WO2017110300A1 - 電子写真用感光体、その製造方法および電子写真装置 - Google Patents

電子写真用感光体、その製造方法および電子写真装置 Download PDF

Info

Publication number
WO2017110300A1
WO2017110300A1 PCT/JP2016/083665 JP2016083665W WO2017110300A1 WO 2017110300 A1 WO2017110300 A1 WO 2017110300A1 JP 2016083665 W JP2016083665 W JP 2016083665W WO 2017110300 A1 WO2017110300 A1 WO 2017110300A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive layer
inorganic oxide
electrophotographic photoreceptor
coating solution
mass
Prior art date
Application number
PCT/JP2016/083665
Other languages
English (en)
French (fr)
Inventor
鈴木 信二郎
知貴 長谷川
豊強 朱
小川 祐治
広高 小林
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2017557789A priority Critical patent/JPWO2017110300A1/ja
Priority to EP16878196.1A priority patent/EP3343295A4/en
Priority to CN201680056617.2A priority patent/CN108139697A/zh
Publication of WO2017110300A1 publication Critical patent/WO2017110300A1/ja
Priority to US15/943,682 priority patent/US10585364B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/0507Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0578Polycondensates comprising silicon atoms in the main chain

Definitions

  • the present invention relates to an electrophotographic photosensitive member (hereinafter also simply referred to as “photosensitive member”) used in an electrophotographic printer, a copying machine, a fax machine, etc., a manufacturing method thereof, and an electrophotographic apparatus.
  • the present invention relates to an electrophotographic photoreceptor capable of realizing excellent wear resistance and stability of electric characteristics by having an oxide in a photosensitive layer, a method for producing the same, and an electrophotographic apparatus.
  • the electrophotographic photoreceptor has a basic structure in which a photosensitive layer having a photoconductive function is provided on a conductive substrate.
  • organic electrophotographic photoreceptors using organic compounds as functional components responsible for charge generation and transport have been actively researched and developed due to advantages such as material diversity, high productivity, and safety. Application to printers and printers is ongoing.
  • a photoconductor needs to have a function of holding a surface charge in a dark place, a function of receiving light to generate a charge, and a function of transporting the generated charge.
  • a so-called single layer type photoreceptor having a single photosensitive layer having both of these functions, a charge generation layer mainly responsible for charge generation upon light reception, and a surface charge in a dark place.
  • So-called laminated type (functional separation type) photoreceptor comprising a photosensitive layer in which a functionally separated layer is laminated with a charge transporting layer that has a function of retaining the charge and a function of transporting the charge generated in the charge generation layer during light reception There is.
  • the photosensitive layer is generally formed by applying a coating solution prepared by dissolving or dispersing a charge generating material, a charge transporting material and a resin binder in an organic solvent onto a conductive substrate.
  • a coating solution prepared by dissolving or dispersing a charge generating material, a charge transporting material and a resin binder in an organic solvent onto a conductive substrate.
  • These organic electrophotographic photoreceptors, particularly the outermost layer, are highly resistant to friction generated between the paper and the blade for removing toner, have excellent flexibility, and allow transmission of exposure.
  • polycarbonate having good properties is used as a resin binder.
  • bisphenol Z-type polycarbonate is widely used as the resin binder.
  • a technique using such a polycarbonate as a resin binder is described in, for example, Patent Document 1.
  • Patent Documents 2 and 3 Various polycarbonate resin structures have been proposed to improve the durability of the photoreceptor surface.
  • Patent Documents 2 and 3 a polycarbonate resin including a specific structure is proposed, but studies on compatibility with various charge transport agents and additives and resin solubility are not sufficient.
  • Patent Document 4 proposes a polycarbonate resin having a specific structure.
  • a resin having a bulky structure has a large space between polymers, and a discharge substance, a contact member, foreign matter, etc. during charging penetrate into the photosensitive layer. Because it is easy, it is difficult to obtain sufficient durability.
  • Patent Document 5 proposes a polycarbonate having a special structure, but there is not enough description on the charge transporting material and additives to be combined, and it is stable during long-term use. There was a problem that continuation of electrical characteristics was difficult.
  • Patent Document 6 a proposal is made to contain filler particles in the photosensitive layer in order to improve the wear resistance.
  • Patent Document 7 proposes a charge transport layer in which baked silica is dispersed, but there is no description regarding the transmittance of a slurry liquid in which silica is dispersed in a solvent.
  • Patent Document 8 describes a metal element contained in silica, but Patent Document 8 only describes a technical idea about the presence or absence of a metal element from the viewpoint of an increase in manufacturing cost. Thus, there is no description referring to the amount of impurities from the viewpoint of improving dispersibility.
  • JP-A-61-62040 JP 2004-354759 A Japanese Patent Laid-Open No. 4-179961 JP 2004-85644 A JP-A-3-273256 JP 2008-176054 A JP 2002-182409 A JP-A-8-146642
  • an object of the present invention is to provide an electrophotographic photoreceptor, a method for producing the same, and an electrophotographic apparatus that can realize a stable image with little wear even during long-term use.
  • the present inventors have conducted intensive studies on the material of the outermost surface layer of the photoconductor. As a result, the film wear is improved and the image quality is stable even after repeated use.
  • the present invention provides a photosensitive member having a property. Specifically, the present inventors have found that a satisfactory electrophotographic photoreceptor can be obtained by applying the following constitution, and have completed the present invention.
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate, A photosensitive layer formed on the conductive substrate and containing an inorganic oxide,
  • the light having a wavelength of 780 nm is applied to a 20 mass% inorganic oxide slurry in which the inorganic oxide is dispersed by 20 mass% with respect to the solvent for the photosensitive layer coating solution for coating and forming the photosensitive layer.
  • the light transmittance is 40% or more.
  • the mechanical strength of the photosensitive layer is improved by including an inorganic oxide in the photosensitive layer, and very high light transmission is achieved when dispersed at a high concentration in a solvent for forming the photosensitive layer.
  • the present inventors have found that a high-quality photoreceptor can be provided by using an inorganic oxide exhibiting properties.
  • the viscosity of the 20 mass% inorganic oxide slurry is preferably 50 mPa ⁇ s or less.
  • the primary particle diameter of the inorganic oxide may be kept high when dispersed in a solvent, and is preferably 1 to 200 nm.
  • the photosensitive layer is preferably the outermost layer.
  • the inorganic oxide preferably contains silica as a main component, more preferably contains silica as a main component and aluminum element in an amount of 1 ppm to 1000 ppm. Furthermore, the inorganic oxide is preferably surface-treated with a silane coupling agent.
  • silane coupling agent one having a structure represented by the following general formula (1) can be preferably used.
  • (R 1 ) n -Si- (OR 2 ) 4-n (1) (wherein, Si represents a silicon atom, R 1 represents an organic group in the form of carbon to the silicon atom is directly bonded, R 2 represents an organic group, n is an integer of 0 to 3)
  • the silane coupling agent is phenyltrimethoxysilane, vinyltrimethoxysilane, epoxytrimethoxysilane, methacryltrimethoxysilane, aminotrimethoxysilane, ureidotrimethoxysilane, mercaptopropyltrimethoxysilane, isocyanatepropyltrimethoxysilane.
  • a surface treatment agent comprising at least one selected from the group consisting of methoxysilane and N-phenyl-3-aminopropyltrimethoxysilane Masui.
  • the inorganic oxide is surface-treated with a plurality of types of the silane coupling agents, and the silane coupling agent used for the surface treatment first is represented by the general formula (1). It is also preferable to have the structure. Furthermore, it is also preferable that the photosensitive layer coating solution contains 2% by mass or less of a compound having a structure represented by the following general formula (2).
  • Si (OH) m (R 1 ) n (OR 2) 4- (n + m) (2)
  • R 1 represents an organic group in which carbon is directly bonded to the silicon atom
  • R 2 represents an organic group
  • m represents an integer of 1 to 4
  • n represents 0 to 3 represents an integer of 3 and m + n is 4 or less
  • the photosensitive layer coating solution for forming the photosensitive layer comprises an inorganic oxide slurry obtained by first dispersing the inorganic oxide in a solvent for the photosensitive layer coating solution, and the photosensitive layer. It is preferably obtained by mixing a charge transporting material and a resin binder solution obtained by dissolving a resin binder in a solvent for a coating solution, and the inorganic oxide is primary in the solvent for the photosensitive layer coating solution. Obtained by mixing a dispersed inorganic oxide slurry and a photosensitive layer forming solution prepared by dissolving a charge transport material and a resin binder in the solvent for the photosensitive layer coating solution and further dispersing the charge generating material. It is also preferable.
  • the charge transport material preferably includes an arylamine compound
  • the charge transport material preferably includes an electron transport material
  • the charge generation material preferably includes a phthalocyanine compound
  • the method for producing an electrophotographic photoreceptor of the present invention is a method for producing the electrophotographic photoreceptor by forming the photosensitive layer using a photosensitive layer coating solution.
  • An inorganic oxide slurry preparation step for obtaining an inorganic oxide slurry by first dispersing the inorganic oxide in a solvent for the photosensitive layer coating solution; and a charge transport material and a resin binder are dissolved in the solvent for the photosensitive layer coating solution.
  • the electrophotographic apparatus of the present invention is one in which the electrophotographic photoreceptor is mounted.
  • the photosensitive layer coating solution of the present invention is used to form a photosensitive layer, and is a photosensitive layer coating solution obtained by mixing an inorganic oxide slurry and a photosensitive layer forming solution,
  • the inorganic oxide slurry is a primary dispersion of an inorganic oxide in the solvent for the photosensitive layer coating solution
  • the photosensitive layer forming solution is obtained by dissolving a charge transport material and a resin binder in the solvent; and
  • the light transmittance when light having a wavelength of 780 nm is irradiated to a 20% by mass inorganic oxide slurry obtained by dispersing 20% by mass of the inorganic oxide in the solvent is 40% or more. is there.
  • the mechanical strength of the photosensitive layer is improved by including an inorganic oxide in the photosensitive layer, but in the conventional technique, when the inorganic oxide is dispersed alone in the photosensitive layer solvent, Aggregated portions are generated, and the dispersion when mixed with the charge transporting material or resin component cannot be sufficiently dispersed due to the increase in viscosity due to the addition of the resin component, resulting in a photoconductor with minute defects on the image. There was a drawback.
  • the inorganic oxide when the inorganic oxide is dispersed at a high concentration with respect to the photosensitive layer solvent, it exhibits a very high light transmittance.
  • the solvation state is maintained in a state close to. That is, in the present invention, even if the inorganic oxide is dispersed in a solvent in a high concentration state, the viscosity of the slurry (dispersion) is low, and as a result, mixing with the coating solution in which the constituent components of the other photosensitive layer are dissolved Since it becomes easy, the cohesiveness at the time of mixing is also reduced, so that a higher-quality photoconductor can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrophotographic photoreceptor of the present invention, in which (a) is a negatively charged laminated electrophotographic photoreceptor, and (b) is a positively charged single-layer electrophotographic photoreceptor. And (c) show a positively charged laminated electrophotographic photoreceptor.
  • 1 is a schematic configuration diagram illustrating an example of an electrophotographic apparatus according to the present invention. It is a flowchart which shows an example of the manufacturing method of the photoreceptor of this invention.
  • the electrophotographic photosensitive member is a so-called negatively charged laminated type photosensitive member and positively charged laminated type photosensitive member as a laminated type (functional separation type) photosensitive member, and a single layer type mainly used in a positively charged type.
  • FIG. 1 is a schematic cross-sectional view showing an example of the electrophotographic photoreceptor of the present invention, in which (a) is a negatively chargeable laminated electrophotographic photoreceptor, and (b) is a positively charged single layer type.
  • An electrophotographic photoreceptor, (c) shows a positively charged laminated electrophotographic photoreceptor.
  • an undercoat layer 2 As shown in the figure, in the negatively charged laminated photoreceptor, an undercoat layer 2, a charge generation layer 4 having a charge generation function, and a charge transport layer 5 having a charge transport function are provided on a conductive substrate 1.
  • the photosensitive layers are sequentially laminated.
  • an undercoat layer 2 and a single layer type photosensitive layer 3 having both charge generation and charge transport functions are sequentially laminated on a conductive substrate 1. Yes.
  • the undercoat layer 2, the charge transport layer 5 having a charge transport function, and the charge having both charge generation and charge transport functions are provided on the conductive substrate 1.
  • a photosensitive layer having the generation layer 4 is sequentially laminated.
  • the undercoat layer 2 may be provided as necessary.
  • the photoreceptor of the present invention has at least a photosensitive layer on a conductive substrate, the photosensitive layer contains an inorganic oxide, and is coated with a photosensitive layer for coating a photosensitive layer containing an inorganic oxide.
  • the light transmittance when light having a wavelength of 780 nm is irradiated to a 20% by mass inorganic oxide slurry in which 20% by mass of an inorganic oxide is dispersed in a liquid solvent is 40% or more.
  • the transmittance is preferably 80% or more.
  • the charge generation layer or the charge transport layer is a photosensitive layer containing the inorganic oxide.
  • the photoreceptor is a single layer type
  • the single-layer type photosensitive layer is the inorganic layer.
  • the photosensitive layer contains an oxide.
  • the present invention is preferable because the effect of improving wear resistance can be obtained satisfactorily when the photosensitive layer containing the inorganic oxide is the outermost layer.
  • the inorganic oxide used in the present invention is not particularly limited as long as the transmittance when dispersed in the coating solution solvent falls within the above range.
  • silica as a main component
  • alumina zirconia
  • titanium oxide titanium oxide
  • tin oxide tin oxide
  • zinc oxide zinc oxide
  • an inorganic oxide mainly composed of silica is preferable as the inorganic oxide.
  • a method of producing silica particles having a particle diameter of several nanometers to several tens of nanometers as silica a method of producing water glass as a raw material called a wet method or a reaction of chlorosilane or the like called a dry method in a gas phase
  • a method using an alkoxide as a silica precursor as a raw material are known.
  • the purity of the silica is high because the cohesiveness of the silica is improved, and as a result, an increase in aggregates in the coating solution and the photosensitive layer is caused. Therefore, the content of metals other than the metal elements constituting the inorganic oxide is preferably controlled to 1000 ppm or less for each metal element.
  • the surface treatment agent reacts with the hydroxyl group present on the surface of the silica, but if the silica contains a trace amount of other metal elements, it is adjacent to the other metal elements present on the silica surface due to the influence of the electronegativity difference between the metals. Reactivity of silanol group (hydroxyl group) is improved. Since this hydroxyl group is highly reactive with the surface treatment agent, it reacts more strongly with the surface treatment agent than other hydroxyl groups, and if remaining, causes aggregation.
  • the surface treatment agent After the reaction of these surface treatment agents, the surface treatment agent reacts with other hydroxyl groups, so that the cohesiveness between silicas is reduced due to the effect of the surface treatment agent and the effect of reducing the surface charge bias due to the different metal on the surface. It is thought that it will be greatly improved.
  • the surface treatment agent when the inorganic oxide contains a trace amount of other metals, the surface treatment agent has better reactivity, and as a result, the dispersibility by the surface treatment is improved, which is preferable.
  • silica it is suitable for surface treatment if an aluminum element is added in the range of 1000 ppm or less. Adjustment of the amount of aluminum element in silica can be carried out using methods described in JP-A Nos. 2004-143028, 2013-224225, 2015-117138, etc.
  • the preparation method is not particularly limited as long as it can be controlled within the above range.
  • examples of a method for more suitably controlling the amount of aluminum element on the silica surface include the following methods. First, when producing silica fine particles, there is a method for controlling the amount of aluminum on the silica surface by, for example, adding aluminum alkoxide as an aluminum source after growing the silica particles in a shape smaller than the target silica particle diameter. is there.
  • silica fine particles are placed in a solution containing aluminum chloride, the surface of the silica fine particles is coated with an aluminum chloride solution, and this is dried and fired, or a mixed gas of an aluminum halide compound and a silicon halide compound is used. There is a method of reacting.
  • the structure of silica is known to have a network-like bonded structure in which a plurality of silicon atoms and oxygen atoms are connected in a ring, and when an aluminum element is included, the number of atoms constituting the silica ring structure is Due to the effect of mixing aluminum, it becomes larger than ordinary silica. Due to this effect, the steric hindrance when the surface treatment agent reacts with the hydroxyl group on the silica surface containing aluminum element is relaxed compared to the normal silica surface, and the reactivity of the surface treatment agent is improved.
  • the surface-treated silica has improved dispersibility as compared with the case where the same surface treating agent is reacted with the silica.
