WO2016104726A1 - エチレン-ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器 - Google Patents
エチレン-ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器 Download PDFInfo
- Publication number
- WO2016104726A1 WO2016104726A1 PCT/JP2015/086275 JP2015086275W WO2016104726A1 WO 2016104726 A1 WO2016104726 A1 WO 2016104726A1 JP 2015086275 W JP2015086275 W JP 2015086275W WO 2016104726 A1 WO2016104726 A1 WO 2016104726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- ethylene
- vinyl ester
- resin composition
- evoh
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/042—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/10—Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/048—Natural or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/726—Permeability to liquids, absorption
- B32B2307/7265—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/265—Tetrafluoroethene with non-fluorinated comonomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/14—Gas barrier composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/18—Applications used for pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/066—Plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0675—Synthetics with details of composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0364—Pipes flexible or articulated, e.g. a hose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/011—Improving strength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/012—Reducing weight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/066—Fluid distribution for feeding engines for propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an ethylene-vinyl ester copolymer saponified resin composition, a resin tube for a high-pressure gas or a resin liner for a composite container, and a high-pressure gas hose or a composite container.
- Patent Document 1 and Patent Document 2 a water-resistant olefin resin or polyethylene terephthalate resin is used for an inner surface layer of a resin tube, and an ethylene-vinyl ester copolymer saponified product (hereinafter referred to as “gas sinter”) is used as a gas barrier layer.
- gas sinter ethylene-vinyl ester copolymer saponified product
- EVOH may be referred to.
- a nylon resin Patent Document 1 or an insulating rubber is used for the outer surface layer.
- Patent Document 2 is used.
- a hose having a multilayer structure in which a reinforcing layer is laminated on a resin tube is generally used.
- a thermoplastic resin having a gas permeability coefficient of dry hydrogen gas at 90 ° C. of 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less is used for the inner layer, and A hydrogen filling hose using a blade structure in which paraphenylene benzbisoxazole (PBO) fibers are braided has been proposed.
- PBO paraphenylene benzbisoxazole
- Patent Document 4 discloses an ethylene-vinyl acetate copolymer as a liner for a hydrogen gas composite container that can achieve both hydrogen gas barrier properties and low-temperature impact resistance and can be molded into a single layer structure. It has been proposed to use a resin composition containing 80 to 40% by weight of a saponified product and 20 to 60% by weight of an acid-modified ethylene- ⁇ -olefin copolymer rubber and / or an acid-modified thermoplastic elastomer.
- this technique mainly aims to improve impact resistance, and the hydrogen gas pressure is assumed to be only about 10 MPa (paragraph [0029]) at most.
- the hydrogen gas barrier performance of the resin composition tends to decrease as the amount of the acid-modified ethylene- ⁇ -olefin copolymer rubber and / or acid-modified thermoplastic elastomer is increased.
- a blister is a phenomenon in which hydrogen dissolved in a resin at the time of pressurization cannot return to the gas layer at the time of depressurization, expands in the resin, becomes bubbles, and causes internal destruction of the resin.
- Craze / crack refers to a phenomenon in which microcracks are generated by repeated stress relaxation from a resin surface layer subjected to a constant strain load (craze), and a phenomenon in which cracks are generated by the repeated development of crazes (crack). It is. In order to suppress these phenomena, it is desired to develop a gas barrier resin composition that has excellent suppression of hydrogen diffusion and low-temperature characteristics and can be used as a protective layer having hydrogen embrittlement resistance.
- Patent Document 5 a technique using a resin composition of an EVOH resin having a specific structure and a fluororesin having a specific functional group that reacts with a hydroxyl group is known (Patent Document 5).
- this conventional technology can suppress hydrogen diffusion to the resin composition layer, it is resistant to hydrogen embrittlement when used as a protective layer (further blister resistance under high pressure, etc.) and properties at low temperatures. Is lacking.
- pressure resistance exceeding the design pressure of 90 MPa is required in consideration of durability.
- the present invention provides a gas barrier that contributes to improved durability when used as a resin tube for high-pressure gas and as a resin liner for composite containers without greatly impairing gas barrier properties and excellent low temperature characteristics and hydrogen embrittlement resistance.
- Resin composition, resin tube for high-pressure gas or composite container having at least one layer containing the resin composition, and high-pressure gas hose or composite container having at least one layer containing the resin composition With the goal.
- a model experiment related to hydrogen embrittlement resistance (blister resistance, etc.) under a high pressure exceeding 90 MPa corresponds to a durability acceleration test under hydrogen exposure.
- a gas barrier resin hydrogen brittleness resistance (durability) and low temperature characteristics that can be used even if it is repeatedly exposed to a hydrogen environment ranging from a high pressure exceeding 90 MPa to normal pressure.
- the EVOH resin is a resin having a remarkably high gas barrier property as compared with other thermoplastic resins. Therefore, those skilled in the art can use other resins to provide the gas barrier property under more severe conditions.
- the polymer alloying is usually avoided.
- melt viscosity of the polymer alloy composition becomes extremely high, which causes problems such as generation of gels and blisters due to thickening during melt molding. Sometimes.
- a fluororesin (A) having a functional group capable of interacting or reacting with a hydroxyl group and a thermoplastic resin (B) having a carboxyl group or an acid anhydride group (however, The fluororesin (A) and EVOH having a carboxyl group or an acid anhydride group were selected), and an EVOH resin composition containing these resins and EVOH (C) was found to solve the above problem.
- This technology of the present invention breaks the conventional idea of preventing hydrogen gas from dissolving and permeating into the resin layer under high pressure, and has a component with a high hydrogen diffusion coefficient (fluororesin) and a component with excellent low-temperature characteristics (thermoplasticity)
- fluororesin a component with a high hydrogen diffusion coefficient
- thermoplasticity a component with excellent low-temperature characteristics
- a fluorine resin (A) having a functional group capable of interacting with or reacting with a hydroxyl group and a thermoplastic resin (B) having a carboxyl group or an acid anhydride group (however, the fluorine resin (A) and the carboxyl group or By using (except EVOH having an acid anhydride group), a resin tube for a high-pressure gas and a resin liner for a composite container which are excellent in impact strength even when exposed to a cold temperature of ⁇ 40 ° C. can be obtained.
- the present invention relates to a fluororesin (A) having a functional group capable of interacting or reacting with a hydroxyl group, a thermoplastic resin (B) having a carboxyl group or an acid anhydride group (however, the fluororesin (A) and the carboxyl group).
- EVOH resin composition characterized by containing EVOH (C) except EVOH having a group or an acid anhydride group).
- the present invention also provides a high-pressure gas resin tube or composite container resin liner having at least one layer containing the EVOH resin composition of the present invention, and a high-pressure gas hose having at least one layer containing the EVOH resin composition of the present invention. Or it is a composite container.
- the EVOH resin composition of the present invention is superior in low temperature characteristics and hydrogen embrittlement resistance without greatly impairing gas barrier properties, so that it is durable when used as a resin tube for high pressure gas or as a resin liner for composite containers. It can contribute to improvement. For example, by laminating a layer made of the EVOH resin composition of the present invention on an inner layer such as a nylon resin used as a main material of a hose or a composite container, hydrogen diffusion / dissolution into the main material nylon can be suppressed. In addition, durability at a low temperature ( ⁇ 40 ° C.) associated with precooling, which was a conventional problem, can be imparted to a high-pressure gas hose or a composite container.
- FIG. 1 is a schematic diagram showing the configuration of an apparatus used in the high-pressure hydrogen exposure test in the examples.
- FIG. 2 is a diagram showing the configuration of the test piece used in the example.
- the EVOH resin composition of the present invention comprises a fluororesin (A) having a functional group capable of interacting or reacting with a hydroxyl group, a thermoplastic resin (B) having a carboxyl group or an acid anhydride group (however, a fluororesin ( A) and EVOH having a carboxyl group or an acid anhydride group are excluded), and EVOH (C).
- a fluororesin (A) and EVOH having a carboxyl group or an acid anhydride group are excluded
- EVOH (C) will be described.
- the saponified ethylene-vinyl ester copolymer (EVOH) (C) of the present invention is a known thermoplastic resin having gas barrier properties and water insolubility, and is usually a copolymer of ethylene and a vinyl ester monomer ( It is a resin obtained by saponifying an ethylene-vinyl ester copolymer).
- the polymerization can be carried out using any known polymerization method, for example, solution polymerization, suspension polymerization, or emulsion polymerization, but generally solution polymerization using methanol as a solvent is used.
- EVOH (C) produced in this way is mainly composed of ethylene-derived structural units and vinyl alcohol structural units, and in some cases, contains a slight amount of vinyl ester structural units remaining without being saponified. Since EVOH (C) has a structural unit derived from ethylene, the difference between the melting point and the decomposition temperature is larger than that of a polyvinyl alcohol resin not having a structural unit derived from ethylene, and melt molding is possible. Moreover, water resistance is provided compared with a polyvinyl alcohol resin by having a structural unit derived from ethylene.
- vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate. , Vinyl versatate, vinyl trifluoroacetate and the like.
- vinyl acetate is preferably used from an economical viewpoint.
- the content of the ethylene structural unit in EVOH (C) is preferably 15 to 60 mol%, particularly preferably 18 to 38 mol%, more preferably 18 to 34 mol%, as measured based on ISO14663. . If the content of the ethylene structural unit is too small, the water resistance tends to decrease, and if the content of the ethylene structural unit is too large, the hydrogen resistance and hydrogen gas barrier property under ultrahigh pressure tend to decrease.
- the saponification degree of EVOH (C) is a value measured based on JIS K6726 (however, EVOH (C) is a solution uniformly dissolved in water / methanol solvent), preferably 90 mol% or more. Particularly preferred is 95 to 100 mol%, and more preferred is 99.5 to 100 mol%. If the degree of saponification is too low, gas barrier properties and the like tend to decrease.
- the melt flow rate (MFR) (210 ° C., load 2160 g) of EVOH (C) is preferably 0.5 to 100 g / 10 minutes, particularly preferably 0.5 to 50 g / 10 minutes, and more preferably 1-30 g / 10 min.
- MFR melt flow rate
- the melt flow rate is too small, the inside of the extruder tends to be in a high torque state at the time of molding, and extrusion processing tends to be difficult.
- gas barrier properties and the like tend to be lowered.
- the EVOH (C) used in the present invention is an ethylene structural unit, a vinyl alcohol structural unit (including an unsaponified vinyl ester structural unit in some cases), or a range that does not hinder the effects of the present invention (usually 3 And may further contain a structural unit derived from the monomer shown below.
- monomers include olefins such as propylene, 1-butene, and isobutene; non-polymers such as acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, and (anhydrous) itaconic acid.
- N-acrylamidomethyltrimethylammonium chloride N-acrylamidoethyltrimethylammonium chloride, N-acrylamidopropyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, 2-methacryloxyethyltrimethylammonium chloride, 2-hydroxy-3- Cationic group-containing monomers such as methacryloyloxypropyltrimethylammonium chloride, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, 3-butenetrimethylammonium chloride, dimethyldiallylammonium chloride, diethyldiallylammonium chloride, acetoacetyl group-containing monomers And so on.
- vinyl silanes for example, vinyl trimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, vinylisobutyldimethoxysilane, vinylethyldimethoxysilane, vinyl Methoxydibutoxysilane, vinyldimethoxybutoxysilane, vinyltributoxysilane, vinylmethoxydihexyloxysilane, vinyldimethoxyhexyloxysilane, vinyltrihexyloxysilane, vinylmethoxydioctyloxysilane, vinyldimethoxyoctyloxysilane, vinyltrioctyl Roxysilane, Vinylmethoxydilauryloxysilane, Vinyldimethoxylauryloxysilane, Vinylmethoxydioleoyloxy Silane, and vinyl
- EVOH since carboxylic acid-modified EVOH is not preferable from the viewpoint of moldability, it is preferable to exclude a monomer that forms carboxylic acid-modified EVOH. These may be used alone or in combination. These monomer-derived structural units can be generally introduced into EVOH (C) by copolymerizing ethylene and vinyl ester monomers with the above monomers by known methods.
- EVOH (C) it is also possible to use an EVOH-based resin that has been “post-modified” such as urethanization, acetalization, cyanoethylation, oxyalkyleneation or the like by a known method.
- EVOH (C) can also have a structural unit (a) having a primary hydroxyl group in the side chain.
- a structural unit (a) having a primary hydroxyl group in the side chain when an EVOH resin having a structural unit (a) having a primary hydroxyl group in the side chain is used, the crystal size can be reduced without impairing the hydrogen bonding in the amorphous part. This is preferable in that the melting point can be lowered without impairing the properties.
- the structural unit (a) having a primary hydroxyl group in the side chain include a structural unit derived from a monomer having a primary hydroxyl group in the side chain as described below.
- monohydroxyalkyl group-containing monomers such as allyl alcohol, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, and 6-hepten-1-ol; Disubstituted diol monomers such as 1,3-propanediol; 3,4-diol-1-butene, 4,5-diol-1-pentene, 4,5-diol-3-methyl-1-pentene, 5,6- Examples include 1,2-diol group-containing monomers such as diol-1-hexene; glycerin monoallyl ether, hydroxymethylvinylidene diacetate, and other ethylenically unsaturated monomers.
- ethylenically unsaturated monomers include, for example, hydroxymethylvinylidene diacetate, and specific examples include 1,3-diacetoxy-2-methylenepropane and 1,3-dipropionyloxy-2-methylenepropane. 1,3-dibutyronyloxy-2-methylenepropane and the like. Of these, 1,3-diacetoxy-2-methylenepropane is preferably used from the viewpoint of ease of production. One or more of these monomers may be included. Of these monomers, a 1,2-diol group-containing monomer capable of obtaining a side chain 1,2-diol structure is particularly preferred.
- examples of the monomer include 2-methylene-1,3-propanediol diacetate, 2-methylene-1,3-propanediol dipropionate, and 2-methylene-1,3-propanediol dibutyrate.
- Esterified products of substituted diol monomers include acylated products of 1,2-diol-containing monomers such as 4,5-diasiloxy-1-pentene and 5,6-diasiloxy-1-hexene; vinyl carbonate monomers such as vinyl ethylene carbonate; And 2-dialkyl-4-vinyl-1,3-dioxolane.
- the content of the structural unit (a) in EVOH having the structural unit (a) having a primary hydroxyl group in the side chain is preferably 0.5 to 15 mol%, particularly preferably 0.5 to 12 mol%, More preferably, it is 1 to 8 mol%, particularly preferably 2 to 4 mol%. If the content of the structural unit (a) is too small, the effect of lowering the melting point is hardly exhibited and the melt moldability tends to be impaired. If the content of the structural unit (a) is too large, the crystallinity of the resin This is because the water resistance tends to decrease. When adjusting the content of the structural unit (a), it is also possible to adjust by blending at least two kinds of EVOH having different introduction amounts of the structural unit (a). The difference in the ethylene content of EVOH at that time is preferably less than 2 mol%. It is also possible to adjust by blending EVOH having the structural unit (a) and EVOH not having the structural unit (a).
- EVOH has a problem that the melting point increases as the ethylene content decreases, so that the difference between the thermal decomposition temperature of the resin and the melting point tends to be small, and the molding processability deteriorates.
- FIG. 8.4, page 205, “POLYVINYL ALCOHOL-DEVELOPMENTS” by CAFINCH it is shown that when the ethylene content is less than 20 mol%, the melting point is 200 ° C. or higher. It can be seen that the difference from temperature is small.
- the inclusion of the structural unit (a) in EVOH tends to reduce the crystal size of the resin, lower the melting point, and increase the difference from the thermal decomposition temperature of the resin. improves.
- the structural unit (a) having a primary hydroxyl group in the side chain is preferably, for example, a structural unit of the following general formula (1), that is, a structural unit having a 1,2-glycol bond in the side chain.
- R 1 to R 3 each independently represents a hydrogen atom or an organic group
- X represents a single bond or a bond chain
- R 4 to R 6 each independently represent a hydrogen atom or an organic group
- R 1 to R 6 are preferably all hydrogen atoms, but may be organic groups as long as the resin properties are not significantly impaired.
- the organic group is not particularly limited.
- an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group is preferable. If necessary, it may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group.
- R 1 to R 3 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom.
- R 4 to R 6 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom.
- X is a single bond or a bond chain, and is preferably a single bond from the viewpoint of improving crystallinity and reducing free volume (free volume pore size) in an amorphous part.
- the bonding chain is not particularly limited, but for example, hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene, and naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, and bromine).
- structural units containing an ether bond site such as —O—, — (CH 2 O) m—, — (OCH 2 ) m—, — (CH 2 O) mCH 2 —, etc .; —CO—, —COCO— , —CO (CH 2 ) mCO—, structural units containing a carbonyl group such as —CO (C 6 H 4 ) CO—; sulfur atoms such as —S—, —CS—, —SO—, —SO 2 —, etc.
- Structural units containing structural units containing nitrogen atoms such as —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, —NRNR—, etc .; heterostructures such as structures containing phosphorus atoms such as —HPO 4 —, etc.
- each R is independently an arbitrary substituent, and is preferably a hydrogen atom or an alkyl group.
- M is a natural number, and is usually 1 to 30, preferably 1 to 15, and particularly preferably 1 to 10.
- a hydrocarbon chain having 1 to 10 carbon atoms is preferable from the viewpoint of stability during production or use, and further, a hydrocarbon chain having 1 to 6 carbon atoms, particularly a hydrocarbon chain having 1 carbon atom. Is preferred.
- R 1 to R 3 and R 4 to R 6 are all hydrogen atoms, and X is a single bond.
- This is a structural unit represented by the structural formula (1a).
- the EVOH (C) used in the present invention may be a mixture with other different EVOH resins.
- Examples of such other EVOH resins include 1,2-represented by the general formula (1). Examples thereof include those having different diol structural unit contents, those having different saponification degrees, those having different polymerization degrees, and those having different other copolymerization components.
- the fluorine resin (A) used in the present invention is a fluorine resin into which a functional group capable of interacting or reacting with a hydroxyl group is introduced.
- the functional group capable of interacting with or reacting with a hydroxyl group (hereinafter also referred to as “polar functional group”) is preferably a carbonyl-containing group or a hydroxyl group, more preferably a carbonyl-containing group.
- the carbonyl-containing group is selected from the group consisting of, for example, carbonate group, haloformyl group, aldehyde group (including formyl group), ketone group, carboxyl group, alkoxycarbonyl group, carboxylic anhydride group, and isocyanato group. It is preferably at least one kind, particularly preferably a carbonate group, a fluoroformyl group, a chloroformyl group, a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, or a carboxylic acid anhydride group, and more preferably a carboxylic acid anhydride. It is a group.
- the fluororesin (A) has a feature that the hydrogen solubility in a hydrogen gas 70 MPa environment is low, like the fluororesin having no polar functional group. Thereby, in the mixed system of EVOH (C) and fluororesin (A), it can be expected that the low hydrogen solubility of EVOH (C) is not impaired.
- the fluorine resin (A) is preferably a fluorine copolymer containing at least tetrafluoroethylene as a constituent monomer.
- fluorine-based copolymer examples include hexafluoropropylene, vinylidene fluoride, perfluoro (alkyl vinyl ether), CH 2 ⁇ CX (CF 2 ) n Y (X and Y are each independently a fluorine atom or a hydrogen atom.
- N is 2 to 10
- fluorine-containing vinyl monomers such as monomers (hereinafter referred to as “FAE”), olefinic vinyl monomers such as ethylene and propylene, vinyl ethers, vinyl Esters and other halogen-containing vinyl monomers may be copolymerized.
- n in the formula is preferably 2 to 8, particularly preferably 2 to 6, and more preferably 2, 4, 6.
- n is too small, the heat resistance and stress crack resistance of the molded body of the resin composition tend to decrease.
- n is too large, the polymerization reactivity tends to be insufficient.
- n is in the range of 2 to 8, the polymerization reactivity of FAE is good. Furthermore, it becomes easy to obtain a molded body excellent in heat resistance and stress crack resistance. 1 type (s) or 2 or more types can be used for FAE.
- FAE examples include CH 2 ⁇ CH (CF 2 ) 2 F, CH 2 ⁇ CH (CF 2 ) 4 F, CH 2 ⁇ CH (CF 2 ) 6 F, CH 2 ⁇ CF (CF 2) 3 H and the like.
- CH 2 ⁇ CH—Rf is a perfluoroalkyl group having 2 to 6 carbon atoms
- Rf is a perfluoroalkyl group having 2 to 6 carbon atoms
- fluororesin examples include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer.
- Polymer ethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene / CH 2 ⁇ CH—Rf (Rf is a C 2-6 perfluoroalkyl group) type copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene / CH 2 ⁇ CH—Rf (Rf is a C 2-6 perfluoroalkyl group) type A copolymer etc. are mentioned.
- fluorine-based copolymers containing ethylene as a constituent monomer are preferable.
- ethylene / tetrafluoroethylene / hexafluoropropylene copolymers and ethylene / tetrafluoroethylene copolymers.
- ethylene is represented as “E”, tetrafluoroethylene as “TFE”, hexafluoropropylene as “HFP”, and ethylene / tetrafluoroethylene as “E / TFE copolymer”, ethylene / tetrafluoroethylene / hexafluoro.
- the propylene-based copolymer may be referred to as “E / TFE / HFP-based copolymer”.
- the E / TFE copolymer or the E / TFE / HFP copolymer is added with CH 2 ⁇ CH—Rf ( It is also preferable to copolymerize a comonomer in which Rf represents a C 2-6 perfluoroalkyl group. Note that the carbon number of Rf in the CH 2 ⁇ CH—Rf is particularly preferably 4.
- a fluororesin As a method for introducing a functional group into the fluororesin as described above, when a fluororesin is produced by polymerizing a fluorine-containing vinyl monomer such as TFE or HFP, a fluorine-containing vinyl monomer and a vinyl monomer having a polar functional group are used.
- a fluorine-containing vinyl monomer such as TFE or HFP
- a method of introducing a polar functional group into a polymer terminal by polymerizing a fluorine-containing vinyl monomer in the presence of a polymerization initiator or a chain transfer agent having a polar functional group; a vinyl having a polar functional group A method of kneading a monomer and a fluororesin and then irradiating with radiation; kneading a vinyl monomer having a polar functional group, a fluororesin and a radical initiator, and then melt-extruding the comonomer having the polar functional group into a fluorine Examples thereof include a method of graft polymerization to a resin. Among these, as described in JP-A No. 2004-238405, a method of copolymerizing a fluorine-containing vinyl monomer and a comonomer having a polar functional group such as itaconic anhydride or citraconic anhydride is preferable.
- a peroxide having a peroxycarbonate group or a peroxide having a peroxyester can be used, and among them, a peroxide having a peroxycarbonate group is more preferably used.
- the peroxide having a peroxycarbonate group include diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, -2-Ethylhexyl peroxydicarbonate is preferably used.
- chain transfer agent having a polar functional group examples include alcohols such as methanol, ethanol, propanol, and butanol, carboxylic acids such as acetic anhydride, thioglycolic acid, and thioglycol.
- the content of polar functional group in the fluororesin (A) ((number of moles of polar functional group / number of moles of fluorine resin constituting monomer) ⁇ 100) is preferably 0.01 to 10 mol%, particularly preferably 0.8. 05 to 5 mol%, more preferably 0.1 to 3 mol%. If the content of the polar functional group is too low, the affinity with EVOH (C) is too low, and it becomes difficult to achieve fine dispersion of the fluororesin (A), resulting in a homogeneous resin composition. There is a tendency to become difficult to be.
- the fluororesin (A) used in the present invention preferably has a melting point of 120 to 240 ° C, particularly preferably 150 to 210 ° C, and more preferably 170 to 190 ° C. If the melting point of EVOH (C), which is the main component of the resin composition, is too high, it is necessary to raise the melting temperature to 250 to 290 ° C. when producing the composition. As a result, EVOH (C) There is a tendency to cause deterioration and color tone deterioration. Usually, in the fluororesin (A) having a polar functional group content in the above range, the melting point is in the above range. In addition, melting
- DSC differential scanning calorimeter
- volume flow rate of the fluorine-based resin (A) (hereinafter referred to as "Q value”.) Is preferably 0.1 ⁇ 1000 mm 3 / sec, particularly preferably, 1 ⁇ 500 mm 3 / sec, more preferably, 2 ⁇ 200 mm 3 / sec.
- the Q value is an index representing the melt fluidity of a resin that becomes a problem when a fluororesin is melt-molded, and is a measure of the molecular weight. That is, a large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight.
- the Q value is a resin when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the fluororesin using a flow tester manufactured by Shimadzu Corporation. Extrusion speed of If the Q value is too small, extrusion molding of the fluororesin tends to be difficult, and if it is too large, the mechanical strength of the resin tends to decrease.
- polymerization methods include bulk polymerization, which is a known method; solution polymerization using an organic solvent such as fluorinated hydrocarbon, chlorinated hydrocarbon, fluorinated chlorohydrocarbon, alcohol, and hydrocarbon as the polymerization medium; Suspension polymerization using an aqueous medium and, if necessary, an appropriate organic solvent; emulsion polymerization using an aqueous medium and an emulsifier as the polymerization medium may be mentioned, and solution polymerization is particularly preferable.
- the polymerization can be carried out as a batch operation or a continuous operation using a one-tank or multi-tank stirring polymerization apparatus, a tube polymerization apparatus, or the like.
- an initiator having a half-life of 10 hours at a temperature of 0 to 100 ° C. is preferable, and an initiator having a temperature of 20 to 90 ° C. is more preferable.
- azo compounds such as azobisisobutyronitrile; peroxydicarbonates such as diisopropylperoxydicarbonate; peroxyesters such as tert-butylperoxypivalate, tert-butylperoxyisobutyrate, tert-butylperoxyacetate;
- Non-fluorinated diacyl peroxides such as ril peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide; (Z (CF 2 ) p COO) 2 (where Z is a hydrogen atom, a fluorine atom or a chlorine atom, and p is 1
- a fluorine-containing diacyl peroxide such as potassium persulfate
- Examples of the polymerization medium include organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons, and aqueous media as described above.
- Chain transfer agents include alcohols such as methanol and ethanol; chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane and 1,1-dichloro-1-fluoroethane; Examples thereof include hydrocarbons such as pentane, hexane and cyclohexane; fluorine-containing hydrocarbons such as 1-hydrotridecafluorohexane.
- the polymerization conditions are not particularly limited.
- the polymerization temperature is preferably 0 to 100 ° C., particularly preferably 20 to 90 ° C.
- the polymerization pressure is preferably from 0.1 to 10 MPa, particularly preferably from 0.5 to 3 MPa.
- the polymerization time may vary depending on the polymerization temperature and polymerization pressure, but is preferably 1 to 30 hours, particularly preferably 2 to 10 hours.
- thermoplastic resin (B) used in the present invention is a thermoplastic resin (B) having a carboxyl group or an acid anhydride group (provided that the fluororesin (A) and ethylene-vinyl having a carboxyl group or an acid anhydride group). Except for ester-based copolymer saponified products).
- thermoplastic resin (B) examples include those obtained by modifying a polyolefin resin with an acid such as an unsaturated carboxylic acid or an anhydride thereof.
- polyolefin resins include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and ethylene-acetic acid.
- EVA Vinyl copolymer
- ethylene-propylene (block or random) copolymer ethylene-acrylic acid ester copolymer
- polypropylene propylene- ⁇ -olefin ( ⁇ -olefin having 4 to 20 carbon atoms)
- ⁇ -olefin having 4 to 20 carbon atoms examples thereof include homopolymers or copolymers of olefins such as polymers, polybutenes, and polypentenes.
- the thermoplastic resin (B) include a modified polyolefin resin containing a carboxyl group obtained by chemically bonding an unsaturated carboxylic acid or its anhydride to a polyolefin resin by
- an acid graft-modified polyolefin-based resin is preferable. More specifically, maleic anhydride graft-modified polyethylene, maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block or random) copolymer, maleic anhydride One or a mixture of two or more selected from an acid graft-modified ethylene-ethyl acrylate copolymer, a maleic anhydride graft-modified ethylene-vinyl acetate copolymer, and the like are preferable.
- thermoplastic resin (B) acid-modified ethylene- ⁇ -olefin copolymer rubber or acid-modified TPE (thermoplastic elastomer) can be used, but acid-modified ethylene is used in that the impact resistance of the resin composition is improved.
- - ⁇ -Olefin copolymer rubber is preferred.
- the acid-modified ethylene- ⁇ -olefin copolymer rubber used in the present invention is not particularly limited, but ethylene-propylene copolymer rubber (EPR), ethylene-butene copolymer rubber (EBR), ethylene-octene copolymer rubber.
- a compound rubber (EOR) or the like is modified with an acid such as an unsaturated carboxylic acid or its anhydride. Specifically, an unsaturated carboxylic acid or its anhydride is added to an ethylene- ⁇ -olefin copolymer rubber. And a modified ethylene- ⁇ -olefin copolymer rubber containing a carboxyl group obtained by chemical bonding by a graft reaction or the like, and an acid graft-modified ethylene- ⁇ -olefin copolymer rubber is particularly preferable. More specific examples include maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer rubber. In particular, those having an embrittlement temperature of ⁇ 40 ° C. or less are preferable in terms of improving impact resistance. In particular, it is preferably ⁇ 60 ° C. or lower, more preferably ⁇ 70 ° C. or lower. The lower limit of the embrittlement temperature is usually ⁇ 150 ° C. or higher.
- the acid-modified TPE used in the present invention is not particularly limited, and examples thereof include olefin (TPO), styrene (TPS), ester (TPEE), amide (TPAE), etc. TPE or TPS preferable.
- the hard segment of TPO is made of an olefin resin, and can be exemplified by polypropylene (PP) or polyethylene (PE).
- Examples of the TPO soft segment include ethylene- ⁇ -olefin copolymer rubber (EPR) and ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber (EPDM).
- TPS includes styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS), and And styrene-ethylene-propylene-styrene block copolymer (SEPS).
- SBS styrene-butadiene-styrene block copolymer
- SIS styrene-isoprene-styrene block copolymer
- SEBS hydrogenated styrene-ethylene-butylene-styrene block copolymer
- SEPS styrene-ethylene-propylene-styrene block copolymer
- the melt flow rate (MFR) (230 ° C., load 2160 g) of the thermoplastic resin (B) is preferably 0.1 to 100 g / 10 minutes, particularly preferably 0.3 to 50 g / 10 minutes, more preferably 1-30 g / 10 min. If the melt flow rate is too small, the inside of the extruder tends to be in a high torque state at the time of molding, and extrusion processing tends to be difficult. If it is too large, the difference in melt viscosity from EVOH (C) increases, and the polymer alloy is formed. Tend to increase domain size.
- the melting point of the thermoplastic resin (B) is preferably 50 to 240 ° C., particularly preferably 60 to 230 ° C. If the melting point is too high, the set temperature of the molding machine needs to be set higher, and there is a tendency for molding processability to decrease due to thermal degradation of EVOH (C). When used, the mechanical properties tend to deteriorate.
- fusing point represents the melting peak temperature (degreeC) measured at a temperature increase rate of 10 degrees C / min using a differential scanning calorimeter (DSC).
- the ethylene-vinyl ester copolymer saponified product (EVOH) resin composition of the present invention comprises a fluororesin (A) having a functional group capable of interacting with or reacting with a hydroxyl group, a carboxyl group or an acid anhydride group.
- a fluororesin (A) having a functional group capable of interacting with or reacting with a hydroxyl group, a carboxyl group or an acid anhydride group Contains plastic resin (B) (excluding fluororesin (A) and EVOH having a carboxyl group or an acid anhydride group), and EVOH (C), blending them in a predetermined ratio, and melt-kneading Can be prepared.
- melt-kneading a known kneader such as an extruder, a Banbury mixer, a kneader ruder, a mixing roll, or a blast mill can be used.
- a single screw or a twin screw extruder may be used.
- a method of extruding the resin composition into a strand shape, cutting and pelletizing can be employed.
- melt-kneading may be performed by batch-feeding the fluororesin (A), the thermoplastic resin (B), and EVOH (C), or while the EVOH (C) is melt-kneaded with a twin screw extruder,
- the system resin (A) and the thermoplastic resin (B) may be side-feeded in a molten state or a solid state.
- the melt kneading temperature is appropriately selected according to the types of the fluororesin (A), the thermoplastic resin (B) and EVOH (C), preferably 210 to 250 ° C., particularly preferably 210 to 240 ° C., more preferably It is 215 to 235 ° C., particularly preferably 215 to 225 ° C.
- the total content of the fluororesin (A) and the thermoplastic resin (B) is preferably 1 to 40% by weight in the EVOH resin composition, particularly preferably 5 to It is 35% by weight, more preferably 10 to 35% by weight. If the total content is too small, the low temperature characteristics and hydrogen embrittlement tend to be inferior, and if the total content is too large, the gas barrier property tends to be inferior.
- the content ratio [(A) / (B)] of the fluororesin (A) and the thermoplastic resin (B) is preferably 1/5 to 5/1 (weight ratio), particularly preferably 1/3 to The ratio is 3/1 (weight ratio), more preferably 1.1 / 1 to 2.5 / 1 (weight ratio). If the content ratio is too small, the reaction with the hydroxyl group of EVOH (C) increases, or in the melt-kneading process, moldability and the like tend to decrease due to gelation. If the content ratio is too large, impact resistance and flexibility tend to be low, but the content ratio is preferably larger than 1/1 (weight ratio).
- the EVOH resin composition having the above composition forms a polymer alloy having a sea-island structure in which the main component EVOH (C) is used as a matrix and the fluororesin (A) and the thermoplastic resin (B) are used as islands. can do. Since the polar functional group of the fluororesin (A) can interact or react with the hydroxyl group of EVOH (C), the interface of the sea-island structure can be a strong interface. Further, the sea-island structure of the EVOH resin composition has an average island diameter of preferably 0.1 to 3 ⁇ m, particularly preferably 0.1 to 1.5 ⁇ m, more preferably 0.1 to 1.3 ⁇ m, particularly preferably The thickness is preferably 0.1 to 1 ⁇ m. If the average diameter is too large, the hydrogen resistance tends to decrease, and if it is too small, the melt viscosity tends to increase.
- the melt viscosity is preferably 220 ° C. and MFR at a load of 2160 g is 0.3 or more, and more preferably 0.5 or more so that the workability does not deteriorate. In particular, it is preferably 0.7 or more.
- the upper limit is usually 10 or less.
- MFR can be made into a specific range by adjusting, adjusting the processing temperature at the time of manufacturing a resin composition, or adjusting the screw pattern of a processing machine.
- the EVOH resin composition of the present invention contains acids such as acetic acid, boric acid and phosphoric acid, and metal salts thereof such as alkali metals, alkaline earth metals and transition metals.
- acids such as acetic acid, boric acid and phosphoric acid
- metal salts thereof such as alkali metals, alkaline earth metals and transition metals.
- alkali metal salts and alkaline earth metal salts in terms of their excellent effects. .
- metal salts examples include alkali metals such as sodium, potassium, calcium, and magnesium; organic acids such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid; sulfuric acid, sulfurous acid, carbonic acid, phosphorus
- metal salts of inorganic acids such as acids, and preferred are acetates, phosphates, and hydrogen phosphates.
- the content of the metal salt is preferably 5 to 1000 ppm, particularly preferably 10 to 500 ppm, more preferably 20 to 300 ppm in terms of metal relative to the resin composition.
- the content in terms of boron is preferably 10 to 10000 ppm, particularly preferably 20 to 2000 ppm, and further preferably 50 to 1000 ppm.
- the EVOH resin composition of the present invention is a saturated aliphatic amide (such as stearic acid amide), unsaturated fatty acid amide (such as oleic acid amide), bis fatty acid amide (such as Ethylene bis-stearic acid amide), fatty acid metal salts (eg, calcium stearate, magnesium stearate, zinc stearate, etc.), low molecular weight polyolefins (eg, low molecular weight polyethylene having a molecular weight of about 500 to 10,000, or low molecular weight polypropylene, etc.), etc.
- saturated amide such as stearic acid amide
- unsaturated fatty acid amide such as oleic acid amide
- bis fatty acid amide such as Ethylene bis-stearic acid amide
- fatty acid metal salts eg, calcium stearate, magnesium stearate, zinc stearate, etc.
- low molecular weight polyolefins
- Lubricants inorganic salts (such as hydrotalcite), plasticizers (such as aliphatic polyhydric alcohols such as ethylene glycol, glycerin, and hexanediol), oxygen absorbers, heat stabilizers, light stabilizers, antioxidants, UV absorber, colorant, antistatic agent, surfactant , Antibacterial agents, antiblocking agents (eg, talc fine particles), slip agents (eg, amorphous silica), fillers (eg, inorganic fillers), other resins (eg, polyolefins other than thermoplastic resin (B), polyesters, etc.) Etc. may be contained.
- inorganic salts such as hydrotalcite
- plasticizers such as aliphatic polyhydric alcohols such as ethylene glycol, glycerin, and hexanediol
- oxygen absorbers heat stabilizers, light stabilizers, antioxidants, UV absorber, colorant, antistatic agent, surfactant ,
- oxygen absorber examples include inorganic compound oxygen absorbers, organic compound oxygen absorbers, and polymer compound oxygen absorbers.
- examples of the inorganic compound-based oxygen absorbent include reduced iron powders, those obtained by further adding a water-absorbing substance or an electrolyte, aluminum powder, potassium sulfite, and photocatalytic titanium oxide.
- organic compound oxygen absorbers include ascorbic acid, fatty acid esters and metal salts thereof, hydroquinone, gallic acid, polyhydric phenols such as hydroxyl group-containing phenol aldehyde resin, bis-salicylaldehyde-imine cobalt, tetraethylene penta Coordination conjugates of nitrogen-containing compounds and transition metals such as mincobalt, cobalt-Schiff base complexes, porphyrins, macrocyclic polyamine complexes, polyethyleneimine-cobalt complexes, terpene compounds, amino acids and hydroxyl group-containing reducing substances Examples include reactants and triphenylmethyl compounds.
- polymeric oxygen absorbent examples include a coordinated conjugate of a nitrogen-containing resin and a transition metal (for example, a combination of MXD nylon and cobalt), and a blend of a tertiary hydrogen-containing resin and a transition metal (for example, polypropylene and cobalt).
- Combination a blend of a carbon-carbon unsaturated bond-containing resin and a transition metal (for example, a combination of polybutadiene and cobalt), a photo-oxidative decay resin (for example, polyketone), an anthraquinone polymer (for example, polyvinyl anthraquinone), and the like.
- blended photoinitiators for example, benzophenone etc.
- peroxide supplements for example, commercially available antioxidants
- deodorizers for example, activated carbon etc.
- the EVOH resin composition of the present invention can be molded into an arbitrary molded product.
- a single-layer film, sheet, or molded product can be used, or a multilayer structure laminated with another resin layer and an arbitrary substrate can be used.
- the EVOH resin composition of the present invention can be applied with a molding method applied to a known general EVOH.
- a molding method applied to a known general EVOH examples thereof include solution molding methods such as solution casting and solution coating, and melt molding methods such as extrusion molding, coextrusion molding, injection molding, blow molding, and rotational molding.
- Films and multilayer structures made of the EVOH resin composition of the present invention can be further processed by a known method, for example, a dry lamination method, a uniaxial stretching method, a biaxial stretching method, or a vacuum molding method.
- a stretching method such as a pressure forming method can be employed.
- the high-pressure gas hose or composite container (hereinafter sometimes simply referred to as “hose or composite container”) of the present invention has at least one layer (hereinafter also referred to as “gas barrier layer”) made of the EVOH resin composition. Includes layers.
- the “hose” means a tube having a resin “resin tube” and a “reinforcing layer” for transferring high-pressure gas.
- the “composite container” means a container having a resin “resin liner” and a “reinforcing layer” for containing a high-pressure gas.
- the resin tube or resin liner having a multilayer structure includes a gas barrier layer.
- Such a gas barrier layer may be a single layer.
- a gas barrier layer is included as an inner layer (that is, a layer in contact with high-pressure gas) or an intermediate layer, more preferably as an intermediate layer.
- the inner layer and / or the outer layer that is, the layer in contact with the outside air
- the intermediate layer is a layer between the outer layer and the inner layer.
- a reinforcing layer is further provided outside the resin tube or resin liner.
- a reinforcing layer is a layer in contact with the outside air (outermost layer).
- the surface of the resin layer may be corona-treated between these layers, or an adhesive layer made of an adhesive resin such as an epoxy resin may be provided.
- the laminated structure constituting the high-pressure gas hose or the composite container includes, in order from the inside, gas barrier layer / reinforcing layer, gas barrier layer / moisture impermeable thermoplastic resin layer / reinforcing layer, moisture impermeable thermoplastic resin layer / gas barrier.
- a moisture impermeable thermoplastic resin layer / gas barrier layer / moisture impermeable thermoplastic resin layer / reinforcing layer is preferable.
- an adhesive layer such as corona treatment of the resin layer surface or further provision of an epoxy resin layer may be provided.
- the number of layers of the multilayer structure is usually 2 to 15 layers, preferably 3 to 5 layers, including the reinforcing layers.
- the thickness ratio between the gas barrier layer and the moisture-impermeable thermoplastic resin layer is the sum of all the same layer thicknesses in the laminate, and the moisture-impermeable thermoplastic resin layer is usually thicker than the gas barrier layer.
- the thickness ratio of the moisture-impermeable thermoplastic resin layer is usually from 1 to 100, preferably from 3 to 20, particularly preferably from 6 to 15.
- the thickness of the moisture-impermeable thermoplastic resin layer is usually 50 to 5000 ⁇ m.
- the thickness ratio of the gas barrier layer to the adhesive layer is usually 1 to 100, preferably 1 to 50, particularly preferably 1 to 10.
- the thickness of the adhesive layer is preferably 10 to 500 ⁇ m.
- thermoplastic resin used for the moisture impermeable thermoplastic resin layer for example, a hydrophobic thermoplastic resin is preferably used.
- polyethylene resins such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE); ethylene-vinyl acetate copolymer , Its ionomer, ethylene-propylene copolymer, ethylene- ⁇ -olefin ( ⁇ -olefin having 4 to 20 carbon atoms) copolymer, ethylene-acrylic acid ester copolymer, and other ethylene-based copolymers; polypropylene, propylene -Polypropylene resins such as ⁇ -olefin ( ⁇ -olefins having 4 to 20 carbon atoms) copolymers; homo- or copolymers of olefins such as polybutene and polypentene, cyclic polyolefins, or homo
- At least one selected from polyolefin resins particularly polyolefin resins having a polar group, polyamide resins, and fluorine resins having a polar group, in terms of water resistance, strength, toughness and durability at low temperatures.
- it is at least one selected from a carboxylic acid-modified polyolefin resin, a polyamide resin, and a fluorine-based resin having a polar group, and a polyamide-based resin, particularly nylon 6 for reasons such as low hydrogen resistance and creep properties.
- / 66 copolymer resin and nylon 6 are preferable.
- An epoxy resin may be applied to the outside of the moisture-impermeable thermoplastic resin layer.
- a known adhesive resin can be used.
- a carboxylic acid-modified polyolefin obtained by modifying a polyolefin-based resin with unsaturated rubonic acid (or unsaturated rubonic anhydride) such as maleic acid.
- unsaturated rubonic acid or unsaturated rubonic anhydride
- a fluorocarbon resin or a polar resin having a polar group is preferably used.
- the polyolefin resin the polyolefin resin enumerated as a thermoplastic resin used for the above-mentioned moisture-impermeable thermoplastic resin layer can be used.
- a carboxylic acid-modified polyolefin resin is preferable, and a carboxylic acid-modified polypropylene resin, a carboxylic acid-modified polyethylene resin, or a mixture thereof is particularly preferable.
- the moisture-impermeable thermoplastic resin layer and the adhesive layer are coated with known general additives, modifiers, fillers, other resins, etc. in order to improve moldability and various physical properties. You may mix
- the EVOH resin composition used in the present invention has adhesiveness to PVA resin and other EVOH resins
- PVA resin and other EVOH resins are used for the moisture-impermeable thermoplastic resin layer as a special embodiment. It is also possible.
- the layer structure include polyamide resin layer / other EVOH resin layer / gas barrier layer, polyamide resin layer / other EVOH resin layer / gas barrier layer / other EVOH resin layer, and the like.
- the polyamide resin is preferably nylon 6 or nylon 6 copolymer polyamide, and particularly preferably nylon 6/66.
- the reinforcing layer examples include a reinforcing fiber layer using fibers and a reinforcing rubber layer using rubber.
- the reinforcing fiber layer for example, high-strength fibers such as polyparaphenylene benzbisoxazole (PBO) fibers, aramid fibers, and carbon fibers, nonwoven fabrics, cloths, and the like can be used.
- PBO polyparaphenylene benzbisoxazole
- aramid fibers aramid fibers
- carbon fibers nonwoven fabrics, cloths, and the like
- it is a reinforcing fiber layer, particularly preferably a reinforcing fiber layer using high-strength fibers, more preferably a sheet layer braided with high-strength fibers or a reinforcing fiber layer formed by winding the sheet around a spiral is there.
- the structure of the reinforcing layer of the hose may be configured according to the structure described in JP 2010-31993 A, for example.
- the reinforcing layer of the hose it is preferable to use polyparaphenylene benzbisoxazole (PBO) fiber.
- PBO polyparaphenylene benzbisoxazole
- Carbon fiber is suitably used as the reinforcing layer of the composite container.
- the carbon fiber is preferably a PAN system from the viewpoint of strength, and a pitch system having a high thermal conductivity is preferable from the viewpoint of controlling the thermal conductivity.
- the present invention is a resin tube or composite container resin liner having a multilayer structure including at least one gas barrier layer, and a hose or composite container, an average line of materials constituting each layer of the resin layer constituting the multilayer structure
- the expansion coefficients are preferably close to each other.
- the ratio of the average linear expansion coefficient of the layer constituting the multilayer structure to the gas barrier layer (material constituting the multilayer structure / EVOH composition) is usually 2 or less, preferably 0.8 to 1.8, particularly preferably 1. ⁇ 1.8.
- the ratio of the adjacent layer of the gas barrier layer to the gas barrier layer is preferably within the above range, and the ratio of the outermost layer to the gas barrier layer (material / material constituting the outermost layer) is particularly preferable.
- EVOH composition is within the above range.
- each layer shows similar behavior with respect to environmental changes during high-pressure and decompression of hydrogen exposure, and the gas barrier layer can follow the behavior of other layers. It is possible to reduce the load such as bending.
- an average linear expansion coefficient measured under the same conditions can be applied.
- the linear expansion coefficient of the reinforcing fiber layer is taken into consideration.
- the average linear expansion coefficient can be measured by a thermomechanical analyzer (TMA).
- the inner diameter, outer diameter, thickness, and length of the resin tube and hose may be selected depending on the application.
- the inner diameter of the hose is usually 1 to 180 mm, preferably 3 to 100 mm, particularly preferably 4.5 to 50 mm, especially The thickness is preferably 5 to 12 mm.
- the outer diameter of the hose is usually 5 to 200 mm, preferably 7 to 100 mm, particularly preferably 9 to 50 mm, and particularly preferably 10 to 15 mm.
- the thickness of the hose is usually 1 to 50 mm, preferably 1 to 20 mm, particularly preferably 1 to 10 mm.
- the length of the hose is usually 0.5 to 300 m, preferably 1 to 200 m, particularly preferably 3 to 100 m.
- the thickness and size of the resin liner for the composite container and the composite container may be selected depending on the application.
- the thickness of the composite container is usually 1 to 100 mm, preferably 3 to 50 mm, particularly preferably 3 to 10 mm.
- the capacity size of the composite container may be selected depending on the use for in-vehicle use or a pressure accumulator, and is not particularly limited. However, the capacity is usually 5 to 500 L, preferably 10 to 400 L, and particularly preferably 50 to 300 L. It is.
- the thickness of the gas barrier layer can be selected in the range of usually 2 to 60%, particularly preferably 3 to 20% of the thickness of the resin tube or the resin liner for composite containers, the hose or the composite container.
- the gas barrier layer in the resin tube for high pressure gas or the resin liner for composite container, hose or composite container of the present invention preferably has a molecular weight of less than 10 with respect to gas such as hydrogen, helium, oxygen, nitrogen, air, etc. Has excellent gas barrier properties.
- gas such as hydrogen, helium, oxygen, nitrogen, air, etc.
- the gas component having a molecular weight of less than 10 include hydrogen and helium, and hydrogen is preferable.
- the gas barrier layer since the gas barrier layer has a high hydrogen barrier property, it depends on the layer structure, but by stacking the gas barrier layer, the stacked body is hardly hydrogen embrittled, and the initial mechanical strength can be maintained over a long period of time. .
- the gas barrier layer can suppress the generation of blisters even when high-pressure hydrogen exposure and depressurization are repeated, the gas barrier layer is adjacent to the gas barrier layer in a resin tube having a multilayer structure, a resin liner for composite containers, a hose, or a composite container. It is also possible to prevent a decrease in adhesive strength and generation of collapse at the interface with a layer to be performed (for example, a reinforcing layer or a moisture impermeable thermoplastic resin layer).
- the resin station for high pressure gas of the present invention, the resin liner for composite containers, the hose or the composite container is a hydrogen station in which high pressure hydrogen exposure and depressurization are repeated, and excellent durability against hydrogen embrittlement is required.
- the normal pressure of the high-pressure gas hose is usually 35 to 90 MPa, preferably 50 to 90 MPa, particularly preferably 80 to 90 MPa, more preferably 82 to 87.5 MPa.
- the normal pressure of the high pressure gas composite container is usually 35 to 100 MPa.
- examples of the design pressure of the high-pressure gas hose include those exceeding 86 MPa, 95 MPa, 97 MPa, 98.4 MPa, and the like from the low pressure.
- the target gas which the gas barrier layer concerning this invention can exhibit the gas barrier property which was excellent is not limited to high pressure hydrogen gas.
- hydrogen gas can also be preferably used as a resin tube for high pressure gas such as helium, nitrogen, oxygen, air, a resin liner for composite containers, a hose or a composite container.
- a gas having a molecular weight of less than 10 such as hydrogen and helium, it has been difficult to satisfy both the gas barrier property and the hydrogen resistance with a conventionally known material, but the gas barrier layer according to the present invention has both requirements. Can be satisfied.
- the melting point of the acid anhydride group-containing fluororesin (A1) is 176 ° C.
- the Q value is 12 mm 3 / sec
- EVOH resin compositions of Examples and Comparative Examples were prepared.
- the used resin composition was pelletized under the following conditions using a twin screw extruder (manufactured by Technobel).
- the resin composition was prepared by dry blending each resin, followed by melt kneading extrusion with a twin screw extruder.
- a fluororesin (A) having a functional group capable of interacting or reacting with a hydroxyl group, a thermoplastic resin (B) having a carboxyl group or an acid anhydride group, and a saponified ethylene-vinyl ester copolymer In Example 1 using the EVOH resin composition of the present invention containing (C), the number of blisters after the high-pressure hydrogen gas exposure-depressurization cycle test was 0, which was an excellent result. In the impact resistance test, a remarkably excellent value of 82kJ / m 2 at 23 ° C., was worthy of practicality and 6 kJ / m 2 even at -40 ° C..
- the melt viscosity test it was 0.8 g / 10 min, and there was no problem in fluidity at 220 ° C. Moreover, the average diameter of the island portion was 0.3 ⁇ m, which was 1 ⁇ m or less, and the dispersibility was good.
- the EVOH resin composition of the present invention is used at a high pressure.
- the EVOH resin composition of the present invention can contribute to improving the durability of the high-pressure gas hose or composite container.
- the high-pressure gas hose or composite container of the present invention can be suitably used, for example, as a hose or high-pressure hydrogen gas storage tank for supplying or filling high-pressure hydrogen gas to an automobile fuel cell or the like at a hydrogen gas station or the like.
- the saponified resin composition of the ethylene-vinyl ester copolymer of the present invention is, for example, a constituent material of a layer (resin liner) as a constituent material of a layer included in the high-pressure gas hose of the present invention or ) Can be suitably used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
例えば、特許文献1及び特許文献2では、樹脂チューブの内面層に、耐水性を有するオレフィン系樹脂又はポリエチレンテレフタレート系樹脂を使用し、ガスバリア層としてエチレン-ビニルエステル系共重合体ケン化物(以下、EVOHと称することがある。)樹脂層を用い、外面層には、水分透過によるEVOH樹脂層のバリア性能への影響を防止するために、ナイロン系樹脂(特許文献1)又は絶縁性を有するゴム(特許文献2)が用いられている。
しかしながら、かかる技術は耐衝撃性向上を主目的としており、水素ガス圧についてはせいぜい10MPa程度(段落〔0029〕)しか想定されていない。加えて、通常、酸変性エチレン-α-オレフィン共重合体ゴム及び/又は酸変性熱可塑性エラストマーの配合量を増やすほど、樹脂組成物の水素ガスバリア性能は低下する傾向がある。
また、一般に樹脂の水素脆性挙動として、樹脂内部で生じるブリスタやクレーズ/クラック等が見られることがある。ブリスタとは、加圧時に樹脂に溶解した水素が、脱圧時に気層に戻りきれず、樹脂中で膨張し、気泡となり、樹脂の内部破壊を引き起こす現象である。クレーズ/クラックとは、定ひずみの負荷がかかった樹脂表面層から繰り返し応力緩和を受けることで微小亀裂が発生する現象(クレーズ)、更に繰り返し発生したクレーズの進展により亀裂が発生する現象(クラック)である。
これらの現象を抑制するために、水素拡散の抑制や低温特性が良好であり、耐水素脆性を有する保護層として使用可能なガスバリア性樹脂組成物の開発が望まれている。
しかしながら、この従来技術では、樹脂組成物層への水素拡散を抑制することはできるものの、保護層として使用された場合の耐水素脆性(更に高圧下での耐ブリスタ性等)や低温での特性が不足している。近年、安全性要求の高まりに伴い、常用圧力が例えば82MPaのものであっても、耐久性を考慮して耐圧性能としては設計圧力90MPaを超えるものが求められている。
一方、ポリマーアロイ化成分として酸無水物変性のポリオレフィンのみ用いた場合では、ポリマーアロイ組成物の溶融粘度が著しく高くなるので、溶融成形時の増粘によるゲル、ブツが発生するなどの課題が生じることがある。
また、水酸基と相互作用又は反応しうる官能基を有するフッ素系樹脂(A)、及びカルボキシル基又は酸無水物基を有する熱可塑性樹脂(B)(但し、フッ素系樹脂(A)及びカルボキシル基又は酸無水物基を有するEVOHを除く)を用いることによって、-40℃の冷温に晒されても衝撃強度に優れる高圧ガス用の樹脂チューブ及び複合容器用の樹脂ライナーが得られる。
また、本発明は、本発明のEVOH樹脂組成物を含有する層を少なくとも一層有する高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、本発明のEVOH樹脂組成物を含有する層を少なくとも一層有する高圧ガスホース又は複合容器である。
本発明のEVOH樹脂組成物は、水酸基と相互作用又は反応しうる官能基を有するフッ素系樹脂(A)、カルボキシル基又は酸無水物基を有する熱可塑性樹脂(B)(但し、フッ素系樹脂(A)及びカルボキシル基又は酸無水物基を有するEVOHを除く)、及びEVOH(C)を含有する。まず、EVOH(C)について説明する。
本発明のエチレン-ビニルエステル系共重合体ケン化物(EVOH)(C)は、ガスバリア性、水不溶性を有する公知の熱可塑性樹脂であり、通常、エチレンとビニルエステル系モノマーとの共重合体(エチレン-ビニルエステル共重合体)をケン化させることにより得られる樹脂である。重合は公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合を用いて行うことができるが、一般的にはメタノールを溶媒とする溶液重合が用いられる。得られたエチレン-ビニルエステル共重合体のケン化も公知の方法で行い得る。
このようにして製造されるEVOH(C)は、エチレン由来の構造単位とビニルアルコール構造単位を主とし、場合により、ケン化されずに残存した若干量のビニルエステル構造単位を含む。
EVOH(C)は、エチレン由来の構造単位を有するので、エチレン由来の構造単位を有さないポリビニルアルコール樹脂よりも融点と分解温度の差が大きく、溶融成形が可能である。また、エチレン由来の構造単位を有することによりポリビニルアルコール樹脂と比較して耐水性が付与される。
かかる単量体としては、例えば、プロピレン、1-ブテン、イソブテン等のオレフィン類;アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1~18のモノ又はジアルキルエステル類;アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類;メタクリルアミド、炭素数1~18のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド類;アクリルニトリル、メタクリルニトリル等のシアン化ビニル類;炭素数1~18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル類;ビニルシラン類;酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸、ビニルエチレンカーボネート等が挙げられる。
これらは単独でも複数種を同時に用いてもよい。
これらの単量体由来の構造単位は、通常、公知の手法にてエチレンおよびビニルエステル系モノマーと上記単量体を共重合することによりEVOH(C)に導入することができる。
例えば、アリルアルコール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール等のモノヒドロキシアルキル基含有モノマー;2-メチレン-1,3-プロパンジオール等の2置換ジオールモノマー;3,4-ジオール-1-ブテン、4,5-ジオール-1-ペンテン、4,5-ジオール-3-メチル-1-ペンテン、5,6-ジオール-1-ヘキセン等の1,2-ジオール基含有モノマー;グリセリンモノアリルエーテルやヒドロキシメチルビニリデンジアセテート、その他エチレン性不飽和単量体が挙げられる。その他エチレン性不飽和単量体としては、例えば、ヒドロキシメチルビニリデンジアセテートが挙げられ、具体的には、1,3-ジアセトキシ-2-メチレンプロパン、1,3-ジプロピオニルオキシ-2-メチレンプロパン、1,3-ジブチロニルオキシ-2-メチレンプロパンなどが挙げられる。中でも、1,3-ジアセトキシ-2-メチレンプロパンが製造容易性の点で好ましく用いられる。これらモノマーのうち1種又は2種以上を含んでいてもよい。
これらモノマーのうち側鎖1,2-ジオール構造が得られる1,2-ジオール基含有モノマーが特に好ましい。
該構造単位(a)の含有量を調整するに際しては、構造単位(a)の導入量が異なる少なくとも2種のEVOHをブレンドして調整することも可能である。その際のEVOHのエチレン含有量の差は2モル%未満であることが好ましい。また、構造単位(a)を有するEVOHと、構造単位(a)を有しないEVOHとをブレンドして調整することも可能である。
本発明に用いられるフッ素系樹脂(A)は、水酸基と相互作用又は反応しうる官能基が導入されたフッ素系樹脂である。水酸基と相互作用又は反応しうる官能基(以下、「極性官能基」とも称する。)としては、好ましくはカルボニル含有基又は水酸基であり、より好ましくはカルボニル含有基である。
また、極性官能基を有する連鎖移動剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール、無水酢酸等のカルボン酸、チオグリコール酸、チオグリコール等が挙げられる。
連鎖移動剤としては、メタノール、エタノール等のアルコール;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のクロロフルオロハイドロカーボン;ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボン;1-ヒドロトリデカフルオロヘキサン等の含フッ素ハイドロカーボンなどが挙げられる。
重合条件は特に限定しないが、例えば重合温度は0~100℃が好ましく、20~90℃が特に好ましい。また重合圧力は0.1~10MPaが好ましく、0.5~3MPaが特に好ましい。重合時間は重合温度及び重合圧力等により変わりうるが、1~30時間が好ましく、2~10時間が特に好ましい。
本発明に用いられる熱可塑性樹脂(B)は、カルボキシル基又は酸無水物基を有する熱可塑性樹脂(B)(但し、フッ素系樹脂(A)及びカルボキシル基又は酸無水物基を有するエチレン-ビニルエステル系共重合体ケン化物を除く)である。
かかる熱可塑性樹脂(B)としては、例えば、不飽和カルボン酸又はその無水物をポリオレフィン系樹脂に付加反応やグラフト反応等により化学的に結合させて得られるカルボキシル基を含有する変性ポリオレフィン系樹脂を挙げることができる。特に、酸グラフト変性ポリオレフィン系樹脂が好ましく、より具体的には、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン-プロピレン(ブロックまたはランダム)共重合体、無水マレイン酸グラフト変性エチレン-エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン-酢酸ビニル共重合体等から選ばれた1種または2種以上の混合物が好適なものとして挙げられる。
熱可塑性樹脂(B)として、酸変性エチレン-α-オレフィン共重合体ゴム又は酸変性TPE(熱可塑性エラストマー)を用いることができるが、樹脂組成物の耐衝撃性が向上する点で酸変性エチレン-α-オレフィン共重合体ゴムが好ましい。
本発明に用いられる酸変性エチレン-α-オレフィン共重合体ゴムは、特に限定されないが、エチレン-プロピレン共重合体ゴム(EPR)、エチレン-ブテン共重合体ゴム(EBR)、エチレン-オクテン共重合体ゴム(EOR)等を不飽和カルボン酸またはその無水物等の酸で変性したものであり、具体的には不飽和カルボン酸またはその無水物をエチレン-α-オレフィン共重合体ゴムに付加反応やグラフト反応等により化学的に結合させて得られるカルボキシル基を含有する変性エチレン-α-オレフィン共重合体ゴムを挙げることができ、特に酸グラフト変性エチレン-α-オレフィン共重合体ゴムが好ましく、より具体的には無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体ゴムが挙げられる。特に耐衝撃性が向上する点で脆化温度が-40℃以下であるものが好適である。特に-60℃以下、更に-70℃以下が好ましい。脆化温度の下限については通常-150℃以上である。
なお融点は、示差走査熱量計(DSC)を用いて、昇温速度10℃/minで測定される融解ピーク温度(℃)を表す。
本発明のエチレン-ビニルエステル系共重合体ケン化物(EVOH)樹脂組成物は、水酸基と相互作用又は反応しうる官能基を有するフッ素系樹脂(A)、カルボキシル基又は酸無水物基を有する熱可塑性樹脂(B)(但し、フッ素系樹脂(A)及びカルボキシル基又は酸無水物基を有するEVOHを除く)、及びEVOH(C)を含有し、これらを所定比率で配合し、溶融混練することにより調製することができる。
かかる溶融混練は、フッ素系樹脂(A)、熱可塑性樹脂(B)及びEVOH(C)を一括投入して行ってもよいし、EVOH(C)を二軸押出機で溶融混練しながら、フッ素系樹脂(A)及び熱可塑性樹脂(B)を溶融状態、あるいは固体状態でサイドフィードして行ってもよい。
なお、樹脂組成物中に2種以上のアルカリ金属及び/又はアルカリ土類金属の塩が含有される場合は、その総計が上記の含有量の範囲にあることが好ましい。また、ホウ酸を含有させるときは、ホウ素換算での含有量が好ましくは10~10000ppm、特に好ましくは20~2000ppm、更に好ましくは50~1000ppmである。
酸素吸収剤としては、無機化合物系酸素吸収剤、有機化合物系酸素吸収剤、高分子化合物系酸素吸収剤が挙げられる。無機化合物系酸素吸収剤として、例えば、還元鉄粉類、更にこれに吸水性物質や電解質等を加えたもの、アルミニウム粉、亜硫酸カリウム、光触媒酸化チタン等が挙げられる。有機化合物系酸素吸収剤として、例えば、アスコルビン酸、更にその脂肪酸エステルや金属塩等、ハイドロキノン、没食子酸、水酸基含有フェノールアルデヒド樹脂等の多価フェノール類、ビス-サリチルアルデヒド-イミンコバルト、テトラエチレンペンタミンコバルト、コバルト-シッフ塩基錯体、ポルフィリン類、大環状ポリアミン錯体、ポリエチレンイミン-コバルト錯体等の含窒素化合物と遷移金属との配位結合体、テルペン化合物、アミノ酸類とヒドロキシル基含有還元性物質の反応物、トリフェニルメチル化合物等が挙げられる。高分子系酸素吸収剤として、例えば、窒素含有樹脂と遷移金属との配位結合体(例えばMXDナイロンとコバルトの組合せ)、三級水素含有樹脂と遷移金属とのブレンド物(例えばポリプロピレンとコバルトの組合せ)、炭素-炭素不飽和結合含有樹脂と遷移金属とのブレンド物(例えばポリブタジエンとコバルトの組合せ)、光酸化崩壊性樹脂(例えばポリケトン等)、アントラキノン重合体(例えばポリビニルアントラキノン)等が挙げられる。更にこれらの配合物に光開始剤(例えばベンゾフェノン等)や過酸化物補足剤(例えば市販の酸化防止剤等)や消臭剤(例えば活性炭等)を配合したものなどが挙げられる。
本発明のEVOH樹脂組成物からなるフィルムや多層構造体等は、さらに公知の手法にて加工することも可能である、例えば、ドライラミネート法や、一軸延伸法、二軸延伸法、真空成型法、圧空成形法等の延伸法が採用可能である。
本発明の高圧ガスホース又は複合容器(以下単に「ホース又は複合容器」と称することがある。)は、上記EVOH樹脂組成物からなる層(以下「ガスバリア層」と称することがある。)を少なくとも1層含むものである。本発明において「ホース」とは、高圧ガスを移送するための樹脂製の「樹脂チューブ」と「補強層」を有する管を意味する。本発明において「複合容器」とは、高圧ガスを収容するための樹脂製の「樹脂ライナー」と「補強層」を有する容器を意味する。
好ましくは多層構造からなる樹脂チューブ又は樹脂ライナーがガスバリア層を含むものである。かかるガスバリア層は単独層であってもよい。樹脂チューブ又は樹脂ライナーが多層構造である場合は、その内側層(すなわち高圧ガスと接する層)又は中間層、より好ましくは中間層として、ガスバリア層を含むものである。さらに、内側層及び/又は外側層(すなわち外気と接する層)に、耐水性、水分不透過性の熱可塑樹脂層を含むことが好ましい。なお、中間層とは、外側層と内側層の間にある層をいう。
ガスバリア層が薄すぎる場合、得られるホース又は複合容器に高度なガスバリア性が得られ難かったり、コラプスが発生して座屈破壊を引き起こしたりする傾向がある。厚すぎる場合、柔軟性や経済性が低下する傾向がある。
また水分不透過性熱可塑性樹脂層が薄すぎる場合、得られるホース又は複合容器の強度が低下する傾向があり、厚すぎる場合は耐屈曲性や柔軟性が低下したり、内容積が減少する傾向がある。
経済性と性能のバランスの点から、カルボン酸変性ポリオレフィン系樹脂が好ましく、特に好ましくはカルボン酸変性ポリプロピレン系樹脂若しくはカルボン酸変性ポリエチレン系樹脂又はこれらの混合物である。
なお、上記水分不透過性熱可塑性樹脂層、接着層には、成形加工性や諸物性の向上のために、公知一般の各種添加剤や改質剤、充填材、他の樹脂等を本発明の効果を阻害しない範囲で配合してもよい。
尚、ホースの補強層の構造は、例えば、特開2010-31993号公報に記載の構造に準じて構成してもよい。ホースの補強層としては、ポリパラフェニレンベンズビスオキサゾール(PBO)繊維を用いることが好ましい。複合容器の補強層としては、炭素繊維が好適に使用される。炭素繊維は、強度面からはPAN系が好ましく、熱伝導度の制御の面からは、熱伝導度が高いピッチ系が好ましい。
かかる平均線膨張係数の比は、同一条件で測定した平均線膨張係数を適用することが可能である。さらには、高圧ガス設備における実用的な温度範囲である、-60~40℃における平均線膨張係数を用いることが好ましい。
また、ガスバリア層は、高圧の水素の曝露、脱圧が繰り返されてもブリスタの発生を抑制できるので、多層構造を有する樹脂チューブ又は複合容器用樹脂ライナー、ホース又は複合容器において、ガスバリア層と隣接する層(例えば、補強層、水分不透過性熱可塑性樹脂層)との界面での接着強度の低下やコラプスの生成も防止できる。
高圧ガスホースの常用圧力は、通常35~90MPa、好ましくは50~90MPa、特に好ましくは80~90MPa、更に好ましくは82~87.5MPaである。
また、高圧ガス用複合容器の常用圧力は、通常35~100MPaである。
また、高圧ガスホースの設計圧力の例としては、圧力の低いものから例示すると、86MPa超、95MPa超、97MPa超、98.4MPa超などがある。
実施例及び比較例1~4のEVOH樹脂組成物として、以下の原料を用いた。
(原料)
<フッ素系樹脂(A)>
内容積が430リットルの撹拌機付き重合槽を脱気し、溶媒として、1-ヒドロトリデカフルオロヘキサン200.7kg及び1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、AK225cb、以下「AK225cb」という。)55.8kgを仕込み、さらに、重合モノマーとして、1.3kgのCH2=CH(CF2)4Fを仕込んだ。次いで、重合モノマーとして、122.2kgのヘキサフルオロプロピレン(HFP)、36.4kgのテトラフルオロエチレン(TFE)、1.2kgのエチレン(E)を圧入し、重合槽内を66℃に昇温し、重合開始剤としてtert-ブチルペルオキシピバレートの85.8gを仕込み、重合を開始させた。重合中の圧力が一定になるように組成TFE/E=54/46(モル比)のモノマー混合ガスを連続的に仕込み、TFE/Eのモノマー混合ガスに対して、1.0モル%となるようにCH2=CH(CF2)4Fを、また0.35モル%となるように極性官能基含有化合物である無水イタコン酸を、それぞれ連続的に仕込んだ。重合開始3.6時間後、モノマー混合ガスの29kgを仕込んだ時点で、重合槽内の温度を室温まで降温するとともに常圧までパージした。
得られたスラリーから溶媒を留去して、極性官能基として酸無水物基を有するフッ素樹脂を得、これを130℃で4時間真空乾燥することにより、30kgの酸無水物基含有フッ素樹脂(A1)を得た。酸無水物基含有フッ素樹脂(A1)の融点は176℃、Q値は12mm3/秒、共重合組成はTFE/E/HFP/CH2=CH(CF2)4F/無水イタコン酸=47.83/42.85/7.97/1.00/0.35(モル%)であった。
・酸変性エチレン-α-オレフィン共重合体ゴム(三井化学社製、タフマーMA8510、融点69℃、MFR:5.0g/10min〔230℃、荷重2160g、ASTM D1238〕、脆化温度:-70℃未満)
<EVOH(C)>
・EVOH(C1)(エチレン含有量:32モル%、けん化度99.7モル%、融点183℃、MFR:3.8g/10min〔210℃、荷重2160g、ASTM D1238〕 )
・EVOH(C2)(エチレン含有量:29モル%、けん化度99.7モル%、融点188℃、MFR:3.8g/10min〔210℃、荷重2160g、ASTM D1238〕)
上記原料を用いて、実施例及び比較例(比較例1を除く)のEVOH樹脂組成物を調製した。使用した樹脂組成物は、二軸押出機(テクノベル社製)を用いて、下記条件でペレット化した。なお、樹脂組成物の調製は、各樹脂をドライブレンドした後、二軸押出機で溶融混練押出を行った。
スクリュー径:15mm
L/D=60
回転方向:同方向
スクリューパターン:3か所練り
スクリーンメッシュ:90/90メッシュ
スクリュー回転数:200rpm
温度パターン:C1/C2/C3/C4/C5/C6/C7/C8/D=190/200/210/210/215/215/220/220/220℃
樹脂温度:220℃
実施例及び比較例の樹脂組成物について、下記の測定評価を行なった。
(1)耐水素脆性(耐ブリスタ性)
本発明のEVOH樹脂組成物を用いて下記のようなダンベル状試験片を作製し、高圧水素ガス曝露-脱圧サイクル試験後のブリスタ発生の有無を評価した。
図1に示すように構成された水素高圧ガス設備を用いて、試験体(11)に、図2に示すダンベル状試験片(ISO 527-3に準拠し、b1=6、b2=25、L0=25、l1=33、L=80、l3=115、h=1、単位はいずれもmm)をセットして、0.5時間で水素ガスを98.4MPaまで昇圧し、かかる高圧水素環境下に20時間曝露し、30秒間で0.1MPaまで脱圧し、その後0.5時間静置するという圧力パターンを1サイクルとして、5サイクル繰り返した。
高圧水素ガス曝露-脱圧サイクル試験後、試験片(11)を取り出し、試験片(11)の状態を目視で観察し、ブリスタの発生状況(通常、ダンベル部分に発生)を観察した。ダンベル部分に発生したブリスタの発生個数が0個の場合を「A(excellent)」、ブリスタ発生個数が1個以上20個未満の場合を「B(good)」、ブリスタ発生個数が20個以上50個未満の場合を「C(fair)」、50個以上の場合を「D(poor)」として評価した。
ISO180に準拠して、23℃及び-40℃にてノッチ付試験片を使用してアイゾット衝撃強度を行った。いずれの温度においても5kJ/m2を超える場合は実用性があるといえる。
対象となる樹脂組成物をISO1133に準拠して、東洋精機社製「メルトインデックサF-F01」を用いて220℃、荷重2160gでのMFRを測定した。測定値が0.7g/10min以上の場合は「A(good)」、0.3g/10min以上0.7g/10min未満の場合は「B(fair)」、0.3g/10min未満の場合は「C(poor)」とした。0.3g/10min未満の場合、220℃での加工が困難であり、さらに高温での加工が必要になるため、EVOHの分解や、ゲル化、ブツの発生の可能性が高くなる。
得られた樹脂組成物のペレットを液体窒素下で切断し、その断面をSEMで観察し、島部の平均径を測定した。
他方、EVOHと酸変性ポリオレフィンを70/30(重量比)にて含有する樹脂組成物を用いた比較例2では、酸変性ポリオレフィンの含有量が多く、水酸基と酸変性基が多量に反応するためか、溶融粘度試験において0.3g/10min未満という結果であり実用性に乏しく溶融成形が困難となり、高圧水素ガス曝露-脱圧サイクル試験および耐衝撃性試験は測定不可能であった。
また、本発明のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物は、例えば、本発明の高圧ガスホースが有する層の構成材料として、又は高圧ガス用複合容器が有する層の構成材料(樹脂ライナー)として好適に利用することができる。
本願は、2014年12月27日出願の日本国特許出願(特願2014-266899)に基づく優先権の利益を享受するものであり、それら全ての内容が参照によりここに組み込まれる。
2; 100MPa級圧縮機
3; 圧力調整器及び耐圧容器
4; 圧力調整ユニット
5; 自動弁ユニット
6; 圧力調整弁
7; プレクールユニット
8; H2容器
9; 曝露試験設備
10; 加圧耐久試験設備
11; 試験体
b1; Width of narrow parallel-sided portion: 6 mm ± 0.4 mm
b2; Width at ends: 25 mm ± 1 mm
h; Thickness: ≦ 1 mm
L0; Gauge length: 25 mm ± 0.25 mm
l1; Length of narrow parallel-sided portion: 33 mm ± 2 mm
L; Initial distance between grips: 80 mm ± 5 mm
l3; Overall length: ≧ 115 mm
r1; Small radius: 14 mm ± 1 mm
r2; Large radius: 25 mm ± 2 mm
Claims (12)
- 水酸基と相互作用又は反応しうる官能基を有するフッ素系樹脂(A)、
カルボキシル基又は酸無水物基を有する熱可塑性樹脂(B)(但し、フッ素系樹脂(A)及びカルボキシル基又は酸無水物基を有するエチレン-ビニルエステル系共重合体ケン化物を除く)、及び
エチレン-ビニルエステル系共重合体ケン化物(C)
を含有することを特徴とするエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。 - フッ素系樹脂(A)における水酸基と相互作用又は反応しうる官能基の含有率が、0.01~10モル%であることを特徴とする請求項1に記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- フッ素系樹脂(A)の容量流速が、0.1~1000mm3/秒であることを特徴とする請求項1又は2に記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- 熱可塑性樹脂(B)が、酸変性エチレン-α-オレフィン共重合体ゴムであることを特徴とする請求項1~3のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- 熱可塑性樹脂(B)のメルトフローレート(230℃、荷重2160g)が、0.1~100g/10分であることを特徴とする請求項1~4のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- エチレン-ビニルエステル系共重合体ケン化物(C)におけるエチレン構造単位の含有量が、15~60モル%であることを特徴とする請求項1~5のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- エチレン-ビニルエステル系共重合体ケン化物(C)のメルトフローレート(210℃、荷重2160g)が、0.5~100g/10分であることを特徴とする請求項1~6のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- フッ素系樹脂(A)と熱可塑性樹脂(B)との総含有量が、エチレン-ビニルエステル系共重合体ケン化物樹脂組成物中、1~40重量%である請求項1~7のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- エチレン-ビニルエステル系共重合体ケン化物樹脂組成物におけるフッ素系樹脂(A)と熱可塑性樹脂(B)の含有比率〔(A)/(B)〕が、1/5~5/1(重量比)であることを特徴とする請求項1~8のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物。
- 請求項1~9のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物を含有する層を少なくとも一層有することを特徴とする高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー。
- 請求項1~9のいずれかに記載のエチレン-ビニルエステル系共重合体ケン化物樹脂組成物を含有する層を少なくとも一層有することを特徴とする高圧ガスホース又は複合容器。
- 高圧ガスにおけるガス成分が水素ガスであることを特徴とする請求項11に記載の高圧ガスホース又は複合容器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/539,270 US20180016430A1 (en) | 2014-12-27 | 2015-12-25 | Saponified ethylene-vinyl ester copolymer resin composition, resin tube for high-pressure gas or resin liner for composite container, and high-pressure gas hose or composite container |
EP15873294.1A EP3239232B1 (en) | 2014-12-27 | 2015-12-25 | Saponified ethylene-vinyl ester copolymer resin composition, resin tube for high pressure gas or resin liner for composite container, and high pressure gas hose or composite container |
JP2016519899A JP6620741B2 (ja) | 2014-12-27 | 2015-12-25 | エチレン−ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014266899 | 2014-12-27 | ||
JP2014-266899 | 2014-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104726A1 true WO2016104726A1 (ja) | 2016-06-30 |
Family
ID=56150738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/086275 WO2016104726A1 (ja) | 2014-12-27 | 2015-12-25 | エチレン-ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180016430A1 (ja) |
EP (1) | EP3239232B1 (ja) |
JP (1) | JP6620741B2 (ja) |
WO (1) | WO2016104726A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210086958A (ko) * | 2019-12-30 | 2021-07-09 | 장 춘 페트로케미컬 컴퍼니 리미티드 | 에틸렌 비닐 알코올 공중합체 수지 조성물 및 그것의 필름 및 다층 구조체 |
JP7041386B1 (ja) | 2020-09-30 | 2022-03-24 | ダイキン工業株式会社 | フッ素樹脂、積層体、チューブおよびチューブの製造方法 |
JP7041385B1 (ja) | 2020-09-30 | 2022-03-24 | ダイキン工業株式会社 | 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法 |
US11512196B2 (en) | 2019-12-30 | 2022-11-29 | Chang Chun Petrochemical Co., Ltd. | Fluorine-containing ethylene-vinyl alcohol copolymer resin composition as well as mixture and blend thereof |
WO2023008440A1 (ja) * | 2021-07-29 | 2023-02-02 | Agc株式会社 | ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 |
JP2023547754A (ja) * | 2021-09-21 | 2023-11-14 | 株式会社クラレ | 改良された水素バリアを有する多層構造体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12053951B2 (en) * | 2018-12-26 | 2024-08-06 | Kuraray Co., Ltd. | Multilayer article suitable for use as a fuel container |
US10711124B1 (en) * | 2019-12-30 | 2020-07-14 | Chang Chun Petrochemical Co., Ltd. | Ethylene vinyl alcohol pellets as well as films thereof |
BR112022012935A2 (pt) * | 2019-12-31 | 2022-09-06 | Saint Gobain Performance Plastics Corp | Tubo e método para produzir o mesmo |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013071979A (ja) * | 2011-09-27 | 2013-04-22 | Nippon Synthetic Chem Ind Co Ltd:The | 高圧ガス移送用ホース |
JP2013227530A (ja) * | 2012-03-29 | 2013-11-07 | Nippon Synthetic Chem Ind Co Ltd:The | ポリビニルアルコール系樹脂組成物、その樹脂組成物の製造方法、およびその樹脂組成物を用いたフィルム |
WO2014021422A1 (ja) * | 2012-08-02 | 2014-02-06 | 日本合成化学工業株式会社 | 高圧ガス用ホース又は貯蔵容器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4029799B2 (ja) * | 2003-08-25 | 2008-01-09 | 豊田合成株式会社 | 樹脂組成物及び燃料系樹脂成形品 |
JP4792232B2 (ja) * | 2005-02-25 | 2011-10-12 | 東海ゴム工業株式会社 | 燃料電池用ホース |
EP2842998B1 (en) * | 2012-04-27 | 2017-03-08 | The Nippon Synthetic Chemical Industry Co., Ltd. | Resin composition and use therefor |
-
2015
- 2015-12-25 US US15/539,270 patent/US20180016430A1/en not_active Abandoned
- 2015-12-25 JP JP2016519899A patent/JP6620741B2/ja active Active
- 2015-12-25 WO PCT/JP2015/086275 patent/WO2016104726A1/ja active Application Filing
- 2015-12-25 EP EP15873294.1A patent/EP3239232B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013071979A (ja) * | 2011-09-27 | 2013-04-22 | Nippon Synthetic Chem Ind Co Ltd:The | 高圧ガス移送用ホース |
JP2013227530A (ja) * | 2012-03-29 | 2013-11-07 | Nippon Synthetic Chem Ind Co Ltd:The | ポリビニルアルコール系樹脂組成物、その樹脂組成物の製造方法、およびその樹脂組成物を用いたフィルム |
WO2014021422A1 (ja) * | 2012-08-02 | 2014-02-06 | 日本合成化学工業株式会社 | 高圧ガス用ホース又は貯蔵容器 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102413801B1 (ko) * | 2019-12-30 | 2022-06-27 | 장 춘 페트로케미컬 컴퍼니 리미티드 | 에틸렌 비닐 알코올 공중합체 수지 조성물 및 그것의 필름 및 다층 구조체 |
KR20210086959A (ko) * | 2019-12-30 | 2021-07-09 | 장 춘 페트로케미컬 컴퍼니 리미티드 | 에틸렌 비닐 알코올 공중합체 수지 조성물 및 그것의 필름 및 다층 구조체 |
US11512196B2 (en) | 2019-12-30 | 2022-11-29 | Chang Chun Petrochemical Co., Ltd. | Fluorine-containing ethylene-vinyl alcohol copolymer resin composition as well as mixture and blend thereof |
KR20210086958A (ko) * | 2019-12-30 | 2021-07-09 | 장 춘 페트로케미컬 컴퍼니 리미티드 | 에틸렌 비닐 알코올 공중합체 수지 조성물 및 그것의 필름 및 다층 구조체 |
KR102463956B1 (ko) | 2019-12-30 | 2022-11-04 | 장 춘 페트로케미컬 컴퍼니 리미티드 | 에틸렌 비닐 알코올 공중합체 수지 조성물 및 그것의 필름 및 다층 구조체 |
JP7041385B1 (ja) | 2020-09-30 | 2022-03-24 | ダイキン工業株式会社 | 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法 |
JP2022058285A (ja) * | 2020-09-30 | 2022-04-11 | ダイキン工業株式会社 | 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法 |
JP2022058286A (ja) * | 2020-09-30 | 2022-04-11 | ダイキン工業株式会社 | フッ素樹脂、積層体、チューブおよびチューブの製造方法 |
WO2022071529A1 (ja) * | 2020-09-30 | 2022-04-07 | ダイキン工業株式会社 | フッ素樹脂、積層体、チューブおよびチューブの製造方法 |
WO2022071528A1 (ja) * | 2020-09-30 | 2022-04-07 | ダイキン工業株式会社 | 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法 |
JP7041386B1 (ja) | 2020-09-30 | 2022-03-24 | ダイキン工業株式会社 | フッ素樹脂、積層体、チューブおよびチューブの製造方法 |
WO2023008440A1 (ja) * | 2021-07-29 | 2023-02-02 | Agc株式会社 | ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 |
JP2023547754A (ja) * | 2021-09-21 | 2023-11-14 | 株式会社クラレ | 改良された水素バリアを有する多層構造体 |
JP7458549B2 (ja) | 2021-09-21 | 2024-03-29 | 株式会社クラレ | 改良された水素バリアを有する多層構造体 |
Also Published As
Publication number | Publication date |
---|---|
EP3239232B1 (en) | 2019-08-07 |
EP3239232A1 (en) | 2017-11-01 |
JPWO2016104726A1 (ja) | 2017-10-12 |
EP3239232A4 (en) | 2018-07-25 |
JP6620741B2 (ja) | 2019-12-18 |
US20180016430A1 (en) | 2018-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620741B2 (ja) | エチレン−ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器 | |
WO2014021422A1 (ja) | 高圧ガス用ホース又は貯蔵容器 | |
JP4780153B2 (ja) | 積層樹脂成形体、積層樹脂成形体製造方法及び多層成形品 | |
JP4576782B2 (ja) | 積層樹脂成形体及び多層成形品 | |
KR101187596B1 (ko) | 에틸렌-비닐 알콜 공중합체 수지 조성물로 이루어진 다층펠렛 | |
JP6468775B2 (ja) | エチレン−ビニルエステル系共重合体ケン化物及び高圧ガス用ホース又は貯蔵容器 | |
JP2006123530A (ja) | 多層フィルム | |
JP6351398B2 (ja) | 多層構造体 | |
JP6178154B2 (ja) | 高圧ガス用ホース又は貯蔵容器 | |
JP7558485B2 (ja) | エチレン-ビニルアルコール系共重合体組成物 | |
JP6192418B2 (ja) | 高圧ガス用ホース又は貯蔵容器 | |
JP2007261074A (ja) | 多層延伸フィルム | |
JP2006321224A (ja) | 含フッ素共重合体の積層ホース | |
JP5818349B2 (ja) | 高圧ガス移送用ホース | |
JP4758265B2 (ja) | 多層シュリンクフィルム | |
WO2022059480A1 (ja) | 樹脂組成物及びこれを用いたガスバリア用フィルム | |
WO2023008440A1 (ja) | ポリマーアロイ、高圧ガス用ホース及び高圧ガス用貯蔵容器 | |
WO2022158589A1 (ja) | エチレン-ビニルアルコール系共重合体組成物 | |
JP7444712B2 (ja) | 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ | |
JP2008307693A (ja) | 多層フィルムおよび多層延伸フィルム | |
WO2024018996A1 (ja) | 多層構造体、容器および食品包装用容器 | |
JP2024013217A (ja) | 多層構造体、容器および食品包装用容器 | |
JP2006095748A (ja) | 燃料容器 | |
JP2024013216A (ja) | 多層構造体、容器および食品包装用容器 | |
JP2024013215A (ja) | 多層構造体、容器および食品包装用容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016519899 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873294 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15539270 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015873294 Country of ref document: EP |