チューブ又はホース類としては、塗装ライン用チューブ又はホース、薬液チューブ又はホース、農薬用チューブ又はホース、飲料用チューブ又はホース、油圧チューブ又はホース、ガソリンスタンドなど燃料補給ステーションに用いられる用地下埋設チューブ、自動車燃料配管用チューブ又はホース、フィラーネックホース、自動車のラジエーターホース、ブレーキホース、エアコンホース、燃料電池用ホース、電気部品用、果汁、ペースト状食品等の輸送用等の工業用ホース、インクチューブ、ケミカルチューブ、空圧チューブ又はホース、ガソリン、軽油、アルコール等の燃料輸送用ホース、給湯用ホースが挙げられる。
 タンク類としては、自動車のラジエータータンク、薬液タンク、薬液バッグ、薬液保存容器向けの多層ボトル、燃料タンク、半導体用薬液等の酸・アルカリ等の腐食性、侵食性の強い薬液の容器や研磨材のスラリー用の容器、ディーゼルエンジン排ガスに尿素水を噴霧してNOXを低減するシステムにおける尿素水用容器等が挙げられる。
 シール類としては、LIBアルミラミネート用シール層、燃料ポンプのOリング等の各種自動車用シール、化学薬品用ポンプや流量計のシール等の化学関係のシール、油圧機器のシール等の各種機械関係シール等が挙げられる。
 ワイヤー、ケーブル等の電線被覆材としては、ラッピング電線、自動車用電線、航空機用電線、ロボット用電線、モーターコイルの電線、発泡電線等に好適に使用できる。特に、高周波領域で使用する場合は、高周波伝送用の回線、基地局等といった通信システム用の同軸ケーブル、LANケーブル、フラットケーブル等のケーブル用途、携帯用電話機等の小型電子機器、或いはプリント配線基板等の高周波伝送用に好適に使用できる。
 フィルム、シート類としては、以下の用途で単層または少なくともその一部に用いた多層フィルム(又は積層体と呼ぶ)が挙げられる。電子基板用層間絶縁フィルム、建材や溶剤、溶液保管用製罐などに用いられる鋼板ラミネート用フィルム、軟質防湿包装としてアルミニウムなどの金属箔を積層したリチウムイオン電池などの電池包装、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体などと積層した医療又は化学薬液軟質包装材、輸液バック及び血液バック用積層フィルム、農業用ハウスや膜構造物等の工業用フィルム、離型フィルム、具体的にはキャストフィルム製造用の単層又は多層離型フィルム、配線基板やICチップ製造用離型フィルム、ポリエチレンテレフタレート等との積層体からなる離型フィルム、発光ダイオード封止材料のモールド成形に用いられる離型フィルム等が挙げられる。食品包装用又はラッピングフィルム、ダイヤフラムポンプのダイヤフラムや各種パッキン等の高度の耐薬品性が要求される摺動部材、ベルトコンベア、電線の絶縁被覆用フィルム、ステンレス鋼シートとの積層体からなる飲料用缶材料、調理器具表面保護板、内外装用の化粧板保護フィルム、加湿器の蒸気出口部品被覆フィルム、ポリカーボネート等との積層板からなる外装材及び屋根材、ウレタン樹脂又はガラスクロス等との積層体からなるベルト、アラミド織布等との積層体からなる気球材料、ポリアミド、エチレン酢酸ビニル樹脂、ゴム等との積層体からなる膜構造物用フィルム、アルミニウムシートとの積層体からなる太陽電池用表面材料、アルミ箔等との積層体からなるヒートシール包装材料、ホワイトボード用多層フィルム、高速道路防音壁用保護フィルム、シャワー遮蔽カーテン用積層フィルム、壁紙用積層フィルム、耐熱パウチ用フィルム、合わせガラス中間膜、農業ハウス用フィルム、接着用フィルム、ゴム栓用耐薬品性被覆フィルム、太陽電池用保護フィルム、モーター絶縁用フィルム、含フッ素重合体フィルムを積層してなるオフィースオートメーション(OA)用ロールやOA用ベルト、含フッ素重合体とポリイミドとの積層体に更に銅箔など金属箔と積層体を用いたプリント配線板、あるいは含フッ素重合体と繊維基材との複合積層体も金属箔と積層体を用いたプリント配線板、高周波特性が必要なレーダー、ネットワークのルーター、バックプレーン、無線インフラ等の工業分野で用いられる。
 耐薬品性や耐熱性が必要な自動車用各種センサ及びエンジンマネージメントセンサ用基板にも用いることができる。さらに、IDタグ用の基板材料としても使用できる。また、ビルドアッププリント配線板やフレキシブルプリント配線板としても使用できる。
 前記フレキシブルプリント配線板は、前記用途に加えて、低誘電率であり、高耐屈曲性であるという特徴を生かし、携帯電話、モバイル機器、ノート型パーソナルコンピュータ、デジタルカメラ、ビデオカメラ、メモリーオーディオプレーヤー、ハードディスクドライブ、各種光学ドライブ等に用いることもできる。その他、積層型プリント配線基板、多層モノフィラメント、配線・配管カバーダクト(保護管)、エクステリアと呼ばれる建築用部材の屋外部品の保護、外壁保護や内層壁等の建築部材、ゴムホースマンドレル芯材、導光ロープ、食品機械用ベルト、食品搬送用ベルト、キャブレターのフランジガスケット、ギア等の用途が挙げられる。
 成形品の形状は特に限定されず、例えば、シート状、フィルム状、ロッド状、パイプ状等の種々の形状にすることができる。これらの形状での用途の代表例として、CMPリテーナリング、エッチングリング、シリコンウェハーキャリア、ICチップトレイ等の半導体・液晶製造装置部品、小型ボタン電池、ケーブルコネクタ、アルミ電解コンデンサー本体ケース、スラストワッシャー、オイルフィルター、オートエアコンコントロールユニットのギア、スロットルボディのギア、ABSパーツ、ATシールリング、MTシフトフォークパット、ベアリング、シール、クラッチリングコンプレッサ部品、大量輸送システムのケーブル、コンベアベルトチェーン、油田開発、機械用コネクター、水圧駆動システムのポンプ部品(軸受け、ポートプレート、ピストンの玉継ぎ手等)、歯車、ピストン用のシールリング、航空機のキャビン内装部品、燃料パイプ保護材、食品・飲料製造設備部品や医療器具部品(滅菌器具、ガス・液体クロマトグラフ用器具部品等)、水生生物付着防止成形品、水素ステーション用部材、燃料電池用部材、有機EL用部材、センサー、LEDランプ、表面実装用コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等に代表される電気・電子部品、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)、コンパクトディスク、デジタルビデオディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品等に代表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライター等に代表される機械関連部品、顕微鏡、双眼鏡、カメラ、および時計等に代表される光学機器、精密機械関連部品と、水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量センサー、水道メーターハウジングなどの水廻り部品、バルブオルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシオメーターベース、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、車速センサー、ケーブルライナー等の自動車・車両関連部品、医療製品、その他各種用途が例示できる。
 また、本発明で得られる含フッ素重合体をパウダー状にして、コーティング材料として用いることも可能である。含フッ素重合体パウダーでコーティングされた物品の用途としては、フライパン、圧力鍋、鍋、グリル鍋、炊飯釜、オーブン、ホットプレート、パン焼き型、包丁、ガステーブル等の調理器具;電気ポット、製氷トレー、金型、レンジフード等の厨房用品;練りロール、圧延ロール、コンベア、ホッパー等の食品工業用部品;オフィースオートメーション(OA)用ロール、OA用ベルト、OA用分離爪、製紙ロール、フィルム製造用カレンダーロール等の工業用品;発泡スチロール成形用等の金型、鋳型、合板・化粧板製造用離型板等の成形金型離型、工業用コンテナ(特に半導体工業用)等が挙げられる。滑り性を利用したものとしては、のこぎり、やすり等の工具;アイロン、鋏、包丁等の家庭用品;金属箔、電線、食品加工機、包装機、紡織機械等のすべり軸受、カメラ・時計の摺動部品、パイプ、バルブ、ベアリング等の自動車部品、雪かきシャベル、すき、シュート、モータ等のコイル用電線、電気・電子部品用封止材料、排気ダクト等が挙げられる。
 さらに、本発明で得られる含フッ素重合体は、FRP、特に強化繊維(繊維基材)として炭素繊維を用いた炭素繊維強化プラスチック(CFRP)の添加剤としても有用である。FRP及びCFRPとしては、含フッ素重合体をパウダー、ペレット、フィルムとして樹脂成分における主成分として用いてもよい。
 FRP及びCFRPの用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体、トレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用部材、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系又は吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材及び外板、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材及び外板、風車の羽根などが挙げられる。
 特に、航空機部材、風車の羽根、自動車外板、電子機器の筐体、トレイやシャーシなどに好ましく用いられる。
(作用効果)
 本発明の製造方法に従い、媒体化合物(1)を含む重合媒体に極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加すれば、重合反応系における極性官能基含有モノマーの濃度を、重合反応系内に一括で仕込んだり、溶解せずに添加した場合に比べ、低く保つことができる。極性官能基含有モノマーと含フッ素モノマーとの反応性は高くないため、極性官能基含有モノマーの濃度が高いと極性官能基含有モノマー同士の反応が優先的に起こるが、極性官能基含有モノマーの濃度が低く、含フッ素モノマーが過剰に存在すれば、極性官能基含有モノマーと含フッ素モノマーの反応が充分に進行する。そのため、含フッ素重合体に極性官能基含有モノマーに基づく単位を適度に取込むことができる。その結果、高い接着性を有する、本発明の含フッ素重合体が得られる。
 一方、極性官能基含有モノマーを重合初期に一括で仕込んだり、極性官能基含有モノマーを重合媒体に溶解せずにそのまま重合反応系内に連続的又は断続的に添加したりすると、重合反応系における極性官能基含有モノマーの濃度が高くなる。重合反応系における極性官能基含有モノマーの濃度が高くなりすぎると、極性官能基含有モノマーは、一般に、含フッ素モノマーとの反応性が高くないため、極性官能基含有モノマー同士の反応が優先的に起こる。そのため、接着阻害物質として作用する、極性官能基含有モノマーのオリゴマーが生成しやすくなる。また、目的の含フッ素重合体中には、極性官能基含有モノマーに基づく単位が少なくなる。これらの結果、含フッ素重合体の接着強度が充分に得られない。
 本発明においては、連鎖移動剤として添加量が少なくてすむものを用い、かつ、極性官能基含有モノマーとともに連鎖移動剤を追加で添加しない場合、重合後に回収される重合媒体と連鎖移動剤とを含む混合液中において、連鎖移動剤の濃度は高くなりにくい。さらに、連鎖移動剤が水溶性であれば、重合で得られたスラリーを水中で造粒する工程を適用した場合、該連鎖移動剤は含フッ素重合体を回収する際に水層に溶解して、分離除去されやすい。そのため、重合媒体をリサイクルする際に、重合媒体と連鎖移動剤とを一旦分離し、連鎖移動剤が所定量となるように再調整するステップや、連鎖移動剤の濃度を薄くするため、重合媒体を新たに添加するステップを要しない。
 したがって、本発明において、連鎖移動剤として添加量が少なくてすむものを用い、極性官能基含有モノマーとともに連鎖移動剤を追加で添加しなければ、重合媒体をリサイクルする場合であっても、製造効率は低下しにくい。また、水溶性の連鎖移動剤を用いれば、さらに製造効率は低下しにくくなる。
 以下に実施例及び比較例を挙げて本発明を説明するが、本発明はこれらに限定されない。
[評価方法]
(容量流速:Q値(mm/秒))
 島津製作所社製のフロ-テスタを用いて、含フッ素重合体の融点より50℃高い温度で、荷重7kg下に直径2.1mm、長さ8mmのオリフィスから含フッ素重合体を押出すときの押出し速度で示す。ただし、本実施例においては、測定温度として220℃、297℃又は380℃を用いた。
(融点(℃))
 走査型示差熱分析器(SII社製、DSC7200)を用いて、空気雰囲気下に300℃まで10℃/分で加熱した際の吸熱ピークから求めた。
(極性官能基の含有量(モル%))
 含フッ素重合体をプレス成形して得た厚み200μmのフィルムを用い、フーリエ変換赤外分光器(サーモフィッシャーサイエンティフィック社製、Nicolet iS10)により、1800-1900cm-1に現れる酸無水物残基に由来する吸収の強度を測定し、酸無水物残基の含有量を算出した。
(含フッ素重合体の組成(モル%))
 全フッ素量測定及び溶融F-NMR測定の結果から算出した。
(含フッ素重合体とポリアミドとの層間接着力(N/cm))
 プレス成形によって得られる厚さ100μmの含フッ素重合体のフィルムと、厚さ100μmのポリアミド12(宇部興産社製、3030JI6L)のフィルムとを重ね合せ、ヒートシーラー(富士インパルス社製)を用いて、加熱レベル9の設定で溶融接着させた。得られた積層フィルムを縦5cm、横1cmの短冊状に切断し、試験片を作製した。引張試験機(エー・アンド・デイ社製、型式:テンシロンRTC)用いて該試験片の剥離強度を測定し、含フッ素重合体とポリアミドとの層間接着力とした。
(含フッ素重合体と銅箔またはポリイミド樹脂との層間接着力(N/cm))
 (A)層として、厚さ25μm、幅380mmのポリイミド樹脂(宇部興産社製、ユーピレックス(登録商標)VT)、(C)層として、厚さ12μm、幅380mm、Rz1.0μmの圧延銅箔(福田金属箔粉社製、RCF-T4X-12)、及び(B)層として、厚さ25μm、幅380mmの含フッ素重合体のフィルムを、(A)/(B)/(C)の順で重ねて温度360℃、圧力3.7MPaGで10分間の条件で真空プレスし、厚さ62μmの、ポリイミド樹脂の層/含フッ素重合体の層/圧延銅箔の層からなる3層積層フィルムを得た。
 3層積層フィルムを切断して得た、長さ150mm、幅10mmの試験片を作製し、試験片の長さ方向の端から50mmの位置まで剥離した。次いで、その位置を中央にして、引張試験機(エー・アンド・デイ社製、型式:テンシロンRTC)を用いて、引張速度50mm/分で180度剥離し、最大荷重を銅箔又はポリイミド樹脂との層間接着力とした。なお、同一の試験片で銅箔又はポリイミド樹脂との層間接着力を測定したのではなく、試験片を二枚作製し、一枚の試験片では含フッ素重合体と銅箔との層間接着力を測定し、もう一枚の試験片で含フッ素重合体とポリイミド樹脂との層間接着力の測定を行った。
(実施例1)
 内容積1.2L(リットル)の、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CFCHOCFCFHの1180g、メタノールの5.7g、CH=CH(CFFの7.0gを仕込み、重合槽内部を攪拌しながら、TFEの177g、Eの6.1gを仕込んだ後、ジャケットに温水を流して重合槽内温を66℃にした。この時の重合槽内圧力は1.54MPaGであった。内温が安定してから、tert-ブチルペルオキシピバレートの2質量%CFCHOCFCFH溶液を9mL圧入し、重合を開始した。重合中、内圧が1.54MPaGで一定になるよう、TFE/E=60/40モル比の混合ガスを添加した。併せて、重合中に添加されるTFE/E混合ガスが10g消費される毎に、CH=CH(CFFの0.6mLを添加し、TFE/E混合ガスが5g消費される毎に、無水イタコン酸の1.8質量%CFCHOCFCFH溶液の2mLを添加した。なお、CFCHOCFCFHに対する無水イタコン酸の25℃における飽和溶解度は5質量%であった。反応開始から240分後、TFE/E=60/40モル比の混合ガスの100gを添加したところで重合槽を冷却し、重合を終了した。
 その後、重合槽から残モノマーガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(30~90℃)しながら、重合媒体、連鎖移動剤及び残モノマーと、ポリマーとを分離した。得られたポリマーを150℃のオーブンで乾燥し、白色粉末状のポリマー1を得た。
 ポリマー1の297℃における容量流速は23mm/秒、組成はTFE/E/CH=CH(CFF/無水イタコン酸=54.8/42.6/2.2/0.4モル%、融点は239℃、含フッ素重合体とポリアミドとの層間接着力は19N/cmであった。
(実施例2)
 内容積1.3Lの、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CFCHOCFCFHの1069g、メタノールの10.4g、CH=CH(CFFの1.6gを仕込み、重合槽内部を攪拌しながら、TFEの159g、Eの6.1gを仕込んだ後、ジャケットに温水を流して重合槽内温を66℃にした。この時の重合槽内圧力は1.51MPaGであった。内温が安定してから、tert-ブチルペルオキシピバレートの2質量%CFCHOCFCFH溶液を5mL圧入し、重合を開始した。重合中、内圧が1.51MPaGで一定になるよう、TFE/E=60/40モル比の混合ガスを添加した。併せて、重合中に添加されるTFE/E混合ガスが10g消費される毎に、CH=CH(CFFの0.4mLを添加し、TFE/E混合ガスが5g消費される毎に、無水イタコン酸の2.1質量%CFCHOCFCFH溶液の2.4mLを添加した。反応開始から370分後、TFE/E=60/40モル比の混合ガスの100gを添加したところで重合槽を冷却し、重合を終了した。
 その後、重合槽から残モノマーガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(20~73℃)しながら、重合媒体、連鎖移動剤及び残モノマーと、ポリマーとを分離した。得られたポリマーを150℃のオーブンで乾燥し、白色粉末状のポリマー2を得た。
 ポリマー2の297℃における容量流速は26mm/秒、組成はTFE/E/CH=CH(CFF/無水イタコン酸=56.1/42.9/0.5/0.5モル%、融点は255℃、含フッ素重合体とポリアミドとの層間接着力は22N/cmであった。
(実施例3)
 内容積1.3Lの、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CFCHOCFCFHの825g、CH=CH(CFFの3.2gを仕込み、重合槽内部を攪拌しながら、HFPの350g、TFEの118g、Eの2.9gを仕込んだ後、ジャケットに温水を流して重合槽内温を66℃にした。この時の重合槽内圧力は1.47MPaGであった。内温が安定してから、tert-ブチルペルオキシピバレートの5質量%CFCHOCFCFH溶液の7.4mLを圧入し、重合を開始した。重合中、内圧が1.47MPaGで一定になるよう、TFE/E=54/46モル比の混合ガスを添加した。併せて、重合中に添加されるTFE/E混合ガスが5g消費される毎に、CH=CH(CFFの7.1質量%、及び無水イタコン酸の1.3質量%を含むCFCHOCFCFH溶液の2mLを添加した。反応開始から370分後、TFE/E=54/46モル比の混合ガスの70gを添加したところで重合槽を冷却し、重合を終了した。
 その後、重合槽から残モノマーガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(20~73℃)しながら、重合媒体及び残モノマーと、ポリマーとを分離した。得られたポリマーを120℃のオーブンで乾燥し、白色粉末状のポリマー3を得た。
 ポリマー3の220℃における容量流速は11mm/秒、組成はTFE/E/HFP/CH=CH(CFF/無水イタコン酸=47.5/43.4/8.3/0.6/0.3モル%、融点は183℃、含フッ素重合体とポリアミドとの層間接着力は12N/cmであった。
(実施例4)
 重合槽に最初に仕込む重合媒体を、CFCHOCFCFHの1120g及びCF(CFCFHの67gに変更した以外は、実施例1と同様にして重合媒体、メタノール及びモノマー成分を仕込み、重合槽内温を66℃に安定させた。続いて、tert-ブチルペルオキシピバレートの2質量%及びCF(CFCFHの2質量%を含むCFCHOCFCFH溶液を9mL圧入し、重合を開始する以外は、実施例1と同様にしてポリマー5を得た。
 ポリマー5の297℃における容量流速は21mm/秒、組成はTFE/E/CH=CH(CFF/無水イタコン酸=54.9/42.5/2.2/0.3モル%、融点は239℃、含フッ素重合体とポリアミドとの層間接着力は18N/cmであった。
(実施例5)
 内容積1.3Lの、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CFCHOCFCFHの1124g、メタノールの2.0g、CF=CF-O-(CFFの84.8gを仕込み、重合槽内部を攪拌しながら、TFEの159gを仕込んだ後、ジャケットに温水を流して重合槽内温を50℃にした。この時の重合槽内圧力は0.91MPaGであった。内温が安定してから、ビス(ペルフルオロブチリル)ペルオキシドの0.05質量%CFCHOCFCFH溶液を1mL圧入して重合を開始した。重合中、内圧が0.91MPaGで一定になるよう、TFEガスを添加した。また、TFEガスの消費速度が0.5g/分を維持するように、ビス(ペルフルオロブチリル)ペルオキシドの0.05質量%CFCHOCFCFH溶液を間欠添加した。併せて、重合中に添加されるTFEガスが5g消費される毎に、無水ハイミック酸の1質量%CFCHOCFCFH溶液の1mLを添加した。なお、CFCHOCFCFHに対する無水ハイミック酸の25℃における飽和溶解度は3質量%であった。反応開始から290分後、TFEガスの140gを添加したところで重合槽を冷却し、重合を終了した。
 その後、重合槽から残モノマーガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(40~90℃)しながら、重合媒体、連鎖移動剤及び残モノマーと、ポリマーとを分離した。得られたポリマーを150℃のオーブンで乾燥し、白色粉末状のポリマー6を得た。
 ポリマー6の380℃における容量流速は25mm/秒、組成はTFE/CF=CF-O-(CFF/無水ハイミック酸=97.9/2/0.1モル%、融点は300℃、含フッ素重合体と銅箔との層間接着力は32N/cm、含フッ素重合体とポリイミド樹脂との層間接着力は30N/cmであった。
(比較例1)
 実施例1で重合中に断続的に添加したのと同量の無水イタコン酸の1.8質量%CFCHOCFCFH溶液を重合初期に一括添加する以外は、実施例1と同様に重合を行い、ポリマー5を得た。
 ポリマー5の297℃における容量流速は18mm/秒、組成はTFE/E/CH=CH(CFF/無水イタコン酸=55.1/42.4/2.1/0.4モル%、融点は241℃、含フッ素重合体とポリアミドとの層間接着力は1N/cm未満であった。
(比較例2)
 内容積1.3Lの、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CF(CFCFHの767g、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンの130g、CH=CH(CFFの3.2gを仕込み、重合槽内部を攪拌しながら、HFPの375g、TFEの107g、Eの3.3gを仕込んだ後、ジャケットに温水を流して重合槽内温を66℃にした。この時の重合槽内圧力は1.50MPaGであった。内温が安定してから、tert-ブチルペルオキシピバレートの5質量%CF(CFCFH溶液の7.4mLを圧入し、重合を開始した。重合中、内圧が1.50MPaGで一定になるよう、TFE/E=54/46モル比の混合ガスを添加した。
 併せて、重合中に添加されるTFE/E混合ガスが5g消費される毎に、CH=CH(CFFの3.7質量%、及び無水イタコン酸の0.7質量%を含むCF(CFCFHの溶液を3.4mL添加した。その際、無水イタコン酸の25℃におけるCF(CFCFHへの溶解度は0.2質量%と低かったため、まず、CF(CFCFHを66℃に加熱することにより、無水イタコン酸の溶解濃度を高め、無水イタコン酸を0.7質量%、及びCH=CH(CFFを3.7質量%含むCF(CFCFH溶液を得た。次いで、無水イタコン酸を溶解した溶液を常温で添加した実施例1~4とは異なり、66℃に加熱しながら、この無水イタコン酸とCH=CH(CFFとを含むCF(CFCFH溶液を重合槽に添加した。
 反応開始から220分後、TFE/E=54/46モル比の混合ガスの70gを添加したところで重合槽を冷却し、重合を終了した。
 その後、重合槽から残モノマーガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(20~73℃)しながら、重合媒体、連鎖移動剤及び残モノマーとポリマーとを分離した。得られたポリマーを120℃のオーブンで乾燥し、白色粉末状のポリマー6を得た。
 ポリマー6の220℃における容量流速は26mm/秒、組成はTFE/E/HFP/CH=CH(CFF/無水イタコン酸=48.0/42.9/7.9/0.9/0.3モル%、融点は176℃、含フッ素重合体とポリアミドとの層間接着力は5N/cmであった。
 実施例1~4、比較例1及び2で用いた重合媒体及びモノマーの種類、極性官能基含有モノマーの供給方法、並びに層間接着力を、以下の表1にまとめて示す。
 実施例5で用いた重合媒体、モノマーの種類、極性官能基含有モノマーの供給方法、及び層間接着力を、以下の表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、本発明の重合媒体としてのCFCHOCFCFHに無水イタコン酸を溶解した溶液を、反応初期に重合槽に一括で仕込んだ比較例1では、含フッ素重合体の接着強度が1N/cmにとどまった。また、本発明とは異なる重合媒体としてのCF(CFCFHに無水イタコン酸を溶解した溶液を、重合反応系内に断続的に添加した比較例2では、含フッ素重合体の接着強度が5N/cmにとどまった。
 一方、重合媒体としてのCFCHOCFCFHに無水イタコン酸を溶解した溶液を、重合反応系内に断続的に添加した実施例1~3では、含フッ素重合体の接着強度が比較例1及び2に比べ高かった。
 また、本発明の重合媒体としてのCFCHOCFCFH及びCF(CFCFHに無水イタコン酸を溶解した溶液を、重合反応系内に断続的に添加した実施例4では、含フッ素重合体の接着強度が比較例1及び2に比べ高かった。
 本発明の含フッ素重合体の製造方法で得られた含フッ素重合体は、様々な材料への接着性に優れることから、他材料と接着させた積層体や複合材料とすることが容易である。
 なお、2014年5月30日に出願された日本特許出願2014-112770号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  重合媒体中で含フッ素モノマーと極性官能基含有モノマー(ただし、フッ素原子を有するものを除く。)とを含むモノマー成分を重合する、含フッ素重合体の製造方法であって、
     前記重合媒体は下記式(1)で表される媒体化合物を含み、
     前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、重合反応系内に連続的又は断続的に添加することを特徴とする、含フッ素重合体の製造方法。
     C2m+1-x-O-C2n+1-y ・・・(1)
    (式(1)中、mは1~6の整数、nは1~6の整数、xは0~(2m+1)、yは0~2n、(x+y)は1以上である。)
  2.  前記媒体化合物の重合媒体中の濃度が50体積%以上である、請求項1に記載の含フッ素重合体の製造方法。
  3.  前記重合媒体に対する前記極性官能基含有モノマーの25℃における溶解度が、1質量%以上である、請求項1又は2に記載の含フッ素重合体の製造方法。
  4.  前記重合媒体に前記極性官能基含有モノマーを溶解した溶液を、前記重合反応系内に連続的又は断続的に添加する際の、該溶液中の前記極性官能基含有モノマーの濃度が、1.3~5.0質量%である、請求項1又は2に記載の含フッ素重合体の製造方法。
  5.  前記重合が、連鎖移動剤の存在下で行われ、
     前記連鎖移動剤が、アルコール類、ハイドロカーボン類、ハイドロフルオロカーボン類、ケトン類、メルカプタン類、エステル類、及びエーテル類からなる群から選ばれる1種以上である、請求項1又は2に記載の含フッ素重合体の製造方法。
  6.  前記連鎖移動剤が水溶性であり、
     前記重合媒体中で前記モノマー成分を重合して得られたスラリーと水とを混合し、前記連鎖移動剤を水に溶解させて、前記含フッ素重合体及び前記重合媒体を回収する、請求項5に記載の含フッ素重合体の製造方法。
  7.  回収された前記重合媒体を、前記モノマー成分を重合する際に用いる重合媒体としてリサイクルする、請求項6に記載の含フッ素重合体の製造方法。
  8.  前記モノマー成分が、含フッ素モノマーとしてテトラフルオロエチレンを含み、さらに、他のモノマーとしてエチレンを含む、請求項1又は2に記載の含フッ素重合体の製造方法。
  9.  前記極性官能基含有モノマー中の極性官能基が、水酸基、カルボキシ基、エポキシ基、及び酸無水物残基からなる群から選ばれる1種以上である、請求項1~8のいずれか一項に記載の含フッ素重合体の製造方法。
  10.  前記極性官能基が酸無水物残基である、請求項9に記載の含フッ素重合体の製造方法。
  11.  請求項1~10のいずれか一項に記載の製造方法で製造され、極性官能基含有モノマーに基づく単位の含有量が、全単位中0.01~5モル%である含フッ素重合体。
PCT/JP2015/065399 2014-05-30 2015-05-28 含フッ素重合体の製造方法 WO2015182702A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016523555A JP6686883B2 (ja) 2014-05-30 2015-05-28 含フッ素重合体の製造方法
CN201580028658.6A CN106459291B (zh) 2014-05-30 2015-05-28 含氟聚合物的制造方法
EP15799525.9A EP3150645B1 (en) 2014-05-30 2015-05-28 Process for producing a fluorinated polymer
US15/350,809 US9725542B2 (en) 2014-05-30 2016-11-14 Process for producing fluorinated polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112770 2014-05-30
JP2014-112770 2014-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,809 Continuation US9725542B2 (en) 2014-05-30 2016-11-14 Process for producing fluorinated polymer

Publications (1)

Publication Number Publication Date
WO2015182702A1 true WO2015182702A1 (ja) 2015-12-03

Family

ID=54699025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065399 WO2015182702A1 (ja) 2014-05-30 2015-05-28 含フッ素重合体の製造方法

Country Status (5)

Country Link
US (1) US9725542B2 (ja)
EP (1) EP3150645B1 (ja)
JP (1) JP6686883B2 (ja)
CN (1) CN106459291B (ja)
WO (1) WO2015182702A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122743A1 (ja) * 2016-01-14 2017-07-20 旭硝子株式会社 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
DE112017000354T5 (de) 2016-01-13 2018-09-27 AGC Inc. Prepreg, Verfahren zu seiner Herstellung und Faser-verstärktes Formprodukt
DE112017000363T5 (de) 2016-01-13 2018-09-27 AGC Inc. Prepreg, Verfahren zu seiner Herstellung und ein Faser-verstärktes Formprodukt
WO2019159863A1 (ja) * 2018-02-13 2019-08-22 住友化学株式会社 重合体、樹脂組成物、成形体および重合体の製造方法
WO2020086218A1 (en) 2018-10-24 2020-04-30 AGC Inc. Fluorinated copolymer composition
DE112018005136T5 (de) 2017-09-14 2020-06-18 AGC Inc. Harzzusammensetzung, Formprodukt und Verfahren zu dessen Herstellung, Prepreg und Verfahren zu dessen Herstellung und faserverstärktes Formprodukt und Verfahren zu dessen Herstellung
US11104786B2 (en) 2016-04-28 2021-08-31 AGC Inc. Fluorinated copolymer composition
US11312109B2 (en) * 2020-09-01 2022-04-26 Mitsubishi Chemical Composites America, Inc. Composite panel having noncombustible polymer matrix core
KR20220092944A (ko) * 2019-11-05 2022-07-04 다이킨 고교 가부시키가이샤 안테나 커버용 기재
WO2022202923A1 (ja) 2021-03-24 2022-09-29 Agc株式会社 蓄電デバイス電極用プライマー、プライマー層形成用の組成物、蓄電デバイス用電極及び二次電池
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法
WO2023286801A1 (ja) 2021-07-15 2023-01-19 Agc株式会社 樹脂組成物、樹脂組成物の製造方法および成形体
WO2023008440A1 (ja) 2021-07-29 2023-02-02 Agc株式会社 ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器
WO2023085421A1 (ja) 2021-11-15 2023-05-19 Agc株式会社 樹脂組成物、成形体、複合体およびその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047398B1 (fr) * 2016-02-04 2018-06-15 Seb S.A. Machine de distribution de boissons a partir d'un pod, equipee d'un dispositif d'injection synchronisee de deux volumes d'air
CN112041358B (zh) * 2018-04-27 2023-08-18 Agc株式会社 改性聚四氟乙烯的制造方法、改性聚四氟乙烯粉末的制造方法、延伸多孔体的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504224A (ja) * 1992-02-28 1995-05-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの重合用ヒドロフルオロカーボン溶媒
JPH08337620A (ja) * 1995-06-14 1996-12-24 Dainippon Ink & Chem Inc カルボキシル基含有含フッ素共重合体およびその水性樹脂ならびに該共重合体の製造方法
JPH10265525A (ja) * 1997-03-21 1998-10-06 Ausimont Spa 熱加工可能な含フッ素ポリマー
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法
WO2006134764A1 (ja) * 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体
JP2008208048A (ja) * 2007-02-23 2008-09-11 Three M Innovative Properties Co フッ素系溶剤含有溶液の精製方法及び精製装置ならびに洗浄装置
JP2010150478A (ja) * 2008-12-26 2010-07-08 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2011032363A (ja) * 2009-07-31 2011-02-17 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2012241128A (ja) * 2011-05-20 2012-12-10 Daikin Industries Ltd フルオロポリマーの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236405A (ja) 2003-01-29 2004-08-19 Auto Network Gijutsu Kenkyusho:Kk 過電流保護回路
JP4424246B2 (ja) 2004-10-28 2010-03-03 旭硝子株式会社 含フッ素共重合体及びその用途
JP2006151442A (ja) * 2004-11-29 2006-06-15 Asahi Glass Co Ltd 燃料用タンク又は燃料輸送用ホース用の含フッ素重合体成形体及び積層体
JP4661205B2 (ja) * 2004-12-16 2011-03-30 旭硝子株式会社 含フッ素共重合体組成物及びそれからなる成形品
JP2008208046A (ja) 2007-02-23 2008-09-11 Shiseido Co Ltd 油中水型乳化組成物
JP2010053209A (ja) * 2008-08-27 2010-03-11 Asahi Glass Co Ltd 含フッ素共重合体及びその用途
JP2010150476A (ja) 2008-12-26 2010-07-08 Dai Ichi Kogyo Seiyaku Co Ltd ポリウレタン樹脂組成物及びポリウレタン樹脂
JP6178154B2 (ja) * 2012-08-02 2017-08-09 日本合成化学工業株式会社 高圧ガス用ホース又は貯蔵容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504224A (ja) * 1992-02-28 1995-05-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの重合用ヒドロフルオロカーボン溶媒
JPH08337620A (ja) * 1995-06-14 1996-12-24 Dainippon Ink & Chem Inc カルボキシル基含有含フッ素共重合体およびその水性樹脂ならびに該共重合体の製造方法
JPH10265525A (ja) * 1997-03-21 1998-10-06 Ausimont Spa 熱加工可能な含フッ素ポリマー
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法
WO2006134764A1 (ja) * 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体
JP2008208048A (ja) * 2007-02-23 2008-09-11 Three M Innovative Properties Co フッ素系溶剤含有溶液の精製方法及び精製装置ならびに洗浄装置
JP2010150478A (ja) * 2008-12-26 2010-07-08 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2011032363A (ja) * 2009-07-31 2011-02-17 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2012241128A (ja) * 2011-05-20 2012-12-10 Daikin Industries Ltd フルオロポリマーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150645A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000354T5 (de) 2016-01-13 2018-09-27 AGC Inc. Prepreg, Verfahren zu seiner Herstellung und Faser-verstärktes Formprodukt
DE112017000363T5 (de) 2016-01-13 2018-09-27 AGC Inc. Prepreg, Verfahren zu seiner Herstellung und ein Faser-verstärktes Formprodukt
DE112017000397T5 (de) 2016-01-14 2018-10-25 AGC Inc. Härtbare Zusammensetzung, gehärtetes Produkt, Prepreg und Faser-verstärktes Formprodukt
JPWO2017122743A1 (ja) * 2016-01-14 2018-11-01 Agc株式会社 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
WO2017122743A1 (ja) * 2016-01-14 2017-07-20 旭硝子株式会社 硬化性組成物、硬化物、プリプレグおよび繊維強化成形品
US11104786B2 (en) 2016-04-28 2021-08-31 AGC Inc. Fluorinated copolymer composition
DE112018005136T5 (de) 2017-09-14 2020-06-18 AGC Inc. Harzzusammensetzung, Formprodukt und Verfahren zu dessen Herstellung, Prepreg und Verfahren zu dessen Herstellung und faserverstärktes Formprodukt und Verfahren zu dessen Herstellung
JPWO2019159863A1 (ja) * 2018-02-13 2021-01-28 住友化学株式会社 重合体、樹脂組成物、成形体および重合体の製造方法
WO2019159863A1 (ja) * 2018-02-13 2019-08-22 住友化学株式会社 重合体、樹脂組成物、成形体および重合体の製造方法
JP7331828B2 (ja) 2018-02-13 2023-08-23 住友化学株式会社 重合体、樹脂組成物、成形体および重合体の製造方法
WO2020086218A1 (en) 2018-10-24 2020-04-30 AGC Inc. Fluorinated copolymer composition
KR20220092944A (ko) * 2019-11-05 2022-07-04 다이킨 고교 가부시키가이샤 안테나 커버용 기재
KR102607694B1 (ko) 2019-11-05 2023-11-30 다이킨 고교 가부시키가이샤 안테나 커버용 기재
US11312109B2 (en) * 2020-09-01 2022-04-26 Mitsubishi Chemical Composites America, Inc. Composite panel having noncombustible polymer matrix core
WO2022202923A1 (ja) 2021-03-24 2022-09-29 Agc株式会社 蓄電デバイス電極用プライマー、プライマー層形成用の組成物、蓄電デバイス用電極及び二次電池
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法
WO2023286801A1 (ja) 2021-07-15 2023-01-19 Agc株式会社 樹脂組成物、樹脂組成物の製造方法および成形体
WO2023008440A1 (ja) 2021-07-29 2023-02-02 Agc株式会社 ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器
WO2023085421A1 (ja) 2021-11-15 2023-05-19 Agc株式会社 樹脂組成物、成形体、複合体およびその用途

Also Published As

Publication number Publication date
US20170058065A1 (en) 2017-03-02
EP3150645A4 (en) 2018-01-03
JP6686883B2 (ja) 2020-04-22
EP3150645A1 (en) 2017-04-05
EP3150645B1 (en) 2020-03-04
JPWO2015182702A1 (ja) 2017-04-20
CN106459291A (zh) 2017-02-22
CN106459291B (zh) 2019-07-12
US9725542B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
JP6686883B2 (ja) 含フッ素重合体の製造方法
TWI750132B (zh) 積層基材及其成形體之製造方法
JP6753415B2 (ja) 共重合体およびこれを含む組成物
KR100621396B1 (ko) 플루오로공중합체
JP4424246B2 (ja) 含フッ素共重合体及びその用途
JP4206638B2 (ja) 含フッ素接着性材料及びそれを用いた積層体
CN100522558C (zh) 氟共聚物
JP2016049764A (ja) フッ素樹脂積層体およびその製造方法
WO2016031675A1 (ja) 絶縁電線及びその製造方法
JP2010053209A (ja) 含フッ素共重合体及びその用途
Drobny Fluorine-containing polymers
JP6468074B2 (ja) フッ素樹脂積層体およびその製造方法
JP7185171B2 (ja) 含フッ素共重合体
JP7280539B2 (ja) 含フッ素共重合体
JP2006297843A (ja) フッ素樹脂積層体
JP2022012962A (ja) 含フッ素重合体の製造方法
JP2016215602A (ja) フッ素樹脂積層体およびその製造方法
WO2022181832A1 (ja) 含フッ素共重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523555

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015799525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE