WO2023008440A1 - ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 - Google Patents

ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 Download PDF

Info

Publication number
WO2023008440A1
WO2023008440A1 PCT/JP2022/028812 JP2022028812W WO2023008440A1 WO 2023008440 A1 WO2023008440 A1 WO 2023008440A1 JP 2022028812 W JP2022028812 W JP 2022028812W WO 2023008440 A1 WO2023008440 A1 WO 2023008440A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
polymer alloy
containing copolymer
polymer
Prior art date
Application number
PCT/JP2022/028812
Other languages
English (en)
French (fr)
Inventor
栄一 西
徹 佐々木
勝久 徳満
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280051805.1A priority Critical patent/CN117715975A/zh
Priority to KR1020247001385A priority patent/KR20240037949A/ko
Priority to JP2023538562A priority patent/JPWO2023008440A1/ja
Publication of WO2023008440A1 publication Critical patent/WO2023008440A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to polymer alloys, high-pressure gas hoses, and high-pressure gas storage containers.
  • metal pipes such as SUS316L are mainly used as hydrogen gas supply hoses that supply hydrogen gas to fuel cells at hydrogen gas stations.
  • metal pipes have problems such as lack of flexibility and poor handleability, SUS316L being very expensive, and hydrogen embrittlement occurring with other metals. Therefore, in recent years, the development of rubber or resin hoses has been promoted.
  • a hose made of rubber or resin a hose having a multi-layer structure in which a gas barrier layer, a reinforcing layer, and the like are laminated to prevent leakage of hydrogen gas and ensure durability is known.
  • Patent Document 1 proposes a gas supply hose having an inner layer made of water-resistant resin, a barrier layer made of EVOH, and an outer layer made of thermoplastic resin.
  • Patent Document 2 proposes a gas supply hose having an inner layer made of thermoplastic resin, a barrier layer made of EVOH, and an outer layer made of insulating rubber. Further, in Patent Documents 1 and 2, it is also proposed to have a reinforcing layer comprising a braided or spiral layer of organic fibers or metal wires.
  • a gas transfer tube for hydrogen, oxygen, carbon dioxide, etc. includes an inner layer made of a fluoropolymer (ethylene-tetrafluoroethylene, polyvinylidene fluoride, etc.), an intermediate layer made of EVOH, and an outer layer made of polyamide.
  • a tube is suggested.
  • a high-pressure hose for a liquefied propane gas supply facility is provided with a reinforcing layer between an outer rubber layer and an inner rubber layer, and the reinforcing layer is a spiral layer of organic fibers or metal wires.
  • a high-pressure hose has been proposed in which a barrier layer made of polyamide is formed on the inner surface side of a rubber layer.
  • Patent Document 5 describes a hydrogen gas storage container liner comprising 80 to 40% by weight of an ethylene-vinyl acetate copolymer saponified product, acid-modified ethylene- ⁇ -olefin copolymer rubber and/or acid-modified thermoplastic elastomer 20. It is proposed to use a polymer composition consisting of ⁇ 60% by weight.
  • the present invention provides a polymer alloy with excellent resistance to high-pressure gas, and a high-pressure gas hose and high-pressure gas storage container using the same.
  • the carbonyl group-containing group is selected from the group consisting of a group having a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, and an acid anhydride residue.
  • [5] The polymer alloy of any one of [1] to [4], wherein the fluorine-containing copolymer further has a hydroxy group.
  • the fluorine-containing copolymer is based on a tetrafluoroethylene-based unit a1, an ethylene-based unit a2, and a monomer copolymerizable with ethylene and tetrafluoroethylene, which does not have a carbonyl group-containing group.
  • At least part of the units a3 is CH 2 ⁇ CX 1 (CF 2 ) n X 2 (where X 1 and X 2 are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8 ) is a unit based on Any one of [1] to [5], wherein the total molar amount of the units a1, the units a2, and the units a3 relative to the total molar amount of all units constituting the fluorine-containing copolymer is 90 mol% or more. polymer alloy.
  • thermoplastic polymer has a hydrogen gas permeability coefficient of 1000 [cc.20 ⁇ m/( m2.24hs.atm )] or less, and the fluorine-containing copolymer has a hydrogen gas permeability coefficient of 5000 [cc.20 ⁇ m]. /(m 2 ⁇ 24 hs ⁇ atm)] or more, the polymer alloy according to any one of [1] to [8].
  • the ethylene-vinyl alcohol copolymer has a hydrogen gas permeability coefficient of 50 [cc 20 ⁇ m/(m 2 24 hs 24 hs atm)] or less, and the polyamide has a hydrogen gas permeability coefficient of 1000 [cc 20 ⁇ m/ (m 2 ⁇ 24 hs ⁇ atm)] or less, the polymer alloy of any one of [1] to [9].
  • Hydrogen exposure deterioration index 1 - (permeation amount after the high pressure hydrogen gas exposure test / permeation amount before the high pressure hydrogen gas exposure test) (4)
  • the tensile strength at break of the fluorine-containing copolymer after being exposed to an ambient temperature of 170° C. for 500 hours is 70% or more of the tensile strength at break before exposure of [1] to [13]. Any polymer alloy.
  • FIG. 4 is a diagram showing the relationship between the Henky strain ⁇ (t) and the logarithm of the nonlinearity parameter ⁇ n (t);
  • a unit based on a monomer is a general term for an atomic group directly formed by polymerization of one molecule of a monomer and an atomic group obtained by chemically converting a part of the atomic group after polymerization.
  • a unit based on a monomer may be referred to as a monomer unit.
  • a monomer is a compound having a polymerizable carbon-carbon double bond.
  • the linear region is a region in which the elongational viscosity does not depend on the strain rate and exhibits the same time dependence when the elongational viscosity is measured, as shown by the solid line in FIG.
  • the non-linear region is a region in which the extensional viscosity, when measured, deviates from the linear region and increases with the elongation time, as indicated by the dashed line in FIG.
  • the strain hardening property is a property that, when the elongational viscosity is measured, the elongational viscosity deviates from the linear region and rises sharply in the high strain region.
  • the degree of strain hardening SH is a parameter indicating the degree of strain hardening.
  • the degree of strain hardening is obtained by measuring the uniaxial extensional viscosity under conditions of a temperature of 240° C. and a strain rate of ⁇ ⁇ : 1.0 s ⁇ 1 and using the following equations (1) to (3).
  • SH is the strain hardening degree
  • ln is the natural logarithm
  • ⁇ n (t) is the nonlinearity parameter
  • ⁇ E + (t) is the extensional viscosity in the nonlinear region
  • ⁇ (t) is the temperature
  • the absolute value of the complex viscosity obtained as a function of ⁇ by shear dynamic viscoelasticity measurement under the conditions of 240 ° C.
  • ⁇ (t) is the Hencky strain and t is the elongation time.
  • the nonlinearity parameter ⁇ n (t) obtained by Equation 2 is the ratio of the elongational viscosity at each time to the elongational viscosity in the linear region predicted from the shear dynamic viscoelasticity measurement.
  • the melting point is the temperature corresponding to the maximum melting peak measured using a differential scanning calorimeter (DSC) at a heating rate of 10°C/min.
  • Flexural modulus is measured according to ASTM D790.
  • the measured temperature is 23 ⁇ 2°C.
  • the Izod impact test is performed according to ASTM D256.
  • the embrittlement temperature is the peak temperature of ⁇ dispersion obtained from the energy absorption rate of temperature dispersion in dynamic viscoelasticity measurement.
  • the three-point bending test is performed according to ASTM D790 under conditions of bending speed: 10 mm/min, distance between fulcrums: 64 mm, and measurement temperature: -40°C.
  • the hydrogen gas permeability coefficient is measured according to JIS K 7126-1:2006 (differential pressure method). Water absorption is measured according to JIS K 7209:2000.
  • the free volume is calculated from positron annihilation lifetime spectroscopy (PALS method).
  • the hydrogen exposure deterioration index was obtained by molding a sample (for example, a polymer alloy) into a test piece with a thickness of 2 mm, and conducting a high-pressure hydrogen gas exposure test in which the test piece was exposed to a high-pressure hydrogen gas of 90 MPa for 65 hours three times. , from the transmission amount of visible light (wavelength 380 to 780 nm) in the thickness direction of each test piece before and after the high-pressure hydrogen gas exposure test, using the following formula (4). The smaller the degree of deterioration of the test piece in the high-pressure hydrogen gas exposure test, the closer the value of (permeation amount after high-pressure hydrogen gas exposure test/permeation amount before high-pressure hydrogen gas exposure test) to 1, and the hydrogen exposure deterioration index.
  • Hydrogen exposure deterioration index 1 - (permeation amount after high pressure hydrogen gas exposure test / permeation amount before high pressure hydrogen gas exposure test) (4)
  • the amount of visible light transmitted is measured by irradiating visible light from a light emitting diode (LED) light source placed on one side of the test piece toward the center of the test piece, and then viewing the image on the other side of the test piece in that state.
  • the image is acquired with a microscope, and the average brightness in the range of 5.5 mm radius from the center of the test piece is obtained by image processing software (eg, Image-J), and the value is defined as the transmittance.
  • image processing software eg, Image-J
  • the decomposition half-life temperature at 100,000 hours is the time (half-life time) for 50% by mass of the sample to thermally decompose (half-life time) when the sample (e.g., fluorine-containing copolymer) is heated at a constant temperature. temperature.
  • a polymer alloy according to one embodiment of the present invention comprises a fluorine-containing copolymer having a carbonyl group-containing group (hereinafter also referred to as a fluorine-containing copolymer A) having a melting point of 250 ° C. or less, and a fluorine-containing copolymer It is a polymer alloy obtained by melt-kneading at least one thermoplastic polymer selected from the group consisting of polyamide and EVOH, which is incompatible with coalescence A and has a melting point of 250° C. or less.
  • the proportion of the fluorine-containing copolymer A is 10 to 40% by mass with respect to the total mass, and the particles of the fluorine-containing copolymer A are dispersed in the thermoplastic polymer,
  • the average particle size of the fluorine-containing copolymer A particles in the polymer alloy is 0.001 to 10 ⁇ m.
  • the polymer alloy according to the present invention is also referred to as the present alloy.
  • a thermoplastic polymer selected from the group consisting of polyamides and EVOH, which is incompatible with the fluorine-containing copolymer A and has a melting point of 250° C. or less, is hereinafter also referred to as a polymer B.
  • the fluorine-containing copolymer A and polymer B will be described later in detail.
  • the present alloy may further contain other components (for example, various chemically reactive compatibilizers and surface treatment agents) as necessary.
  • the ratio of the fluorine-containing copolymer A to the total mass of the present alloy is 10-40% by mass, preferably 15-35% by mass, more preferably 20-30% by mass. If the proportion of the fluorine-containing copolymer A is within the above range, the resistance to high-pressure gas is excellent. Further, when the proportion of the fluorine-containing copolymer A is at least the above lower limit, excellent low water absorption, bending properties, elongation, impact resistance, toughness properties, melt moldability, workability, and gas diffusibility (gas remains in the present alloy), and if it is equal to or less than the above upper limit, the gas barrier property is excellent.
  • the particles of the fluorine-containing copolymer A are dispersed in the polymer B. Thereby, the gas barrier property of the polymer B is hardly impaired.
  • the average particle size of the particles of the fluorine-containing copolymer A in the alloy is 0.001 to 10 ⁇ m, preferably 0.01 to 8 ⁇ m, more preferably 0.01 to 5 ⁇ m. If the average particle size is at least the above lower limit, gas diffusion is excellent (effect of preventing gas from remaining in the alloy).
  • Excellent mechanical writing characteristics such as The average particle diameter of the particles of the fluorine-containing copolymer A is determined, for example, by the content of functional groups (carbonyl group-containing group, hydroxy group, etc.) in the fluorine-containing copolymer A, It can be adjusted by the ratio of A, melt-kneading conditions, molecular weight of polymer B, amount of functional groups, various chemically reactive compatibilizers, and surface treatment agents.
  • the strain hardening degree of the present alloy is preferably 0.10 to 1.50, more preferably 0.15 to 1.00, even more preferably 0.20 to 0.80. If the degree of strain hardening is at least the lower limit, stress concentration is less likely to occur, and a uniform molded body is obtained throughout the alloy, resulting in good melt moldability. Become.
  • the degree of strain hardening is, for example, the content of functional groups (carbonyl group-containing groups, hydroxy groups, etc.) in the fluorine-containing copolymer A, the molecular weight of the fluorine-containing copolymer A or polymer B, the amount of functional groups (amino groups, hydroxyl groups, etc.), melt-kneading conditions (temperature, time, etc.), various chemical reaction type compatibilizers, and surface treatment agents.
  • the content of functional groups in the fluorocopolymer A increases, or if the molecular weight of the fluorocopolymer A or polymer B increases, the entanglement between molecules increases during melt-kneading, and strain hardening tends to be higher.
  • the water absorption of the present alloy is preferably 2.5% or less, more preferably 2.45% or less, and even more preferably 2.40% or less.
  • moisture absorption rate moisture absorption rate
  • the water absorption can be adjusted, for example, by adjusting the ratio of the fluorine-containing copolymer A to the total mass of the present alloy.
  • the free volume of the present alloy is preferably 0.1 nm 3 or less, more preferably 0.095 nm 3 or less, even more preferably 0.090 nm 3 or less.
  • the lower limit of the free volume of this alloy is not particularly limited, it is, for example, 0.01 nm 3 . If the free volume is equal to or less than the above upper limit, the alloy is excellent in resistance to hydrogen gas, and has excellent mechanical properties such as prevention of blisters caused by hydrogen penetration into the alloy and cracks that develop from the blisters, as well as excellent durability. .
  • the free volume is, for example, the content of functional groups (carbonyl group-containing groups, hydroxyl groups, etc.) in the fluorine-containing copolymer A, the molecular weight of the fluorine-containing copolymer A or polymer B, the amount of functional groups (amino groups, hydroxyl groups, etc.) etc.), melt-kneading conditions (temperature, time, etc.), various chemical reaction type compatibilizers, and surface treatment agents.
  • functional groups carbonyl group-containing groups, hydroxyl groups, etc.
  • the hydrogen exposure deterioration index of the present alloy is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less.
  • the lower limit of the hydrogen exposure deterioration index of this alloy is not particularly limited, it is, for example, 0.05. If the hydrogen exposure deterioration index is equal to or less than the upper limit, the resistance to high-pressure gas is excellent.
  • the hydrogen exposure deterioration index is, for example, the content of functional groups (carbonyl group-containing groups, hydroxy groups, etc.) in the fluorine-containing copolymer A, the molecular weight of the fluorine-containing copolymer A and polymer B, the amount of functional groups (amino group , hydroxyl groups, etc.), melt-kneading conditions (temperature, time, etc.), various chemical reaction type compatibilizers, and surface treatment agents.
  • the fluorine-containing copolymer A has a carbonyl group-containing group.
  • a carbonyl group-containing group can interact or react with an amide group of polyamide or a hydroxyl group of EVOH. Therefore, a chemical bond is formed at the interface between the fluorocopolymer A and the polymer B, or a part of the polymer B and the fluorocopolymer A form a block copolymer, and the produced block copolymer is phased.
  • the fluorine-containing copolymer A contains fluorine atoms, it is characterized by low hydrogen solubility in a high-pressure (for example, 70 MPa) hydrogen gas environment, like a fluorine-containing copolymer having no carbonyl group-containing group. have. Therefore, in a mixed system with the polymer B, the low hydrogen solubility of the polymer B is hardly impaired.
  • the fluorine-containing copolymer A may have two or more carbonyl group-containing groups.
  • hydrocarbon groups include alkylene groups having 2 to 8 carbon atoms.
  • the halogen atom in the haloformyl group includes a fluorine atom, a chlorine atom, and the like, and a fluorine atom is preferable from the viewpoint of reactivity with other base materials. That is, the haloformyl group is preferably a fluoroformyl group (also referred to as a carbonyl fluoride group). From the viewpoint of reactivity with polymer B, the alkoxy group in the alkoxycarbonyl group is preferably an alkoxy group having 1 to 8 carbon atoms, and particularly preferably a methoxy group and an ethoxy group.
  • the carbonyl-containing group is preferably a group selected from the group consisting of a group having a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, and an acid anhydride residue, Acid anhydride residues are particularly preferred.
  • the content of the carbonyl group-containing group is preferably 10 to 60,000, more preferably 100 to 50,000, and still more preferably 100 to 10,000 per 1 ⁇ 10 6 main chain carbon atoms in the fluorine-containing copolymer A. , 300 to 5000 are particularly preferred. If the content of the carbonyl group-containing group is at least the lower limit value, the strain hardening property and adhesion at the interface between the fluorine-containing copolymer A and the polymer B are more excellent, and if the content is at most the upper limit value, the heat resistance , weather resistance and chemical resistance are better.
  • the content of carbonyl group-containing groups can be measured by methods such as nuclear magnetic resonance (NMR) analysis and infrared absorption spectroscopy. For example, using a method such as infrared absorption spectrum analysis as described in JP-A-2007-314720, the ratio of units containing a carbonyl group-containing group to the total units constituting the fluorine-containing copolymer A (mol% ), and the content of the carbonyl group-containing group can be calculated from the ratio.
  • NMR nuclear magnetic resonance
  • infrared absorption spectroscopy for example, using a method such as infrared absorption spectrum analysis as described in JP-A-2007-314720, the ratio of units containing a carbonyl group-containing group to the total units constituting the fluorine-containing copolymer A (mol% ), and the content of the carbonyl group-containing group can be calculated from the ratio.
  • the carbonyl group-containing group may be contained in a unit constituting the fluorine-containing copolymer A, may be contained in the main chain end of the fluorine-containing copolymer A, or may be contained in both of them. It is preferably contained in at least the monomer units constituting the fluorine-containing copolymer A from the viewpoint of facilitating adjustment of the content of the carbonyl group-containing group.
  • the monomer mixture A method of containing a monomer having a carbonyl group-containing group (method (1)), a method of polymerizing a monomer mixture in the presence of a radical polymerization initiator or chain transfer agent having a carbonyl group-containing group (method ( 2)), and a method of graft-polymerizing a monomer having a carbonyl group-containing group to a fluorine-containing copolymer (method (3)).
  • the method (1) is preferred.
  • method (2) a carbonyl group-containing group is introduced at the end of the main chain.
  • method (3) include a method of kneading a monomer having a carbonyl group-containing group and a fluorine-containing copolymer, followed by irradiation; A method of melt extrusion after kneading the polymer and the radical initiator may be mentioned.
  • Polymerization initiators having a carbonyl group-containing group include, for example, peroxides having a peroxycarbonate group and peroxides having a peroxyester. Among them, a peroxide having a peroxycarbonate group is preferable.
  • Peroxides having a peroxycarbonate group include, for example, diisopropyl peroxycarbonate, di-n-propylperoxydicarbonate, t-butylperoxyisopropyl carbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, di -2-ethylhexyl peroxydicarbonate.
  • Chain transfer agents having a carbonyl group-containing group include, for example, carboxylic acids such as acetic anhydride and thioglycolic acid.
  • the fluorine-containing copolymer A preferably further has a hydroxy group.
  • the content of hydroxy groups in the fluorine-containing copolymer A is preferably 2 equivalents/10 6 g or more, more preferably 4 equivalents/10 6 g or more, and particularly preferably 5 equivalents/10 6 g or more.
  • the hydroxy group may be contained in a unit constituting the fluorocopolymer A, or may be contained at the main chain end of the fluorocopolymer A. , may be included in both. From the viewpoints of thermal properties such as melting point and glass temperature, heat resistance, monomers used in polymerization, and solvents, it is preferably contained at least at the main chain end of the fluorine-containing copolymer A.
  • Examples of the method for introducing a hydroxy group into a fluorocopolymer include a method in which the carbonyl group-containing group is replaced with a hydroxy group in the method for introducing a carbonyl group-containing group into the fluorocopolymer.
  • a method of polymerizing a monomer mixture in the presence of a chain transfer agent having a hydroxy group is preferred.
  • Chain transfer agents having a hydroxy group include, for example, alcohols such as methanol, ethanol, propanol and butanol, and thioglycol.
  • TFE-based copolymer As the fluorine-containing copolymer A, a fluorine-containing copolymer having tetrafluoroethylene (hereinafter also referred to as TFE) units (hereinafter, TFE-based copolymer is also described.) is preferable.
  • the TFE-based copolymer may further have monomer units other than TFE. Any monomer other than TFE may be used as long as it is copolymerizable with TFE, and examples thereof include fluorine-containing monomers other than TFE and non-fluorine monomers.
  • fluorine-containing monomers other than TFE examples include hexafluoropropylene (hereinafter also referred to as HFP), vinylidene fluoride, perfluoro(alkyl vinyl ether), CH 2 ⁇ CX 1 (CF 2 ) n X 2 (wherein X 1 and X 2 are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8.) (hereinafter also referred to as FAE).
  • HFP hexafluoropropylene
  • VFP hexafluoropropylene
  • CF 2 perfluoro(alkyl vinyl ether)
  • n is an integer of 2 to 8.
  • FAE is particularly preferably CH 2 ⁇ CHR f (where R f is a perfluoroalkyl group having 2 to 6 carbon atoms). The number of carbon atoms in R f is particularly preferably 4.
  • non-fluorine monomers include olefinic monomers such as ethylene and propylene, vinyl ethers, vinyl esters, and other halogen-containing monomers.
  • TFE-based copolymers include copolymers having TFE units and HFP units (hereinafter also referred to as TFE/HFP-based copolymers. Other copolymers are similarly described), TFE/perfluoro (alkyl vinyl ether) copolymer, TFE/perfluoro(alkyl vinyl ether)/HFP copolymer, ethylene/TFE copolymer, ethylene/chlorotrifluoroethylene copolymer, ethylene/TFE/HFP copolymer coalescence, ethylene/HFP/FAE copolymers, and ethylene/TFE/HFP/FAE copolymers.
  • the TFE copolymer it is preferable to have ethylene units from the viewpoint of low-temperature mechanical properties, moldability, melting point adjustment, and low specific gravity. Polymers, ethylene/TFE/FAE copolymers, and ethylene/TFE/HFP/FAE copolymers are more preferred.
  • the TFE-based copolymer preferably has an FAE unit from the viewpoint of improving the stress crack resistance and maintaining good productivity of the TFE-based copolymer.
  • Fluorine copolymer A1 unit a1 that is a TFE unit, unit a2 that is an ethylene unit, unit a3 that is a monomer unit that does not have a carbonyl group-containing group and is copolymerizable with ethylene and TFE, and a carbonyl group containing group, wherein at least part of the units a3 are FAE units.
  • FAE include the same as those described above, and preferred embodiments are also the same.
  • the carbonyl group-containing group is preferably an acid anhydride residue.
  • the fluorine-containing copolymer A1 preferably has a unit a4 which is a non-fluorine monomer unit having an acid anhydride residue.
  • Non-fluorine monomers having an acid anhydride residue include, for example, maleic anhydride, itaconic anhydride, citraconic anhydride, and 5-norbornene-2,3-dicarboxylic anhydride.
  • the total molar amount of the units a1, the units a2, and the units a3 with respect to the total molar amount of all the units constituting the fluorine-containing copolymer A1 has low temperature mechanical properties, moldability, adjustment of the melting point, low specific gravity, heat resistance, From the viewpoint of a low solubility parameter, it is preferably 90 mol% or more, more preferably 95 mol% or more, and even more preferably 97 mol% or more.
  • the total molar amount of units a1, a2 and a3 is at least the above lower limit, low-temperature mechanical properties, moldability and melting point can be adjusted, and low specific gravity, heat resistance and low solubility parameters are improved.
  • the total molar amount of the units a1, the units a2 and the units a3 with respect to the total molar amount of all the units constituting the fluorocopolymer A1 may be 100 mol%, but the fluorocopolymer A1 may contain the units a4 is preferably 99.99 mol% or less, more preferably 99.95 mol% or less, and even more preferably 99.9 mol% or less.
  • the molar amount of unit a3 is preferably 3 to 14 mol %, more preferably 5 to 12 mol %, still more preferably 7 to 11 mol %, based on the total molar amount of units a1, a2 and a3.
  • the molar amount of the FAE unit is preferably 3 mol % or more, more preferably 5 mol % or more, particularly preferably 7 mol % or more, based on the total molar amount of the units a1, a2 and a3.
  • the molar amount of the units a4 with respect to the total molar amount of all units constituting the fluorocopolymer A1 is preferably 0.01 to 10 mol%, preferably 0.05 to 5 mol % is more preferred, and 0.1 to 3 mol % is even more preferred.
  • the molar amount of the units a4 is at least the above lower limit, the affinity with the polymer B is improved, and fine dispersion of the fluorine-containing copolymer A1 is easily achieved, and as a result, a homogeneous polymer alloy can be obtained. tends to be easier. That is, the fluorine-containing copolymer A1 is likely to form a sea-island structure in which fine islands are formed.
  • the original advantages of polymer B such as gas barrier properties and melt moldability, can be sufficiently maintained.
  • the melting point of the fluorine-containing copolymer A is 250°C or less, preferably 120 to 240°C, more preferably 150 to 210°C, even more preferably 170 to 190°C. If the melting point of the fluorine-containing copolymer A is equal to or less than the above upper limit, the difference between the melting point of the polymer B and the melting point of the polymer B is small, and the melting temperature can be lowered when producing the present alloy. Deterioration of color tone can be suppressed.
  • the melting point of the fluorocopolymer A can be adjusted by, for example, the composition of the monomers forming the fluorocopolymer A and the content of the carbonyl group-containing group. For example, the melting point tends to decrease as the proportion of monomer units having a carbonyl group-containing group increases.
  • the fluorine-containing copolymer A has a flexural modulus of 1000 MPa or less, does not break in an Izod impact test at -40°C, has a brittleness temperature of -80°C or lower, and exhibits ductile fracture in a three-point bending test at -40°C. It is preferable to satisfy If these properties are satisfied, the material will have good toughness at low temperatures, will not exhibit brittle fracture, and will have ductile low-temperature mechanical properties and will have reliable low-temperature mechanical properties.
  • the flexural modulus of the fluorine-containing copolymer A is preferably 1200 MPa or less, more preferably 1000 MPa or less.
  • the lower limit of the bending elastic modulus is, for example, 300 MPa.
  • the brittleness temperature of the fluorine-containing copolymer A is preferably ⁇ 50° C. or lower, more preferably ⁇ 80° C. or lower.
  • the lower limit of embrittlement temperature is -150°C, for example.
  • the flexural modulus and brittleness temperature of the fluorocopolymer A can be adjusted, for example, by adjusting the composition of the monomers forming the fluorocopolymer A (for example, the proportion of TFE). For example, increasing the proportion of TFE tends to lower the flexural modulus and lower the embrittlement temperature.
  • the tensile strength at break of fluorine-containing copolymer A after exposure to an ambient temperature of 170°C for 500 hours (hereinafter also referred to as tensile strength after exposure at 170°C) is 70% or more of the tensile strength at break before exposure. Preferably, 75% or more is more preferable.
  • the upper limit of the tensile strength after exposure to 170°C is, for example, 150%. If the tensile strength after exposure to 170° C. is at least the above lower limit, heat resistance and durability are more excellent.
  • the tensile strength after exposure to 170°C can be adjusted by the composition of the monomers forming the fluorine-containing copolymer A.
  • the tensile elongation at break of fluorine-containing copolymer A after exposure to an ambient temperature of 170°C for 500 hours (hereinafter also referred to as the tensile elongation after exposure to 170°C) is 100 against the tensile elongation at break before exposure. % or more is preferable, and 120% or more is more preferable.
  • the upper limit of the tensile elongation after exposure to 170°C is, for example, 200%. If the tensile elongation after exposure to 170° C. is at least the above lower limit, the heat resistance and durability are more excellent.
  • the tensile elongation after exposure to 170°C can be adjusted by the composition of the monomers forming the fluorine-containing copolymer A.
  • the decomposition half-life temperature of the fluorine-containing copolymer A in 100,000 hours is, for example, 120° C. or higher, preferably 135° C. or higher, and more preferably 140° C. or higher.
  • the upper limit of the decomposition half-life temperature in 100,000 hours is, for example, 180°C. If the decomposition half-life temperature of the fluorine-containing copolymer A in 100,000 hours is at least the above lower limit, the heat resistance and durability will be more excellent.
  • the decomposition half-life temperature can be adjusted by the composition of the monomers forming the fluorine-containing copolymer A.
  • the hydrogen gas permeability coefficient of the fluorine-containing copolymer A is preferably 5000 [cc 20 ⁇ m/(m 2 24 hs atm)] or more, more preferably 8000 [cc 20 ⁇ m/(m 2 24 hs atm)] or more. It is preferably 18000 [cc.20 ⁇ m/( m2.24hs.atm )] or less, more preferably 15000 [cc.20 ⁇ m/( m2.24hs.atm )] or less.
  • the hydrogen gas permeability coefficient of the fluorine-containing copolymer A is at least the lower limit, the hydrogen gas diffusibility tends to be good, and if it is at most the upper limit, the polymer alloy tends to have better gas barrier properties. be.
  • the volumetric flow rate (hereinafter also referred to as Q value) of the fluorine-containing copolymer A is preferably 0.1 to 1000 mm 3 /sec, more preferably 1 to 500 mm 3 /sec, and even more preferably 2 to 200 mm 3 /sec. .
  • the Q value is an index representing the melt fluidity of the polymer, which is a problem when the polymer is melt-molded, and serves as a measure of the molecular weight. That is, a large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight.
  • the Q value is at least the lower limit, the melt moldability tends to be excellent, and when the Q value is at most the upper limit, the mechanical strength tends to be excellent.
  • the Q value is measured by using a flow tester manufactured by Shimadzu Corporation, extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50°C higher than the melting point of the fluorine-containing copolymer A. It is the extrusion speed of the fluorine-containing copolymer A at that time.
  • the method for producing the fluorine-containing copolymer A is not particularly limited, and usually a fluorine-containing monomer and, if necessary, other monomers are charged into a reactor, and a generally used radical polymerization initiator is used. and, if necessary, a method of copolymerization using a chain transfer agent.
  • the polymerization method include known methods such as bulk polymerization, solution polymerization using an organic solvent as the polymerization medium, suspension polymerization using an aqueous medium as the polymerization medium and, if necessary, a suitable organic solvent. Emulsion polymerization using aqueous media and emulsifiers is included. Among these, solution polymerization is preferred.
  • the polymerization can be carried out as a batchwise or continuous operation using a single-vessel or multi-vessel stirred polymerization apparatus, tubular polymerization apparatus, or the like.
  • radical polymerization initiator an initiator having a half-life of 10 hours at a temperature of 0 to 100°C is preferable, and an initiator having a temperature of 20 to 90°C is more preferable.
  • radical polymerization initiators include azo compounds such as azobisisobutyronitrile, peroxydicarbonates such as diisopropylperoxydicarbonate, tert-butylperoxypivalate, tert-butylperoxyisobutyrate, and tert-butylperoxyacetate.
  • non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide, (Z(CF 2 ) p COO) 2 (where Z is a hydrogen atom, fluorine atom or chlorine and p is an integer of 1 to 10.), inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate.
  • Polymerization media include, for example, organic solvents and aqueous media, as described above.
  • organic solvents include fluorocarbons, chlorinated hydrocarbons, fluorochlorohydrocarbons, alcohols, and hydrocarbons.
  • chain transfer agents include alcohols such as methanol and ethanol; carbon; hydrocarbons such as pentane, hexane, and cyclohexane; and fluorine-containing hydrocarbons such as 1-hydrotridecafluorohexane.
  • the polymerization temperature is preferably 0 to 100°C, particularly preferably 20 to 90°C.
  • the polymerization pressure is preferably 0.1-10 MPa, particularly preferably 0.5-3 MPa.
  • the polymerization time may vary depending on the polymerization temperature, polymerization pressure, etc., but is preferably 1 to 30 hours, particularly preferably 2 to 10 hours.
  • Polyamides include, for example, the following polyamides. Homopolymerized polyamide: polycapramide (PA6), poly- ⁇ -aminoheptanoic acid (PA7), poly- ⁇ -aminononanoic acid (PA9), polyundecaneamide (PA11), polylauryllactam (PA12), etc.
  • PA6 polycapramide
  • PA7 poly- ⁇ -aminoheptanoic acid
  • PA9 poly- ⁇ -aminononanoic acid
  • PA11 polyundecaneamide
  • PA12 polylauryllactam
  • Aliphatic copolymerized polyamide Polyethylene diamine adipamide (PA26), polytetramethylene adipamide (PA46), polyhexamethylene adipamide (PA66), polyhexamethylene sebacamide (PA610), polyhexamethylene dodecamide (PA612), polyocta Methylene adipamide (PA86), polydecamethylene adipamide (PA108), caprolactam/lauryllactam copolymer (PA6/12), caprolactam/ ⁇ -aminononanoic acid copolymer (PA6/9), caprolactam/hexamethylene diammonium adipate copolymer (PA6/66), lauryllactam/hexamethylenediammonium adipate copolymer (PA12/66), ethylenediamine adipamide/hexamethylenediammonium adipate copolymer (PA26/66), caprolactam/ Hexamethylenediammonium adip
  • Copolyamide polyhexamethylene isophthalamide, polyhexamethylene terephthalamide, polymetaxylylene adipamide (PAMXD6), hexamethylene isophthalamide/terephthalamide copolymer, poly-p-phenylene terephthalamide, poly-p-phenylene - 3-4' diphenyl ether terephthalamide, etc.
  • Amorphous polyamide Polyamide elastomer or the like containing polyamide units and polyetherdiamine units
  • Terminal-modified polyamide The above polyamide is modified with a carboxyl group or an amino group such as methylenebenzylamine or metaxylenediamine. Terminal-modified polyamide, etc.
  • polyhexamethylene adipamide PA66
  • polycapramide PA6
  • polyhexamethylene sebacamide PA610
  • polyundecaneamide PA11
  • caprolactam/hexamethylenediammonium adipate copolymer PA6/66
  • polymetaxylylene adipamide PAMXD6
  • the melting point of polymer B is 250°C or less. Therefore, the melting point of polyamide is also 250° C. or lower.
  • the melting point of the polyamide is preferably 150 to 250°C, more preferably 170 to 245°C, even more preferably 200 to 240°C. If the melting point of the polyamide is below the upper limit, the melt-kneadability with other polymers will be good, and if it is above the lower limit, heat resistance, hydrogen gas barrier properties, and mechanical properties will be good.
  • the hydrogen gas permeability coefficient of the polymer B is preferably 1000 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less from the viewpoint of the gas barrier property of the polymer alloy. Therefore, the hydrogen gas permeability coefficient of polyamide is also preferably 1000 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less. The hydrogen gas permeability coefficient of polyamide is more preferably 850 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less.
  • the lower limit of the hydrogen gas permeability coefficient of polyamide is, for example, 50 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)].
  • EVOH is a copolymer having ethylene units and vinyl alcohol units. Since EVOH has an ethylene unit, it has a larger difference between the melting point and the decomposition temperature than polyvinyl alcohol that does not have an ethylene unit, and can be melt-molded. Moreover, by having ethylene units, it has excellent water resistance compared to polyvinyl alcohol.
  • EVOH may further have a vinyl ester unit.
  • Vinyl esters include, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, and versatic acid.
  • vinyl and trifluorovinyl acetate are preferable from an economical point of view.
  • EVOH is usually obtained by saponifying a copolymer of ethylene and vinyl ester (ethylene-vinyl ester copolymer). Polymerization can be carried out using any known polymerization method such as solution polymerization, suspension polymerization, and emulsion polymerization, but generally solution polymerization using methanol as a solvent is used. Saponification of the obtained ethylene-vinyl ester copolymer can also be carried out by a known method. The EVOH produced in this manner has ethylene units, vinyl alcohol units, and optionally some residual unsaponified vinyl ester units.
  • the content of ethylene units in EVOH is preferably 15 to 60 mol %, more preferably 18 to 38 mol %, still more preferably 18 to 34 mol %, based on the total units constituting EVOH. If the content of ethylene units is at least the above lower limit, water resistance tends to be good, and if the content of ethylene units is at most the above upper limit, hydrogen resistance and hydrogen gas barrier properties under ultrahigh pressure are improved. tends to be better.
  • the content of ethylene units is measured according to ISO14663.
  • the degree of saponification of EVOH is preferably 90 mol% or more, more preferably 95 mol% or more, more preferably 99.5 mol% or more, and may be 100 mol%. If the degree of saponification is at least the lower limit, gas barrier properties tend to be good.
  • the degree of saponification is measured according to JIS K 6726 (with a solution in which EVOH is uniformly dissolved in a water/methanol solvent).
  • EVOH may further have a monomer unit (hereinafter also referred to as unit b) having a primary hydroxyl group in its side chain.
  • unit b a monomer unit having a primary hydroxyl group in its side chain.
  • EVOH has a melting point that increases as the content of ethylene units decreases, so the difference between the thermal decomposition temperature and the melting point of the copolymer tends to decrease, and moldability tends to deteriorate.
  • C. According to Figure 8.4 on page 205 of "POLYVINYL ALCOHOL-DEVELOPMENTS" by FINCH, when the content of ethylene units is less than 20 mol%, the melting point is 200°C or higher, and in that region the copolymer It can be seen that the difference from the thermal decomposition temperature of is small.
  • a monomer having a primary hydroxyl group in its side chain is copolymerized with ethylene and a vinyl ester during the production of EVOH.
  • Monomers having a primary hydroxyl group in the side chain include, for example, allyl alcohol, 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1-ol, 6-hepten-1-ol, etc.
  • monohydroxyalkyl group-containing monomers disubstituted diol monomers such as 2-methylene-1,3-propanediol, 3,4-diol-1-butene, 4,5-diol-1-pentene, 4 1,2-diol group-containing monomers such as ,5-diol-3-methyl-1-pentene and 5,6-diol-1-hexene, and glycerin monoallyl ether. Two or more of these monomers may be used in combination. Among these monomers, 1,2-diol group-containing monomers are preferred in that a unit having a 1,2-diol structure in the side chain can be obtained. When EVOH contains a unit having a 1,2-diol structure in its side chain, hydrogen gas barrier properties and moldability are improved.
  • Examples of the monomer having a protected primary hydroxyl group in the side chain include esters of disubstituted diol monomers such as hydroxymethylvinylidene diacetate, 4,5-diacyloxy-1-pentene, 5,6-diacyloxy Examples include acylated products of 1,2-diol group-containing monomers such as -1-hexene, vinyl carbonate monomers such as vinylethylene carbonate, and 2,2-dialkyl-4-vinyl-1,3-dioxolane.
  • Hydroxymethylvinylidene diacetates include, for example, 1,3-diacetoxy-2-methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, and 1,3-dibutyronyloxy-2-methylenepropane. Two or more of these monomers may be used in combination. Among these monomers, 1,3-diacetoxy-2-methylenepropane is preferable in terms of ease of production, and 1,2- Acylates of diol group-containing monomers are preferred.
  • a preferred example of unit b is a unit having a 1,2-glycol bond in its side chain.
  • An example of a unit having a 1,2-glycol bond in its side chain is a unit represented by the following formula (5).
  • R 1 to R 3 are each independently a hydrogen atom or an organic group
  • X is a single bond or a bond chain
  • R 4 to R 6 are each independently a hydrogen atom or an organic group.
  • the organic groups for R 1 to R 6 are not particularly limited, but are C 1 to 4 groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group.
  • Alkyl groups are preferred.
  • the alkyl group may optionally have a substituent such as a halogen atom, hydroxy group, ester group, carboxylic acid group, sulfonic acid group, and the like.
  • All of R 1 to R 6 are desirably hydrogen atoms, but they may be organic groups as long as they do not significantly impair the properties of the copolymer.
  • R 1 to R 3 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom.
  • R 4 to R 6 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom.
  • the bond chain for X is not particularly limited, but examples thereof include a hydrocarbon chain, a bond chain containing a heteroatom (excluding a metal atom), and a bond chain containing a metal atom.
  • hydrocarbon chains include alkylene groups, alkenylene groups, alkynylene groups, and arylene groups (phenylene groups, naphthylene groups, etc.). These hydrocarbon chains may have substituents (for example, halogen atoms such as fluorine, chlorine and bromine atoms).
  • binding chains containing heteroatoms include -O-, -(CH 2 O) m -, -(OCH 2 ) m -, -(CH 2 O) m CH 2 - -CO-, -COCO-, -CO(CH 2 ) m CO-, -CO(C 6 H 4 )CO- or other carbonyl group-containing chains; -S- , —CS—, —SO—, —SO 2 — and other bonds containing sulfur atoms; —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, and —NRNR— Linking chains containing phosphorus atoms, such as —HPO 4 —.
  • Bond chains containing metal atoms include bond chains containing silicon atoms such as -Si(OR) 2 -, -OSi(OR) 2 -, -OSi(OR) 2 O-; -Ti(OR) 2 -, -OTi(OR) 2 -, -OTi(OR) 2 O- and other bonding chains containing titanium atoms; Linking chains containing aluminum atoms are included.
  • each R is independently a hydrogen atom or a substituent, preferably a hydrogen atom or an alkyl group.
  • m is a natural number, usually 1-30, preferably 1-15, particularly preferably 1-10.
  • bond chains from the viewpoint of stability during production and use, hydrocarbon chains having 1 to 10 carbon atoms are preferable, hydrocarbon chains having 1 to 6 carbon atoms are more preferable, and hydrocarbon chains having 1 carbon atoms. is particularly preferred.
  • X is preferably a single bond from the viewpoint of improving crystallinity and reducing the free volume (free volume pore size) in the amorphous portion.
  • unit b is a unit represented by the following formula (6).
  • R 7 to R 10 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and the alkyl group may contain a hydroxyl group, an alkoxy group or a halogen atom.
  • Y and Z are each independently a hydrogen atom, a formyl group or an alkanoyl group having 2 to 10 carbon atoms.
  • the content of unit b is preferably 0.5 to 15 mol%, more preferably 0.5 to 12 mol%, and 1 to 8 mol% with respect to all units constituting EVOH. is more preferred, and 2 to 4 mol % is particularly preferred. If the content of the unit b is at least the above lower limit, the effect of lowering the melting point is likely to be exhibited, and the melt moldability tends to be good. Water resistance tends to be good, probably because it is ensured.
  • the content of unit b by blending at least two types of EVOH with different contents of unit b.
  • the difference in ethylene content of each EVOH is preferably less than 2 mol %. It is also possible to adjust the content of unit b by blending EVOH having unit b and EVOH not having unit b.
  • EVOH further has a monomer unit other than the above within a range that does not impair the effects of the present invention (usually 3 mol% or less, preferably 2 mol% or less with respect to all units constituting EVOH). good too.
  • Other monomers include, for example, the following polymers. Two or more of these monomers may be used in combination. Olefins: propylene, 1-butene, isobutene, etc.
  • Unsaturated acids and their derivatives unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, a salt thereof or a mono- or dialkyl ester thereof (the alkyl group has 1 to 18 carbon atoms); Acrylamides: acrylamide, N-alkylacrylamide having 1 to 18 carbon atoms, N,N-dimethylacrylamide, 2-acrylamidopropanesulfonic acid, salts thereof, acrylamidopropyldimethylamine, acid salts thereof, quaternary salts thereof, etc.
  • unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, a salt thereof or a mono- or dialkyl ester thereof (the alkyl group has 1 to 18 carbon atoms
  • Methacrylamides methacrylamide, N-alkylmethacrylamide (the alkyl group has 1 to 18 carbon atoms), N,N-dimethylmethacrylamide, 2-methacrylamidepropanesulfonic acid or its salt, methacrylamidopropyldimethylamine, its acid salt or Quaternary salts thereof, etc.
  • N-vinylamides N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, etc.
  • Vinyl cyanides Acrylonitrile, methacrylonitrile, etc.
  • Vinyl ethers Alkyl vinyl ethers (the number of carbon atoms in the alkyl group is 1 to 18), hydroxyalkyl vinyl ether, alkoxyalkyl vinyl ether, etc.
  • Vinyl halides vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, vinyl bromide, etc.
  • Vinylsilanes vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, vinylisobutyldimethoxysilane, vinylethyldimethoxysilane, vinylmethoxydibutoxysilane, Vinyldimethoxybutoxysilane, Vinyltributoxysilane, Vinylmethoxydihexyloxysilane, Vinyldimethoxyhexyloxysilane, Vinyltrihexyloxysilane, Vinylmethoxydioctyloxysilane, Vinyldimethoxyoctyloxysilane, Vinyltrioctyloxysilane, Vinylmethoxysilane Dilauryloxysilane, vinyldimethoxylauryloxysilane, vinylmethoxydioleyloxysilane, vinyldimethoxyo
  • Cationic group-containing monomers N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamide Propyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, 2-methacryloxyethyltrimethylammonium chloride, 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, 3-butene Trimethylammonium chloride, dimethyldiallylammonium chloride, diethyldiallylammonium chloride, etc.
  • Monomers other than the above acetoacetyl group-containing monomers, allyl acetate, allyl chloride, allyl alcohol, dimethylallyl alcohol, trimethyl-(3-acrylamide-3 -dimethylpropyl)-ammonium chloride, acrylamido-2-methylpropanesulfonic acid, vinylethylene carbonate, etc.
  • the EVOH preferably does not contain a monomer unit that forms a carboxylic acid-modified EVOH.
  • monomers forming carboxylic acid-modified EVOH include maleic anhydride, itaconic anhydride, and succinic anhydride. These monomer units can be introduced into EVOH by, for example, copolymerizing the above monomers with ethylene and vinyl ester monomers by a known technique.
  • EVOH it is also possible to use EVOH that has been "post-modified" such as urethanized, acetalized, cyanoethylated, or oxyalkylenated by a known technique.
  • EVOH may be a mixture of two or more EVOH.
  • Examples of a combination of two or more EVOH include a combination of EVOH having different contents of units represented by the formula (1), a combination of EVOH having different degrees of saponification, a combination of EVOH having different degrees of polymerization, and a combination of EVOH having different degrees of polymerization. Combinations of different EVOH are included.
  • the melt flow rate (hereinafter also referred to as "MFR") of EVOH is preferably 0.5 to 100 g/10 minutes, more preferably 0.5 to 50 g/10 minutes, even more preferably 1 to 30 g/10 minutes. If the MFR is at least the above lower limit, the inside of the extruder is unlikely to be in a high torque state during molding, and extrusion processing tends to be easy.
  • the MFR of EVOH is measured under conditions of 210° C. and a load of 2160 g according to JIS K 7210-1:2014 (ISO1133-1:2011).
  • the melting point of polymer B is 250°C or less. Therefore, the melting point of EVOH is also 250° C. or lower.
  • the melting point of EVOH is preferably 150 to 220°C, more preferably 160 to 200°C, even more preferably 170 to 195°C. If the melting point of EVOH is below the above upper limit, moldability and hygroscopicity will be good, and if it is above the above lower limit, hydrogen gas barrier properties and heat resistance will be good.
  • the hydrogen gas permeability coefficient of the polymer B is preferably 1000 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less from the viewpoint of the gas barrier property of the polymer alloy. Therefore, the hydrogen gas permeability coefficient of EVOH is also preferably 1000 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less.
  • the hydrogen gas permeability coefficient of EVOH is more preferably 100 [cc.20 ⁇ m/(m 2.24 hs.atm )] or less, further preferably 50 [cc.20 ⁇ m/(m 2.24 hs.atm )] or less, and 30 [ cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)] or less is particularly preferable.
  • the lower limit of the hydrogen gas permeability coefficient of EVOH is, for example, 0.2 [cc ⁇ 20 ⁇ m/(m 2 ⁇ 24 hs ⁇ atm)].
  • the present alloy may contain an olefinic elastomer (hereinafter also referred to as elastomer C) as necessary.
  • Elastomer C may be (ethylene and/or propylene)/ ⁇ -olefin copolymer, (ethylene and/or propylene)/( ⁇ , ⁇ -unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymer. coalescence, and the like.
  • the (ethylene and/or propylene) ⁇ -olefin copolymer is a polymer obtained by copolymerizing ethylene and/or propylene with an ⁇ -olefin having 3 or more carbon atoms.
  • ⁇ -olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1 -tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-butene, 3-methyl -1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-
  • (Ethylene and/or propylene) ⁇ ( ⁇ , ⁇ -unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymer refers to ethylene and/or propylene and ⁇ , ⁇ -unsaturated carboxylic acid and/or It is a polymer obtained by copolymerizing unsaturated carboxylic acid ester monomers.
  • the ⁇ , ⁇ -unsaturated carboxylic acid monomers include acrylic acid and methacrylic acid
  • the ⁇ , ⁇ -unsaturated carboxylic acid ester monomers include methyl esters, ethyl esters, Propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, decyl ester and the like.
  • the ionomer polymer is obtained by ionizing at least part of the carboxyl groups of the olefin and ⁇ , ⁇ -unsaturated carboxylic acid copolymer by neutralization with metal ions.
  • Ethylene is preferably used as the olefin
  • acrylic acid and methacrylic acid are preferably used as the ⁇ , ⁇ -unsaturated carboxylic acid. may be copolymerized.
  • metal ions include Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc., in addition to alkali metals such as Li, Na, K, Mg, Ca, Sr, and Ba, and alkaline earth metals. can be mentioned.
  • (Ethylene and/or propylene) ⁇ -olefin copolymer, (ethylene and/or propylene) ⁇ ( ⁇ , ⁇ -unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymer, ionomer polymer , and the aromatic vinyl compound/conjugated diene compound block copolymer are preferably polymers modified with a carboxylic acid and/or a derivative thereof. By modifying with such a component, a functional group having an affinity for EVOH and polyamide is included in the molecule.
  • Functional groups having an affinity for EVOH and polyamides include carboxyl groups, acid anhydride groups, carboxylic acid ester groups, carboxylic acid metal salts, carboxylic acid imide groups, carboxylic acid amide groups, epoxy groups, and the like.
  • Examples of compounds containing these functional groups include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4-cyclohexene-1,2-dicarboxylic acid.
  • maleic acid-modified ethylene/propylene copolymers and maleic acid-modified ethylene/butene copolymers are preferred from the viewpoints of low-temperature impact resistance, cost, and availability.
  • the present alloy is produced by melt-kneading the fluorine-containing copolymer A and the polymer B. At this time, if necessary, other components (for example, various chemically reactive compatibilizers and surface treatment agents) may be added.
  • the proportions of the fluorine-containing copolymer A and the polymer B to the total weight of all raw materials to be melt-kneaded are the same as the proportions of the fluorine-containing copolymer A and the polymer B to the total weight of the alloy.
  • melt-kneading method examples include a method using a known melt-kneading apparatus.
  • melt-kneading device include known devices having a melt-kneading function.
  • the melt-kneading device is preferably a single-screw extruder or a twin-screw extruder which may be equipped with a screw with high kneading effect, more preferably a twin-screw extruder, and a twin-screw extruder equipped with a screw with high kneading effect. Especially preferred.
  • L/D of the screw is preferably 20 or more, more preferably 30 to 70, from the viewpoint of kneading effect. "L/D" is a value obtained by dividing the total screw length L (mm) by the screw diameter D (mm).
  • Specific examples of the melt-kneading apparatus include Laboplastomill kneader (manufactured by Toyo Seiki Seisakusho) and KZW series twin-screw kneading extruder (manufactured by Technobell).
  • the method of supplying the fluorocopolymer A and the polymer B to the melt-kneading device is not particularly limited. Fluorocopolymer A and polymer B may be supplied separately to the melt-kneading apparatus.
  • the temperature at which the fluorine-containing copolymer A and polymer B are melt-kneaded is preferably set according to the fluorine-containing copolymer A and polymer B.
  • the melt-kneading temperature is preferably 180 to 250°C, more preferably 200 to 245°C, even more preferably 220 to 240°C.
  • the melt-kneading of the fluorocopolymer A and the polymer B is carried out so that the particles of the fluorocopolymer A having an average particle size of 0.001 to 10 ⁇ m are dispersed in the polymer B.
  • a fluorine-containing copolymer A having an average particle size of 0.001 to 10 ⁇ m is added to a polymer B by appropriately adjusting the melt-kneading temperature, the extrusion shear rate, and the residence time of the material to be melt-kneaded in the melt-kneading apparatus. Distributable.
  • the fluorine-containing copolymer A By increasing the melt-kneading temperature, the fluorine-containing copolymer A is easily dispersed in the polymer B, and coarse particles of the fluorine-containing copolymer A are less likely to remain.
  • the thermal decomposition of the fluorine-containing copolymer A is less likely to be promoted, the heat resistance of the obtained polymer alloy is further excellent, and the particle size of the fluorine-containing copolymer A is not excessively reduced. .
  • the fluorine-containing copolymer A By increasing the extrusion shear rate, the fluorine-containing copolymer A is easily dispersed in the polymer B, and coarse particles of the fluorine-containing copolymer A are less likely to remain.
  • the particle size of the fluorine-containing copolymer A is not reduced too much.
  • the residence time of the material to be melt-kneaded in the melt-kneading apparatus is lengthened, the fluorocopolymer A is easily dispersed in the polymer B, and coarse particles of the fluorocopolymer A are less likely to remain.
  • the residence time is shortened, thermal decomposition of the fluorine-containing copolymer A is less likely to be promoted.
  • Melt-kneading is preferably carried out in the absence of substantially any cross-linking agent or cross-linking aid. Melt-kneading in the absence of substantially any cross-linking agent or cross-linking aid means that the fluorocopolymer A is melt-kneaded without being substantially cross-linked. Whether or not the fluorine-containing copolymer A is substantially crosslinked can be confirmed by the value of the flexural modulus of the polymer alloy.
  • the present alloy can be melt-molded, and can be formed into a molded body by melt-molding.
  • the present alloy and other materials can be combined or laminated to form a composite.
  • melt molding method known melt molding methods such as injection molding, extrusion molding, co-extrusion molding, blow molding, compression molding, inflation molding, transfer molding and calendar molding can be employed.
  • molded articles include, but are not limited to, sliding members, sealing materials, gears, actuators, pistons, bearings, housings, aircraft interior materials, fuel tubes, bushes, tubes, hoses, tanks, seals, Wires, cables, films, sheets, bottles, fibers and the like.
  • the alloy can also be powdered and used as a coating material. Applications for coated articles include those described in WO2015/182702.
  • This alloy has excellent resistance to high-pressure gas, so it is suitable for use in high-pressure gas hoses and high-pressure gas storage containers.
  • the alloy can be used as a component or liner material for high-pressure gas hoses and high-pressure gas storage vessels.
  • a high-pressure gas is typically a gas with a pressure of 35-90 MPa. Pressure is gauge pressure.
  • Specific examples of the high-pressure gas include high-pressure hydrogen gas, high-pressure oxygen gas, high-pressure carbon dioxide gas, high-pressure nitrogen gas, high-pressure argon gas, high-pressure methane gas, high-pressure acetylene gas, high-pressure hydrogen chloride gas, and high-pressure nitrous oxide gas.
  • the high-pressure gas a high-pressure gas having a molecular weight of less than 10 is preferable, and a high-pressure hydrogen gas is particularly preferable. As the molecular weight of the high-pressure gas becomes smaller, it tends to dissolve and permeate into the polymer. When the high-pressure gas dissolves and permeates into the polymer, the polymer deteriorates. Even if the molecular weight of the high-pressure gas is less than 10, the high-pressure gas does not easily dissolve or permeate the alloy.
  • Examples of high-pressure gas hoses using the present alloy include hoses having a layer made of the present alloy (hereinafter also referred to as the present alloy layer) and hoses having a fiber reinforced resin layer containing the present alloy and reinforcing fibers. be done.
  • a method for manufacturing the reinforcing fiber and the fiber-reinforced resin containing the present alloy and the reinforcing fiber will be described later in detail.
  • two or more layers of the present alloy layer or fiber-reinforced resin layer may be present.
  • the thickness of the alloy layer is, for example, 0.1 to 10 mm.
  • the thickness of the fiber-reinforced resin layer is, for example, 1-100 mm.
  • a hose is high pressure hydrogen gas for transportation.
  • a high-pressure gas storage container using the present alloy include a storage container having the present alloy layer and a storage container having a fiber-reinforced resin layer containing the present alloy and reinforcing fibers.
  • the present alloy layer or fiber-reinforced resin layer may be present in two or more layers.
  • the thickness of the alloy layer is, for example, 2-100 mm.
  • the thickness of the fiber-reinforced resin layer is, for example, 2-200 mm.
  • An example of a storage container is a hydrogen gas tank for automobiles.
  • the particles of the fluorine-containing copolymer A having a carbonyl group-containing group are dispersed in the polymer B with an average particle diameter of 0.001 to 10 ⁇ m, so that Excellent resistance to For example, even when high-pressure gas supply and depressurization are repeated, properties such as gas barrier properties and flexibility are less likely to deteriorate due to high-pressure gas, and these properties can be maintained for a long period of time.
  • the present alloy has good gas barrier properties, mechanical strength (for example, low-temperature impact strength), and low hygroscopicity.
  • the fluorine-containing copolymer A When the fluorine-containing copolymer A is dispersed in the polymer B and the average particle size of the fluorine-containing copolymer A is 10 ⁇ m or less, the excellent gas barrier properties of the polymer B are sufficiently maintained.
  • the fluorine-containing copolymer A since the fluorine-containing copolymer A has a carbonyl group-containing group, a chemical reaction occurs between the fluorine-containing copolymer A and the polymer B, and the interface between the fluorine-containing copolymer A and the polymer B It has excellent adhesion, and gaps are less likely to occur at their interfaces.
  • the fluorine-containing copolymer A since the fluorine-containing copolymer A is included, low water absorption and excellent mechanical strength are achieved. For these reasons, it is difficult for moisture to enter the alloy, and the occurrence of voids and cracks due to the influence of moisture (freezing of moisture, etc.) can be suppressed.
  • reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
  • inorganic fibers include carbon fibers, graphite fibers, glass fibers, silicon carbide fibers, silicon nitride fibers, alumina fibers, silicon carbide fibers, and boron fibers.
  • metal fibers include aluminum fibers, brass fibers, stainless steel fibers, and the like.
  • Organic fibers include aromatic polyamide fibers, polyaramid fibers, polyparaphenylenebenzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, polyethylene fibers and the like.
  • the reinforcing fibers may be surface-treated.
  • Reinforcing fibers may be used singly or in combination of two or more.
  • Carbon fibers are preferable as the reinforcing fibers because of their low specific gravity, high strength, and high elastic modulus.
  • Carbon fibers include, for example, those described in WO2013/129169, and those described in paragraphs 0018 to 0026 are particularly preferred. Further, as the method for producing the carbon fiber, those described in paragraphs 0028 to 0033 can be mentioned.
  • the reinforcing fibers are preferably continuous long fibers with a length of 10 mm or more from the viewpoint of the mechanical properties of the fiber-reinforced molded product.
  • the processing form of the reinforcing fiber is preferably a sheet-like one (hereinafter referred to as a reinforcing fiber sheet).
  • a reinforcing fiber sheet a reinforcing fiber bundle made of a plurality of reinforcing fibers, a cloth made by weaving the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction, and the unidirectional reinforcing
  • a unidirectional cloth composed of fiber bundles, a combination thereof, a stack of a plurality of reinforcing fiber bundles, and the like can be mentioned.
  • the reinforcing fibers are long fibers, the reinforcing fibers do not need to be continuous over the entire length or width of the reinforcing fiber sheet, and may be divided in the middle.
  • a fiber-reinforced resin containing the present alloy and reinforcing fibers can be produced, for example, by impregnating a reinforcing fiber sheet with the present alloy.
  • Examples of the method of embedding the present alloy in the reinforcing fiber sheet include the following two methods.
  • Method (1) A method of melting pellets or powder of the present alloy in the presence of a reinforcing fiber sheet and impregnating the reinforcing fiber sheet.
  • Method (2) A method of melting the film of the present alloy in the presence of a reinforcing fiber sheet and impregnating the reinforcing fiber sheet.
  • Method (1) As a specific example of method (1), for example, n layers (where n is an integer of 1 or more) of reinforcing fiber sheets, in which reinforcing fiber sheets and pellets or powder of the present alloy are alternately stacked, and A method of hot-pressing a laminate composed of (n+1) layers of the present alloy with a hot press machine to melt the present alloy and impregnate the reinforcing fiber sheet with the melt is exemplified.
  • the temperature at the time of hot pressing is equal to or higher than the melting point of the present alloy, and the melting point of the polymer B constituting the present alloy or the melting point of the fluorine-containing copolymer, whichever is higher, +5°C or higher, and the melting point +100°C or lower. preferable.
  • the pressure during hot pressing is preferably 0.1 to 50 MPa, more preferably 0.5 to 30 MPa.
  • the time for hot pressing is preferably 3 seconds or more and 180 minutes or less, more preferably 5 seconds or more and 60 minutes or less.
  • the pellets of this alloy obtained by melt-kneading When the pellets of this alloy obtained by melt-kneading are used as they are, the pellets can be mechanically pulverized and finely powdered before use.
  • Equipment capable of mechanically crushing pellets includes hammer mills, pin mills, disc mills, rotary mills, jet mills, fluidized bed air jet mills, jaw crushers, gyratory crushers, cage mills, bread crushers, ball mills, pebble mills, rod mills, Tube mills, disc attrition mills, attritors, disc refiners and the like.
  • Pulverization of the pellets is preferably carried out in a state where the modulus of elasticity is higher, and the pellets are preferably cooled to a temperature of -40°C or lower.
  • the cooling temperature is more preferably ⁇ 100° C. or lower, more preferably ⁇ 160° C. or lower. Cooling methods include a method using dry ice or liquid nitrogen.
  • Method (2) As a specific example of method (2), for example, n layers (where n is an integer of 1 or more) of reinforcing fiber sheets in which reinforcing fiber sheets and films produced using the present alloy are alternately stacked. and (n+1) layers of the film of the present alloy are hot-pressed with a hot press to melt the present alloy and impregnate the reinforcing fiber sheet.
  • the temperature, pressure and time for hot pressing are the same as in method (1).
  • a film of the present alloy can be produced by extruding the extrusion melt through a T-die into a film.
  • Examples 1-6, 11, 13-18, 24 are comparative examples, and Examples 7-10, 12, 19, 21-23 are working examples.
  • ⁇ Evaluation methods Average particle size of fluorine-containing copolymer in polymer alloy
  • a cross section of the polymer alloy is observed with an SEM to obtain an SEM image, and at least 100 domains (dispersed particles) included in the obtained SEM image are randomly selected using image processing software (Image-J software).
  • Image-J software image processing software
  • a histogram of the domain areas of all the selected domains is created to calculate the area average diameter, and the value is taken as the average particle diameter (hereinafter also referred to as the dispersed particle diameter) of the fluorine-containing copolymer in the polymer alloy. bottom.
  • Henky strain ⁇ (t) was obtained by the product of strain rate ⁇ ⁇ and time t.
  • strain hardening degree Elongational viscosity ⁇ E + (t) in the nonlinear region obtained by uniaxial elongational viscosity measurement, elongational viscosity 3 ⁇ (t) in the linear region calculated from the absolute value of the complex viscosity obtained by shear dynamic viscoelasticity, and Henky strain Based on ⁇ (t), the strain hardening degree SH was obtained from the above equations 1 and 2.
  • Flexural modulus Flexural modulus
  • Izod impact testing was performed according to ASTM D256.
  • the hydrogen gas permeability coefficient was measured using a differential pressure gas/vapor permeability measuring device (manufactured by GTRGTR Tech, device name GTR-30XAD) in accordance with JIS K 7126-1: 2006 (differential pressure method) under the following conditions. .
  • a sample was injection molded to prepare a sheet of 42 mm ⁇ 15 mm ⁇ 2 mm, and this sheet was cut in half lengthwise to prepare a test piece.
  • the obtained test piece was subjected to positron annihilation lifetime measurement (PALS method) under the following conditions to obtain the free volume.
  • the life time and relative intensity are evaluated from the slope of o-Ps, which corresponds to the voids in the amorphous part of the polymer in the positron annihilation life measurement, and the free volume VF is calculated from the obtained life time by the following formula (Nakanishi-Jean formula). asked for
  • a measuring device for measuring the positron lifetime measures the lifetime from the time when the positron e + is incident on the disk sample until it disappears. For positron lifetime measurement, it is necessary to know the incident time and annihilation time of e + . Desired. The annihilation time of e + is obtained from the detection time of the annihilation gamma ray (511 keV). Then, the time difference is measured by a fast-fast coincidence counting system.
  • Pulses obtained from ⁇ -rays are discriminated by a discrimination circuit, and sent to a time-difference pulse-height conversion circuit only when simultaneity between incident ⁇ -rays and annihilated ⁇ -rays is confirmed by a high-speed coincidence counting circuit.
  • the time-difference pulse-height conversion circuit generates a voltage pulse with a pulse height proportional to the time difference between the incident pulse and the annihilation pulse.This voltage pulse is converted to a digital signal by an analog-digital converter, stored in a personal computer, and decays over time. An extinction curve (attenuation curve) is obtained.
  • the attenuation curve plotted with time (ns) on the horizontal axis and the number of counts on the vertical axis includes a first component ⁇ 1 with a steep attenuation, a second component ⁇ 2 with a moderate attenuation, a third component ⁇ 3 with a gentle attenuation, A fourth component, ⁇ 4, which decays much more slowly, is included.
  • the horizontal axis is time (ns) and the vertical axis is the probability density function
  • the life distribution of each ⁇ component such as ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 appears as a peak.
  • the third component ⁇ 3 indicates the size distribution of the free volume VF.
  • the free volume VF is the volume of atomic vacancies with sub-nanometer-order radii formed in the non-crystalline portion of the polymer, and the lifetime of positrons e + or positronium formed from positrons e + and electrons e ⁇ Involved.
  • the sample was injection-molded to prepare a disc-shaped test piece with a diameter of 13 mm and a thickness of 2 mm.
  • a microscope CCD-type microscope VHX-5000 equipped with a LED visible light source manufactured by Keyence Corporation, the amount of visible light transmitted in the thickness direction (transmission amount before high pressure hydrogen gas exposure test ) was measured.
  • an LED visible light source is placed on one side of the test piece, and visible light is irradiated from the LED visible light source toward the center of the test piece, and in that state, the other side of the test piece
  • An image of the side was acquired with a microscope, and the average brightness in a range of 5.5 mm radius from the center of the test piece was obtained using image processing software (Image-J), and the value was taken as the transmittance.
  • the test piece was subjected to a high-pressure hydrogen gas exposure test in which exposure to high-pressure hydrogen gas of 90 MPa for 65 hours was repeated three times.
  • Test breaking strength retention rate The sample was press-molded to prepare a plurality of Type-V test pieces according to ASTM D638. A part of the obtained test piece was measured for tensile strength at break (tensile strength at break before exposure) and tensile elongation at break (tensile elongation at break before exposure) according to ASTM D638. The rest of the specimens were placed in a constant temperature bath and exposed to an ambient temperature of 170°C for 500 hours.
  • the tensile strength at break (tensile strength at break after exposure) and tensile elongation at break (tensile elongation at break after exposure) were measured in the same manner as described above for the exposed test pieces. From the measurement results, the retention rate of tensile strength at break and the retention rate of tensile elongation at break were determined by the following equations.
  • Tensile breaking strength retention (tensile breaking strength after exposure/tensile breaking strength before exposure) x 100
  • Tensile breaking elongation retention (tensile breaking elongation after exposure/tensile breaking elongation before exposure) x 100
  • thermogravimetric analyzer (TG/DTA6200, manufactured by Seiko Instruments Inc. (SII)
  • thermogravimetry was performed by changing the heating rate to 1, 2, 5, 10 or 20°C/min. From the results, the activation energy of the thermal decomposition reaction was obtained by the Ozawa method, and the temperature at which the half-life time for 50% decomposition was 100,000 hours was obtained.
  • Fluorine-containing copolymer-1 A fluorine-containing copolymer having a carbonyl group-containing group obtained in Synthesis Example 1 described later.
  • Fluorine-containing copolymer-2 A fluorine-containing copolymer having no carbonyl group-containing group, obtained in the same manner as in Synthesis Example 1 described later, except that itaconic anhydride was not used.
  • EVOH-1 Commercially available EVOH. Mitsubishi Chemical, trade name: Soarnol DC3203RB, MFR (210°C, 2.16 kgf): 3.8 g/10 min, melting point: 183°C, density (23°C): 1.19 g/cm 3 , ethylene unit content : 32 mol %, degree of saponification: 99.5%.
  • Polyamide-1 commercially available PA6. Made by Ube Industries, grade name: SF1018A, MFR (235°C, 2.16 kgf): 10.5 g/10 min, melting point: 220°C, density (23°C): 1.07 g/cm 3 .
  • Polyamide-2 commercially available PAMXD6. Mitsubishi Gas Chemical, grade name: S6001, MFR (260°C, 2.16 kgf): 7 g/10 min, melting point: 240°C, density (23°C): 1.21 g/cm 3 .
  • MAH-modified LDPE A commercially available MAH (maleic anhydride)-modified low density polyethylene. Mitsui Chemicals, trade name: Toughmer MA8510, density: 0.885, MAH unit content: 1 mol%, MFR (190°C, 2.16 kgf): 2.4 g/10 minutes, melting point: 74°C.
  • the fluorine-containing copolymer-1 has a hydroxy group, has a capacity flow rate of 14 mm 3 /sec at 220° C., and has a composition of TFE units/ethylene units/HFP units/CH 2 ⁇ CH(CF 2 ) 4 F units/anhydrous.
  • the itaconic acid unit was 49.1/41.6/7.8/1.0/0.45 (mol%) and the melting point was 191°C.
  • Examples 1 to 24 The above-described materials are mixed according to the formulations shown in Tables 2 to 4, supplied to the proximal end of the screw of a twin-screw melt-kneader (manufactured by Toshiba Machine Co., Ltd., model: TEM-48SS), melt-kneaded under the following conditions, The melt-kneaded material was extruded from the tip of the die, and the strand was cooled in a water tank and cut by a pelletizer to obtain pellets.
  • a twin-screw melt-kneader manufactured by Toshiba Machine Co., Ltd., model: TEM-48SS
  • the obtained pellets were evaluated for dispersed particle size, degree of strain hardening, 3-point bending test, hydrogen gas permeability coefficient, water absorption, free sedimentation, and high-pressure hydrogen gas exposure test (hydrogen exposure deterioration index, presence or absence of blistering). The results are shown in Tables 2-4.
  • the pellets of Examples 7 to 10, 12, 19, 21 to 23 had a low hydrogen exposure deterioration index in the high pressure hydrogen gas exposure test, no blistering, and excellent resistance to high pressure hydrogen gas. Since it has excellent resistance to high-pressure hydrogen gas with a small molecular weight, it can be judged that it is also excellent in resistance to high-pressure gas with a higher molecular weight. Moreover, these pellets had a degree of strain hardening and were excellent in melt moldability. In addition, these pellets were ductile fractured (non-broken) in a three-point bending test, and had excellent mechanical strength. On the other hand, the pellets of Examples 1 to 6, in which any one of the above materials was used alone, were inferior in resistance to high-pressure hydrogen gas and melt moldability.
  • the pellets of Examples 11, 13 to 16, 20, and 24, in which the fluorine-containing copolymer-2 was used instead of the fluorine-containing copolymer-1 were inferior in resistance to high-pressure hydrogen gas, melt moldability, and mechanical strength. rice field.
  • the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2021-124230 filed on July 29, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Abstract

高圧ガスへの耐性に優れるポリマーアロイの提供。 融点が250℃以下である、カルボニル基含有基を有する含フッ素共重合体と、前記含フッ素共重合体と非相溶でかつ融点が250℃以下である、ポリアミド及びエチレン-ビニルアルコール共重合体からなる群から選ばれた少なくとも1種の熱可塑性重合体とが溶融混練されてなるポリマーアロイであり、前記ポリマーアロイの全質量に対する前記含フッ素共重合体の割合が10~40質量%であり、前記含フッ素共重合体の粒子が前記熱可塑性重合体中に分散しており、前記ポリマーアロイ中の前記含フッ素共重合体粒子の平均粒子径が0.001~10μmである、ポリマーアロイ。

Description

ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器
 本発明は、ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器に関する。
 水素ガスステーション等で燃料電池へ水素ガスを供給する水素ガス供給用ホースとしては、従来、SUS316L等の金属パイプが主に用いられている。しかし、金属パイプは柔軟性がなく、取り扱い性が低いこと、SUS316Lが非常に高コストであること、他の金属では水素脆化が発生すること等の問題がある。そこで近年、ゴム製や樹脂製のホースの開発が進められている。ゴム製や樹脂製ホースとしては、水素ガスの漏出防止及び耐久性確保のために、ガスバリア層及び補強層等を積層した多層構造のホースが知られている。
 ここで、ガスバリア層としては、例えば、エチレン-ビニルアルコール共重合体(以下、EVOHとも記す。)層が用いられている。
 特許文献1では、耐水性樹脂からなる内面層、EVOHからなるバリア層、熱可塑性樹脂からなる外面層を有するガス供給用ホースが提案されている。特許文献2では、熱可塑性樹脂からなる内面層、EVOHからなるバリア層、絶縁性を有するゴムからなる外面層を有するガス供給用ホースが提案されている。また、特許文献1~2では、更に、有機繊維又は金属線の編組み又はスパイラル層からなる補強層を有することも提案されている。
 特許文献3では、水素、酸素、二酸化炭素等のガス移送用チューブとして、フルオロポリマー(エチレン-テトラフルオロエチレン、ポリビニリデンフルオリド等)からなる内層、EVOHからなる中間層、ポリアミドからなる外層を含むチューブが提案されている。また、特許文献3では、中間層と内層の接着、中間層と外層の接着のために、変性ポリアミドを用いて接着層を設けることも提案されている。
 特許文献4では、液化プロパンガスの供給設備用の高圧ホースについては、外面ゴム層と内面ゴム層との間に補強層を備え、補強層が、有機繊維又は金属ワイヤのスパイラル層からなる、内面ゴム層の内面側に、ポリアミドからなるバリア層が形成された高圧ホースが提案されている。
 水素ガス燃料の貯蔵容器についても、従来、金属材料が使用されていたが、近年、軽量化のために樹脂ライナーが使用されるようになってきている。
 特許文献5には、水素ガス貯蔵容器のライナーとして、エチレン-酢酸ビニル共重合体ケン化物80~40重量%と、酸変性エチレン-α-オレフィン共重合体ゴム及び/又は酸変性熱可塑性エラストマー20~60重量%からなる重合体組成物を用いることが提案されている。
特開2007-15279号公報 特開2009-19717号公報 特開2006-168358号公報 特開2007-218338号公報 特開2005-68300号公報
 近年、車載用燃料電池への水素ガス供給に用いられる水素ガス貯蔵容器のコンパクト化が進められている。このようなコンパクト化した水素ガス貯蔵容器に水素ガスを供給するホースには、現在のガソリン車並みの走行距離が可能な水素ガス量を、水素ガス貯蔵容器へ一回で速やかに充填できることが求められる。
 しかし、本発明者らの検討によれば、ポリアミドやEVOHは、高圧ガス(例えば35~90MPaのガス)に対する耐性が充分ではない。例えばポリアミド又はEVOHからなるガスバリア層を有する高圧ガス供給用ホースでは、ホース内で高圧から常圧に戻される際(脱圧時)に、ガスバリア層中に溶解したガスが膨張し、内部破壊に伴う膨れ(ブリスター)や亀裂が発生し、ガスバリア性が低下することがある。特に水素ガスの場合、水素は酸素、二酸化炭素等の他のガスよりも分子サイズが小さいために樹脂に溶解、浸透し易く、上記のような問題が発生しやすい。
 本発明は、高圧ガスへの耐性に優れるポリマーアロイ、並びにこれを用いた高圧ガス用ホース及び高圧ガス用貯蔵容器を提供する。
 本発明は、以下の態様を有する。
 [1]融点が250℃以下である、カルボニル基含有基を有する含フッ素共重合体と、前記含フッ素共重合体と非相溶でかつ融点が250℃以下である、ポリアミド及びエチレン-ビニルアルコール共重合体からなる群から選ばれた少なくとも1種の熱可塑性重合体とが溶融混練されてなるポリマーアロイであり、
 前記ポリマーアロイの全質量に対する前記含フッ素共重合体の割合が10~40質量%であり、
 前記含フッ素共重合体の粒子が前記熱可塑性重合体中に分散しており、前記ポリマーアロイ中の前記含フッ素共重合体粒子の平均粒子径が0.001~10μmである、ポリマーアロイ。
 [2]下記ひずみ硬化度が0.10~1.50である、[1]のポリマーアロイ。
 ひずみ硬化度:温度240℃、ひずみ速度ε:1.0s-1の条件下で一軸伸長粘度を測定し、下式(1)~(3)からひずみ硬化度SHを求める。
  SH=dlnλ(t)/dε(t)  ・・・(1)
  λ(t)=η (t)/3η(t)  ・・・(2)
  ε(t)=ε・t  ・・・(3)
 ただし、SHはひずみ硬化度であり、lnは自然対数であり、λ(t)は非線形性パラメータであり、η (t)は非線形領域における伸長粘度であり、η(t)は温度240℃、角周波数ω:0.1~100(rad/s)の条件下でせん断動的粘弾性測定によってωの関数として得られた複素粘度の絶対値をt=1/ωとして時間の関数に変換することで得られる線形の伸長粘度であり、ε(t)はヘンキーひずみであり、tは伸長時間である。
 [3]前記カルボニル基含有基の含有量が、前記含フッ素共重合体の主鎖炭素数1×10個に対して10~60000個である、[1]又は[2]のポリマーアロイ。
 [4]前記カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、及び酸無水物残基からなる群から選択される基である、[1]~[3]のいずれかのポリマーアロイ。
 [5]前記含フッ素共重合体がさらにヒドロキシ基を有する、[1]~[4]のいずれかのポリマーアロイ。
 [6]前記含フッ素共重合体が、テトラフルオロエチレンに基づく単位a1と、エチレンに基づく単位a2と、カルボニル基含有基を有しない、エチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく単位a3と、前記カルボニル基含有基とを有し、
 前記単位a3の少なくとも一部が、CH=CX(CF(ただし、X及びXはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)に基づく単位であり、
 前記含フッ素共重合体を構成する全単位の合計モル量に対する前記単位a1と前記単位a2と前記単位a3との合計モル量が90モル%以上である、[1]~[5]のいずれかのポリマーアロイ。
 [7]前記カルボニル基含有基が酸無水物残基であり、前記含フッ素共重合体が、前記酸無水物残基を有する非フッ素単量体に基づく単位a4を有する、[6]のポリマーアロイ。
 [8]前記含フッ素共重合体が、曲げ弾性率が1000MPa以下、-40℃におけるアイゾット衝撃試験で破壊しないこと、脆化温度が-80℃以下であること、及び-40℃における3点曲げ試験で延性破壊を示すことを満たす、[1]~[7]のいずれかのポリマーアロイ。
 [9]前記熱可塑性重合体の水素ガス透過係数が1000〔cc・20μm/(m・24hs・atm)〕以下であり、前記含フッ素共重合体の水素ガス透過係数が5000〔cc・20μm/(m・24hs・atm)〕以上である、[1]~[8]のいずれかのポリマーアロイ。
 [10]前記エチレン-ビニルアルコール共重合体の水素ガス透過係数が50〔cc・20μm/(m・24hs・atm)〕以下であり、前記ポリアミドの水素ガス透過係数が1000〔cc・20μm/(m・24hs・atm)〕以下である、[1]~[9]のいずれかのポリマーアロイ。
 [11]吸水率が2.5%以下である、[1]~[10]のいずれかのポリマーアロイ。
 [12]自由体積が0.1nm以下である、[1]~[11]のいずれかのポリマーアロイ。
 [13]下記水素暴露劣化指数が0.5以下である、[1]~[12]のいずれかのポリマーアロイ。
 水素暴露劣化指数:前記ポリマーアロイを厚み2mmの試験片に成形し、前記試験片に対し、90MPaの高圧水素ガス下に65時間の暴露を3回繰り返す高圧水素ガス暴露試験を実施し、前記高圧水素ガス暴露試験の前と後それぞれの前記試験片の厚み方向における可視光線の透過量から下式(4)により求める。
 水素暴露劣化指数=1-(前記高圧水素ガス暴露試験後の透過量/前記高圧水素ガス暴露試験前の透過量)  ・・・(4)
 [14]前記含フッ素共重合体の170℃の雰囲気温度に500時間暴露した後における引張破断強度が、暴露前の引張破断強度に対して70%以上である、[1]~[13]のいずれかのポリマーアロイ。
 [15]前記含フッ素共重合体の170℃の雰囲気温度に500時間暴露した後における引張破断伸度が、暴露前の引張破断伸度に対して100%以上である、[1]~[14]のいずれかのポリマーアロイ。
 [16]前記含フッ素共重合体の10万時間における分解半減期温度が135℃以上である、[1]~[15]のいずれかのポリマーアロイ。
 [17]前記[1]~[16]のいずれかのポリマーアロイを用いた高圧ガス用ホース。
 [18]前記[1]~[16]のいずれかのポリマーアロイと強化繊維とを含む繊維強化樹脂層を有する高圧ガス用ホース。
 [19]前記[1]~[16]のいずれかのポリマーアロイを用いた高圧ガス用貯蔵容器。
 [20]前記[1]~[16]のいずれかのポリマーアロイと強化繊維とを含む繊維強化樹脂層を有する高圧ガス用貯蔵容器。
 本発明によれば、高圧ガスへの耐性に優れるポリマーアロイ、並びにこれを用いた高圧ガス用ホース及び高圧ガス用貯蔵容器を提供できる。
一軸伸長粘度測定で得られる伸長時間tと伸長粘度η (t)との関係を示す図である。 ヘンキーひずみε(t)と非線形性パラメータλ(t)の対数との関係を示す図である。
 本発明における用語の意味や定義は以下の通りである。
 単量体に基づく単位とは、単量体1分子が重合して直接形成される原子団と、重合後に該原子団の一部を化学変換して得られる原子団との総称である。本明細書においては、単量体に基づく単位を単量体単位と記すことがある。
 単量体とは、重合性炭素-炭素二重結合を有する化合物である。
 カルボニル基含有基とは、構造中にカルボニル基(-C(=O)-)を有する基である。
 線形領域とは、図1の実線に示すように、伸長粘度を測定した際に伸長粘度がひずみ速度に依存せず、同一の時間依存性を示す領域である。
 非線形領域とは、図1の破線に示すように、伸長粘度を測定した際に伸張粘度が伸張時間とともに線形領域から外れて増大する領域である。
 ひずみ硬化性とは、伸長粘度を測定した際に高ひずみ領域において伸長粘度が線形領域から外れて急激に上昇する性質である。
 ひずみ硬化度SHとは、ひずみ硬化性の程度を示すパラメータである。ひずみ硬化度は、温度240℃、ひずみ速度ε:1.0s-1の条件下で一軸伸長粘度を測定し、下式(1)~(3)から求める。
  SH=dlnλ(t)/dε(t)  ・・・(1)
  λ(t)=η (t)/3η(t)  ・・・(2)
  ε(t)=ε・t  ・・・(3)
 ただし、SHはひずみ硬化度であり、lnは自然対数であり、λ(t)は非線形性パラメータであり、η (t)は非線形領域における伸長粘度であり、η(t)は温度240℃、角周波数ω:0.1~100(rad/s)の条件下でせん断動的粘弾性測定によってωの関数として得られた複素粘度の絶対値をt=1/ωとして時間の関数に変換することで得られる線形の伸長粘度であり、ε(t)はヘンキーひずみであり、tは伸長時間である。
 3η(t)は、横軸t=1/ωとし、縦軸ηを3倍にした値をプロットすることでせん断動的粘弾性測定から予測される線形領域における伸長粘度(図1における実線)である。式2で求められる非線形性パラメータλ(t)は、各時間での伸長粘度とせん断動的粘弾性測定から予測される線形領域における伸長粘度との比である。
 図2に示すように、ひずみ硬化性を有する重合体材料においては、伸長変化とともに(すなわち伸長時間tの経過とともに)非線形性パラメータλ(t)の対数がヘンキーひずみε(t)に対して直線的に増加することが知られている。式1は、該直線の傾きを求める式であり、該傾き(すなわちひずみ硬化度SH)が大きいほど、ひずみ硬化性が顕著になる。
 融点は、示差走査熱量計(DSC)を用い、昇温速度10℃/分で測定される融解ピークの最大値に対応する温度である。
 ポリマーアロイ中の含フッ素共重合体の平均粒子径は、ポリマーアロイの断面を走査型電子顕微鏡(SEM)で観察してSEM像を取得し、画像処理ソフト(Image-Jソフト)を用いて、取得したSEM像に含まれる少なくとも100個のドメイン(分散粒子)を無作為に選択し、選択した全てのドメインのドメイン面積のヒストグラムを作成して算出される面積平均径である。なお、ヒストグラムにおける階級数は、スタージェスの公式(n=1+logN、n:階級数、N:データ数)に従い設定する。
 曲げ弾性率は、ASTM D790に準じて測定される。測定温度は23±2℃である。
 アイゾット衝撃試験は、ASTM D256に準じて実施される。
 脆化温度は、動的粘弾性測定における温度分散のエネルギー吸収率により求められるγ分散のピーク温度である。
 3点曲げ試験は、ASTM D790に準じ、曲げ速度:10mm/分、支点間距離:64mm、測定温度:-40℃の条件で行われる。
 水素ガス透過係数は、JIS K 7126-1:2006(差圧法)に準じて測定される。
 吸水率は、JIS K 7209:2000に準じて測定される。
 自由体積は、陽電子消滅寿命測定(Positron Annihilation Lifetime  Spectroscopy:PALS法)より算出される。
 水素暴露劣化指数は、試料(例えばポリマーアロイ)を厚み2mmの試験片に成形し、試験片に対し、90MPaの高圧水素ガス下に65時間の暴露を3回繰り返す高圧水素ガス暴露試験を実施し、高圧水素ガス暴露試験の前と後それぞれの試験片の厚み方向における可視光線(波長380~780nm)の透過量から下式(4)により求める。高圧水素ガス暴露試験での試験片の劣化の度合いが小さいほど、(高圧水素ガス暴露試験後の透過量/高圧水素ガス暴露試験前の透過量)の値が1に近くなり、水素暴露劣化指数が小さくなる。
 水素暴露劣化指数=1-(高圧水素ガス暴露試験後の透過量/高圧水素ガス暴露試験前の透過量)  ・・・(4)
 可視光線の透過量は、試験片の一方面側に配置された発光ダイオード(LED)光源から試験片の中心に向かって可視光線を照射し、その状態で、試験片の他方面側の画像をマイクロスコープで取得し、画像処理ソフト(例えばImage-J)により、試験片の中心から半径5.5mmの範囲の平均輝度を求め、その値を透過度とする。
 10万時間における分解半減期温度は、試料(例えば含フッ素共重合体)を一定の温度で加熱したときに、試料の50質量%が熱分解する時間(半減期時間)が10万時間になる温度である。分解半減期温度は、試料の熱重量分析(TG)により求められる。TGデータの小沢法による反応速度論的解析により熱分解における活性化エネルギー及び定温劣化時間が求められる(定温劣化時間=10万時間における50%分解半減期温度)。
 なお、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
〔ポリマーアロイ〕
 本発明の一実施形態に係るポリマーアロイは、融点が250℃以下である、カルボニル基含有基を有する含フッ素共重合体(以下、含フッ素共重合体Aとも記す。)と、含フッ素共重合体Aと非相溶でかつ融点が250℃以下である、ポリアミド及びEVOHからなる群から選ばれた少なくとも1種の熱可塑性重合体とが溶融混練されてなるポリマーアロイである。さらに、係るポリマーアロイにおいては、その全質量に対する含フッ素共重合体Aの割合は10~40質量%であり、含フッ素共重合体Aの粒子が前記熱可塑性重合体中に分散しており、ポリマーアロイ中の含フッ素共重合体A粒子の平均粒子径が0.001~10μmである。
 以下、本発明に係る上記ポリマーアロイを本アロイとも記す。また、含フッ素共重合体Aと非相溶でかつ融点が250℃以下である、ポリアミド及びEVOHからなる群から選ばれる熱可塑性重合体を、以下、重合体Bとも記す。
 含フッ素共重合体A及び重合体Bについては後で詳しく説明する。
 本アロイは、必要に応じて、他の成分(例えば化学反応型の各種の相溶化剤、表面処理剤)をさらに含んでいてもよい。
 本アロイの全質量に対する含フッ素共重合体Aの割合は、10~40質量%であり、15~35質量%が好ましく、20~30質量%がより好ましい。含フッ素共重合体Aの割合が前記範囲内であれば、高圧ガスへの耐性に優れる。また、含フッ素共重合体Aの割合が前記下限値以上であれば、低吸水性、曲げ特性、伸び、耐衝撃性、靭性特性、溶融成形性、加工性、ガスの拡散性に優れ(ガスが本アロイに残留するのを防ぐ効果)、前記上限値以下であれば、ガスバリア性に優れる。
 本アロイにおいては、含フッ素共重合体Aの粒子が重合体Bに分散している。これにより、重合体Bのガスバリア性を損ないにくい。
 本アロイ中の含フッ素共重合体Aの粒子の平均粒子径は、0.001~10μmであり、0.01~8μmが好ましく、0.01~5μmがより好ましい。平均粒子径が前記下限値以上であれば、ガスの拡散性に優れ(ガスが本アロイに残留するのを防ぐ効果)、前記上限値以下であれば、ガスバリア性、靭性、耐衝撃性、伸び等の機械記特性に優れる。
 含フッ素共重合体Aの粒子の平均粒子径は、例えば含フッ素共重合体A中の官能基(カルボニル基含有基、ヒドロキシ基等)の含有量、本アロイの全質量に対する含フッ素共重合体Aの割合、溶融混錬条件、重合体Bの分子量、官能基量、化学反応型の各種の相溶化剤、表面処理剤により調整できる。
 本アロイのひずみ硬化度は、0.10~1.50が好ましく、0.15~1.00がより好ましく、0.20~0.80が更に好ましい。ひずみ硬化度が前記下限値以上であれば、応力集中が発生しづらくなり、本アロイ全体に均一な成形体となり溶融成形性が良好となり、前記上限値以下であれば、伸び、靭性が良好となる。
 ひずみ硬化度は、例えば含フッ素共重合体A中の官能基(カルボニル基含有基、ヒドロキシ基等)の含有量、含フッ素共重合体Aや重合体Bの分子量、官能基量(アミノ基、水酸基等)、溶融混練条件(温度、時間等)、化学反応型の各種の相溶化剤、表面処理剤により調整できる。例えば含フッ素共重合体A中の官能基の含有量が増えたり、含フッ素共重合体Aや重合体Bの分子量が大きくなったりすると、溶融混練したときの分子同士の絡み合いが増え、ひずみ硬化度が高くなる傾向がある。
 本アロイの吸水率は、2.5%以下が好ましく、2.45%以下がより好ましく、2.40%以下が更に好ましい。吸水率(吸湿率)が高い場合、水分の影響(特に低温雰囲気下での水分の凍結)によりボイドやクラックが生じやすくなる。吸水率が前記上限値以下であれば、水分の影響を受けにくく、ボイドやクラックの発生、それに伴うガスバリア性の低下を充分に抑制できる。
 吸水率は、例えば本アロイの全質量に対する含フッ素共重合体Aの割合により調整できる。
 本アロイの自由体積は、0.1nm以下が好ましく、0.095nm以下がより好ましく、0.090nm以下が更に好ましい。本アロイの自由体積の下限は特に限定されないが、例えば0.01nmである。自由体積が前記上限値以下であれば、耐水素ガス耐性が優れ、本アロイへの水素侵入によるブリスターの発生、更にそのブリスターが起点となり発展したクラック防止など機械特性に優れ、耐久特性にも優れる。
 自由体積は、例えば含フッ素共重合体A中の官能基(カルボニル基含有基、ヒドロキシ基等)の含有量、含フッ素共重合体Aや重合体Bの分子量、官能基量(アミノ基、水酸基等)、溶融混練条件(温度、時間等)、化学反応型の各種の相溶化剤、表面処理剤により調整できる。
 本アロイの水素暴露劣化指数は、0.5以下が好ましく、0.4以下がより好ましく、0.3以下が更に好ましい。本アロイの水素暴露劣化指数の下限は特に限定されないが、例えば0.05である。水素暴露劣化指数が前記上限値以下であれば、高圧ガスへの耐性に優れる。
 水素暴露劣化指数は、例えば含フッ素共重合体A中の官能基(カルボニル基含有基、ヒドロキシ基等)の含有量、含フッ素共重合体Aや重合体Bの分子量、官能基量(アミノ基、水酸基等)、溶融混練条件(温度、時間等)、化学反応型の各種の相溶化剤、表面処理剤により調整できる。
<含フッ素共重合体A>
 含フッ素共重合体Aは、カルボニル基含有基を有する。
 カルボニル基含有基は、ポリアミドのアミド基やEVOHの水酸基と相互作用又は反応することができる。そのため、含フッ素共重合体Aと重合体Bの界面で化学的結合が形成されたり、重合体Bの一部と含フッ素共重合体Aとがブロックコポリマーを生成し、生成したブロックコポリマーが相溶化剤として働いたりして、含フッ素共重合体Aと重合体Bとの界面の密着性が強固になり、ガスバリア性、耐衝撃性、伸び等の機械特性、機械的な靭性特性が向上する。
 更に、含フッ素共重合体Aは、フッ素原子を含むので、カルボニル基含有基を有しない含フッ素共重合体と同様に、高圧(例えば70MPa)の水素ガス環境下での水素溶解度が低いという特徴を有している。そのため、重合体Bとの混合系において、重合体Bの低水素溶解性を損ないにくい。
 含フッ素共重合体Aは、2種以上のカルボニル基含有基を有していてもよい。
 カルボニル基含有基としては、例えば、炭素原子間にカルボニル基を有する炭化水素基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基(-C(=O)-O-C(=O)-)、イソシアナト基が挙げられる。
 炭化水素基としては、炭素数2~8のアルキレン基等が挙げられる。
 ハロホルミル基は、-C(=O)-X(ただし、Xはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、他基材との反応性の点から、フッ素原子が好ましい。すなわちハロホルミル基としては、フルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
 アルコキシカルボニル基におけるアルコキシ基としては、重合体Bとの反応性の点から、炭素数1~8のアルコキシ基が好ましく、メトキシ基及びエトキシ基が特に好ましい。
 カルボニル含有基としては、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、及び酸無水物残基からなる群から選択される基が好ましく、酸無水物残基が特に好ましい。
 カルボニル基含有基の含有量は、含フッ素共重合体Aの主鎖炭素数1×10個に対して10~60000個が好ましく、100~50000個がより好ましく、100~10000個が更に好ましく、300~5000個が特に好ましい。カルボニル基含有基の含有量が前記下限値以上であれば、ひずみ硬化性、含フッ素共重合体Aと重合体Bとの界面の密着性がより優れ、前記上限値以下であれば、耐熱性、耐候性、耐薬品性がより優れる。
 カルボニル基含有基の含有量は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法によって測定できる。例えば、特開2007-314720号公報に記載のように赤外吸収スペクトル分析等の方法を用いて、含フッ素共重合体Aを構成する全単位に対するカルボニル基含有基を含む単位の割合(モル%)を求め、該割合からカルボニル基含有基の含有量を算出できる。
 カルボニル基含有基は、含フッ素共重合体Aを構成する単位に含まれてもよく、含フッ素共重合体Aの主鎖末端に含まれてもよく、それらの両方に含まれてもよい。カルボニル基含有基の含有量を調整しやすい点から、少なくとも、含フッ素共重合体Aを構成する単量体単位に含まれることが好ましい。
 カルボニル基含有基を含フッ素共重合体に導入する方法としては、例えば、含フッ素単量体を含む単量体混合物を重合して含フッ素共重合体Aを製造する際に、単量体混合物にカルボニル基含有基を有する単量体を含有させる方法(方法(1))、カルボニル基含有基を有するラジカル重合開始剤又は連鎖移動剤の存在下で単量体混合物を重合する方法(方法(2))、カルボニル基含有基を有する単量体を含フッ素共重合体にグラフト重合する方法(方法(3))が挙げられる。これらの中でも方法(1)が好ましい。
 方法(2)では、主鎖末端にカルボニル基含有基が導入される。
 方法(3)の具体例としては、カルボニル基含有基を有する単量体と含フッ素共重合体とを混錬した後、放射線照射する方法;カルボニル基含有基を有する単量体、含フッ素共重合体及びラジカル開始剤を混錬した後、溶融押出しする方法が挙げられる。
 カルボニル基含有基を有する単量体としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(ビシクロ[2.2.1]ヘプト-2-エン-5,6-ジカルボン酸無水物ともいう。)等の酸無水物残基を有する単量体、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、ビシクロ[2.2.1]ヘプト-2-エン-5,6-ジカルボン酸、CF=CFOCFCFCFCOOH、CF=CFOCFCF(CF)OCFCFCOOH、CH=CHCFCFCFCOOH等のカルボキシ基を有する単量体、並びにそれらのアルキルエステル(メチルエステル、エチルエステル等)、アルカリ金属塩、及びアンモニウム塩が挙げられる。
 カルボニル基含有基を有する重合開始剤としては、例えば、パーオキシカーボネート基を有するパーオキシド、パーオキシエステルを有するパーオキシドが挙げられる。中でも、パーオキシカーボネート基を有するパーオキシドが好ましい。パーオキシカーボネート基を有するパーオキシドとしては、例えば、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネートが挙げられる。
 カルボニル基含有基を有する連鎖移動剤としては、例えば、無水酢酸等のカルボン酸、チオグリコール酸が挙げられる。
 含フッ素共重合体Aは、ヒドロキシ基を更に有することが好ましい。ヒドロキシ基を更に有することで、ヒドロキシ基を有さない場合に比べて、耐熱性、耐久性、相溶性に優れる傾向がある。
 含フッ素共重合体A中のヒドロキシ基の含有量は、2当量/10g以上が好ましく、4当量/10g以上が更に好ましく、5当量/10g以上が特に好ましい。
 含フッ素共重合体Aがヒドロキシ基を有する場合、ヒドロキシ基は、含フッ素共重合体Aを構成する単位に含まれてもよく、含フッ素共重合体Aの主鎖末端に含まれてもよく、それらの両方に含まれてもよい。融点、ガラス温度などの熱的性質、耐熱性、重合に使用するモノマー、溶媒上の観点から、少なくとも、含フッ素共重合体Aの主鎖末端に含まれることが好ましい。
 ヒドロキシ基を含フッ素共重合体に導入する方法としては、例えば、前記したカルボニル基含有基を含フッ素共重合体に導入する方法において、カルボニル基含有基をヒドロキシ基に置き換えた方法が挙げられる。中でも、ヒドロキシ基を有する連鎖移動剤の存在下で単量体混合物を重合する方法が好ましい。
 ヒドロキシ基を有する連鎖移動剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール、チオグリコールが挙げられる。
 含フッ素共重合体Aとしては、低温機械特性、耐熱性、低溶解度パラメータの点から、テトラフルオロエチレン(以下、TFEとも記す。)単位を有する含フッ素共重合体(以下、TFE系共重合体とも記す。)が好ましい。
 TFE系共重合体は、TFE以外の単量体単位を更に有していてもよい。
 TFE以外の単量体としては、TFEと共重合可能であればよく、例えばTFE以外の含フッ素単量体、非フッ素単量体が挙げられる。
 TFE以外の含フッ素単量体としては、例えば、ヘキサフルオロプロピレン(以下、HFPとも記す。)、フッ化ビニリデン、ペルフルオロ(アルキルビニルエーテル)、CH=CX(CF(ただし、X及びXはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)(以下、FAEとも記す。)が挙げられる。
 FAEにおいて、式中のnが2以上であれば、本アロイの耐熱性や耐ストレスクラックがより優れる傾向がある。nが8以下であれば、重合反応性が良好となる傾向にある。nは2~6が好ましく、2、4又は6であることがより好ましい。FAEは2種以上を用いることができる。FAEの好ましい具体例としては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFHが挙げられる。FAEとしては、CH=CHR(ただし、Rは炭素数2~6のペルフルオロアルキル基である。)が特に好ましい。Rの炭素数は4が特に好ましい。
 非フッ素単量体としては、例えば、エチレン、プロピレン等のオレフィン系単量体、ビニルエーテル、ビニルエステル、他のハロゲン含有単量体が挙げられる。
 TFE系共重合体の具体例としては、TFE単位とHFP単位とを有する共重合体(以下、TFE/HFP系共重合体とも記す。他の共重合体も同様に記す。)、TFE/ペルフルオロ(アルキルビニルエーテル)系共重合体、TFE/ペルフルオロ(アルキルビニルエーテル)/HFP系共重合体、エチレン/TFE系共重合体、エチレン/クロロトリフルオロエチレン系共重合体、エチレン/TFE/HFP系共重合体、エチレン/HFP/FAE系共重合体、エチレン/TFE/HFP/FAE系共重合体が挙げられる。
 TFE系共重合体としては、低温機械特性、成形性、融点の調整が可能、低比重の点から、エチレン単位を有することが好ましく、エチレン/TFE系共重合体、エチレン/TFE/HFP系共重合体、エチレン/TFE/FAE系共重合体、及び、エチレン/TFE/HFP/FAE系共重合体がより好ましい。
 TFE系共重合体としては、耐ストレスクラック性を改善する点、及びTFE系共重合体の生産性を良好に保つ点から、FAE単位を有することが好ましい。
 含フッ素共重合体Aとしては、下記含フッ素共重合体A1が好ましい。
 フッ素共重合体A1:TFE単位である単位a1と、エチレン単位である単位a2と、カルボニル基含有基を有しない、エチレン及びTFEと共重合可能な単量体単位である単位a3と、カルボニル基含有基とを有し、単位a3の少なくとも一部がFAE単位である、含フッ素共重合体。
 FAEとしては、前記と同様のものが挙げられ、好ましい態様も同様である。
 含フッ素共重合体A1において、カルボニル基含有基は、酸無水物残基であることが好ましい。
 カルボニル基含有基が酸無水物残基である場合、含フッ素共重合体A1は、酸無水物残基を有する非フッ素単量体単位である単位a4を有することが好ましい。
 酸無水物残基を有する非フッ素単量体としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物が挙げられる。
 含フッ素共重合体A1を構成する全単位の合計モル量に対する単位a1と単位a2と単位a3との合計モル量は、低温機械特性、成形性、融点の調整が可能、低比重、耐熱性、低溶解度パラメータの点から、90モル%以上が好ましく、95モル%以上がより好ましく、97モル%以上が更に好ましい。単位a1と単位a2と単位a3との合計モル量が前記下限値以上であれば、低温機械特性、成形性、融点の調整が可能、低比重、耐熱性、低溶解度パラメータが良好となる。
 含フッ素共重合体A1を構成する全単位の合計モル量に対する単位a1と単位a2と単位a3との合計モル量は、100モル%であってもよいが、含フッ素共重合体A1が単位a4を有する場合は、99.99モル%以下が好ましく、99.95モル%以下がより好ましく、99.9モル%以下が更に好ましい。
 単位a1と単位a2と単位a3との合計モル量に対する単位a3のモル量は、3~14モル%が好ましく、5~12モル%がより好ましく、7~11モル%が更に好ましい。
 単位a1と単位a2と単位a3との合計モル量に対するFAE単位のモル量は、3モル%以上が好ましく、5モル%以上がより好ましく、7%以上が特に好ましい。
 含フッ素共重合体A1が単位a4を有する場合、含フッ素共重合体A1を構成する全単位の合計モル量に対する単位a4のモル量は、0.01~10モル%が好ましく、0.05~5モル%がより好ましく、0.1~3モル%が更に好ましい。単位a4のモル量が前記下限値以上であれば、重合体Bとの親和性が良好となり、含フッ素共重合体A1の微分散が達成されやすくなり、結果として、均質なポリマーアロイが得られやすくなる傾向がある。すなわち、含フッ素共重合体A1が微小な島となる海島構造が形成されやすくなり、その結果、耐屈曲疲労性の向上効果が十分に発現するとともに、ボイドや凝集物が発生しにくくなって、重合体B本来の利点であるガスバリア性や溶融成形性を充分に維持できる。
 含フッ素共重合体Aの融点は、250℃以下であり、120~240℃が好ましく、150~210℃がより好ましく、170~190℃が更に好ましい。含フッ素共重合体Aの融点が前記上限値以下であれば、重合体Bの融点との差が小さくなり、本アロイを製造する際に溶融温度を低くでき、熱による重合体Bの劣化や色調悪化を抑制できる。
 含フッ素共重合体Aの融点は、例えば、含フッ素共重合体Aを形成する単量体の組成、カルボニル基含有基の含有量により調整できる。例えば、カルボニル基含有基を有する単量体単位の割合が増えると、融点が低くなる傾向がある。
 含フッ素共重合体Aは、曲げ弾性率が1000MPa以下、-40℃におけるアイゾット衝撃試験で破壊しないこと、脆化温度が-80℃以下、及び-40℃における3点曲げ試験で延性破壊を示すことを満たすことが好ましい。これらの特性を満たしていれば、低温における靭性特性が良好となり、脆性破壊を示さず、延性的な低温での機械特性となり低温機械特性に信頼性のある材料となる。
 含フッ素共重合体Aの曲げ弾性率は、1200MPa以下が好ましく、1000MPa以下がより好ましい。曲げ弾性率の下限は、例えば300MPaである。
 含フッ素共重合体Aの脆化温度は、-50℃以下が好ましく、-80℃以下がより好ましい。脆化温度の下限は、例えば-150℃である。
 含フッ素共重合体Aの曲げ弾性率、脆化温度は、例えば、含フッ素共重合体Aを形成する単量体の組成(例えばTFEの割合)により調整できる。例えば、TFEの割合が増えると、曲げ弾性率が低く、脆化温度が低くなる傾向がある。
 含フッ素共重合体Aの170℃の雰囲気温度に500時間暴露した後における引張破断強度(以下、170℃暴露後引張強度とも記す。)は、暴露前の引張破断強度に対して70%以上が好ましく、75%以上がより好ましい。170℃暴露後引張強度の上限は、例えば150%である。170℃暴露後引張強度が前記下限値以上であれば、耐熱性、耐久性がより優れる。
 170℃暴露後引張強度は、含フッ素共重合体Aを形成する単量体の組成により調整できる。
 含フッ素共重合体Aの170℃の雰囲気温度に500時間暴露した後における引張破断伸度(以下、170℃暴露後引張伸度とも記す。)は、暴露前の引張破断伸度に対して100%以上が好ましく、120%以上がより好ましい。170℃暴露後引張伸度の上限は、例えば200%である。170℃暴露後引張伸度が前記下限値以上であれば、耐熱性、耐久特性がより優れる。
 170℃暴露後引張伸度は、含フッ素共重合体Aを形成する単量体の組成により調整できる。
 含フッ素共重合体Aの10万時間における分解半減期温度は、例えば120℃以上であり、135℃以上が好ましく、140℃以上がより好ましい。10万時間における分解半減期温度の上限は、例えば180℃である。含フッ素共重合体Aの10万時間における分解半減期温度が前記下限値以上であれば、耐熱性、耐久特性がより優れる。
 分解半減期温度は、含フッ素共重合体Aを形成する単量体の組成により調整できる。
 含フッ素共重合体Aの水素ガス透過係数は、5000〔cc・20μm/(m・24hs・atm)〕以上が好ましく、8000〔cc・20μm/(m・24hs・atm)〕以上がより好ましく、また、18000〔cc・20μm/(m・24hs・atm)〕以下が好ましく、15000〔cc・20μm/(m・24hs・atm)〕以下がより好ましい。含フッ素共重合体Aの水素ガス透過係数が前記下限値以上であれば、水素ガス拡散性が良好となる傾向があり、前記上限値以下であれば、ポリマーアロイのガスバリア性がより優れる傾向がある。
 含フッ素共重合体Aの容量流速(以下、Q値とも記す。)は、0.1~1000mm/秒が好ましく、1~500mm/秒がより好ましく、2~200mm/秒がさらに好ましい。Q値は、重合体を溶融成形する場合に問題となる重合体の溶融流動性を表す指標であり、分子量の目安となる。すなわち、Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。Q値が前記下限値以上であれば、溶融成形性に優れる傾向があり、前記上限値以下であれば、機械的強度に優れる傾向がある。
 ここで、Q値は、島津製作所社製フローテスタを用いて、含フッ素共重合体Aの融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出すときの含フッ素共重合体Aの押出し速度である。
 含フッ素共重合体Aの製造方法については特に制限はなく、通常、含フッ素単量体、必要に応じてその他の単量体を反応器に装入し、一般に用いられているラジカル重合開始剤、必要に応じて連鎖移動剤を用いて共重合させる方法が採用できる。
 重合方法の例としては、公知の方法である塊状重合、重合媒体として有機溶剤を使用する溶液重合、重合媒体として水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合、重合媒体として水性媒体及び乳化剤を使用する乳化重合が挙げられる。これらの中でも溶液重合が好ましい。重合は、一槽ないし多槽式の撹拌型重合装置、管型重合装置等を使用し、回分式又は連続式操作として実施することができる。
 ラジカル重合開始剤としては、半減期が10時間となる温度が0~100℃である開始剤が好ましく、20~90℃である開始剤がより好ましい。ラジカル重合開始剤の例としては、アゾビスイソブチロニトリル等のアゾ化合物、ジイソプロピルペルオキシジカーボネート等のペルオキシジカーボネート、tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等のペルオキシエステル、イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド、(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1~10の整数である。)等の含フッ素ジアシルペルオキシド、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物が挙げられる。
 重合媒体としては、例えば、上記したように、有機溶剤、水性媒体が挙げられる。有機溶剤としては、例えば、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素が挙げられる。
 連鎖移動剤としては、例えば、メタノール、エタノール等のアルコール;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のクロロフルオロハイドロカーボン;ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン;1-ヒドロトリデカフルオロヘキサン等の含フッ素ハイドロカーボンが挙げられる。
 重合条件は特に限定しないが、例えば重合温度は0~100℃が好ましく、20~90℃が特に好ましい。重合圧力は0.1~10MPaが好ましく、0.5~3MPaが特に好ましい。重合時間は、重合温度及び重合圧力等により変わりうるが、1~30時間が好ましく、2~10時間が特に好ましい。
<ポリアミド>
 ポリアミドとしては、例えば、以下のポリアミドが挙げられる。
 単独重合ポリアミド:ポリカプラミド(PA6)、ポリ-ω-アミノヘプタン酸(PA7)、ポリ-ω-アミノノナン酸(PA9)、ポリウンデカンアミド(PA11)、ポリラウリルラクタム(PA12)等
 脂肪族共重合ポリアミド:ポリエチレンジアミンアジパミド(PA26)、ポリテトラメチレンアジパミド(PA46)、ポリヘキサメチレンアジパミド(PA66)、ポリヘキサメチレンセバカミド(PA610)、ポリヘキサメチレンドデカミド(PA612)、ポリオクタメチレンアジパミド(PA86)、ポリデカメチレンアジパミド(PA108)、カプロラクタム/ラウリルラクタム共重合体(PA6/12)、カプロラクタム/ω-アミノノナン酸共重合体(PA6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(PA6/66)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(PA12/66)、エチレンジアミンアジパミド/ヘキサメチレンジアンモニウムアジペート共重合体(PA26/66)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(PA66/610)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(PA6/66/610)等
 芳香族共重合ポリアミド:ポリヘキサメチレンイソフタルアミド、ポリヘキサメチレンテレフタルアミド、ポリメタキシリレンアジパミド(PAMXD6)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体、ポリ-p-フェニレンテレフタルアミド、ポリ-p-フェニレン・3-4’ジフェニルエーテルテレフタルアミド等
 非晶性ポリアミド:ポリアミド単位とポリエーテルジアミン単位とを含むポリアミドエラストマー等
 末端変性ポリアミド:上記のポリアミドをメチレンベンジルアミン、メタキシレンジアミン等のカルボキシル基やアミノ基で末端を変性したポリアミド等
 これらの中でも、水素ガスバリア性や耐熱性の点で、ポリヘキサメチレンアジパミド(PA66)、ポリカプラミド(PA6)、ポリヘキサメチレンセバカミド(PA610)、ポリウンデカンアミド(PA11)カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(PA6/66)、及びポリメタキシリレンアジパミド(PAMXD6)が好ましい。これらのポリアミドは2種以上を併用してもよい。
 重合体Bの融点は250℃以下である。よってポリアミドの融点も250℃以下である。ポリアミドの融点は、150~250℃が好ましく、170~245℃がより好ましく、200~240℃が更に好ましい。ポリアミドの融点が前記上限値以下であれば、他の重合体との溶融混練性が良好となり、前記下限値以上であれば、耐熱性、水素ガスバリア性、機械特性が良好となる。
 重合体Bの水素ガス透過係数は、ポリマーアロイのガスバリア性の点から、1000〔cc・20μm/(m・24hs・atm)〕以下が好ましい。よってポリアミドの水素ガス透過係数も、1000〔cc・20μm/(m・24hs・atm)〕以下が好ましい。ポリアミドの水素ガス透過係数は、850〔cc・20μm/(m・24hs・atm)〕以下がより好ましい。ポリアミドの水素ガス透過係数の下限は、例えば50〔cc・20μm/(m・24hs・atm)〕である。
<EVOH>
 EVOHは、エチレン単位とビニルアルコール単位とを有する共重合体である。
 EVOHは、エチレン単位を有するので、エチレン単位を有さないポリビニルアルコールよりも融点と分解温度の差が大きく、溶融成形が可能である。また、エチレン単位を有することで、ポリビニルアルコールと比較して耐水性に優れる。
 EVOHは、ビニルエステル単位を更に有していてもよい。
 ビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル、トリフロロ酢酸ビニルが挙げられる。これらの中でも、経済的な観点から、酢酸ビニルが好ましい。
 EVOHは、通常、エチレンとビニルエステルとの共重合体(エチレン-ビニルエステル共重合体)をケン化させて得られる。重合は公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合を用いて行うことができるが、一般的にはメタノールを溶媒とする溶液重合が用いられる。得られたエチレン-ビニルエステル共重合体のケン化も公知の方法で行い得る。このようにして製造されるEVOHは、エチレン単位とビニルアルコール単位とを有し、場合により、ケン化されずに残存した若干量のビニルエステル単位を有する。
 EVOHにおけるエチレン単位の含有量は、EVOHを構成する全単位に対し、15~60モル%が好ましく、18~38モル%がより好ましく、18~34モル%が更に好ましい。エチレン単位の含有量が前記下限値以上であれば、耐水性が良好となる傾向があり、エチレン単位の含有量が前記上限値以下であれば、超高圧下での耐水素性や水素ガスバリア性が良好になる傾向がある。
 エチレン単位の含有量は、ISO14663に準じて測定される。
 EVOHのケン化度は、90モル%以上が好ましく、95モル%以上がより好ましく、99.5モル%以上がより好ましく、100モル%であってもよい。ケン化度が前記下限値以上であれば、ガスバリア性が良好となる傾向にある。
 ケン化度は、JIS K 6726に準じて(ただし、EVOHが水/メタノール溶媒に均一に溶解した溶液にて)測定される。
 EVOHは、側鎖に一級水酸基を有する単量体単位(以下、単位bとも記す)を更に有していてもよい。EVOHに単位bを導入すると、非晶部の水素結合を損なうことなく結晶サイズを小さくできるので、エチレン単位の含有量が低くても水素ガスバリア性等を損なうことなく融点を低くできる。融点が低くなると、融点と熱分解温度との差が大きくなり、成形加工性が向上する傾向がある。
 従来、EVOHは、エチレン単位の含有量が減少するに従って融点が上昇するため、共重合体の熱分解温度と融点との差が小さくなる傾向があり、成形加工性が悪化する傾向がある。C.A.FINCH著「POLYVINYL ALCOHOL-DEVELOPMENTS」の第205頁のFigure8.4によると、エチレン単位の含有量が20モル%未満の場合、融点が200℃以上になることが図示され、その領域では共重合体の熱分解温度との差が小さいことがわかる。
 単位bをEVOHに導入するには、例えば、EVOHの製造時、側鎖に一級水酸基を有する単量体を、エチレン及びビルエステルと共重合する。
 側鎖に一級水酸基を有する単量体としては、例えば、アリルアルコール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール等のモノヒドロキシアルキル基含有単量体、2-メチレン-1,3-プロパンジオール等の2置換ジオール単量体、3,4-ジオール-1-ブテン、4,5-ジオール-1-ペンテン、4,5-ジオール-3-メチル-1-ペンテン、5,6-ジオール-1-ヘキセン等の1,2-ジオール基含有単量体、グリセリンモノアリルエーテルが挙げられる。これら単量体は2種以上を併用してもよい。これらの単量体のうち、側鎖に1,2-ジオール構造を有する単位が得られる点で、1,2-ジオール基含有単量体が好ましい。EVOHが側鎖に1,2-ジオール構造を有する単位を含むと、水素ガスバリア性、成形性が良好となる。
 単位bをEVOHに導入する際、側鎖に一級水酸基を有する単量体の一級水酸基をエステル化等の常法により保護した状態で共重合を行うことが好ましい。
 側鎖に保護された一級水酸基を有する単量体としては、例えば、ヒドロキシメチルビニリデンジアセテート等の2置換ジオール単量体のエステル化物、4,5-ジアシロキシ-1-ペンテン、5,6-ジアシロキシ-1-ヘキセン等の1,2-ジオール基含有単量体のアシル化物、ビニルエチレンカーボネート等のビニルカーボネート単量体、2,2-ジアルキル-4-ビニル-1,3-ジオキソランが挙げられる。ヒドロキシメチルビニリデンジアセテートとしては、例えば1,3-ジアセトキシ-2-メチレンプロパン、1,3-ジプロピオニルオキシ-2-メチレンプロパン、1,3-ジブチロニルオキシ-2-メチレンプロパンが挙げられる。これら単量体は2種以上を併用してもよい。これらの単量体のうち、製造容易性の点では、1,3-ジアセトキシ-2-メチレンプロパンが好ましく、側鎖に1,2-ジオール構造を有する単位が得られる点では、1,2-ジオール基含有単量体のアシル化物が好ましい。
 単位bの好ましい一例として、側鎖に1,2-グリコール結合を有する単位が挙げられる。側鎖に1,2-グリコール結合を有する単位の一例として、下式(5)で表される単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 ただし、R~Rは、それぞれ独立に水素原子又は有機基であり、Xは、単結合又は結合鎖であり、R~Rは、それぞれ独立に水素原子又は有機基である。
 R~Rにおける有機基としては、特に限定しないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基が好ましい。アルキル基は、必要に応じて、ハロゲン原子、ヒドロキシ基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 R~Rは、すべて水素原子であることが望ましいが、共重合体特性を大幅に損なわない程度の量であれば有機基であってもよい。
 R~Rとしては、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子が特に好ましい。R~Rとしては、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子が特に好ましい。
 Xにおける結合鎖としては、特に限定しないが、例えば、炭化水素鎖、ヘテロ原子(ただし金属原子を除く。)を含む結合鎖、金属原子を含む結合鎖が挙げられる。
 炭化水素鎖としては、例えば、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基(フェニレン基、ナフチレン基等)が挙げられる。これらの炭化水素鎖は、置換基(例えばフッ素原子、塩素原子、臭素原子等のハロゲン原子)を有していてもよい。 ヘテロ原子(ただし金属原子を除く。)を含む結合鎖としては、例えば、-O-、-(CHO)-、-(OCH-、-(CHO)CH-等のエーテル結合部位を含む結合鎖;-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-等のカルボニル基を含む結合鎖;-S-、-CS-、-SO-、-SO-等の硫黄原子を含む結合鎖;-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-等の窒素原子を含む結合鎖;-HPO-等のリン原子を含む結合鎖が挙げられる。
 金属原子を含む結合鎖としては、例えば、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-等の珪素原子を含む結合鎖;-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-等のチタン原子を含む結合鎖;-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等のアルミニウム原子を含む結合鎖が挙げられる。
 これらの結合鎖において、Rは各々独立に、水素原子又は置換基であり、水素原子又はアルキル基が好ましい。mは自然数であり、通常1~30、好ましくは1~15、特に好ましくは1~10である。
 これら結合鎖のうち、製造時や使用時の安定性の点から、炭素数1~10の炭化水素鎖が好ましく、炭素数1~6の炭化水素鎖がより好ましく、炭素数1の炭化水素鎖が特に好ましい。
 Xとしては、結晶性の向上や非晶部におけるフリーボリューム(自由体積空孔サイズ)低減による点から、単結合が好ましい。
 上記式(5)で表される単位としては、R~Rがすべて水素原子であり、Xが単結合である、下式(5a)で示される単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000002
 単位bの他の好ましい一例として、下式(6)で表される単位も挙げられる。
Figure JPOXMLDOC01-appb-C000003
 ただし、R~R10は、それぞれ独立に水素原子又は炭素数1~10のアルキル基であり、該アルキル基は水酸基、アルコキシ基又はハロゲン原子を含んでもよい。Y及びZは、それぞれ独立に水素原子、ホルミル基又は炭素数2~10のアルカノイル基である。
 EVOHが単位bを有する場合、単位bの含有量は、EVOHを構成する全単位に対し、0.5~15モル%が好ましく、0.5~12モル%がより好ましく、1~8モル%が更に好ましく、2~4モル%が特に好ましい。単位bの含有量が前記下限値以上であれば、融点降下の効果が発現しやすく、溶融成形性が良好となる傾向があり、前記上限値以下であれば、共重合体の結晶性が充分に確保されるためか、耐水性が良好となる傾向がある。
 単位bの含有量が異なる少なくとも2種のEVOHをブレンドして単位bの含有量を調整することも可能である。この場合、各EVOHのエチレン含有量の差は2モル%未満が好ましい。単位bを有するEVOHと、単位bを有しないEVOHとをブレンドして単位bの含有量を調整することも可能である。
 EVOHは、本発明の効果を阻害しない範囲(通常、EVOHを構成する全単位に対して3モル%以下、好ましくは2モル%以下)で、上記以外の単量体単位を更に有していてもよい。
 他の単量体としては、例えば、以下の重合体が挙げられる。これら単量体は2種以上を併用してもよい。
 オレフィン類:プロピレン、1-ブテン、イソブテン等
 不飽和酸及びその誘導体:アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸、その塩又はそのモノ又はジアルキルエステル(アルキル基の炭素数は1~18)
 アクリルアミド類:アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸、その塩、アクリルアミドプロピルジメチルアミン、その酸塩又はその4級塩等
 メタクリルアミド類:メタクリルアミド、N-アルキルメタクリルアミド(アルキル基の炭素数は1~18)、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン、その酸塩又はその4級塩等
 N-ビニルアミド類:N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等
 シアン化ビニル類:アクリルニトリル、メタクリルニトリル等
 ビニルエーテル類:アルキルビニルエーテル(アルキル基の炭素数は1~18)、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等
 ハロゲン化ビニル類:塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等
 ビニルシラン類:ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、ビニルイソブチルジメトキシシラン、ビニルエチルジメトキシシラン、ビニルメトキシジブトキシシラン、ビニルジメトキシブトキシシラン、ビニルトリブトキシシラン、ビニルメトキシジヘキシロキシシラン、ビニルジメトキシヘキシロキシシラン、ビニルトリヘキシロキシシラン、ビニルメトキシジオクチロキシシラン、ビニルジメトキシオクチロキシシラン、ビニルトリオクチロキシシラン、ビニルメトキシジラウリロキシシラン、ビニルジメトキシラウリロキシシラン、ビニルメトキシジオレイロキシシラン、ビニルジメトキシオレイロキシシラン等
 カチオン基含有単量体:N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドプロピルトリメチルアンモニウムクロライド、2-アクリロキシエチルトリメチルアンモニウムクロライド、2-メタクリロキシエチルトリメチルアンモニウムクロライド、2-ヒドロキシ-3-メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3-ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロライド、ジエチルジアリルアンモニウムクロライド等
 上記以外の単量体:アセトアセチル基含有単量体、酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸、ビニルエチレンカーボネート等
 なお、EVOHは、成形性の点から、カルボン酸変性EVOHを形成する単量体単位を含まないことが好ましい。カルボン酸変性EVOHを形成する単量体としては、例えば無水マレイン酸、無水イタコン酸、無水コハク酸が挙げられる。これらの単量体単位は、例えば、上記単量体を公知の手法にてエチレン及びビニルエステル系単量体と共重合することによりEVOHに導入できる。
 EVOHとして、公知の手法でウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の「後変性」されたEVOHを用いることも可能である。
 EVOHは、2種以上のEVOHの混合物であってもよい。2種以上のEVOHの組み合わせ例としては、前記式(1)で表わされる単位の含有量が異なるEVOHの組み合わせ、ケン化度が異なるEVOHの組み合わせ、重合度が異なるEVOHの組み合わせ、共重合成分が異なるEVOHの組み合わせが挙げられる。
 EVOHのメルトフローレート(以下、「MFR」とも記す。)は、0.5~100g/10分が好ましく、0.5~50g/10分がより好ましく、1~30g/10分が更に好ましい。MFRが前記下限値以上であれば、成形時に押出機内が高トルク状態となりにくく、押出加工が容易な傾向があり、前記上限値以下であれば、ガスバリア性が良好となる傾向にある。
 EVOHのMFRは、JIS K 7210-1:2014(ISO1133-1:2011)に準じて、210℃、荷重2160gの条件で測定される。
 重合体Bの融点は、250℃以下である。よってEVOHの融点も、250℃以下である。EVOHの融点は、150~220℃が好ましく、160~200℃がより好ましく、170~195℃が更に好ましい。EVOHの融点が前記上限値以下であれば、成形性、吸湿性が良好となり、前記下限値以上であれば、水素ガスバリア性、耐熱性が良好となる。
 重合体Bの水素ガス透過係数は、ポリマーアロイのガスバリア性の点から、1000〔cc・20μm/(m・24hs・atm)〕以下が好ましい。よってEVOHの水素ガス透過係数も、1000〔cc・20μm/(m・24hs・atm)〕以下が好ましい。EVOHの水素ガス透過係数は、100〔cc・20μm/(m・24hs・atm)〕以下がより好ましく、50〔cc・20μm/(m・24hs・atm)〕以下が更に好ましく、30〔cc・20μm/(m・24hs・atm)〕以下が特に好ましい。EVOHの水素ガス透過係数の下限は、例えば0.2〔cc・20μm/(m・24hs・atm)〕である。
 本アロイは、必要に応じてオレフィン系エラストマー(以下、エラストマーCとも記す。)を含んでいてもよい。エラストマーCとしては、(エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、が挙げられる。
 (エチレン及び/又はプロピレン)・α-オレフィン系共重合体とは、エチレン及び/又はプロピレンと炭素数3以上のα-オレフィンを共重合した重合体である。炭素数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンが挙げられる。
 また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエンなどの非共役ジエンを共重合してもよい。
 (エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体とは、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル単量体を共重合した重合体である。
 α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸が挙げられ、α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。
 アイオノマー重合体とは、オレフィンとα,β-不飽和カルボン酸共重合体のカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。
 オレフィンとしてはエチレンが好ましく用いられ、α,β-不飽和カルボン酸としてはアクリル酸、メタクリル酸が好ましく用いられるが、ここに例示したものに限定されるものではなく、不飽和カルボン酸エステル単量体が共重合されていても構わない。
 また、金属イオンはLi、Na、K、Mg、Ca、Sr、Baなどのアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等を挙げることできる。
 (エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマー重合体、並びに芳香族ビニル化合物・共役ジエン化合物系ブロック共重合体は、カルボン酸及び/又はその誘導体で変性された重合体であることが好ましい。このような成分により変性することにより、EVOH及びポリアミドに対して親和性を有する官能基をその分子中に含むこととなる。
 EVOH及びポリアミドに対して親和性を有する官能基としては、カルボキシル基、酸無水物基、カルボン酸エステル基、カルボン酸金属塩、カルボン酸イミド基、カルボン酸アミド基、エポキシ基等が挙げられる。これらの官能基を含む化合物の例として、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸及びこれらカルボン酸の金属塩、マレイン酸モノメチル、イタコン酸モノメチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2-エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物、マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリルアミド、メタクリルアミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル等が挙げられる。これらは2種以上を用いることができる。
 これらの中でも、低温衝撃耐性、コスト、入手のしやすさの観点から、マレイン酸変性されたエチレン/プロピレン共重合体及びマレイン酸変性されたエチレン/ブテン共重合体が好ましい。
<本アロイの製造方法>
 本アロイは、含フッ素共重合体Aと重合体Bとを溶融混練して製造される。このとき、必要に応じて、他の成分(例えば化学反応型の各種の相溶化剤、表面処理剤)を添加してもよい。
 溶融混練する全ての原料の合計質量に対する含フッ素共重合体A、重合体Bそれぞれの割合は、本アロイの全質量に対する含フッ素共重合体A、重合体Bそれぞれの割合と同じである。
 溶融混練方法としては、公知の溶融混練装置を用いる方法が挙げられる。
 溶融混練装置としては、公知の溶融混練機能を有する装置が挙げられる。溶融混練装置としては、混練効果の高いスクリューを備えていてもよい単軸押出機又は二軸押出機が好ましく、二軸押出機がより好ましく、混練効果の高いスクリューを備えた二軸押出機が特に好ましい。混練効果の高いスクリューとしては、溶融混練対象物に対する充分な混練効果を有し、かつ過剰なせん断力を与えないものを選択できる。スクリューのL/Dは、混練効果の点から、20以上が好ましく、30~70がより好ましい。「L/D」とは、スクリュー全長L(mm)をスクリュー径D(mm)で割った値である。
 溶融混練装置の具体例としては、ラボプラストミル混練機(東洋精機製作所社製)、KZWシリーズ 二軸混練押出機(テクノベル社製)が挙げられる。
 溶融混練装置への含フッ素共重合体A及び重合体Bの供給方法に特に制限は無く、含フッ素共重合体A及び重合体Bをあらかじめ混合して溶融混練装置に供給してもよく、含フッ素共重合体A及び重合体Bを別々に溶融混練装置に供給してもよい。
 含フッ素共重合体A及び重合体Bを溶融混練する際の温度(以下、溶融混練温度とも記す。)は、含フッ素共重合体A、重合体Bに応じて設定することが好ましい。溶融混練温度は、180~250℃が好ましく、200~245℃がより好ましく、220~240℃が更に好ましい。
 含フッ素共重合体A及び重合体Bの溶融混練は、重合体B中に平均粒子径が0.001~10μmの含フッ素共重合体Aの粒子が分散するように実施する。溶融混練温度、押出せん断速度及び溶融混練装置内での溶融混練対象物の滞留時間を適宜調整することによって、重合体B中に平均粒子径が0.001~10μmの含フッ素共重合体Aを分散できる。
 溶融混練温度を高くすることによって、重合体B中に含フッ素共重合体Aが分散しやすく、含フッ素共重合体Aの粗大粒子が残存しにくい。溶融混練温度を低くすることによって、含フッ素共重合体Aの熱分解が促進されにくく、得られるポリマーアロイの耐熱性がさらに優れ、また、含フッ素共重合体Aが小粒径化されすぎない。
 押出せん断速度を大きくすることによって、重合体B中に含フッ素共重合体Aが分散しやすく、含フッ素共重合体Aの粗大粒子が残存しにくい。押出せん断速度を低くすることによって、含フッ素共重合体Aが小粒径化されすぎない。
 溶融混練装置内での溶融混練対象物の滞留時間を長くすると、重合体B中に含フッ素共重合体Aが分散しやすく、含フッ素共重合体Aの粗大粒子が残存しにくい。滞留時間を短くすると、含フッ素共重合体Aの熱分解が促進されにくい。
 溶融混練は、架橋剤及び架橋助剤を実質的に存在させずに実施することが好ましい。架橋剤及び架橋助剤を実質的に存在させずに溶融混練するとは、含フッ素共重合体Aを実質的に架橋させずに溶融混練することを意味する。含フッ素共重合体Aが実質的に架橋していないかどうかは、ポリマーアロイの曲げ弾性率の値によって確認できる。
<用途>
 本アロイは、溶融成形が可能であり、溶融成形によって成形体とすることができる。本アロイと他材料とを複合化又は積層化して複合体とすることもできる。溶融成形方法としては、射出成形、押出成形、共押出成形、ブロー成形、圧縮成形、インフレーション成形、トランスファー成形、カレンダー成形等の公知の溶融成形方法を採用できる。成形体の例としては、特に限定するものではないが、摺動部材、シール材、ギア、アクチュエーター、ピストン、ベアリング、筺体、航空機内装材、燃料用チューブ、ブッシュ、チューブ、ホース、タンク、シール、ワイヤー、ケーブル、フィルム、シート、ボトル、繊維等が挙げられる。
 本アロイは、パウダー状にしてコーティング材料として用いることもできる。コーティングされた物品の用途としては、国際公開第2015/182702号に記載されたものが挙げられる。
 本アロイは、高圧ガスに対する耐性に優れることから、高圧ガス用ホースや高圧ガス用貯蔵容器に好適に用いられる。例えば、本アロイを、高圧ガス用ホースや高圧ガス用貯蔵容器の構成材料又はライナー材料として用いることができる。
 高圧ガスは、典型的には、圧力が35~90MPaのガスである。圧力は、ゲージ圧である。高圧ガスの具体例としては、高圧水素ガス、高圧酸素ガス、高圧二酸化炭素ガス、高圧窒素ガス、高圧アルゴンガス、高圧メタンガス、高圧アセチレンガス、高圧塩化水素ガス、高圧亜酸化窒素ガス等が挙げられる。
 高圧ガスとしては、分子量10未満の高圧ガスが好ましく、高圧水素ガスが特に好ましい。高圧ガスの分子量が小さくなるにつれ、重合体中に溶解・浸透し易い傾向がある。高圧ガスが重合体中に溶解・浸透すると、重合体が劣化する。本アロイは、高圧ガスの分子量10未満の場合でも、高圧ガスが溶解・浸透しにくく、分子量が10未満の場合に、本アロイの有用性が高い。
 本アロイを用いた高圧ガス用ホースとしては、例えば、本アロイからなる層(以下、本アロイ層とも記す。)を有するホース、本アロイと強化繊維とを含む繊維強化樹脂層を有するホースが挙げられる。強化繊維、及び本アロイと強化繊維とを含む繊維強化樹脂の製造方法については後で詳しく説明する。これらのホースにおいて、本アロイ層又は繊維強化樹脂層は2層以上存在していてもよい。ホースにおいて、本アロイ層の厚さは、例えば0.1~10mmである。繊維強化樹脂層の厚さは、例えば1~100mmである。ホースの一例として、輸送用の高圧水素ガスが挙げられる。
 本アロイを用いた高圧ガス用貯蔵容器の例としては、本アロイ層を有する貯蔵容器、本アロイと強化繊維とを含む繊維強化樹脂層を有する貯蔵容器が挙げられる。これらの貯蔵容器において、本アロイ層又は繊維強化樹脂層は2層以上存在していてもよい。貯蔵容器において、本アロイ層の厚さは、例えば2~100mmである。繊維強化樹脂層の厚さは、例えば2~200mmである。貯蔵容器の一例として、自動車用水素ガスタンクが挙げられる。
 以上説明した本アロイにあっては、カルボニル基含有基を有する含フッ素共重合体Aの粒子が、重合体Bに、0.001~10μmの平均粒子径で分散しているので、高圧ガスへの耐性に優れる。例えば、高圧ガスの供給、脱圧が繰り返されるような場合でも、ガスバリア性、柔軟性等の特性が高圧ガスによって劣化しにくく、長期間にわたってそれらの特性を保持できる。また、本アロイは、ガスバリア性、機械強度(例えば低温衝撃強度)、低吸湿性も良好である。 含フッ素共重合体Aが重合体Bに分散した構造をとり、含フッ素共重合体Aの平均粒子径が10μm以下であることで、重合体Bの優れたガスバリア性が十分に維持される。
 また、含フッ素共重合体Aがカルボニル基含有基を有することで、含フッ素共重合体Aと重合体Bとの間に化学反応が生じ、含フッ素共重合体Aと重合体Bとの界面の密着性に優れ、それらの界面に隙間が生じにくい。また、含フッ素共重合体Aを含むことで、低吸水性、機械強度に優れる。これらのことから、アロイ中に水分が入り込みにくく、水分の影響(水分の凍結等)でボイドやクラックが発生するのを抑制できる。
(強化繊維)
 強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
 無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ポリエチレン繊維等が挙げられる。強化繊維は、表面処理が施されているものであってもよい。強化繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。
 強化繊維としては、比重が小さく、高強度、高弾性率である点から、炭素繊維が好ましい。炭素繊維としては、例えば、WO2013/129169号に記載されたものが挙げられ、特に、段落0018~0026に記載されたものが好ましい。また、炭素繊維の製法としては、段落0028~0033に記載されたものが挙げられる。
 強化繊維としては、繊維強化成形品の機械的特性の点から、長さが10mm以上の連続した長繊維が好ましい。
 強化繊維の加工形態としては、繊維強化樹脂層の機械的特性の点から、シート状に加工されたもの(以下、強化繊維シートと記す。)が好ましい。強化繊維シートとしては、複数の強化繊維からなる強化繊維束、該強化繊維束を織成してなるクロス、複数の強化繊維が一方向に引き揃えられた一方向性強化繊維束、該一方向性強化繊維束から構成された一方向性クロス、これらを組み合わせたもの、複数の強化繊維束を積み重ねたもの等が挙げられる。
 強化繊維が長繊維である場合、強化繊維は、強化繊維シートの長さ方向の全長又は幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
 <繊維強化樹脂の製造方法>
 本アロイと強化繊維とを含む繊維強化樹脂は、例えば、本アロイを強化繊維シートに含浸させることによって製造できる。
 本アロイを強化繊維シートに埋め込む方法としては、たとえば、下記の2つの方法が挙げられる。
 方法(1):本アロイのペレットや粉体を、強化繊維シートの存在下に溶融させ、強化繊維シートに含浸させる方法。
 方法(2):本アロイのフィルムを、強化繊維シートの存在下に溶融させ、強化繊維シートに含浸させる方法。
 (方法(1))
 方法(1)の具体例としては、例えば、強化繊維シートと本アロイのペレットや粉体とを交互に積み重ねた、n層(ただし、nは1以上の整数である。)の強化繊維シートと(n+1)層の本アロイ層とからなる積重物を、熱プレス機で熱プレスすることによって、本アロイを溶融させ強化繊維シートに含浸させる方法が挙げられる。
 熱プレスの際の温度は、本アロイの融点以上であり、本アロイを構成する重合体Bの融点及び含フッ素共重合体の融点のうち高い方の融点+5℃以上、該融点+100℃以下が好ましい。熱プレスの際の圧力は、0.1~50MPaが好ましく、0.5~30MPaがより好ましい。熱プレスの際の時間は、3秒以上180分以下が好ましく、5秒以上60分以下がより好ましい。
 溶融混練して得られた本アロイのペレットをそのまま用いる場合、ペレットを機械的に粉砕し細かくして粉体化して用いることも可能である。ペレットを機械的に粉砕できる装置としては、ハンマーミル、ピンミル、ディスクミル、ロータリーミル、ジェットミル、流動床エアジェットミル、ジョークラッシャ、ジャイレートリークラッシャ、ケージミル、パンクラッシャ、ボールミル、ペブルミル、ロッドミル、チューブミル、ディスクアトリションミル、アトライター、ディスクリファイナ等が挙げられる。
 ペレットの粉砕は、より弾性率が高い状態が好ましく、ペレットを-40℃以下の温度に冷却して行うことが好ましい。冷却温度は、-100℃以下がより好ましく、-160℃以下がさらに好ましい。冷却方法としては、ドライアイスまたは液体窒素を用いる方法が挙げられる。
 (方法(2))
 方法(2)の具体例としては、例えば、強化繊維シートと本アロイを用いて作製したフィルムとを交互に積み重ねた、n層(ただし、nは1以上の整数である。)の強化繊維シートと(n+1)層の本アロイのフィルムとからなる積重物を、熱プレス機で熱プレスすることによって、本アロイを溶融させ、強化繊維シートに含浸させる方法が挙げられる。熱プレスの際の温度、圧力及び時間は、方法(1)と同様である。
 本アロイのフィルムは、押出溶融物をTダイからフィルム状に押し出すことによって製造できる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例の記載に限定されるものではない。例1~6、11、13~18、24は比較例であり、例7~10、12、19、21~23は実施例である。
〔評価方法〕
 (ポリマーアロイ中の含フッ素共重合体の平均粒子径)
 ポリマーアロイの断面をSEMで観察してSEM像を取得し、画像処理ソフト(Image-Jソフト)を用いて、取得したSEM像に含まれる少なくとも100個のドメイン(分散粒子)を無作為に選択し、選択した全てのドメインのドメイン面積のヒストグラムを作成して面積平均径を算出し、その値をポリマーアロイ中の含フッ素共重合体の平均粒子径(以下、分散粒子径とも記す。)とした。なお、ヒストグラムにおける階級数は、スタージェスの公式(n=1+logN、n:階級数、N:データ数)に従い設定した。
 (一軸伸長粘度)
 ひずみ制御型の回転レオメータ(ARES、TA Instruments社製)の伸長冶具(ARES-EVF)を用い、窒素雰囲気、温度:240℃、ひずみ速度ε:1.0s-1の条件下で、試料の伸長粘度η (t)を測定した。
 (せん断動的粘弾性)
 ひずみ制御型の回転レオメータ(ARES、TA Instruments社製)を用い、窒素雰囲気、温度:240℃、周波数:0.01~100rad/s、ひずみ:Strain Sweep Testでの線形範囲内の条件下で、試料のせん断動的粘弾性測定を行い、複素粘度の絶対値η(t)を得た。
 (ヘンキーひずみ)
 ヘンキーひずみε(t)は、ひずみ速度εと時間tの積によって得た。
 (ひずみ硬化度)
 一軸伸長粘度測定で得られた非線形領域における伸長粘度η (t)、せん断動的粘弾性で得られた複素粘度の絶対値から算出した線形領域における伸長粘度3η(t)、及びヘンキーひずみε(t)に基づき、前記式1~2からひずみ硬化度SHを求めた。
 (曲げ弾性率)
 曲げ弾性率は、ASTM D790に準じて測定した。
 (アイゾット衝撃試験)
 アイゾット(Izod)衝撃試験は、ASTM D256に準じて実施した。
 (脆化温度)
 試料について固体動的粘弾性測定を行い、固体動的粘弾性における温度分散のエネルギー吸収率により求められたγ分散のピーク温度を脆化温度とした。
 固体動的粘弾性測定は、スペクトロメ-タ(セイコー電子工業製の測定解析装置レオステーションSDM5600HにテンションモジュールDMS200を接続)を用い、以下の条件にて実施した。
 試験片:20mm×5mm×0.08mmのプレスシート、周波数:1Hz、昇温速度:2℃/分、変位振幅:10μm、測定温度領域:-150℃から180℃。
 (3点曲げ試験)
 試料を射出成形し、80mm×10mm×4mmの試験片を複数作製した。
 得られた試験片について、(株)島津製作所製のオートグラフAG-ISを用い、ASTM D790に準じ、曲げ速度:10mm/分、支点間距離:64mm、測定温度:-40℃の条件で3点曲げ試験を行った。その結果を以下の基準で評価した。
 ○:延性(非破壊)。
 ×:脆性(破壊)。
 (水素ガス透過係数)
 水素ガス透過係数は、差圧式ガス・蒸気透過率測定装置(GTRGTRテック社製、装置名GTR-30XAD)を用い、JIS K 7126-1:2006(差圧法)に準じ、以下の条件で測定した。
 検知器:ガスクロマトグラフ(TCD、ヤナコテクニカルサイエンス社製、装置名:G2700T)、気体:水素ガス(乾燥状態)、差圧:1atm、温度:15±2℃、透過面積:15.2×10-4(透過部径4.4×10-2m)、試験数n=1。
 (吸水率)
 吸水率は、JIS K 7209:2000に準じて測定した。
 (自由体積)
 試料を射出成形し、42mm×15mm×2mmのシートを作製し、このシートを長さ方向に約半分に切断して試験片を作製した。
 得られた試験片について、以下の条件で陽電子消滅寿命測定(PALS法)を行い、自由体積を求めた。
 シンチレータ:BaF2、光電増倍管:浜松ホトニクス(株)製H6610MOD、陽電子線源:22Na、測定時間:86400s、測定温度:RT(25℃)。
 陽電子消滅寿命測定における高分子の非晶部の空隙に相当するo-Psの傾きから寿命時間と相対強度を評価し、得られた寿命時間から下記式(Nakanishi-Jeanの式)により自由体積VFを求めた。
Figure JPOXMLDOC01-appb-M000004
 〈陽電子寿命測定法の原理と装置〉
 陽電子寿命測定のための計測装置においては、陽電子eが円板試料に入射されてから消滅するまでの寿命を測定する。陽電子寿命測定のためには、eの入射時刻と消滅時刻を知る必要があるが、22Na線源からのeの入射時刻は、同時に放出される1.28MeVのγ線の検出時刻より求められる。eの消滅時刻は、消滅γ線(511keV)の検出時刻より求められる。そして、その時間差をfast-fast同時計数システムにより測定する。γ線で得られたパルスは、弁別回路で識別され、高速同時計数回路で入射γ線と消滅γ線の同時性が確認されたときにだけ、時間差波高変換回路に送られる。時間差波高変換回路で、入射パルスと消滅パルスの時間差に比例した波高の電圧パルスが発生し、この電圧パルスはアナログ-ディジタル変換器でディジタル信号に変換され、パソコンに蓄積されて、経時的に減衰する消滅曲線(減衰曲線)が得られる。横軸に時間(ns)、縦軸にカウント数としてプロットされた減衰曲線には、減衰の急な第1成分τ1、減衰のやや緩やかな第2成分τ2、減衰のゆるやかな第3成分τ3、減衰のずっとゆるやかな第4成分τ4などが含まれている。これをラプラス逆変換して、横軸に時間(ns)、縦軸に確率密度関数をとると、τ1、τ2、τ3、τ4など各τ成分の寿命の分布がピークとして現われる。このうち第3成分τ3は、自由体積VFの大きさの分布を示している。自由体積VFは、ポリマーの非結晶部に形成されるサブナノメーターのオーダーの半径の原子空孔の体積であり、陽電子eや、陽電子eと電子eとから形成されたポジトロニウムの寿命に関係する。
 (高圧水素ガス暴露試験)
 試料を射出成形し、直径13mm×厚み2mmの円板状の試験片を作製した。
 得られた試験片について、キーエンス社製のLED可視光源の付いたマイクロスコープ(CCD-type microscope VHX-5000)を用いて、厚み方向における可視光線の透過量(高圧水素ガス暴露試験前の透過量)を測定した。
 可視光線の透過量の測定においては、試験片の一方面側にLED可視光源を配置し、LED可視光源から試験片の中心に向かって可視光線を照射し、その状態で、試験片の他方面側の画像をマイクロスコープで取得し、画像処理ソフト(Image-J)により、試験片の中心から半径5.5mmの範囲の平均輝度を求め、その値を透過度とした。
 次いで、試験片に対し、90MPaの高圧水素ガス下に65時間の暴露を3回繰り返す高圧水素ガス暴露試験を実施した。試験後、試験片について上記と同様にして透過量(高圧水素ガス暴露試験後の透過量)を測定した。測定結果から、下式により水素暴露劣化指数を求めた。
 水素暴露劣化指数=1-(高圧水素ガス暴露試験後の透過量/高圧水素ガス暴露試験前の透過量)
 また、高圧水素ガス暴露試験の後、試験片を目視で観察し、ブリスター(膨れ)の有無を評価した。
 (引張破断強度保持率、引張破断伸度保持率)
 試料をプレス成形し、ASTM D638に準じ、Type-Vの試験片を複数作製した。
 得られた試験片の一部について、ASTM D638に準じ、引張破断強度(暴露前の引張破断強度)と引張破断伸度(暴露前の引張破断伸度)を測定した。
 残りの試験片を恒温槽に入れ、170℃の雰囲気温度に500時間暴露した。暴露後の試験片について、上記と同様にして引張破断強度(暴露後の引張破断強度)と引張破断伸度(暴露後の引張破断伸度)を測定した。測定結果から、下式により、引張破断強度保持率と引張破断伸度保持率を求めた。
 引張破断強度保持率=(暴露後の引張破断強度/暴露前の引張破断強度)×100
 引張破断伸度保持率=(暴露後の引張破断伸度/暴露前の引張破断伸度)×100
 (10万時間における分解半減期温度)
 熱重量分析装置(セイコーインスツル(SII)社製、TG/DTA6200)を用い、昇温速度を1,2,5,10又は20℃/分に変えて熱重量測定を行った。その結果から、小沢法により、熱分解反応の活性化エネルギーを求め、50%分解の半減期時間が10万時間における温度を求めた。
〔使用材料〕
 含フッ素共重合体-1:後述する合成例1で得た、カルボニル基含有基を有する含フッ素共重合体。
 含フッ素共重合体-2:無水イタコン酸を用いないことを除いて後述する合成例1と同様にして得た、カルボニル基含有基を有しない含フッ素共重合体。
 含フッ素共重合体-2はヒドロキシ基を有し、その220℃における容量流速は12mm/秒、組成はTFE単位/エチレン単位/HFP単位/CH=CH(CFF単位=49.4/41.7/7.9/1.0(モル%)、融点は190℃であった。
 EVOH-1:市販のEVOH。三菱ケミカル製、商品名:ソアノール DC3203RB、MFR(210℃,2.16kgf):3.8g/10分、融点:183℃、密度(23℃):1.19g/cm、エチレン単位の含有量:32モル%、ケン化度:99.5%。
 ポリアミド-1:市販のPA6。宇部興産製、グレード名:SF1018A、MFR(235℃,2.16kgf):10.5g/10分、融点:220℃、密度(23℃):1.07g/cm
 ポリアミド-2:市販のPAMXD6。三菱ガス化学製、グレード名:S6001、MFR(260℃,2.16kgf):7g/10分、融点:240℃、密度(23℃):1.21g/cm
 MAH変性LDPE:市販のMAH(無水マレイン酸)変性低密度ポリエチレン。三井化学製、商品名:タフマーMA8510、密度:0.885、MAH単位の含有量:1mol%、MFR(190℃,2.16kgf):2.4g/10分、融点:74℃。
 これらの材料の曲げ弾性率、アイゾット衝撃試験を評価した。また、含フッ素共重合体-1と含フッ素共重合体-2の脆化温度、引張破断強度保持率、引張破断伸度保持率及び10万時間における分解半減期温度を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
〔合成例1〕
 内容積1.3Lの、攪拌機及びジャケットを備えたステンレス製重合槽を真空引きした後、CFCHOCFCFHの822g、メタノールの1.65g、CH=CH(CFFの3.2gを仕込み、重合槽内部を攪拌しながら、HFPの350g、TFEの118g、エチレンの2.9gを仕込んだ後、ジャケットに温水を流して重合槽内温を66℃にした。この時の重合槽内圧力は1.56MPa(gauge)であった。内温が安定してから、tert-ブチルペルオキシピバレートの5質量%CFCHOCFCFH溶液の5.4mLを圧入し、重合を開始した。重合中、内圧が1.56MPaGで一定になるよう、TFE/E=54/46モル比の混合ガスを添加した。併せて、重合中に添加されるTFE/E混合ガスが5g消費される毎に、CH=CH(CFFの7.1質量%、及び無水イタコン酸の1.3質量%を含むCFCHOCFCFH溶液の2mLを添加した。反応開始から350分後、TFE/エチレン=54/46モル比の混合ガスの70gを添加したところで重合槽を冷却し、重合を終了した。その後、重合槽から残単量体ガスを大気圧までパージし、スラリーを内容積2Lの容器に移し、スラリーと同体積の水を加え、加熱(20~73℃)しながら、重合媒体及び残存する単量体と、重合体とを分離した。得られた重合体を120℃のオーブンで乾燥し、白色粉末状の含フッ素共重合体-1を得た。
 含フッ素共重合体-1はヒドロキシ基を有し、その220℃における容量流速は14mm/秒、組成はTFE単位/エチレン単位/HFP単位/CH=CH(CFF単位/無水イタコン酸単位=49.1/41.6/7.8/1.0/0.45(モル%)、融点は191℃であった。
〔例1~24〕
 上述した材料を表2~4に示す配合で混合し、二軸溶融混練機(東芝機械(株)製、型式:TEM-48SS)のスクリューの基端に供給し、下記条件で溶融混練し、溶融混練物をダイ先端から押し出されたストランドを水槽にて冷却し、ペレタイザーにてカットし、ペレットを得た。
 スクリュー径:15mm、L/D:48、回転方向:同軸方向、スクリューパターン:3か所練り部あり、スクリーンメッシュ:100/100メッシュ、スクリュー回転数:200rpm、シリンダー:基端側から第1ブロックC1、第2ブロックC2、第3ブロックC3、第4ブロックC4、第5ブロックC5、第6ブロックC6、第7ブロックC7、第8ブロックC8を順に備えたもの、温度パターン(シリンダーの各ブロックC1~C8、ダイ(D)、ヘッド(H)の設定温度):C1=180℃、C2=210℃、C3=220℃、C4=220℃、C5=230℃、C6=230℃、C7=240℃、C8=240℃、H=240℃、D=240℃。
 得られたペレットについて、分散粒子径、ひずみ硬化度、3点曲げ試験、水素ガス透過係数、吸水率、自由堆積、高圧水素ガス暴露試験(水素暴露劣化指数、ブリスター発生の有無)を評価した。結果を表2~4に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 例7~10、12、19、21~23のペレットは、高圧水素ガス暴露試験での水素暴露劣化指数が低く、ブリスター発生が見られず、高圧水素ガスへの耐性に優れていた。分子量の小さい高圧水素ガスへの耐性に優れることから、それよりも分子量の大きい高圧ガスに対する耐性にも優れると判断できる。また、これらのペレットは、ひずみ硬化度を有しており、溶融成形性に優れていた。また、これらのペレットは、3点曲げ試験で延性破壊(非破壊)となり、機械強度に優れていた。
 一方、上述の材料のいずれか1種を単独で用いた例1~6のペレットは、高圧水素ガスへの耐性、溶融成形性に劣っていた。また、これらのうち、含フッ素共重合体-1、含フッ素共重合体-2又はMAH変性LDPEを単独で用いた例1、2、6のペレットは、ガスバリア性に劣っており、EVOH-1、ポリアミド-1又はポリアミド-2を単独で用いた例3~5のペレットは、機械強度、低吸水性に劣っていた。
 含フッ素共重合体-1の代わりに含フッ素共重合体-2を用いた例11、13~16、20、24のペレットは、高圧水素ガスへの耐性、溶融成形性、機械強度に劣っていた。
 含フッ素共重合体-1の代わりにMAH変性LDPEを用いた例17~18のペレットは、高圧水素ガスへの耐性、溶融成形性に劣っていた。
 なお、2021年07月29日に出願された日本特許出願2021-124230号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (20)

  1.  融点が250℃以下である、カルボニル基含有基を有する含フッ素共重合体と、前記含フッ素共重合体と非相溶でかつ融点が250℃以下である、ポリアミド及びエチレン-ビニルアルコール共重合体からなる群から選ばれた少なくとも1種の熱可塑性重合体とが溶融混練されてなるポリマーアロイであり、
     前記ポリマーアロイの全質量に対する前記含フッ素共重合体の割合が10~40質量%であり、
     前記含フッ素共重合体の粒子が前記熱可塑性重合体中に分散しており、前記ポリマーアロイ中の前記含フッ素共重合体粒子の平均粒子径が0.001~10μmである、ポリマーアロイ。
  2.  下記ひずみ硬化度が0.10~1.50である、請求項1に記載のポリマーアロイ。
     ひずみ硬化度:温度240℃、ひずみ速度ε:1.0s-1の条件下で一軸伸長粘度を測定し、下式(1)~(3)からひずみ硬化度SHを求める。
      SH=dlnλ(t)/dε(t)  ・・・(1)
      λ(t)=η (t)/3η(t)  ・・・(2)
      ε(t)=ε・t  ・・・(3)
     ただし、SHはひずみ硬化度であり、lnは自然対数であり、λ(t)は非線形性パラメータであり、η (t)は非線形領域における伸長粘度であり、η(t)は温度240℃、角周波数ω:0.1~100(rad/s)の条件下でせん断動的粘弾性測定によってωの関数として得られた複素粘度の絶対値をt=1/ωとして時間の関数に変換することで得られる線形の伸長粘度であり、ε(t)はヘンキーひずみであり、tは伸長時間である。
  3.  前記カルボニル基含有基の含有量が、前記含フッ素共重合体の主鎖炭素数1×10個に対して10~60000個である、請求項1又は2に記載のポリマーアロイ。
  4.  前記カルボニル基含有基が、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、及び酸無水物残基からなる群から選択される基である、請求項1~3のいずれか一項に記載のポリマーアロイ。
  5.  前記含フッ素共重合体がさらにヒドロキシ基を有する、請求項1~4のいずれか一項に記載のポリマーアロイ。
  6.  前記含フッ素共重合体が、テトラフルオロエチレンに基づく単位a1と、エチレンに基づく単位a2と、カルボニル基含有基を有しない、エチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく単位a3と、前記カルボニル基含有基とを有し、
     前記単位a3の少なくとも一部が、CH=CX(CF(ただし、X及びXはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)に基づく単位であり、
     前記含フッ素共重合体を構成する全単位の合計モル量に対する前記単位a1と前記単位a2と前記単位a3との合計モル量が90モル%以上である、請求項1~5のいずれか一項に記載のポリマーアロイ。
  7.  前記カルボニル基含有基が酸無水物残基であり、前記含フッ素共重合体が、前記酸無水物残基を有する非フッ素単量体に基づく単位a4を有する、請求項6に記載のポリマーアロイ。
  8.  前記含フッ素共重合体が、曲げ弾性率が1000MPa以下、-40℃におけるアイゾット衝撃試験で破壊しないこと、脆化温度が-80℃以下であること、及び-40℃における3点曲げ試験で延性破壊を示すことを満たす、請求項1~7のいずれか一項に記載のポリマーアロイ。
  9.  前記熱可塑性重合体の水素ガス透過係数が1000〔cc・20μm/(m・24hs・atm)〕以下であり、前記含フッ素共重合体の水素ガス透過係数が5000〔cc・20μm/(m・24hs・atm)〕以上である、請求項1~8のいずれか一項に記載のポリマーアロイ。
  10.  前記エチレン-ビニルアルコール共重合体の水素ガス透過係数が50〔cc・20μm/(m・24hs・atm)〕以下であり、前記ポリアミドの水素ガス透過係数が1000〔cc・20μm/(m・24hs・atm)〕以下である、請求項1~9のいずれか一項に記載のポリマーアロイ。
  11.  吸水率が2.5%以下である、請求項1~10のいずれか一項に記載のポリマーアロイ。
  12.  自由体積が0.1nm以下である、請求項1~11のいずれか一項に記載のポリマーアロイ。
  13.  下記水素暴露劣化指数が0.5以下である、請求項1~12のいずれか一項に記載のポリマーアロイ。
     水素暴露劣化指数:前記ポリマーアロイを厚み2mmの試験片に成形し、前記試験片に対し、90MPaの高圧水素ガス下に65時間の暴露を3回繰り返す高圧水素ガス暴露試験を実施し、前記高圧水素ガス暴露試験の前と後それぞれの前記試験片の厚み方向における可視光線の透過量から下式(4)により求める。
     水素暴露劣化指数=1-(前記高圧水素ガス暴露試験後の透過量/前記高圧水素ガス暴露試験前の透過量)  ・・・(4)
  14.  前記含フッ素共重合体の170℃の雰囲気温度に500時間暴露した後における引張破断強度が、暴露前の引張破断強度に対して70%以上である、請求項1~13のいずれか一項に記載のポリマーアロイ。
  15.  前記含フッ素共重合体の170℃の雰囲気温度に500時間暴露した後における引張破断伸度が、暴露前の引張破断伸度に対して100%以上である、請求項1~14のいずれか一項に記載のポリマーアロイ。
  16.  前記含フッ素共重合体の10万時間における分解半減期温度が135℃以上である、請求項1~15のいずれか一項に記載のポリマーアロイ。
  17.  請求項1~16のいずれか一項に記載のポリマーアロイを用いた高圧ガス用ホース。
  18.  請求項1~16のいずれか一項のポリマーアロイと強化繊維とを含む繊維強化樹脂層を有する高圧ガス用ホース。
  19.  請求項1~16のいずれか一項に記載のポリマーアロイを用いた高圧ガス用貯蔵容器。
  20.  請求項1~16のいずれか一項に記載のポリマーアロイと強化繊維とを含む繊維強化樹脂層を有する高圧ガス用貯蔵容器。
PCT/JP2022/028812 2021-07-29 2022-07-26 ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 WO2023008440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280051805.1A CN117715975A (zh) 2021-07-29 2022-07-26 聚合物合金、高压气体用软管和高压气体用贮藏容器
KR1020247001385A KR20240037949A (ko) 2021-07-29 2022-07-26 폴리머 얼로이, 고압 가스용 호스 및 고압 가스용 저장 용기
JP2023538562A JPWO2023008440A1 (ja) 2021-07-29 2022-07-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124230 2021-07-29
JP2021124230 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008440A1 true WO2023008440A1 (ja) 2023-02-02

Family

ID=85087642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028812 WO2023008440A1 (ja) 2021-07-29 2022-07-26 ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器

Country Status (4)

Country Link
JP (1) JPWO2023008440A1 (ja)
KR (1) KR20240037949A (ja)
CN (1) CN117715975A (ja)
WO (1) WO2023008440A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068300A (ja) 2003-08-25 2005-03-17 Toyoda Gosei Co Ltd 樹脂組成物及び燃料系樹脂成形品
JP2006168358A (ja) 2004-12-13 2006-06-29 Nobel Plastiques フルオロポリマーとエチレン−ビニルアルコールコポリマー(evoh)−修飾されたポリアミド(pa)製チューブ
JP2006328195A (ja) * 2005-05-25 2006-12-07 Daikin Ind Ltd 樹脂組成物およびそれからなる燃料容器
JP2007015279A (ja) 2005-07-08 2007-01-25 Bridgestone Corp ガス供給用ホース
JP2007218338A (ja) 2006-02-16 2007-08-30 Bridgestone Corp 高圧ホース
JP2007314720A (ja) 2006-05-29 2007-12-06 Asahi Glass Co Ltd ガラス繊維強化複合材料、その製造方法およびプリント回路基板
JP2009019717A (ja) 2007-07-12 2009-01-29 Bridgestone Corp ガス供給用ホース
WO2013129169A1 (ja) 2012-03-02 2013-09-06 東レ株式会社 炭素繊維複合材料
WO2014021422A1 (ja) * 2012-08-02 2014-02-06 日本合成化学工業株式会社 高圧ガス用ホース又は貯蔵容器
WO2015182702A1 (ja) 2014-05-30 2015-12-03 旭硝子株式会社 含フッ素重合体の製造方法
WO2016104726A1 (ja) * 2014-12-27 2016-06-30 日本合成化学工業株式会社 エチレン-ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器
WO2017082417A1 (ja) * 2015-11-13 2017-05-18 旭硝子株式会社 共重合体およびこれを含む組成物
JP2021124230A (ja) 2020-02-04 2021-08-30 三菱重工環境・化学エンジニアリング株式会社 灰押出装置及び灰押出装置の改造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068300A (ja) 2003-08-25 2005-03-17 Toyoda Gosei Co Ltd 樹脂組成物及び燃料系樹脂成形品
JP2006168358A (ja) 2004-12-13 2006-06-29 Nobel Plastiques フルオロポリマーとエチレン−ビニルアルコールコポリマー(evoh)−修飾されたポリアミド(pa)製チューブ
JP2006328195A (ja) * 2005-05-25 2006-12-07 Daikin Ind Ltd 樹脂組成物およびそれからなる燃料容器
JP2007015279A (ja) 2005-07-08 2007-01-25 Bridgestone Corp ガス供給用ホース
JP2007218338A (ja) 2006-02-16 2007-08-30 Bridgestone Corp 高圧ホース
JP2007314720A (ja) 2006-05-29 2007-12-06 Asahi Glass Co Ltd ガラス繊維強化複合材料、その製造方法およびプリント回路基板
JP2009019717A (ja) 2007-07-12 2009-01-29 Bridgestone Corp ガス供給用ホース
WO2013129169A1 (ja) 2012-03-02 2013-09-06 東レ株式会社 炭素繊維複合材料
WO2014021422A1 (ja) * 2012-08-02 2014-02-06 日本合成化学工業株式会社 高圧ガス用ホース又は貯蔵容器
WO2015182702A1 (ja) 2014-05-30 2015-12-03 旭硝子株式会社 含フッ素重合体の製造方法
WO2016104726A1 (ja) * 2014-12-27 2016-06-30 日本合成化学工業株式会社 エチレン-ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器
WO2017082417A1 (ja) * 2015-11-13 2017-05-18 旭硝子株式会社 共重合体およびこれを含む組成物
JP2021124230A (ja) 2020-02-04 2021-08-30 三菱重工環境・化学エンジニアリング株式会社 灰押出装置及び灰押出装置の改造方法

Also Published As

Publication number Publication date
KR20240037949A (ko) 2024-03-22
CN117715975A (zh) 2024-03-15
JPWO2023008440A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2014021422A1 (ja) 高圧ガス用ホース又は貯蔵容器
JP4509033B2 (ja) 積層チューブ
JP6620741B2 (ja) エチレン−ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器
CN1283718C (zh) 四氟乙烯/乙烯共聚体组合物
US7514132B2 (en) Multilayer laminate
CN101115799B (zh) 交联性组合物及含有该组合物的叠层体
US9616642B2 (en) Multilayer pipe for transporting water or gas
US20090173407A1 (en) Multilayer tube for transporting water or gas
EP2888297B1 (en) Semi-fluorinated thermoplastic resins with low gel content
WO2007042736A1 (fr) Tube multicouche pour le transport d'eau ou de gaz
CA2610783C (fr) Tube multicouche pour le transport d'eau ou de gaz
JP5270546B2 (ja) 水または気体を輸送するための多層パイプ
WO2023008440A1 (ja) ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器
JP3166433B2 (ja) 樹脂組成物
JP6192418B2 (ja) 高圧ガス用ホース又は貯蔵容器
EP2099631A2 (fr) Structure multicouche a base d'un polymere barriere eventuellement renforce a l'impact
WO2000073358A1 (fr) Resine adhesive, procede de collage et produit stratifie
JP6178154B2 (ja) 高圧ガス用ホース又は貯蔵容器
JP5293871B2 (ja) フルオロポリマー、成形体及び積層体
JPWO2004069534A1 (ja) 積層樹脂成形体及びその製造方法
JP2005331101A (ja) 積層ホース
WO2022158589A1 (ja) エチレン-ビニルアルコール系共重合体組成物
JP2518565B2 (ja) 燃料油容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022849501

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849501

Country of ref document: EP

Effective date: 20240229