  • the silica described in patent document 7 etc. was manufactured by the dry method, in order to give the effect of this invention, in controlling the amount of aluminum elements, the silica by a wet method is more. Is preferred. Further, the content of the aluminum element with respect to silica is preferably 1 ppm or more in consideration of the reactivity of the surface treatment agent.
  • the form of the inorganic oxide is not particularly limited, but in order to reduce the cohesiveness and obtain a uniform dispersion state, the sphericity of the inorganic oxide is preferably 0.8 or more, 0.9 More preferably.
  • the viscosity when the inorganic oxide is dispersed (primary dispersion) in the solvent for the photosensitive layer coating solution is the viscosity of the 20 mass% inorganic oxide slurry when dispersed by 20 mass% with respect to the solvent, and is 50 mPa ⁇ s or less. From the viewpoint of suitable mixing, it is preferable, and more preferably 10 mPa ⁇ s or less.
  • the primary particle diameter of the inorganic oxide is only required to maintain a high transmittance when dispersed in a solvent, is preferably 1 to 200 nm, more preferably 5 to 100 nm, and still more preferably 10 to 50 nm. is there.
  • the dispersed particles may be in the form of primary particles or may form several clusters as long as the transmittance satisfies the above range.
  • the average distance between the inorganic oxide particles in the photosensitive layer is not particularly limited as long as the transmittance when dispersed in the above solvent is obtained, but as a result, the particle size is close to the primary particle size. It is preferable because the binding force of the film component is improved by the interaction between them, leading to improvement of the wear of the film. Specifically, it is preferably 200 nm or less, and more preferably 70 nm or less.
  • the memory element retains the type of data to be stored depending on whether charge is accumulated or not, but the size of the accumulated charge is reduced by miniaturization and is irradiated from the outside.
  • the type of data changes due to the amount of charge that changes depending on the ⁇ -ray, and as a result, unexpected data changes occur.
  • the current (noise) generated by the ⁇ rays is relatively larger than the magnitude of the signal, and there is a risk of malfunction.
  • a production method for reducing the amount of uranium and thorium in the inorganic oxide is described in, for example, Japanese Patent Application Laid-Open No. 2013-224225, but is not limited to this method as long as the concentration of these elements can be reduced.
  • the inorganic oxide In order for the inorganic oxide to maintain the transmittance condition according to the present invention, it is preferable to subject the surface of the inorganic oxide to a surface treatment.
  • a surface treatment agent a commercially available surface treatment agent may be used as long as the transmittance can be obtained. More preferably, a silane coupling agent is used.
  • Silane coupling agents include phenyltrimethoxysilane, vinyltrimethoxysilane, epoxytrimethoxysilane, methacryltrimethoxysilane, aminotrimethoxysilane, ureidotrimethoxysilane, mercaptopropyltrimethoxysilane, isocyanatepropyltrimethoxysilane, phenyl Aminotrimethoxysilane, acrylic trimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane And N-phenyl-3-aminopropyltrimethoxysilane, etc., and those containing at least one of these may be used.
  • the alkyl group of the alkoxide is preferably a methyl group, but in addition, an ethyl group, a propyl group, and a butyl group are also preferable.
  • the treatment amount of the surface treatment agent relative to the inorganic oxide is such that the amount of the surface treatment agent is 0.01 to 10.0% by mass, preferably 0.05 to 5.0% by mass with respect to the mass of the inorganic oxide after treatment. This is the amount.
  • examples of the silane coupling agent used in the present invention include a compound having a structure represented by the following general formula (1), and any compound that undergoes a condensation reaction with a reactive group such as a hydroxyl group on the surface of the inorganic particles.
  • a reactive group such as a hydroxyl group on the surface of the inorganic particles.
  • it is not limited to the following compounds.
  • (R 1 ) n -Si- (OR 2 ) 4-n (1) (Wherein, Si represents a silicon atom, R 1 represents an organic group in the form of carbon to the silicon atom is directly bonded, R 2 represents an organic group, n is an integer of 0 to 3)
  • R 1 is an alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, and dodecyl, and an aryl group such as phenyl, tolyl, naphthyl, and biphenyl.
  • ⁇ -glycidoxypropyl ⁇ - (3,4-epoxycyclohexyl) ethyl and other epoxy-containing groups
  • ⁇ -acryloxypropyl ⁇ -methacryloxypropyl-containing (meth) acryloyl groups
  • ⁇ -hydroxypropyl Hydroxyl groups such as 2,3-dihydroxypropyloxypropyl, vinyl groups such as vinyl and propenyl, mercapto groups such as ⁇ -mercaptopropyl, p-aminophenyl, ⁇ -aminopropyl, N- ⁇ (aminoethyl)- amino-containing groups such as ⁇ -aminopropyl and N-phenyl-3-aminopropyl, m-amino Examples include halogen-containing groups such as nophenyl, o-aminophenyl, ⁇ -chloropropyl, 1,1,1-trifluoropropyl, nonafluorohexyl
  • the silane coupling agent represented by the general formula (1) may be used alone or in combination of two or more. Moreover, when combining multiple types, although two types of coupling agents can be made to react with an inorganic oxide simultaneously, multiple types can also be made to react in order.
  • the plurality of R 1 when n is 2 or more, the plurality of R 1 may be the same or different. Similarly, when n is 2 or less, the plurality of R 2 may be the same or different. Further, when using an organic silicon compound represented by the general formula (1) in two or more may be R 1 and R 2 are the same in each of the coupling agent, it may be different.
  • Examples of the compound where n is 0 include the following compounds. That is, tetramethoxysilane, tetraacetoxysilane, tetraethoxysilane, tetraallyloxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrakis (2-methoxyethoxy) silane, tetrabutoxysilane, tetraphenoxysilane, tetrakis (2-ethyl) Butoxy) silane, tetrakis (2-ethylhexyloxy) silane and the like.
  • Examples of the compound where n is 1 include the following compounds. That is, methyltrimethoxysilane, mercaptomethyltrimethoxysilane, trimethoxyvinylsilane, ethyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, triethoxysilane, 3-mercapto Propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, methyltriacetoxysilane, chloromethyltriethoxysilane, ethyltriacetoxysilane, phenyltrimethoxysilane, 3-allylthiopropyltri Methoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-bromopropyltriethoxysilane, 3-allylaminoprop
  • Examples of the compound where n is 2 include the following compounds. That is, dimethoxymethylsilane, dimethoxydimethylsilane, diethoxysilane, diethoxymethylsilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, 3-chloropropyldimethoxymethylsilane, chloromethyldiethoxysilane, diethoxydimethyl Silane, dimethoxy-3-mercaptopropylmethylsilane, diacetoxymethylvinylsilane, diethoxymethylvinylsilane, 3-aminopropyldiethoxymethylsilane, 3- (2-aminoethylaminopropyl) dimethoxymethylsilane, 3-methacryloxypropyldimethoxy Methylsilane, 3- (3-cyanopropylthiopropyl) dimethoxymethylsilane, 3- (2-acetoxyethylthiopropyl) dimethoxymethylsi
  • Examples of the compound having n of 3 include the following compounds. That is, methoxytrimethylsilane, ethoxytrimethylsilane, methoxydimethyl-3,3,3-trifluoropropylsilane, 3-chloropropylmethoxydimethylsilane, methoxy-3-mercaptopropylmethylmethylsilane, and the like.
  • the photosensitive layer coating solution according to the present invention may contain a trace amount of a hydrolyzate of a silane coupling agent.
  • a compound having a structure represented by the following general formula (2) may be contained at 2% by mass or less.
  • Si represents a silicon atom
  • R 1 represents an organic group in which carbon is directly bonded to the silicon atom
  • R 2 represents an organic group
  • m represents an integer of 1 to 4
  • n represents 0 to 3 represents an integer of 3 and m + n is 4 or less
  • the surface treatment may be performed in any order.
  • the silane coupling agent having the structure represented by the general formula (1) is preferably used for the surface treatment first.
  • silica may be simultaneously surface treated with a silane coupling agent and organosilazane, or silica may be first surface treated with a silane coupling agent and then surface treated with organosilazane. . Further, silica may be first surface treated with organosilazane, then surface treated with a silane coupling agent, and then surface treated with organosilazane.
  • the wavelength for measuring the transmittance of 20 mass% inorganic oxide slurry is arbitrarily selected from the range from the visible range to the laser wavelength range used for exposure of the electrophotographic apparatus, It can be confirmed by the transmittance at a wavelength of 780 nm used in the electrophotographic apparatus.
  • the solvent used for slurrying is not particularly limited as long as it is a solvent for the photosensitive layer coating solution, and any solvent can be used as long as the inorganic oxide satisfies the transmittance.
  • tetrahydrofuran THF
  • 1,3-dioxolane 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • tetrahydropyran 1,3-dioxolane
  • the inorganic oxide slurry can be obtained by mixing by any method if it is stirred.
  • the disperser used for dispersion when forming a slurry include a paint shaker, a ball mill, and a sand mill.
  • a photosensitive layer coating solution for forming a photosensitive layer containing the inorganic oxide when preparing a photosensitive layer coating solution for forming a photosensitive layer containing the inorganic oxide, first, an inorganic oxide formed by first dispersing an inorganic oxide in a solvent for the photosensitive layer coating solution.
  • a product slurry is prepared, and when this is mixed with other components of the photosensitive layer, dissolution and dispersion can be performed in any order.
  • the photosensitive layer is a negatively charged laminated type photosensitive layer and the charge transport layer contains the inorganic oxide
  • a photosensitive layer in which a charge transport material and a resin binder are dissolved in a solvent for the photosensitive layer coating solution is used.
  • a layer forming solution charge transport layer solution
  • a photosensitive layer forming solution is used as a solvent for the photosensitive layer coating solution. What melt
  • distribution) can be used.
  • the conductive substrate 1 serves as a support for each layer constituting the photoconductor as well as serving as an electrode of the photoconductor, and may have any shape such as a cylindrical shape, a plate shape, or a film shape.
  • a metal such as aluminum, stainless steel, nickel, or the like such as glass, resin, etc., subjected to a conductive treatment can be used.
  • the undercoat layer 2 is made of a layer mainly composed of a resin or a metal oxide film such as alumite.
  • the undercoat layer 2 is used for purposes such as controlling charge injection from the conductive substrate 1 to the photosensitive layer, covering defects on the surface of the conductive substrate, and improving adhesion between the photosensitive layer and the conductive substrate 1. And provided as necessary.
  • the resin material used for the undercoat layer 2 include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. Alternatively, they can be used in combination as appropriate. These resins may be used by containing a metal oxide such as titanium dioxide or zinc oxide.
  • the photoreceptor of the present invention may have any layer structure shown in FIGS. 1A to 1C as long as it satisfies the conditions relating to the inorganic oxide.
  • the photoreceptor of the present invention is a negatively charged laminated electrophotographic photoreceptor, and in this case, the outermost layer is a charge transport layer.
  • the photosensitive layer has the charge generation layer 4 and the charge transport layer 5.
  • the charge generation layer 4 is formed by a method such as applying a coating solution in which particles of a charge generation material are dispersed in a resin binder, and receives light to generate charges.
  • the charge generation layer 4 has a high charge generation efficiency, and at the same time, it is important to inject the generated charges into the charge transport layer 5.
  • the charge generation layer 4 has a low electric field dependency and is preferably injected even in a low electric field.
  • charge generation materials include phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • phthalocyanines such as X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, and ⁇ -type copper phthalocyanine.
  • the charge generation layer 4 can be used alone or in appropriate combination, and can be used in the light wavelength region of an exposure light source used for image formation.
  • a suitable substance can be selected accordingly.
  • a phthalocyanine compound can be preferably used.
  • the charge generation layer 4 can also be used with a charge generation material as a main component and a charge transport material or the like added thereto.
  • polycarbonate resin polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, polystyrene resin, polysulfone resin, diallyl phthalate resin
  • polycarbonate resin polyester resin, polyamide resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, polystyrene resin, polysulfone resin, diallyl phthalate resin
  • polyester resin polyamide resin
  • polyurethane resin vinyl chloride resin
  • vinyl acetate resin vinyl acetate resin
  • phenoxy resin polyvinyl acetal resin
  • polyvinyl butyral resin polystyrene resin
  • polysulfone resin diallyl phthalate resin
  • the content of the charge generation material in the charge generation layer 4 is preferably 20 to 80% by mass, and more preferably 30 to 70% by mass with respect to the solid content in the charge generation layer 4.
  • the content of the resin binder in the charge generation layer 4 is preferably 20 to 80% by mass, and more preferably 30 to 70% by mass with respect to the solid content in the charge generation layer 4. Since the charge generation layer 4 only needs to have a charge generation function, its film thickness is generally 1 ⁇ m or less, and preferably 0.5 ⁇ m or less.
  • the charge transport layer 5 is a photosensitive layer containing the inorganic oxide.
  • the charge transport layer 5 is mainly composed of the inorganic oxide, a charge transport material, and a resin binder.
  • various polycarbonate resins such as polyarylate resin, bisphenol A type, bisphenol Z type, bisphenol C type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer are used alone. Or a mixture of a plurality of types. Moreover, you may mix and use the same kind of resin from which molecular weight differs.
  • polyphenylene resin polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide Resins, polystyrene resins, polyacetal resins, polysulfone resins, methacrylic acid ester polymers, copolymers thereof, and the like can be used.
  • the weight average molecular weight of the resin is preferably 5,000 to 250,000, more preferably 10,000 to 200,000 in GPC (gel permeation chromatography) analysis in terms of polystyrene.
  • charge transport material of the charge transport layer 5 various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds, arylamine compounds, etc. can be used alone or in appropriate combination.
  • Examples of such a charge transport material include, but are not limited to, those shown in the following (II-1) to (II-30).
  • the content of the inorganic oxide in the charge transport layer 5 is 1 to 40% by mass, and more preferably 2 to 30% by mass with respect to the solid content of the charge transport layer 5.
  • the content of the resin binder in the charge transport layer 5 is preferably 20 to 90% by mass, more preferably 30 to 80% by mass, based on the solid content of the charge transport layer 5 excluding the inorganic oxide.
  • the content of the charge transport material in the charge transport layer 5 is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the solid content of the charge transport layer 5 excluding the inorganic oxide. .
  • the film thickness of the charge transport layer 5 is preferably in the range of 3 to 50 ⁇ m and more preferably in the range of 15 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the single layer type photosensitive layer 3 is a photosensitive layer containing the inorganic oxide.
  • the single layer type photosensitive layer 3 is mainly composed of the inorganic oxide, the charge generation material, the hole transport material and the electron transport material (acceptor compound) as the charge transport material, and the resin binder. Consists of.
  • resin binder of the single-layer type photosensitive layer 3 other various polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, bisphenol Z type-biphenyl copolymer, polyphenylene resin, polyester resin , Polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene resin, polypropylene resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin , Polyarylate resins, polysulfone resins, methacrylic acid ester polymers, copolymers thereof, and the like can be used. Furthermore, the same kind of resins having different molecular weights may be mixed and used.
  • the charge generation material of the single-layer type photosensitive layer 3 for example, a phthalocyanine pigment, an azo pigment, an anthrone pigment, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, a squarylium pigment, a thiapyrylium pigment, a quinacridone pigment, etc. Can do.
  • a phthalocyanine pigment for example, a phthalocyanine pigment, an azo pigment, an anthrone pigment, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, a squarylium pigment, a thiapyrylium pigment, a quinacridone pigment, etc.
  • the azo pigment is a disazo pigment, a trisazo pigment
  • the perylene pigment is N, N′-bis (3,5-dimethylphenyl) -3,4: 9,10-perylene.
  • metal-free phthalocyanine As the bis (carboximide) and phthalocyanine pigments, it is preferable to use metal-free phthalocyanine, copper phthalocyanine, and titanyl phthalocyanine. Also, X-type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type titanyl phthalocyanine, ⁇ -type titanyl phthalocyanine, Y-type titanyl phthalocyanine, amorphous-type titanyl phthalocyanine, Japanese Patent Laid-Open No. 8-209003, US Pat.
  • Examples of the hole transport material of the single-layer type photosensitive layer 3 include hydrazone compounds, pyrazoline compounds, pyrazolone compounds, oxadiazole compounds, oxazole compounds, arylamine compounds, benzidine compounds, stilbene compounds, styryl compounds, poly-N— Vinyl carbazole, polysilane, etc. can be used. These hole transport materials can be used alone or in combination of two or more. As the hole transport material used in the present invention, a material that is excellent in the ability to transport holes generated during light irradiation and that is suitable in combination with a charge generation material is preferable.
  • succinic anhydride succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, anhydrous Pyromellitic acid, pyromellitic acid, trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, malononitrile, trinitrofluorenone, Trinitrothioxanthone, dinitrobenzene, dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, thiopyran compounds, quinone compounds, benzoquinone compounds, diphenoquinone compounds, naphthoquinone compounds, anthraquinone compounds Compounds,
  • the content of the inorganic oxide in the single-layer type photosensitive layer 3 is 1 to 40% by mass, and more preferably 2 to 30% by mass with respect to the solid content of the single-layer type photosensitive layer 3.
  • the content of the resin binder in the single-layer type photosensitive layer 3 is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the solid content of the single-layer type photosensitive layer 3 excluding inorganic oxides. %.
  • the content of the charge generating material in the single-layer type photosensitive layer 3 is preferably 0.1 to 20% by mass, more preferably based on the solid content of the single-layer type photosensitive layer 3 excluding inorganic oxides. 0.5 to 10% by mass.
  • the content of the hole transport material in the single-layer type photosensitive layer 3 is preferably 3 to 80% by mass, more preferably 5%, based on the solid content of the single-layer type photosensitive layer 3 excluding the inorganic oxide. ⁇ 60% by mass.
  • the content of the electron transport material in the single-layer photosensitive layer 3 is preferably 1 to 50% by mass, more preferably 5 to 5% by weight with respect to the solid content of the single-layer photosensitive layer 3 excluding inorganic oxides. 40% by mass.
  • the film thickness of the single-layer type photosensitive layer 3 is preferably in the range of 3 to 100 ⁇ m and more preferably in the range of 5 to 40 ⁇ m in order to maintain a practically effective surface potential.
  • the photosensitive layer has the charge transport layer 5 and the charge generation layer 4.
  • the charge generation layer 4 is the outermost layer and is a photosensitive layer containing the inorganic oxide.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • the charge transporting material and the resin binder the same materials as those mentioned for the charge transporting layer 5 of the negatively charged laminated photoreceptor can be used except for the inorganic oxide.
  • the content of each material and the film thickness of the charge transport layer 5 can be the same as those of the negatively charged laminated type photoreceptor except for the inorganic oxide.
  • the charge generation layer 4 provided on the charge transport layer 5 is mainly composed of the inorganic oxide, a charge generation material, a hole transport material and an electron transport material (acceptor compound) as a charge transport material, and a resin binder.
  • the charge generation material, the hole transport material, the electron transport material, and the resin binder the same materials as those mentioned for the single layer type photosensitive layer 3 of the single layer type photoreceptor can be used.
  • the content of each material and the film thickness of the charge generation layer 4 can be the same as those of the single-layer photosensitive layer 3 of the single-layer photoreceptor.
  • a leveling agent such as silicone oil or fluorine-based oil is contained in any of the laminated type or single layer type photosensitive layer for the purpose of improving the leveling property of the formed film and imparting lubricity.
  • a plurality of types of inorganic oxides can be included for the purpose of adjusting the film hardness, reducing the friction coefficient, and imparting lubricity.
  • Metal oxides such as silica, titanium oxide, zinc oxide, calcium oxide, alumina, zirconium oxide, metal sulfates such as barium sulfate and calcium sulfate, metal nitride fine particles such as silicon nitride and aluminum nitride, or tetrafluoride
  • fluorine-type resin particles such as ethylene resin, fluorine-type comb-type graft polymerization resin, etc.
  • other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.
  • the photosensitive layer may contain a deterioration preventing agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light.
  • a deterioration preventing agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light.
  • Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
  • the production method of the present invention includes the following steps when producing a photoreceptor by forming a photosensitive layer using a photosensitive layer coating solution. That is, as shown in FIG. 3, first, an inorganic oxide is first dispersed in a solvent for a photosensitive layer coating solution to obtain an inorganic oxide slurry (inorganic oxide slurry preparation step (S1)), and the photosensitive layer coating solution is used. In this solvent, the charge transport material and the resin binder are dissolved to obtain a photosensitive layer forming solution (photosensitive layer forming solution preparing step (S2)), and then the obtained inorganic oxide slurry and the photosensitive layer forming solution are obtained. Are mixed to obtain a photosensitive layer coating solution (photosensitive layer coating solution preparation step (S3)). This makes it possible to reliably manufacture a photoconductor that can realize a stable image with little wear even during long-term use.
  • the preparation of the inorganic oxide slurry can be carried out according to a conventional method using the above-described disperser as appropriate, and is not particularly limited. Further, the preparation of the photosensitive layer forming solution and the photosensitive layer coating solution can be appropriately carried out according to a conventional method, and is not particularly limited.
  • the electrophotographic photoconductor of the present invention is one in which the photoconductor of the present invention is mounted, and the desired effect can be obtained by applying it to various machine processes.
  • a charging process such as a contact charging method using a charging member such as a roller or a brush, a non-contact charging method using a corotron or a scorotron, etc., and a nonmagnetic one component, a magnetic one component, a two component, etc.
  • a charging process such as a contact charging method using a charging member such as a roller or a brush, a non-contact charging method using a corotron or a scorotron, etc., and a nonmagnetic one component, a magnetic one component, a two component, etc.
  • Sufficient effects can be obtained even in development processes such as contact development and non-contact development using the development system.
  • the present invention is useful in that wear due to contact of the charging member can be suppressed in the case of including a contact charging method charging process in which
  • FIG. 2 shows a schematic configuration diagram of a configuration example of the electrophotographic apparatus of the present invention.
  • the electrophotographic apparatus 60 of the present invention shown in the figure mounts the photosensitive member 7 of the present invention including the conductive substrate 1, the undercoat layer 2 and the photosensitive layer 300 coated on the outer peripheral surface thereof.
  • the electrophotographic apparatus 60 includes a charging member 21, a high-voltage power supply 22 that supplies an applied voltage to the charging member 21, an image exposure member 23, and a developing roller 241, which are disposed on the outer peripheral edge of the photoreceptor 7.
  • the electrophotographic apparatus 60 may further include a cleaning device 27 including a cleaning blade 271 and a charge removal member 28.
  • the electrophotographic apparatus 60 of the present invention can be a color printer.
  • Inorganic oxide slurries were prepared according to the production examples shown in Tables 1 and 2. Specifically, as inorganic oxides, silica manufactured by Admatex (YA010C (aluminum element content 500 ppm), YA050C (aluminum element content 900 ppm), YA100C (aluminum element content 900 ppm)), silica F (aluminum element content)
  • the surface-treated silica was prepared by using the treating agent shown in Table 1 as a surface treating agent using silica G (aluminum content: 100 ppm) and tetrahydrofuran (for photosensitive layer coating solution).
  • THF primary dispersion
  • the amount of the surface treatment agent was quantified, it was 1.0, 0.2, and 0.1% by mass with respect to the inorganic oxide after the treatment, respectively. Met.
  • the amount of the surface treatment agent was similarly determined for other production examples, similar results were obtained that satisfied the range of 0.01 to 10.0% by mass relative to the mass of the inorganic oxide after the treatment.
  • AEROSIL R7200 and R8200 manufactured by Nippon Aerosil Co., Ltd. (both are dry process silicas having an aluminum content of less than 1 ppm), silica H (aluminum-containing) 2,000 ppm), AKP-20 (alumina) manufactured by Sumitomo Chemical Co., Ltd., MSP-015 and MT-600B manufactured by Teika, and TTO-55 (titanium oxide) manufactured by Ishihara Sangyo Co., Ltd. Prepared.
  • KBM603 Shin-Etsu Chemical Co., Ltd. * 11) Silica D: Admatechs, YA050C, primary particle size 50nm * 12) KBM903: manufactured by Shin-Etsu Chemical Co., Ltd.
  • Silica E manufactured by Admatechs, YA100C, primary particle size: 100 nm * 14)
  • Silica F Silica adjusted to an aluminum content of 10 ppm according to the method described in the test example of JP-A-2015-117138, primary particle diameter of 100 nm * 15)
  • Silica G Silica adjusted to an aluminum content of 100 ppm according to the method described in the test example of JP-A-2015-117138, primary particle diameter of 100 nm * 16)
  • Silica H Silica adjusted to an aluminum content of 2000 ppm according to the method described in the test example of JP-A-2015-117138, primary particle diameter of 100 nm
  • Example 1 A coating solution 1 is prepared by dissolving and dispersing 5 parts by mass of alcohol-soluble nylon (trade name “CM8000”, manufactured by Toray Industries, Inc.) and 5 parts by mass of aminosilane-treated titanium oxide fine particles in 90 parts by mass of methanol. did.
  • the coating liquid 1 is dip-coated as an undercoat layer on the outer periphery of an aluminum cylinder having an outer diameter of 30 mm as the conductive substrate 1, and dried at a temperature of 100 ° C. for 30 minutes, and the undercoat layer 2 having a thickness of 3 ⁇ m Formed.
  • the coating solution 2 was prepared by dissolving and dispersing in the solution. This coating solution 2 was dip-coated on the undercoat layer 2.
  • the charge generation layer 4 having a film thickness of 0.3 ⁇ m was formed by drying at a temperature of 80 ° C. for 30 minutes.
  • CTM charge transport material
  • 9 parts by mass of a compound represented by the following structural formula as a resin binder, 11 parts by mass of a resin having a repeating unit represented by is dissolved in 80 parts by mass of tetrahydrofuran.
  • This liquid was added to 25 parts by mass of the silica slurry prepared in Production Example 1 to prepare a coating liquid 3.
  • the coating solution 3 was dip-coated on the charge generation layer 4 and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer 5 having a thickness of 20 ⁇ m. Thus, a negatively charged laminated type photoreceptor was produced.
  • Examples 2 to 25 A photoconductor was produced in the same manner as in Example 1 except that the type and amount of the slurry liquid of Production Example 1 used in Example 1 or the composition of the coating liquid was changed according to the description in Table 3.
  • Example 26 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 27 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 28 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 29 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 30 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 31 A photoconductor was prepared in the same manner as in Example 1 except that the charge transporting material used in Example 1 was changed to that shown by the following formula.
  • Example 32 A photoconductor was produced in the same manner as in Example 1 except that the resin binder of the charge transport layer used in Example 1 was changed to one having a repeating structure represented by the following formula.
  • Example 33 A photoconductor was produced in the same manner as in Example 1 except that the resin binder of the charge transport layer used in Example 1 was changed to one having a repeating structure represented by the following formula.
  • Example 34 A photoconductor was produced in the same manner as in Example 1 except that the resin binder of the charge transport layer used in Example 1 was changed to one having a repeating structure represented by the following formula.
  • Example 35 A photoconductor was produced in the same manner as in Example 1 except that the resin binder of the charge transport layer used in Example 1 was changed to one having a repeating structure represented by the following formula.
  • Example 36 to 56 A photoconductor was prepared in the same manner as in Example 1 except that the type and amount of the slurry liquid of Production Example 1 used in Example 1 or the composition of the coating liquid was changed according to the description in Table 4.
  • Example 57 A photoconductor was prepared in the same manner as in Example 36 except that the charge transport material used in Example 36 was changed to that used in Example 27.
  • Example 58 A photoconductor was prepared in the same manner as in Example 36 except that the resin binder used in Example 36 was changed to that used in Example 35.
  • Example 59 A photoconductor was prepared in the same manner as in Example 48 except that the charge transport material used in Example 48 was changed to that used in Example 27.
  • Example 60 A photoconductor was prepared in the same manner as in Example 48 except that the resin binder used in Example 48 was changed to that used in Example 35.
  • Example 61 to 73 A photoconductor was prepared in the same manner as in Example 1 except that the type and amount of the slurry liquid of Production Example 1 used in Example 1 were changed according to the description in Table 4.
  • Example 74 Manufacture of positively charged single layer type photoreceptors (Example 74)
  • a vinyl chloride-vinyl acetate-vinyl alcohol copolymer (manufactured by Nissin Chemical Industry Co., Ltd., trade name "Solvine TA5R”) is used as an undercoat layer on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as the conductive substrate 1.
  • a coating solution prepared by stirring and dissolving 0.2 parts by mass in 99 parts by mass of methyl ethyl ketone was dip coated and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer 2 having a thickness of 0.1 ⁇ m.
  • 0.1 part by mass of X-type metal-free phthalocyanine as a charge generation material 8 parts by mass of the charge transport material (CTM) used in Example 1 as a hole transport material, and the following formula as an electron transport material (ETM) , And 8 parts by mass of the resin binder used in the charge transport layer of Example 1 as a resin binder were dissolved and dispersed in 80 parts by mass of tetrahydrofuran. This solution was added to 25 parts by mass of the silica slurry prepared in Production Example 1 to prepare a coating solution.
  • CTM charge transport material
  • ETM electron transport material
  • This coating solution was dip coated on the undercoat layer 2 and dried at a temperature of 100 ° C. for 60 minutes to form a photosensitive layer with a film thickness of 25 ⁇ m, thereby producing a single layer type photoreceptor.
  • Example 75 A photoconductor was prepared in the same manner as in Example 74 except that the slurry liquid used in Example 74 was changed to the slurry liquid in Production Example 21.
  • Example 12 A photoconductor was prepared in the same manner as in Example 74 except that the slurry liquid used in Example 74 was changed to the slurry liquid of Comparative Production Example 1.
  • Example 13 A photoconductor was prepared in the same manner as in Example 74 except that the slurry liquid used in Example 74 was not added.
  • Example 76 Manufacture of positively charged laminated photoreceptor (Example 76) 5 parts by mass of the resin binder used in Example 34 and 5 parts by mass of the charge transport material used in Example 1 were dissolved in 80 parts by mass of terahydrofuran to prepare a coating solution. This coating solution was dip coated on the outer periphery of an aluminum cylinder having an outer diameter of 24 mm as the conductive substrate 1 and dried at a temperature of 120 ° C. for 60 minutes to form a charge transport layer having a thickness of 15 ⁇ m.
  • Y-type titanyl phthalocyanine as a charge generation material
  • CTM charge transport material
  • ETM electron transport material
  • This solution was added to 25 parts by mass of the silica slurry prepared in Production Example 1 to prepare a coating solution.
  • This coating solution was dip-coated on the charge transport layer and dried at a temperature of 100 ° C. for 60 minutes to form a charge generation layer having a film thickness of 15 ⁇ m.
  • a positively charged laminated photoreceptor was produced.
  • Example 77 A photoconductor was prepared in the same manner as in Example 76 except that the slurry liquid used in Example 76 was changed to the slurry liquid in Production Example 21.
  • Example 14 A photoconductor was prepared in the same manner as in Example 76 except that the slurry liquid used in Example 76 was changed to the slurry liquid of Comparative Production Example 1.
  • Example 15 A photoconductor was prepared in the same manner as in Example 76 except that the slurry liquid used in Example 76 was not added.
  • ⁇ Slurry permeability> About the slurry liquid of each manufacture example, the slurry for evaluation which primarily dispersed 20 mass% of inorganic oxides with respect to the solvent for photosensitive layer coating liquids was prepared. These samples are referred to as 20% by mass inorganic oxide slurry.
  • a slurry for evaluation was put in a quartz cell having an optical path length of 10 mm, and the light transmittance when irradiated with light having a wavelength of 780 nm was measured with a spectrophotometer (UV-3100, manufactured by Shimadzu Corporation). These light transmittances are also referred to as slurry transmittances. The measurement results are also shown in Tables 3-5.
  • ⁇ Slurry viscosity> About the slurry liquid of each manufacture example, the 20 mass% inorganic oxide slurry for evaluation which dispersed 20 mass% of inorganic oxides with respect to the solvent for photosensitive layer coating liquids was prepared. The viscosity at 20 ° C. of these 20 mass% inorganic oxide slurries was measured with a vibration viscometer (VISCOMATE VM-10A manufactured by SEKONIC). These viscosities are also referred to as slurry liquid viscosities. The measurement results are also shown in Tables 3-5.
  • exposure light of 1.0 ⁇ W / cm 2 spectrally split at 780 nm using a filter is irradiated to the photoconductor for 5 seconds from the time when the surface potential becomes ⁇ 600 V, and the surface potential is reduced.
  • the exposure amount required for light attenuation until ⁇ 300 V was evaluated as E1 / 2 ( ⁇ J / cm 2 ), and the residual potential on the surface of the photoreceptor 5 seconds after the exposure was evaluated as Vr5 (V).
  • the charging potential is set to +650 V
  • the exposure light is irradiated from the time when the surface potential becomes +600 V
  • the exposure amount required until E1 / 2 becomes +300 V it evaluated similarly to the above.
  • the photoconductors produced in Examples 1 to 73 and Comparative Examples 1 to 11 were mounted on an HP printer LJ4250, 10000 sheets of A4 paper were printed, the film thickness of the photoconductor before and after printing was measured, and the average after printing Evaluation was performed on the amount of wear ( ⁇ m). Further, as an evaluation of image defects, fog and black paper density on white paper after initial printing and after printing 10,000 sheets were observed. The case where there was no fogging and no decrease in concentration was considered good. Also, the photoconductors produced in Examples 74 to 77 and Comparative Examples 12 to 15 were mounted on a Brother printer HL-2040, and 10000 sheets of A4 paper were printed, and the film thickness of the photoconductor before and after printing was measured. Then, the average wear amount ( ⁇ m) after printing was evaluated. In addition, in the same manner as described above, fog and black paper density on white paper after initial printing and after printing 10,000 sheets were observed.
  • Examples 1 to 77 using inorganic oxides having high transmittance and low viscosity of the inorganic oxide slurry have good wear resistance and electrical characteristics as a photoreceptor. It can be seen that the image quality is good and the image quality is good even after the initial printing of 10,000 sheets. On the other hand, in Comparative Examples 1 to 15, the amount of film wear after printing was large, or fogging occurred in the image, and a decrease in print density was also confirmed. In Examples 1 to 77, the mechanism is not clear, but since the transmittance in the slurry state is high and the dispersibility is good, the film structure when the photosensitive layer is made uniform, contributing to the stability of the image. It is thought that there is. Moreover, in each Example, it turns out from the improvement of film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

長期使用時にも摩耗が少なく安定した画像を実現できる電子写真用感光体、その製造方法および電子写真装置を提供する。 導電性基体1と、導電性基体1上に形成され、無機酸化物を含む感光層と、を備え、感光層を塗布形成するための感光層塗布液用の溶媒に対し、無機酸化物を20質量%分散した20質量%無機酸化物スラリーに対して、波長780nmの光を照射したときの光の透過率が40%以上であるものとした電子写真用感光体である。

Description

電子写真用感光体、その製造方法および電子写真装置
 本発明は、電子写真方式のプリンターや複写機、ファックスなどに用いられる電子写真用感光体(以下、単に「感光体」とも称する)、その製造方法および電子写真装置に関し、特には、特定の無機酸化物を感光層に有することにより優れた耐摩耗性や電気特性の安定性を実現できる電子写真用感光体、その製造方法および電子写真装置に関する。
 電子写真用感光体は、導電性基体上に、光導電機能を有する感光層を設置した構造を基本構造とする。近年、電荷の発生や輸送を担う機能成分として有機化合物を用いる有機電子写真用感光体について、材料の多様性や高生産性、安全性などの利点により、研究開発が活発に進められ、複写機やプリンターなどへの適用が進められている。
 一般に、感光体には、暗所で表面電荷を保持する機能や、光を受容して電荷を発生する機能、さらには、発生した電荷を輸送する機能が必要である。かかる感光体としては、これらの機能を併せ持った単層の感光層を備えた、いわゆる単層型感光体と、主として光受容時の電荷発生の機能を担う電荷発生層と、暗所で表面電荷を保持する機能および光受容時に電荷発生層にて発生した電荷を輸送する機能を担う電荷輸送層とに機能分離した層を積層した感光層を備えた、いわゆる積層型(機能分離型)感光体とがある。
 上記感光層は、電荷発生材料および電荷輸送材料と樹脂バインダとを有機溶剤に溶解あるいは分散させた塗布液を、導電性基体上に塗布することにより形成されるのが一般的である。これら有機電子写真用感光体の、特に最表面となる層においては、紙との間や、トナー除去のためのブレードとの間に生ずる摩擦に強く、可とう性に優れ、かつ、露光の透過性が良いポリカーボネートを樹脂バインダとして使用することが多く見られる。中でも、樹脂バインダとしては、ビスフェノールZ型ポリカーボネートが広く用いられている。樹脂バインダとして、かかるポリカーボネートを用いた技術は、例えば、特許文献1等に記載されている。
 また、近年、オフィス内のネットワーク化による印刷枚数の増加や、電子写真による軽印刷機の急発展等に伴い、電子写真方式の印字装置には、ますます高い耐摩耗性、すなわち高耐久性や高感度、高速応答性が求められるようになってきている。
 さらに、最近のカラープリンターの発展や普及率の向上に伴い、印字速度の高速化や装置の小型化および省部材化が進んでおり、様々な使用環境への対応も求められている。このような状況の中、繰り返し使用や使用環境(室温および環境)の変動による画像特性や電気特性の変動が小さい感光体に対する要求が顕著に高まっており、従来の技術では、これらの要求を同時に十分には満足できなくなってきている。
 これらの課題を解決するために、感光体最表面層の改良方法が種々提案されている。
 感光体表面の耐久性を向上するために、様々なポリカーボネート樹脂構造が提案されている。例えば、特許文献2、3では、特定構造を含むポリカーボネート樹脂が提案されているが、各種電荷輸送剤や添加材との相溶性や樹脂の溶解性に関する検討が十分でない。また、特許文献4には特定構造を含むポリカーボネート樹脂が提案されているが、嵩高い構造を持つ樹脂はポリマー同士の空間が多く、帯電時放電物質や接触部材、異物などが感光層に浸透しやすいため、十分な耐久性を得ることが難しい。耐刷性と塗工性とを向上させるために、特許文献5では特殊構造のポリカーボネートが提案されているが、組み合わせる電荷輸送材料や添加剤に関する記載が十分ではなく、長期使用時の安定的な電気特性の継続が難しい課題があった。
 特許文献6では耐摩耗性の改善の為に感光層にフィラー粒子を含有させる提案がなされているが、感光層塗布液を作製する時の粒子の凝集による感光体特性への影響や粒子の製法や不純物制御および表面処理に関する影響については十分検証されていない。また、特許文献7では焼成シリカを分散した電荷輸送層について提案されているが、シリカを溶媒に分散したスラリー液の透過率に関しては記載がない。さらに、特許文献8にはシリカに含有する金属元素に関する記載があるが、特許文献8では製造上のコストアップの要因という観点から金属元素の含有の有無についての技術思想が述べられているのみであって、分散性の向上の観点から不純物量について言及する記載はない。
特開昭61-62040号公報 特開2004-354759号公報 特開平4-179961号公報 特開2004-85644号公報 特開平3-273256号公報 特開2008-176054号公報 特開2002-182409号公報 特開平8-146642号公報
 上述のように、感光体の表面層の改良に関しては、従来より種々の技術が提案されている。しかしながら、これらの特許文献に記載された技術は実使用時の画像欠陥などに対して全てにおいて十分なものではなかった。また、感光層を塗布する際の塗布液の性質について十分検討されておらず、結果として耐久性の向上した感光体を開発するために感光層塗布液の性質をさらに向上させる必要があった。
 そこで本発明の目的は、長期使用時にも摩耗が少なく安定した画像を実現できる電子写真用感光体、その製造方法および電子写真装置を提供することにある。
 本発明者らは、上記課題を解決するために、感光体の最表面層の材料に関して鋭意検討した結果、膜摩耗性が向上し、かつ画像欠陥の少ない、繰返し使用しても画像品質の安定性がある感光体を提供するものである。具体的には、本発明者らは、以下のような構成を適用することで良好な電子写真用感光体が得られることを見出して、本発明を完成するに至った。
 すなわち、本発明の電子写真用感光体は、導電性基体と、
 前記導電性基体上に形成され、無機酸化物を含む感光層と、を備え、
 前記感光層を塗布形成するための感光層塗布液用の溶媒に対し、前記無機酸化物を20質量%分散した20質量%無機酸化物スラリーに対して、波長780nmの光を照射したときの前記光の透過率が40%以上であるものである。
 本発明では、感光層に無機酸化物を含有させることにより感光層の機械的強度を向上させるものであり、感光層を形成するための溶媒に高い濃度で分散させた際に非常に高い光透過性を示す無機酸化物を用いることで、高品質な感光体を提供できることを見出したものである。
 本発明においては、前記20質量%無機酸化物スラリーの粘度が、50mPa・s以下であることが好ましい。
 また、本発明においては、前記無機酸化物の一次粒子径は、溶媒に分散させた際に透過率が高く保てればよく、好ましくは1~200nmである。
 さらにまた、本発明においては、前記感光層が最表層であることが好ましい。
 さらにまた、本発明において、前記無機酸化物は、シリカを主成分とすることが好ましく、シリカを主成分とし、かつ、アルミニウム元素を1ppm以上1000ppm以下で含有することがより好ましい。さらにまた、前記無機酸化物が、シランカップリング剤で表面処理されていることが好ましい。
 本発明において、前記シランカップリング剤としては、好適には、下記一般式(1)で示される構造を有するものを用いることができる。
  (R-Si-(OR4-n           (1)
(式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、nは0~3の整数を表す)
 また、前記シランカップリング剤が、フェニルトリメトキシシラン、ビニルトリメトキシシラン、エポキシトリメトキシシラン、メタクリルトリメトキシシラン、アミノトリメトキシシラン、ウレイドトリメトキシシラン、メルカプトプロピルトリメトキシシラン、イソシアネートプロピルトリメトキシシラン、フェニルアミノトリメトキシシラン、アクリルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシランおよびN-フェニル-3-アミノプロピルトリメトキシシランからなる群から選ばれる少なくとも一種を含む表面処理剤であることも好ましい。
 さらに、本発明においては、前記無機酸化物が複数種の前記シランカップリング剤で表面処理されており、最初に表面処理に用いられているシランカップリング剤が、上記一般式(1)で表される構造を有することも好ましい。さらにまた、前記感光層塗布液中に、下記一般式(2)で示される構造を有する化合物が2質量%以下含まれていることも好ましい。
  Si(OH)(R(OR4-(n+m)         (2)
(式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、mは1~4の整数、nは0~3の整数を表し、m+nは4以下である)
 さらにまた、本発明においては、前記感光層を形成するための感光層塗布液が、前記感光層塗布液用の溶媒に前記無機酸化物を一次分散してなる無機酸化物スラリーと、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解してなる感光層形成用液とを混合して得られることが好ましく、また、前記感光層塗布液用の溶媒に前記無機酸化物を一次分散してなる無機酸化物スラリーと、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解し、さらに電荷発生材料を分散させてなる感光層形成用液とを混合して得られることも好ましい。
 この場合、前記電荷輸送材料としてアリールアミン化合物を含むことが好ましく、前記電荷輸送材料として電子輸送材料を含むことも好ましく、前記電荷発生材料としてフタロシアニン化合物を含むことも好ましい。
 本発明の電子写真用感光体の製造方法は、前記感光層を、感光層塗布液を用いて形成することにより上記電子写真用感光体を製造する方法において、
 前記感光層塗布液用の溶媒に前記無機酸化物を一次分散して無機酸化物スラリーを得る無機酸化物スラリー調製工程と、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解して感光層形成用液を得る感光層形成用液調製工程と、得られた前記無機酸化物スラリーと前記感光層形成用液とを混合して前記感光層塗布液を得る感光層塗布液調製工程と、を含むものである。
 さらに、本発明の電子写真装置は、上記電子写真用感光体が搭載されてなるものである。
 さらにまた、本発明の感光層塗布液は、感光層を形成するために用いられ、無機酸化物スラリーと感光層形成用液とが混合されてなる感光層塗布液であって、
 前記無機酸化物スラリーが、前記感光層塗布液用の溶媒に無機酸化物を一次分散したものであり、
 前記感光層形成用液が、前記溶媒に電荷輸送材料および樹脂バインダを溶解したものであり、かつ、
 前記無機酸化物を前記溶媒に対し20質量%分散して得られる20質量%無機酸化物スラリーに対し、波長780nmの光を照射したときの前記光の透過率が、40%以上であるものである。
 本発明によれば、上記の条件を有する感光層を使用したことにより、安定した画像品質を継続させ、摩耗性能を制御できる感光体が得られることが明らかとなった。
 これは、以下のような理由によるものと考えられる。本発明においては、感光層に無機酸化物を含有させることにより感光層の機械的強度を向上させるものであるが、従来の技術では無機酸化物を感光層溶媒に単独で分散させた場合には凝集部分が発生し、その後に電荷輸送材料や樹脂成分と混合した際の分散では樹脂成分が加わることによる粘性の向上により十分な分散ができず、結果として画像上に微小な欠陥を伴う感光体となる欠点があった。これに対し本発明においては、感光層溶媒に対し高い濃度で無機酸化物を分散した際に非常に高い光透過性を示すことから、無機酸化物が均一な分散状態を示しており、一次粒子に近い状態で溶媒和状態を保持している。すなわち、本発明では、無機酸化物が高濃度状態で溶媒に分散していてもスラリー(分散液)の粘度が低く、結果として他の感光層の構成成分を溶解させた塗布液との混合が容易となるので、混合させる際の凝集性も低減されることで、より高品質な感光体を提供できるものである。
本発明の電子写真用感光体の一例を示す模式的断面図であり、(a)は負帯電型の積層型電子写真用感光体、(b)は正帯電型の単層型電子写真用感光体、(c)は正帯電型の積層型電子写真用感光体をそれぞれ示す。 本発明に係る電子写真装置の一例を示す概略構成図である。 本発明の感光体の製造方法の一例を示すフロー図である。
 以下、本発明の電子写真用感光体の具体的な実施の形態について、図面を用いて詳細に説明する。本発明は、以下の説明により何ら限定されるものではない。
 前述したように、電子写真用感光体は、積層型(機能分離型)感光体としての、いわゆる負帯電積層型感光体および正帯電積層型感光体と、主として正帯電型で用いられる単層型感光体とに大別される。図1は、本発明の電子写真用感光体の一例を示す模式的断面図であり、(a)は負帯電型の積層型電子写真用感光体、(b)は正帯電型の単層型電子写真用感光体、(c)は正帯電型の積層型電子写真用感光体をそれぞれ示す。
 図示するように、負帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生機能を備えた電荷発生層4および電荷輸送機能を備えた電荷輸送層5を有する感光層とが、順次積層されている。また、正帯電単層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生および電荷輸送の両機能を併せ持つ単層型の感光層3とが、順次積層されている。さらに、正帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷輸送機能を備えた電荷輸送層5、並びに、電荷発生および電荷輸送の両機能を備えた電荷発生層4を有する感光層とが、順次積層されている。なお、いずれのタイプの感光体においても、下引き層2は必要に応じ設ければよい。
 本発明の感光体は、導電性基体上に少なくとも感光層を有し、この感光層が無機酸化物を含むものであって、無機酸化物が含まれる感光層を塗布形成するための感光層塗布液用の溶媒に対し、無機酸化物を20質量%分散した20質量%無機酸化物スラリーに対し、波長780nmの光を照射したときの光の透過率が40%以上である。透過率は、80%以上であると好ましい。
 本発明の感光体が、積層型の場合には、電荷発生層または電荷輸送層が上記無機酸化物を含む感光層であり、単層型の場合には、単層型の感光層が上記無機酸化物を含む感光層となる。特には、本発明は、上記無機酸化物を含む感光層が最表層である場合に、耐摩耗性の向上効果を良好に得られるため好ましい。
 本発明に用いる無機酸化物としては、塗布液溶媒に分散した際の透過率が上記範囲内となるものであればよく、シリカを主成分とするものの他、アルミナ、ジルコニア、酸化チタン、酸化スズ、酸化亜鉛などが挙げられる。
 中でも、無機酸化物としてはシリカを主成分とする無機酸化物が好ましい。シリカとして、数nmから数十nm程度の粒径をもつシリカ粒子を製造する方法としては、湿式法と呼ばれる水ガラスを原料として製造する方法や、乾式法と呼ばれるクロロシラン等を気相中で反応させる方法、シリカ前駆体としてのアルコキシドを原料とする方法などが知られている。
 ここで、シリカを表面処理する際に異種金属が不純物として多量に存在すると、通常の酸化物部位と異なる金属により欠陥を生じて、表面の電荷分布が変動し、その部位を起点として酸化物粒子の凝集性を向上させ、結果として塗布液や感光層中における凝集物の増加を引き起こすため、シリカの純度は高純度であることが好ましい。よって、無機酸化物を構成する金属元素以外の金属の含有量は、各金属元素につき1000ppm以下に制御することが好ましい。
 一方で、表面処理剤を十分に反応させてシリカ表面の活性を向上するためには、ごく微量の別種金属を添加しておくことが好適である。表面処理剤はシリカの表面に存在する水酸基と反応するが、シリカが微量の他金属元素を含有すると、金属間の電気陰性度の差による影響から、シリカ表面に存在する他金属元素に隣接するシラノール基(水酸基)の反応性が向上する。この水酸基は表面処理剤との反応性が高いことから、他の水酸基より強固に表面処理剤と反応するとともに、残存すると凝集の原因となる。これらの表面処理剤の反応後に、他の水酸基に表面処理剤が反応することにより、表面処理剤の効果と表面の異種金属による表面の電荷の偏りの減少効果とにより、シリカ同士の凝集性が大きく改善されると考えられる。本発明においては、無機酸化物が微量の他金属を含有する場合、表面処理剤の反応性がより良好となり、結果として表面処理による分散性が向上するため、好ましい。
 シリカに関しては、アルミニウム元素を1000ppm以下までの範囲で添加しておくと、表面処理に好適である。シリカ中のアルミニウム元素量の調整は、特開2004-143028号公報、特開2013-224225号公報、特開2015-117138号公報等に記載されている方法を用いて行うことができるが、所望の範囲に制御できるものであれば、調製方法については特に制限はない。具体的には、シリカ表面のアルミニウム元素量をより好適に制御する方法としては、例えば、以下のような方法がある。まず、シリカ微粒子を製造する際に、目的のシリカ粒子径よりも小さい形状にシリカ粒子を成長させた後に、アルミニウム源となるアルミニウムアルコキシドを添加するなどしてシリカ表面のアルミニウム量を制御する方法がある。また、塩化アルミニウムを含む溶液中にシリカ微粒子を入れて、シリカ微粒子表面に塩化アルミニウム溶液をコートし、これを乾燥して焼成する方法や、ハロゲン化アルミニウム化合物とハロゲン化ケイ素化合物との混合ガスを反応させる方法などがある。
 また、シリカの構造は、複数のケイ素原子と酸素原子とが環状に連なり網目状の結合構造を取ることが知られており、アルミニウム元素を含む場合、シリカの環状構造を構成する原子数が、アルミニウムを混合した効果により、通常のシリカよりも大きくなる。この効果により、アルミニウム元素を含有するシリカ表面の水酸基に対し、表面処理剤が反応する際の立体的障害が、通常のシリカ表面よりも緩和され、表面処理剤の反応性が向上して、通常のシリカに同じ表面処理剤を反応させたときよりも分散性が向上した表面処理シリカとなる。
 なお、特許文献7等に記載されているシリカは、乾式法により製造されたものであるが、本発明の効果を持たせるために、アルミニウム元素量を制御する上では、湿式法によるシリカがより好適である。また、シリカに対するアルミニウム元素の含有量は、表面処理剤の反応性を考慮すると、1ppm以上が好適である。
 無機酸化物の形態としては、特に限定されないが、凝集性を低減させて均一な分散状態を得るためには、無機酸化物の真球度が0.8以上であることが好ましく、0.9以上であることがより好ましい。
 また、無機酸化物を感光層塗布液用の溶媒に分散(一次分散)した際の粘度は、溶媒に対し20質量%分散した際の20質量%無機酸化物スラリーの粘度で、50mPa・s以下とすることで、好適な混合を進められることから好ましく、より好ましくは10mPa・s以下とする。
 さらに、無機酸化物の一次粒子径は、溶媒に分散させた際に透過率が高く保てればよく、1~200nmが好適であり、より好ましくは5~100nmであり、さらに好ましくは10~50nmである。なお、分散中の粒子は一次粒子の形状でも、数個のクラスターを形成していても、透過率が上記範囲を満たす範囲であればよい。
 また、感光層中における、無機酸化物の粒子間平均距離は、上記の溶媒に分散させた際の透過率が得られていれば特に限定されないが、結果として一次粒子径に近いことが、粒子間の相互作用により膜成分の拘束力を向上させ、膜の摩耗性の改善につながることから好ましい。具体的には、200nm以下であることが好ましく、より好ましくは70nm以下である。
 また、高解像度が期待される感光体の電荷輸送層に無機酸化物を使用する際には、電荷輸送層に添加される材料に由来するα線などによる影響を考慮することが好ましい。例えば、半導体メモリ素子を例に挙げると、メモリ素子は電荷の蓄積の有無により記憶するデータの種類を保持するが、微細化によって、蓄積される電荷の大きさも小さくなって、外部から照射されるα線によって変化する程度の電荷によってデータの種類が変化してしまい、結果、予期しないデータの変化が生じてしまう。また、半導体素子に流れる電流の大きさも小さくなるため、α線により生じる電流(ノイズ)が信号の大きさと比べても相対的に大きくなってしまい誤動作が危惧される。このような現象と同様にして、感光体の電荷輸送層の電荷の動きに対する影響を考慮すると、α線発生の少ない材料を膜構成材料に使用することが、より好適である。具体的には、無機酸化物中のウランやトリウムの濃度を低減させることが効果的であり、好ましくはトリウムが30ppb以下、ウランが1ppb以下である。無機酸化物中のウランやトリウム量を低減させる製法としては、例えば、特開2013-224225号公報等に記載があるが、これら元素の濃度を低減させることができれば、この方法には限定されない。
 無機酸化物が本発明に係る透過率の条件を保持するためには、無機酸化物の表面に表面処理を施すことが好適である。
 表面処理剤としては、上記透過率を得られるものであれば、市販の表面処理剤を用いてよい。より好ましくは、シランカップリング剤を用いる。シランカップリング剤としては、フェニルトリメトキシシラン、ビニルトリメトキシシラン、エポキシトリメトキシシラン、メタクリルトリメトキシシラン、アミノトリメトキシシラン、ウレイドトリメトキシシラン、メルカプトプロピルトリメトキシシラン、イソシアネートプロピルトリメトキシシラン、フェニルアミノトリメトキシシラン、アクリルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシランおよびN-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられ、これらのうちの少なくとも一種を含むものを用いることができる。また、アルコキシドのアルキル基は、メチル基が好ましいが、それ以外にエチル基、プロピル基、ブチル基も好ましい。無機酸化物に対する表面処理剤の処理量は、処理後の無機酸化物の質量に対して表面処理剤の量が0.01~10.0質量%、好ましくは0.05~5.0質量%となる量である。
 本発明で用いられるシランカップリング剤としては、さらに詳しくは下記一般式(1)で示される構造を有する化合物が挙げられるが、無機粒子表面の水酸基等の反応性基と縮合反応する化合物であれば、下記化合物に限定されない。
  (R-Si-(OR4-n           (1)
(式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、nは0~3の整数を表す)
 上記一般式(1)で表される有機ケイ素化合物において、Rとしてはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ-グリシドキシプロピル、β-(3,4-エポキシシクロヘキシル)エチル等の含エポキシ基、γ-アクリロキシプロピル、γ-メタアクリロキシプロピルの含(メタ)アクリロイル基、γ-ヒドロキシプロピル、2,3-ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ-メルカプトプロピル等の含メルカプト基、p-アミノフェニル、γ-アミノプロピル、N-β(アミノエチル)-γ-アミノプロピル、N-フェニル-3-アミノプロピル等の含アミノ基、m-アミノフェニル、o-アミノフェニル、γ-クロロプロピル、1,1,1-トリフルオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他、ニトロ、シアノ置換アルキル基が挙げられる。また、ORの加水分解性基としては、メトキシ、エトキシ等のアルコキシ基、ハロゲン基、アシルオキシ基が挙げられる。
 上記一般式(1)で表されるシランカップリング剤は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。また、複数種組み合わせる際には、同時に2種のカップリング剤を無機酸化物と反応させることができるが、複数種を順番に反応させることもできる。
 また、上記一般式(1)で表されるシランカップリング剤において、nが2以上の場合、複数のRは同一でも異なっていてもよい。同様に、nが2以下の場合、複数のRは同一でも異なっていてもよい。また、上記一般式(1)で表される有機ケイ素化合物を2種以上で用いるとき、RおよびRはそれぞれのカップリング剤で同一であってもよく、異なっていてもよい。
 nが0の化合物としては、例えば、下記の化合物が挙げられる。すなわち、テトラメトキシシラン、テトラアセトキシシラン、テトラエトキシシラン、テトラアリロキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラキス(2-メトキシエトキシ)シラン、テトラブトキシシラン、テトラフェノキシシラン、テトラキス(2-エチルブトキシ)シラン、テトラキス(2-エチルヘキシロキシ)シラン等が挙げられる。
 nが1の化合物としては、例えば、下記の化合物が挙げられる。すなわち、メチルトリメトキシシラン、メルカプトメチルトリメトキシシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、トリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、メチルトリアセトキシシラン、クロロメチルトリエトキシシラン、エチルトリアセトキシシラン、フェニルトリメトキシシラン、3-アリルチオプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-ブロモプロピルトリエトキシシラン、3-アリルアミノプロピルトリメトキシシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビス(エチルメチルケトオキシム)メトキシメチルシラン、ペンチルトリエトキシシラン、オクチルトリエトキシシラン、ドデシルトリエトキシシラン等が挙げられる。
 nが2の化合物としては、例えば、下記の化合物が挙げられる。すなわち、ジメトキシメチルシラン、ジメトキシジメチルシラン、ジエトキシシラン、ジエトキシメチルシラン、ジメトキシメチル-3,3,3-トリフルオロプロピルシラン、3-クロロプロピルジメトキシメチルシラン、クロロメチルジエトキシシラン、ジエトキシジメチルシラン、ジメトキシ-3-メルカプトプロピルメチルシラン、ジアセトキシメチルビニルシラン、ジエトキシメチルビニルシラン、3-アミノプロピルジエトキシメチルシラン、3-(2-アミノエチルアミノプロピル)ジメトキシメチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-(3-シアノプロピルチオプロピル)ジメトキシメチルシラン、3-(2-アセトキシエチルチオプロピル)ジメトキシメチルシラン、ジメトキシメチル-2-ピペリジノエチルシラン、ジブトキシジメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、ジエトキシメチルフェニルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、3-(3-アセトキシプロピルチオ)プロピルジメトキシメチルシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシメチルオクタデシルシラン等が挙げられる。
 nが3の化合物としては、例えば、下記の化合物が挙げられる。すなわち、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシジメチル-3,3,3-トリフルオロプロピルシラン、3-クロロプロピルメトキシジメチルシラン、メトキシ-3-メルカプトプロピルメチルメチルシラン等が挙げられる。
 また、本発明に係る感光層塗布液中には、シランカップリング剤の加水分解物が微量含まれていてもよい。具体的には、下記一般式(2)で示される構造を有する化合物が2質量%以下で含まれていてもよい。
  Si(OH)(R(OR4-(n+m)         (2)
(式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、mは1~4の整数、nは0~3の整数を表し、m+nは4以下である)
 無機酸化物が複数種の表面処理剤で表面処理されている場合、表面処理工程においては、いかなる順序で表面処理が行われているものであってもよいが、例えば、無機酸化物が複数種のシランカップリング剤で表面処理されている場合、上記一般式(1)で表される構造を有するシランカップリング剤が、最初に表面処理に用いられていることが好ましい。また、表面処理工程においては、シリカをシランカップリング剤およびオルガノシラザンで同時に表面処理してもよく、または、シリカをまずシランカップリング剤で表面処理し、次いでオルガノシラザンで表面処理してもよい。さらには、シリカをまずオルガノシラザンで表面処理し、次いでシランカップリング剤で表面処理し、さらにその後にオルガノシラザンで表面処理してもよい。
 本発明において、20質量%無機酸化物スラリー(無機酸化物スラリー)の透過率を計測する波長は、可視域から電子写真装置の露光に用いられるレーザー波長域までの範囲から任意に選ばれるが、電子写真装置で使用される波長780nmでの透過率で確認することができる。
 スラリー化に用いる溶媒は、感光層塗布液用の溶媒であれば特に限定されず、上記無機酸化物が上記透過率を満足するものであればよい。好ましくは、テトラヒドロフラン(THF)、1,3-ジオキソラン、テトラヒドロピラン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエン、塩化メチレン、1,2-ジクロロエタン、クロロベンゼン、エチレングリコール、エチレングリコールモノメチルエーテル、1,2-ジメトキシエタン等が挙げられ、これらを単独で、または、混合して用いることができるが、これらに限定されない。好ましくは、テトラヒドロフランまたはそれを含む混合溶媒を用いる。
 本発明においては、いかなる方法であっても、攪拌すれば、混合して上記無機酸化物スラリーを得ることができる。スラリー化する際に分散に用いる分散機としては、ペイントシェーカー、ボールミルおよびサンドミルなどを挙げることができる。
 本発明において、上記無機酸化物を含む感光層を形成するための感光層塗布液を調製する際には、まず、感光層塗布液用の溶媒に対し無機酸化物を一次分散してなる無機酸化物スラリーを作製するが、これと、感光層の他の構成成分とを混合する際には、任意の順序で溶解、分散を行うことができる。例えば、感光層が負帯電積層型の感光層であって、電荷輸送層が上記無機酸化物を含む場合には、まず、電荷輸送材料および樹脂バインダを感光層塗布液用の溶媒に溶解した感光層形成用液(電荷輸送層用液)を作製し、これを上記無機酸化物スラリーに加える方法で作製することが好ましい。この場合、感光層が正帯電単層型の感光層であって、単層型の感光層が上記無機酸化物を含む場合には、感光層形成用液として、感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解し、さらに電荷発生材料を分散(二次分散)させてなるものを用いることができる。
(導電性基体)
 導電性基体1は、感光体の電極としての役目と同時に感光体を構成する各層の支持体ともなっており、円筒状、板状、フィルム状などのいずれの形状でもよい。導電性基体1の材質としては、アルミニウム、ステンレス鋼、ニッケルなどの金属類、または、ガラス、樹脂などの表面に導電処理を施したもの等を使用できる。
(下引き層)
 下引き層2は、樹脂を主成分とする層やアルマイトなどの金属酸化皮膜からなるものである。かかる下引き層2は、導電性基体1から感光層への電荷の注入性の制御や、導電性基体の表面の欠陥の被覆、感光層と導電性基体1との接着性の向上などの目的で、必要に応じて設けられる。下引き層2に用いられる樹脂材料としては、カゼイン、ポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子や、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独、または、適宜組み合わせて混合して用いることができる。また、これらの樹脂に、二酸化チタン、酸化亜鉛などの金属酸化物を含有させて用いてもよい。
(負帯電積層型感光体)
 本発明の感光体は、上記無機酸化物に係る条件を満足するものであれば、図1(a)~(c)に示すいずれの層構成を有するものであってもよい。好適には、本発明の感光体は負帯電積層型電子写真用感光体であって、この場合、最表層が電荷輸送層である。前述したように、負帯電積層型感光体において、感光層は、電荷発生層4および電荷輸送層5を有する。
 負帯電積層型感光体において、電荷発生層4は、電荷発生材料の粒子が樹脂バインダ中に分散された塗布液を塗布するなどの方法により形成され、光を受容して電荷を発生する。電荷発生層4は、その電荷発生効率が高いことと同時に発生した電荷の電荷輸送層5への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
 電荷発生材料としては、X型無金属フタロシアニン、τ型無金属フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、γ型チタニルフタロシアニン、アモルファス型チタニルフタロシアニン、ε型銅フタロシアニンなどのフタロシアニン化合物、各種アゾ顔料、アントアントロン顔料、チアピリリウム顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、キナクリドン顔料等を単独、または適宜組み合わせて用いることができ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。特には、フタロシアニン化合物を好適に用いることができる。電荷発生層4は、電荷発生材料を主体として、これに電荷輸送材料などを添加して使用することも可能である。
 電荷発生層4の樹脂バインダとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、メタクリル酸エステル樹脂の重合体および共重合体などを適宜組み合わせて使用することが可能である。
 なお、電荷発生層4における電荷発生材料の含有量は、電荷発生層4中の固形分に対して、好適には20~80質量%、より好適には30~70質量%である。また、電荷発生層4における樹脂バインダの含有量は、電荷発生層4中の固形分に対して、好適には20~80質量%、より好適には30~70質量%である。電荷発生層4は、電荷発生機能を有すればよいので、その膜厚は一般的には1μm以下であり、好適には0.5μm以下である。
 負帯電積層型感光体の場合、電荷輸送層5が、上記無機酸化物を含む感光層となる。負帯電積層型感光体において、電荷輸送層5は、主として上記無機酸化物と電荷輸送材料と樹脂バインダとにより構成される。
 電荷輸送層5の樹脂バインダとしては、ポリアリレート樹脂、ビスフェノールA型、ビスフェノールZ型、ビスフェノールC型、ビスフェノールA型-ビフェニル共重合体、ビスフェノールZ型-ビフェニル共重合体などの各種ポリカーボネート樹脂を単独で、または複数種を混合して用いることができる。また、分子量の異なる同種の樹脂を混合して用いてもよい。その他、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを用いることができる。
 なお、上記樹脂の重量平均分子量は、ポリスチレン換算によるGPC(ゲルパーミエーションクロマトグラフィ)分析において5,000~250,000が好適であり、より好適には10,000~200,000である。
 また、電荷輸送層5の電荷輸送材料としては、各種ヒドラゾン化合物、スチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物、アリールアミン化合物等を単独、あるいは適宜組み合わせて混合して用いることができる。かかる電荷輸送材料としては、例えば、以下の(II-1)~(II-30)に示すものを例示することができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 電荷輸送層5における無機酸化物の含有量としては、電荷輸送層5の固形分に対して1~40質量%、より好適には2~30質量%である。電荷輸送層5における樹脂バインダの含有量としては、無機酸化物を除く電荷輸送層5の固形分に対して、好適には20~90質量%、より好適には30~80質量%である。電荷輸送層5における電荷輸送材料の含有量としては、無機酸化物を除く電荷輸送層5の固形分に対して、好適には10~80質量%、より好適には20~70質量%である。
 また、電荷輸送層5の膜厚としては、実用上有効な表面電位を維持するためには3~50μmの範囲が好ましく、15~40μmの範囲がより好ましい。
(正帯電単層型感光体)
 正帯電単層型感光体の場合、単層型感光層3が、上記無機酸化物を含む感光層となる。正帯電単層型感光体において、単層型感光層3は、主として上記無機酸化物、電荷発生材料、電荷輸送材料としての正孔輸送材料および電子輸送材料(アクセプター性化合物)、並びに、樹脂バインダからなる。
 単層型感光層3の樹脂バインダとしては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体、ビスフェノールZ型-ビフェニル共重合体などの他の各種ポリカーボネート樹脂、ポリフェニレン樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを用いることができる。さらに、分子量の異なる同種の樹脂を混合して用いてもよい。
 単層型感光層3の電荷発生材料としては、例えば、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、多環キノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を使用することができる。これら電荷発生材料は、単独で、または、2種以上を組み合わせて使用することが可能である。特に、本発明の感光体においては、アゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N’-ビス(3,5-ジメチルフェニル)-3,4:9,10-ペリレン-ビス(カルボキシイミド)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンを用いることが好ましい。また、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルファス型チタニルフタロシアニン、特開平8-209023号公報、米国特許第5736282号明細書および米国特許第5874570号明細書に記載のCuKα:X線回析スペクトルにてブラッグ角2θが9.6°を最大ピークとするチタニルフタロシアニンを用いると、感度、耐久性および画質の点で著しく改善された効果を示すため、好ましい。
 単層型感光層3の正孔輸送材料としては、例えば、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリ-N-ビニルカルバゾール、ポリシラン等を使用することができる。これら正孔輸送材料は、単独で、または、2種以上を組み合わせて使用することが可能である。本発明において用いられる正孔輸送材料としては、光照射時に発生する正孔の輸送能力が優れている他、電荷発生材料との組み合せにおいて好適なものが好ましい。
 単層型感光層3の電子輸送材料(アクセプター性化合物)としては、無水琥珀酸、無水マレイン酸、ジブロモ無水琥珀酸、無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、マロノニトリル、トリニトロフルオレノン、トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、チオピラン系化合物、キノン系化合物、ベンゾキノン化合物、ジフェノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等を挙げることができる。これら電子輸送材料は、単独で、または、2種以上を組み合わせて使用することが可能である。
 単層型感光層3における無機酸化物の含有量としては、単層型感光層3の固形分に対して1~40質量%、より好適には2~30質量%である。単層型感光層3における樹脂バインダの含有量としては、無機酸化物を除く単層型感光層3の固形分に対して、好適には10~90質量%、より好適には20~80質量%である。単層型感光層3における電荷発生材料の含有量は、無機酸化物を除く単層型感光層3の固形分に対して、好適には、0.1~20質量%、より好適には、0.5~10質量%である。単層型感光層3における正孔輸送材料の含有量は、無機酸化物を除く単層型感光層3の固形分に対して、好適には、3~80質量%、より好適には、5~60質量%である。単層型感光層3における電子輸送材料の含有量は、無機酸化物を除く単層型感光層3の固形分に対して、好適には、1~50質量%、より好適には、5~40質量%である。
 単層型感光層3の膜厚は、実用的に有効な表面電位を維持するためには3~100μmの範囲が好ましく、5~40μmの範囲がより好ましい。
(正帯電積層型感光体)
 前述したように、正帯電積層型感光体において、感光層は、電荷輸送層5および電荷発生層4を有する。正帯電積層型感光体の場合、電荷発生層4が最表層であり、上記無機酸化物を含む感光層となる。正帯電積層型感光体において、電荷輸送層5は、主として電荷輸送材料と樹脂バインダとにより構成される。かかる電荷輸送材料および樹脂バインダとしては、無機酸化物を除いて、負帯電積層型感光体の電荷輸送層5について挙げたものと同様の材料を用いることができる。各材料の含有量、および、電荷輸送層5の膜厚についても、無機酸化物を除いて、負帯電積層型感光体と同様とすることができる。
 電荷輸送層5上に設けられる電荷発生層4は、主として上記無機酸化物、電荷発生材料、電荷輸送材料としての正孔輸送材料および電子輸送材料(アクセプター性化合物)、並びに、樹脂バインダからなる。電荷発生材料、正孔輸送材料、電子輸送材料および樹脂バインダとしては、単層型感光体の単層型感光層3について挙げたものと同様の材料を用いることができる。各材料の含有量、および、電荷発生層4の膜厚についても、単層型感光体の単層型感光層3と同様とすることができる。
 本発明においては、積層型または単層型のいずれの感光層中にも、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることができる。さらに、膜硬度の調整や摩擦係数の低減、潤滑性の付与等を目的として、複数種の無機酸化物を含ませることができる。シリカ、酸化チタン、酸化亜鉛、酸化カルシウム、アルミナ、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。
 また、感光層中には、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
(感光体の製造方法)
 本発明の製造方法は、感光層を、感光層塗布液を用いて形成することにより感光体を製造するに際して、以下の工程を含む。すなわち、図3に示すように、まず、感光層塗布液用の溶媒に無機酸化物を一次分散して無機酸化物スラリーを得(無機酸化物スラリー調製工程(S1))、感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解して感光層形成用液を得(感光層形成用液調製工程(S2))、その後に、得られた無機酸化物スラリーと感光層形成用液とを混合して感光層塗布液を得るものである(感光層塗布液調製工程(S3))。これにより、長期使用時にも摩耗が少なく安定した画像を実現できる感光体を、確実に製造することが可能となる。
 ここで、無機酸化物スラリーの調製は、前述した分散機を適宜用いて、常法に従い実施することができ、特に制限されるものではない。また、感光層形成用液および感光層塗布液の調製についても、常法に従い適宜実施することができ、特に制限されるものではない。
(電子写真装置)
 本発明の電子写真用感光体は、上記本発明の感光体が搭載されてなるものであり、各種マシンプロセスに適用することにより所期の効果が得られるものである。具体的には、ローラやブラシなどの帯電部材を用いた接触帯電方式、コロトロンやスコロトロンなどを用いた非接触帯電方式等の帯電プロセス、並びに、非磁性一成分、磁性一成分、二成分などの現像方式を用いた接触現像および非接触現像方式などの現像プロセスにおいても、十分な効果を得ることができる。特には、本発明は、帯電部材を感光体に接触させて帯電させる接触帯電方式の帯電プロセスを備える場合に、帯電部材の接触による摩耗を抑制できる点で、有用である。
 図2に、本発明の電子写真装置の一構成例の概略構成図を示す。図示する本発明の電子写真装置60は、導電性基体1と、その外周面上に被覆された下引き層2および感光層300とを含む、本発明の感光体7を搭載する。この電子写真装置60は、感光体7の外周縁部に配置された、帯電部材21と、この帯電部材21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写帯電器(直接帯電型)26と、から構成される。電子写真装置60は、さらに、クリーニングブレード271を備えたクリーニング装置27と、除電部材28とを含んでもよい。また、本発明の電子写真装置60は、カラープリンタとすることができる。
 以下、本発明の具体的態様を、実施例を用いてさらに詳細に説明する。本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。
(無機酸化物スラリーの調製)
<製造例1~44>
 表1,2に示す製造例に従って、無機酸化物スラリーを調製した。具体的には、無機酸化物として、アドマテックス社製シリカ(YA010C(アルミニウム元素含有量500ppm)、YA050C(アルミニウム元素含有量900ppm)、YA100C(アルミニウム元素含有量900ppm))、シリカF(アルミニウム元素含有量10ppm)、シリカG(アルミニウム含有量100ppm)を用い、表面処理剤として表1に記載の処理剤を用いて表面処理を施した表面処理シリカを準備して、感光層塗布液用のテトラヒドロフラン(THF)に分散(一次分散)した。製造例1、21、33の表面処理後の無機酸化物について、表面処理剤の量を定量したところ、処理後の無機酸化物に対してそれぞれ1.0、0.2、0.1質量%であった。その他の製造例についても同様に表面処理剤の量を定量したところ、処理後の無機酸化物の質量に対して0.01~10.0質量%の範囲を満たす類似の結果を得た。
<比較製造例1~10>
 表1,2に示す製造例に従い、製造例1等と同様にして、無機酸化物として日本アエロジル社製のAEROSIL R7200、R8200(いずれもアルミニウム量1ppm未満の乾式製法シリカ)、シリカH(アルミニウム含有量2000ppm)、住友化学社製のAKP-20(アルミナ)、テイカ社製のMSP-015、MT-600B、石原産業社製のTTO-55(酸化チタン)を使用して、無機酸化物スラリーを調製した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
*1)シリカA:アドマテックス社製,YA010C,一次粒子径10nm
*2)シリカB:日本エアロジル社製,AEROSIL R7200,一次粒子径15nm
*3)シリカC:日本エアロジル社製,AEROSIL R8200,一次粒子径15nm
*4)アルミナ:住友化学社製,AKP-20,一次粒子径460nm
*5)酸化チタンA:テイカ社製,MSP-015,一次粒子径15nm
*6)酸化チタンB:テイカ社製,MT-600B,一次粒子径50nm
*7)酸化チタンC:石原産業社製,TTO-55,一次粒子径40nm
*8)KBM573:信越化学社製,N-フェニル-3-アミノプロピルトリメトキシシラン
*9)KBM5103:信越化学社製
*10)KBM603:信越化学社製
*11)シリカD:アドマテックス社製,YA050C,一次粒子径50nm
*12)KBM903:信越化学社製
*13)シリカE:アドマテックス社製,YA100C,一次粒子径100nm
*14)シリカF:特開2015-117138号公報の試験例記載の方法に従いアルミニウム含有量10ppmに調整したシリカ、一次粒子径100nm
*15)シリカG:特開2015-117138号公報の試験例記載の方法に従いアルミニウム含有量100ppmに調整したシリカ、一次粒子径100nm
*16)シリカH:特開2015-117138号公報の試験例記載の方法に従いアルミニウム含有量2000ppmに調整したシリカ、一次粒子径100nm
(負帯電積層型感光体の製造)
(実施例1)
 アルコール可溶性ナイロン(東レ(株)製、商品名「CM8000」)5質量部と、アミノシラン処理された酸化チタン微粒子5質量部とを、メタノール90質量部に溶解、分散させて、塗布液1を調製した。導電性基体1としての外径30mmのアルミニウム製円筒の外周に、下引き層として、この塗布液1を浸漬塗工し、温度100℃で30分間乾燥して、膜厚3μmの下引き層2を形成した。
 電荷発生材料としてのY型チタニルフタロシアニン1質量部と、樹脂バインダとしてのポリビニルブチラール樹脂(積水化学(株)製、商品名「エスレックBM-2」)1.5質量部とを、ジクロロメタン60質量部に溶解、分散させて、塗布液2を調製した。上記下引き層2上に、この塗布液2を浸漬塗工した。温度80℃で30分間乾燥して、膜厚0.3μmの電荷発生層4を形成した。
 電荷輸送材料(CTM)としての下記構造式、
Figure JPOXMLDOC01-appb-I000006
で示される化合物9質量部と、樹脂バインダとしての下記構造式、
Figure JPOXMLDOC01-appb-I000007
で示される繰り返し単位を有する樹脂11質量部とを、テトラヒドロフラン80質量部に溶解した。この液を、製造例1にて調製したシリカスラリー25質量部に添加して、塗布液3を作製した。
 上記電荷発生層4上に、この塗布液3を浸漬塗工し、温度120℃で60分間乾燥して、膜厚20μmの電荷輸送層5を形成し、負帯電積層型感光体を作製した。
(実施例2~25)
 実施例1で使用した製造例1のスラリー液の種類と量または塗布液の組成を表3中の記載に従い変えた以外は、実施例1と同様の方法で感光体を作製した。
(実施例26)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000008
(実施例27)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000009
(実施例28)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000010
(実施例29)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000011
(実施例30)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000012
(実施例31)
 実施例1で使用した電荷輸送材料を下記式で示されるものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000013
(実施例32)
 実施例1で使用した電荷輸送層の樹脂バインダを下記式で示される繰り返し構造を有するものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000014
(実施例33)
 実施例1で使用した電荷輸送層の樹脂バインダを下記式で示される繰り返し構造を有するものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000015
(実施例34)
 実施例1で使用した電荷輸送層の樹脂バインダを下記式で示される繰り返し構造を有するものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000016
(実施例35)
 実施例1で使用した電荷輸送層の樹脂バインダを下記式で示される繰り返し構造を有するものに変えた以外は、実施例1と同様の方法で感光体を作製した。
Figure JPOXMLDOC01-appb-I000017
(実施例36~56)
 実施例1で使用した製造例1のスラリー液の種類と量または塗布液の組成を表4中の記載に従い変えた以外は、実施例1と同様の方法で感光体を作製した。
(実施例57)
 実施例36で使用した電荷輸送材料を実施例27で使用したものに変えた以外は、実施例36と同様の方法で感光体を作製した。
(実施例58)
 実施例36で使用した樹脂バインダを実施例35で使用したものに変えた以外は、実施例36と同様の方法で感光体を作製した。
(実施例59)
 実施例48で使用した電荷輸送材料を実施例27で使用したものに変えた以外は、実施例48と同様の方法で感光体を作製した。
(実施例60)
 実施例48で使用した樹脂バインダを実施例35で使用したものに変えた以外は、実施例48と同様の方法で感光体を作製した。
(実施例61~73)
 実施例1で使用した製造例1のスラリー液の種類と量を表4中の記載に従い変えた以外は、実施例1と同様の方法で感光体を作製した。
(比較例1~10)
 実施例1で使用した製造例1のスラリー液の種類と量を表5中の記載に従い変えた以外は、実施例1と同様の方法で感光体を作製した。
(比較例11)
 実施例1で使用した製造例1のスラリー液を添加しない以外は、実施例1と同様の方法で感光体を作製した。
(正帯電単層型感光体の製造)
(実施例74)
 導電性基体1としての外径24mmのアルミニウム製円筒の外周に、下引き層として、塩化ビニル-酢酸ビニル-ビニルアルコール共重合体(日信化学工業(株)製、商品名「ソルバインTA5R」)0.2質量部をメチルエチルケトン99質量部に攪拌溶解させて調製した塗布液を浸漬塗工し、温度100℃で30分間乾燥して、膜厚0.1μmの下引き層2を形成した。
 電荷発生材料としてのX型無金属フタロシアニン0.1質量部と、正孔輸送材料としての実施例1で使用した電荷輸送材料(CTM)8質量部と、電子輸送材料(ETM)としての下記式、
Figure JPOXMLDOC01-appb-I000018
で示される化合物4質量部と、樹脂バインダとしての実施例1の電荷輸送層で使用した樹脂バインダ8質量部とを、テトラヒドロフラン80質量部に溶解、分散させた。この液を、製造例1で調製したシリカスラリー25質量部に添加して、塗布液を作製した。
 この塗布液を、下引き層2上に浸漬塗工し、温度100℃で60分間乾燥して、膜厚25μmの感光層を形成し、単層型感光体を作製した。
(実施例75)
 実施例74で使用したスラリー液を製造例21のスラリー液に変えた以外は、実施例74と同様の方法で感光体を作製した。
(比較例12)
 実施例74で使用したスラリー液を比較製造例1のスラリー液に変えた以外は、実施例74と同様の方法で感光体を作製した。
(比較例13)
 実施例74で使用したスラリー液を添加しない以外は実施例74と同様の方法で、感光体を作製した。
(正帯電積層型感光体の製造)
(実施例76)
 実施例34で使用した樹脂バインダ5質量部と、実施例1で使用した電荷輸送材料5質量部とを、テロラヒドロフラン80質量部に溶解して、塗布液を調製した。導電性基体1としての外径24mmのアルミニウム製円筒の外周に、この塗布液を浸漬塗工し、温度120℃で60分間乾燥して、膜厚15μmの電荷輸送層を形成した。
 電荷発生材料としてのY型チタニルフタロシアニン0.1質量部と、正孔輸送材料としての実施例1で使用した電荷輸送材料(CTM)2質量部と、電子輸送材料(ETM)としての実施例72で使用した化合物5質量部と、実施例1で使用した樹脂バインダ13質量部とを、1,2‐ジクロロエタン120質量部に溶解、分散させた。この液を、製造例1で調製したシリカスラリー25質量部に添加して、塗布液を作製した。この塗布液を、電荷輸送層上に浸漬塗工し、温度100℃で60分間乾燥して、膜厚15μmの電荷発生層を形成して、正帯電積層型感光体を作製した。
(実施例77)
 実施例76で使用したスラリー液を製造例21のスラリー液に変えた以外は、実施例76と同様の方法で感光体を作製した。
(比較例14)
 実施例76で使用したスラリー液を比較製造例1のスラリー液に変えた以外は、実施例76と同様の方法で感光体を作製した。
(比較例15)
 実施例76で使用したスラリー液を添加しない以外は、実施例76と同様の方法で感光体を作製した。
<スラリー透過率>
 各製造例のスラリー液について、感光層塗布液用の溶媒に対し無機酸化物を20質量%一次分散した評価用のスラリーを用意した。これらの試料を20質量%無機酸化物スラリーと称する。光路長が10mmとなる石英セルに評価用のスラリーを入れて、波長780nmの光を照射したときの光の透過率を分光光度計(島津製作所製 UV-3100)にて計測した。これら光の透過率をスラリー透過率とも称する。計測結果を表3~5に併せて示す。
<スラリー液粘度>
 各製造例のスラリー液について、感光層塗布液用の溶媒に対し無機酸化物を20質量%分散した評価用の20質量%無機酸化物スラリーを用意した。これら20質量%無機酸化物スラリーの20℃における粘度を、振動式粘度計(SEKONIC製VISCOMATE VM-10A)にて計測した。これら粘度をスラリー液粘度とも称する。計測結果を表3~5に併せて示す。
<感光体の評価>
 上述した実施例1~77および比較例1~15で作製した感光体の電気特性を、下記の方法で評価した。評価結果を表3~5に併せて示す。
<電気特性>
 各実施例および比較例にて得られた感光体の電気特性を、ジェンテック社製のプロセスシミュレーター(CYNTHIA91)を使用して、以下の方法で評価した。
 実施例1~73および比較例1~11の感光体について、温度22℃、湿度50%の環境下で、感光体の表面を暗所にてコロナ放電により-650Vに帯電せしめた後、帯電直後の表面電位V0を測定した。続いて、暗所で5秒間放置後、表面電位V5を測定し、下記計算式(1)、
  Vk5=V5/V0×100             (1)
に従って、帯電後5秒後における電位保持率Vk5(%)を求めた。次に、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した1.0μW/cmの露光光を、表面電位が-600Vになった時点から感光体に5秒間照射して、表面電位が-300Vとなるまで光減衰するのに要する露光量をE1/2(μJ/cm)、露光後5秒後の感光体表面の残留電位をVr5(V)として評価した。
 実施例74~77および比較例12~15の感光体については、帯電電位を+650Vとして、露光光は表面電位が+600Vになった時点から照射し、E1/2は+300Vとなるまでに要する露光量として、上記と同様に評価した。
<実機特性>
 実施例1~73および比較例1~11において作製した感光体をHP製プリンターLJ4250に搭載して、A4用紙10000枚を印字し、印字前後の感光体の膜厚を測定し、印字後の平均摩耗量(μm)について評価を実施した。また、画像欠陥の評価として、初期および10000枚印字後における白紙上のカブリおよび黒紙濃度を観察した。カブリおよび濃度低下のない場合を良好とした。
 また、実施例74~77および比較例12~15において作製した感光体を、ブラザー社製プリンターHL-2040に搭載して、A4用紙10000枚を印字し、印字前後の感光体の膜厚を測定し、印字後の平均摩耗量(μm)について評価を実施した。併せて、上記と同様にして、初期および10000枚印字後における白紙上のカブリおよび黒紙濃度を観察した。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 上記表3~5の結果から、無機酸化物スラリーの透過率が高く、粘度が低い無機酸化物を使用した実施例1~77では、耐摩耗性が良好であるとともに、感光体としての電気特性が良好であり、初期も10000枚印刷後にも画像品質が良好であることがわかる。一方、比較例1~15では、耐刷後の膜摩耗量が大きいか、もしくは画像にカブリが発生し、印字濃度の低下も確認された。実施例1~77では、メカニズムは明瞭でないが、スラリー状態での透過率が高く分散性が良好であることから、感光層とした際の膜構造が均一となり、画像の安定性に寄与しているものと考えられる。また、各実施例では、膜強度の向上から、無機酸化物を添加していない比較例に対して膜の耐摩耗性が向上していることがわかる。
 以上により、本発明に係る透過率の条件を満足する無機酸化物を含む感光層とすることによって、摩耗を抑制しつつ、画像欠陥がない良好な画像を得る電子写真用感光体が得られることが確かめられた。
1 導電性基体
2 下引き層
3 単層型感光層
4 電荷発生層
5 電荷輸送層
7 感光体
21 帯電部材
22 高圧電源
23 像露光部材
24 現像器
241 現像ローラ
25 給紙部材
251 給紙ローラ
252 給紙ガイド
26 転写帯電器(直接帯電型)
27 クリーニング装置
271 クリーニングブレード
28 除電部材
60 電子写真装置
300 感光層

Claims (19)

  1.  導電性基体と、
     前記導電性基体上に形成され、無機酸化物を含む感光層と、を備え、
     前記感光層を塗布形成するための感光層塗布液用の溶媒に対し、前記無機酸化物を20質量%分散した20質量%無機酸化物スラリーに対して、波長780nmの光を照射したときの前記光の透過率が40%以上である電子写真用感光体。
  2.  前記20質量%無機酸化物スラリーの粘度が、50mPa・s以下である請求項1記載の電子写真用感光体。
  3.  前記無機酸化物の一次粒子径が1~200nmである請求項1記載の電子写真用感光体。
  4.  前記感光層が最表層である請求項1記載の電子写真用感光体。
  5.  前記無機酸化物がシリカを主成分とする請求項1記載の電子写真用感光体。
  6.  前記無機酸化物が、シリカを主成分とし、かつ、アルミニウム元素を1ppm以上1000ppm以下で含有する請求項1記載の電子写真用感光体。
  7.  前記無機酸化物が、シランカップリング剤で表面処理されている請求項6記載の電子写真用感光体。
  8.  前記シランカップリング剤が、下記一般式(1)で示される構造を有する請求項7記載の電子写真用感光体。
      (R-Si-(OR4-n           (1)
    (式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、nは0~3の整数を表す)
  9.  前記シランカップリング剤が、フェニルトリメトキシシラン、ビニルトリメトキシシラン、エポキシトリメトキシシラン、メタクリルトリメトキシシラン、アミノトリメトキシシラン、ウレイドトリメトキシシラン、メルカプトプロピルトリメトキシシラン、イソシアネートプロピルトリメトキシシラン、フェニルアミノトリメトキシシラン、アクリルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシランおよびN-フェニル-3-アミノプロピルトリメトキシシランからなる群から選ばれる少なくとも一種を含む表面処理剤である請求項7記載の電子写真用感光体。
  10.  前記無機酸化物が複数種の前記シランカップリング剤で表面処理されており、最初に表面処理に用いられているシランカップリング剤が、下記一般式(1)で表される構造を有する請求項7記載の電子写真用感光体。
      (R-Si-(OR4-n           (1)
    (式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、nは0~3の整数を表す)
  11.  前記感光層塗布液中に、下記一般式(2)で示される構造を有する化合物が2質量%以下含まれている請求項1記載の電子写真用感光体。
      Si(OH)(R(OR4-(n+m)     (2)
    (式中、Siはケイ素原子を表し、Rはこのケイ素原子に炭素が直接結合した形の有機基を表し、Rは有機基を表し、mは1~4の整数、nは0~3の整数を表し、m+nは4以下である)
  12.  前記感光層を形成するための感光層塗布液が、前記感光層塗布液用の溶媒に前記無機酸化物を一次分散してなる無機酸化物スラリーと、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解してなる感光層形成用液とを混合して得られる請求項1記載の電子写真用感光体。
  13.  前記感光層を形成するための感光層塗布液が、前記感光層塗布液用の溶媒に前記無機酸化物を一次分散してなる無機酸化物スラリーと、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解し、さらに電荷発生材料を分散させてなる感光層形成用液とを混合して得られる請求項1記載の電子写真用感光体。
  14.  前記電荷輸送材料としてアリールアミン化合物を含む請求項12記載の電子写真用感光体。
  15.  前記電荷輸送材料として電子輸送材料を含む請求項12記載の電子写真用感光体。
  16.  前記電荷発生材料としてフタロシアニン化合物を含む請求項13記載の電子写真用感光体。
  17.  前記感光層を、感光層塗布液を用いて形成することにより請求項1記載の電子写真用感光体を製造する方法において、
     前記感光層塗布液用の溶媒に前記無機酸化物を一次分散して無機酸化物スラリーを得る無機酸化物スラリー調製工程と、前記感光層塗布液用の溶媒に電荷輸送材料および樹脂バインダを溶解して感光層形成用液を得る感光層形成用液調製工程と、得られた前記無機酸化物スラリーと前記感光層形成用液とを混合して前記感光層塗布液を得る感光層塗布液調製工程と、を含む電子写真用感光体の製造方法。
  18.  請求項1記載の電子写真用感光体が搭載されてなる電子写真装置。
  19.  感光層を形成するために用いられ、無機酸化物スラリーと感光層形成用液とが混合されてなる感光層塗布液であって、
     前記無機酸化物スラリーが、前記感光層塗布液用の溶媒に無機酸化物を一次分散したものであり、
     前記感光層形成用液が、前記溶媒に電荷輸送材料および樹脂バインダを溶解したものであり、かつ、
     前記無機酸化物を前記溶媒に対し20質量%分散して得られる20質量%無機酸化物スラリーに対し、波長780nmの光を照射したときの前記光の透過率が、40%以上である感光層塗布液。
PCT/JP2016/083665 2015-12-24 2016-11-14 電子写真用感光体、その製造方法および電子写真装置 WO2017110300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017557789A JPWO2017110300A1 (ja) 2015-12-24 2016-11-14 電子写真用感光体、その製造方法および電子写真装置
EP16878196.1A EP3343295A4 (en) 2015-12-24 2016-11-14 ELECTROPHOTOGRAPHIC PHOTORECEPTOR, METHOD FOR PRODUCING THE SAME, AND ELECTROPHOTOGRAPHIC DEVICE
CN201680056617.2A CN108139697A (zh) 2015-12-24 2016-11-14 电子照相用感光体、其制造方法以及电子照相装置
US15/943,682 US10585364B2 (en) 2015-12-24 2018-04-02 Electrophotographic photoreceptor, method for producing the same, and electrophotographic device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/086140 WO2017109926A1 (ja) 2015-12-24 2015-12-24 電子写真用感光体、その製造方法および電子写真装置
JPPCT/JP2015/086140 2015-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/943,682 Continuation US10585364B2 (en) 2015-12-24 2018-04-02 Electrophotographic photoreceptor, method for producing the same, and electrophotographic device including the same

Publications (1)

Publication Number Publication Date
WO2017110300A1 true WO2017110300A1 (ja) 2017-06-29

Family

ID=59089281

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/086140 WO2017109926A1 (ja) 2015-12-24 2015-12-24 電子写真用感光体、その製造方法および電子写真装置
PCT/JP2016/083665 WO2017110300A1 (ja) 2015-12-24 2016-11-14 電子写真用感光体、その製造方法および電子写真装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086140 WO2017109926A1 (ja) 2015-12-24 2015-12-24 電子写真用感光体、その製造方法および電子写真装置

Country Status (6)

Country Link
US (1) US10585364B2 (ja)
EP (1) EP3343295A4 (ja)
JP (1) JPWO2017110300A1 (ja)
CN (1) CN108139697A (ja)
TW (1) TW201729000A (ja)
WO (2) WO2017109926A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078276B2 (en) * 2015-05-26 2018-09-18 Kyocera Document Solutions Inc. Positively chargeable single-layer electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2018159863A (ja) * 2017-03-23 2018-10-11 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2019132965A (ja) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2020118708A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020154042A (ja) * 2019-03-18 2020-09-24 富士電機株式会社 電子写真用感光体の製造方法
JP2021086125A (ja) * 2019-11-29 2021-06-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2021086126A (ja) * 2019-11-29 2021-06-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
US11073771B2 (en) 2019-07-24 2021-07-27 Fuji Electric Co., Ltd. Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
US11143976B2 (en) 2018-01-19 2021-10-12 Fuji Electric Co., Ltd. Photoconductor having interlayer for hole injection promotion
CN113703295A (zh) * 2020-05-22 2021-11-26 夏普株式会社 电子照相感光体以及具备电子照相感光体的图像形成装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709780B (zh) * 2017-06-12 2023-05-05 京瓷办公信息系统株式会社 电子照相感光体、处理盒和图像形成装置
JP7425582B2 (ja) * 2019-11-14 2024-01-31 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP7443827B2 (ja) * 2020-03-02 2024-03-06 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
CN113248175B (zh) * 2021-05-21 2021-12-03 广州科德科技有限公司 一种混凝土防水剂及其制备方法
CN117480453A (zh) * 2021-06-10 2024-01-30 三菱化学株式会社 电子照相感光体、电子照相感光体盒和图像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146642A (ja) * 1994-11-15 1996-06-07 Konica Corp 電子写真感光体、電子写真装置及び装置ユニット
JP2002107985A (ja) * 2000-09-27 2002-04-10 Konica Corp 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2002182409A (ja) * 2000-12-19 2002-06-26 Mitsubishi Chemicals Corp 電子写真感光体、電荷輸送層用塗布液及び電子写真感光体の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JP2976441B2 (ja) * 1989-06-21 1999-11-10 三菱化学株式会社 電子写真感光体
JPH03273256A (ja) 1990-03-23 1991-12-04 Idemitsu Kosan Co Ltd 電子写真感光体
JP2531852B2 (ja) 1990-11-15 1996-09-04 出光興産株式会社 電子写真感光体
US5679488A (en) 1994-11-15 1997-10-21 Konica Corporation Electrophotography photoreceptor
JP2002169312A (ja) * 2000-11-30 2002-06-14 Mitsubishi Chemicals Corp 電子写真感光体、電荷輸送層用塗布液及び電子写真感光体の製造方法
JP2004085644A (ja) 2002-08-23 2004-03-18 Mitsubishi Gas Chem Co Inc 電子写真感光体
JP4093917B2 (ja) 2003-05-29 2008-06-04 出光興産株式会社 電子写真感光体
JP5151060B2 (ja) * 2006-04-13 2013-02-27 三菱化学株式会社 塗布液の製造方法
JP4648909B2 (ja) 2007-01-18 2011-03-09 シャープ株式会社 電子写真感光体及びこれを用いた画像形成装置
JP2008191488A (ja) * 2007-02-06 2008-08-21 Sharp Corp 電子写真装置
JP2009139533A (ja) 2007-12-05 2009-06-25 Konica Minolta Business Technologies Inc 画像形成方法、画像形成装置
US8202675B2 (en) 2009-02-24 2012-06-19 Konica Minolta Business Technologies, Inc. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5564831B2 (ja) 2009-05-26 2014-08-06 株式会社リコー 電子写真感光体、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP5634048B2 (ja) * 2009-11-02 2014-12-03 キヤノン株式会社 電子写真感光体の製造方法
JP2016014873A (ja) * 2014-06-13 2016-01-28 三菱化学株式会社 電子写真感光体、電子写真感光体製造用塗布液、及び画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146642A (ja) * 1994-11-15 1996-06-07 Konica Corp 電子写真感光体、電子写真装置及び装置ユニット
JP2002107985A (ja) * 2000-09-27 2002-04-10 Konica Corp 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2002182409A (ja) * 2000-12-19 2002-06-26 Mitsubishi Chemicals Corp 電子写真感光体、電荷輸送層用塗布液及び電子写真感光体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343295A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078276B2 (en) * 2015-05-26 2018-09-18 Kyocera Document Solutions Inc. Positively chargeable single-layer electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2018159863A (ja) * 2017-03-23 2018-10-11 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
US11036151B2 (en) 2018-01-19 2021-06-15 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device
US11143976B2 (en) 2018-01-19 2021-10-12 Fuji Electric Co., Ltd. Photoconductor having interlayer for hole injection promotion
JP2019132965A (ja) * 2018-01-31 2019-08-08 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2020118708A (ja) * 2019-01-18 2020-08-06 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP7230522B2 (ja) 2019-01-18 2023-03-01 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2020154042A (ja) * 2019-03-18 2020-09-24 富士電機株式会社 電子写真用感光体の製造方法
US11073770B2 (en) 2019-03-18 2021-07-27 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, production method thereof, and electrophotographic apparatus
US11073771B2 (en) 2019-07-24 2021-07-27 Fuji Electric Co., Ltd. Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
JP2021086126A (ja) * 2019-11-29 2021-06-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2021086125A (ja) * 2019-11-29 2021-06-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP7352456B2 (ja) 2019-11-29 2023-09-28 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP7352455B2 (ja) 2019-11-29 2023-09-28 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
CN113703295A (zh) * 2020-05-22 2021-11-26 夏普株式会社 电子照相感光体以及具备电子照相感光体的图像形成装置
JP7430112B2 (ja) 2020-05-22 2024-02-09 シャープ株式会社 電子写真感光体およびそれを備えた画像形成装置

Also Published As

Publication number Publication date
CN108139697A (zh) 2018-06-08
US10585364B2 (en) 2020-03-10
JPWO2017110300A1 (ja) 2018-08-30
EP3343295A1 (en) 2018-07-04
TW201729000A (zh) 2017-08-16
WO2017109926A1 (ja) 2017-06-29
EP3343295A4 (en) 2019-03-27
US20180224760A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017110300A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP7059112B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真画像形成装置
WO2013157145A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP2016095513A (ja) 電子写真感光体、及び画像形成装置
JP6540898B2 (ja) 電子写真用感光体およびそれを搭載した電子写真装置
US8709689B2 (en) Electrophotographic photoreceptor, image-forming apparatus, and electrophotographic cartridge
JP3336846B2 (ja) 電子写真感光体
JP5077441B2 (ja) 電子写真感光体、その製造方法および電子写真装置
US11073770B2 (en) Electrophotographic photoreceptor, production method thereof, and electrophotographic apparatus
US10698359B2 (en) Image forming apparatus and image forming method
JP6741168B2 (ja) 導電性支持体、その製造方法、電子写真感光体および電子写真装置
JP7005327B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
WO2016199283A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP3714838B2 (ja) 電子写真感光体下引き層用塗布液およびそれを用いた電子写真感光体の製造方法ならびに電子写真感光体
JP2007094226A (ja) 電子写真感光体及び電子写真感光体の製造方法
JP4911711B2 (ja) 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ及び電子写真装置
JPH06236061A (ja) 電子写真感光体
US11073771B2 (en) Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
JP3858588B2 (ja) 電子写真感光体及びその製造方法、並びに電子写真感光体を用いた電子写真プロセスカートリッジ及び電子写真装置
JP5585668B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
WO2012111672A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
KR20090084288A (ko) 비스프탈로시아닌계 화합물 및 프탈로시아닌계 화합물의혼합물을 포함하는 전자사진 감광체 및 이를 채용한전자사진 화상형성장치
JP2007188042A (ja) 電子写真感光体及び電子写真感光体の製造方法
JP2002221860A (ja) 画像形成方法、及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016878196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017557789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE