WO2012111672A1 - 電子写真用感光体、その製造方法および電子写真装置 - Google Patents

電子写真用感光体、その製造方法および電子写真装置 Download PDF

Info

Publication number
WO2012111672A1
WO2012111672A1 PCT/JP2012/053410 JP2012053410W WO2012111672A1 WO 2012111672 A1 WO2012111672 A1 WO 2012111672A1 JP 2012053410 W JP2012053410 W JP 2012053410W WO 2012111672 A1 WO2012111672 A1 WO 2012111672A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
charge generation
layer
electrophotographic photoreceptor
resin binder
Prior art date
Application number
PCT/JP2012/053410
Other languages
English (en)
French (fr)
Inventor
和希 根橋
鈴木 信二郎
清三 北川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to US13/985,037 priority Critical patent/US9081313B2/en
Priority to KR1020137021120A priority patent/KR101806277B1/ko
Priority to JP2012557976A priority patent/JP5585668B2/ja
Priority to CN201280008707.6A priority patent/CN103384851B/zh
Publication of WO2012111672A1 publication Critical patent/WO2012111672A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0542Polyvinylalcohol, polyallylalcohol; Derivatives thereof, e.g. polyvinylesters, polyvinylethers, polyvinylamines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0589Macromolecular compounds characterised by specific side-chain substituents or end groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/072Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups
    • G03G5/0732Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups comprising pending alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Definitions

  • the present invention relates to an electrophotographic photosensitive member (hereinafter also simply referred to as “photosensitive member”) having a photosensitive layer containing an organic material, which is used in an electrophotographic apparatus such as an electrophotographic printer, a copying machine, or a facsimile, and its manufacture.
  • the present invention relates to a method and an electrophotographic apparatus.
  • the present invention relates to a laminate-type and single-layer type electrophotographic photoreceptor having excellent image characteristics and electrical characteristics by improving a resin binder which is a constituent material of the photosensitive layer, a method for producing the same, and an electrophotographic apparatus. .
  • an electrophotographic photoreceptor is required to have a function of holding surface charges in a dark place, a function of receiving light to generate charges, and a function of receiving light and transporting charges.
  • an electrophotographic photoreceptor a so-called laminated type in which functionally separated layers are laminated to a layer mainly contributing to charge generation and a layer contributing to surface charge retention in the dark and charge transport during light reception.
  • the Carlson method is applied to image formation by electrophotography using these electrophotographic photoreceptors.
  • image formation was performed by charging the photoconductor in the dark, and forming an electrostatic latent image on the charged photoconductor surface by exposure corresponding to the characters and pictures of the document.
  • the electrostatic latent image is developed by toner, and the developed toner image is transferred and fixed to a support such as paper. After the toner image has been transferred, the photoreceptor is used again after removal of residual toner, neutralization, and the like.
  • an inorganic photoconductive material such as selenium, selenium alloy, zinc oxide or cadmium sulfide.
  • organic photoconductive materials for example, poly-N-vinylcarbazole, 9,10-anthracenediol polyester, pyrazoline, hydrazone, stilbene, butadiene, benzidine, phthalocyanine and bisazo compounds are known.
  • the above-described function-separated stacked type photoreceptor in which a photosensitive layer is formed by laminating a charge generation layer containing a charge generation material and a charge rotation layer containing a charge rotation material, is an organic material. Against the backdrop of abundance, it has become mainstream due to its large design freedom based on the wide selectivity of materials suitable for each function of the photosensitive layer.
  • a layer formed by dip coating using a coating solution in which an organic low molecular weight compound having a charge transfer function is dispersed or dissolved in a resin binder is used as a charge transport layer on this layer.
  • Many photoreceptors have been commercialized.
  • the charge generation layer is generally formed of a layer made of a dispersion in which an organic photoconductive material such as a phthalocyanine compound is dispersed in a resin binder as a charge generation material.
  • an organic photoconductive material such as a phthalocyanine compound
  • Patent Document 1 and Patent Document 2 polyvinyl acetal resin and polyvinyl butyral resin have good dispersibility of the pigment in the coating solution at the time of producing the photoreceptor and excellent adhesion.
  • Patent Document 3 various methods for synthesizing the polyvinyl acetal resin itself have been studied.
  • Patent Document 4 a charge generation layer containing two kinds of polyvinyl butyral resins having different butyralization degrees and two kinds of polyvinyl butyral resins having different hydroxyl contents in a specific mixing ratio is studied. Although effective in improving the stability and sensitivity in a high-humidity environment, the transfer resistance has not been studied.
  • Patent Document 5 a combination of polyamide as the binder for the undercoat layer and polyvinyl butyral resin as the binder for the charge generation layer
  • Patent Document 6 copolymer nylon as the binder for the undercoat layer and polyvinyl as the binder for the charge generation layer
  • Patent Document 7 discloses a laminate composed of a layer of a curable resin composition containing a specific modified polyvinyl acetal resin and a base material layer, and a polyvinyl acetal resin containing a phenyl group is disclosed.
  • an object of the present invention is to provide an electrophotographic photoreceptor having high transfer resistance, high memory characteristics, and good electrical characteristics, a method for producing the same, and an electrophotographic apparatus by solving the above problems.
  • the present inventor uses a polyvinyl acetal resin containing a phenyl group as a constituent monomer for the photosensitive layer, and particularly uses a polyvinyl acetal resin containing such a phenyl group-containing unit in a specific ratio for the photosensitive layer.
  • the inventors have found that the above problems can be solved, and have completed the present invention.
  • the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor comprising an undercoat layer and a photosensitive layer sequentially on a conductive substrate.
  • the photosensitive layer contains at least a phthalocyanine compound as a charge generation material, and a polyvinyl acetal resin composed of a repeating unit represented by the following general formula (1) as a resin binder.
  • the undercoat layer preferably contains a polyamide resin.
  • the photosensitive layer is a laminated type including a charge generation layer and a charge transport layer, and a vinyl chloride copolymer resin is used as a resin binder of the charge generation layer in the charge generation layer.
  • the content is preferably 1 to 5% by mass based on the total amount of the resin binder.
  • the method for producing an electrophotographic photoreceptor of the present invention includes a process for producing a photosensitive layer by applying a coating solution on a conductive substrate,
  • the coating solution contains at least a phthalocyanine compound as a charge generation material, and a polyvinyl acetal resin composed of a repeating unit represented by the following general formula (1) as a resin binder.
  • the electrophotographic apparatus of the present invention is characterized in that the photoconductor of the present invention is mounted.
  • the above configuration makes it possible to realize an electrophotographic photoreceptor having high transfer resistance, high memory characteristics, and good electrical characteristics, a manufacturing method thereof, and an electrophotographic apparatus.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of a negatively charged function separation laminated electrophotographic photoreceptor as an example of the electrophotographic photoreceptor of the present invention.
  • 1 is a schematic configuration diagram illustrating an example of an electrophotographic apparatus according to the present invention.
  • 2 is an NMR spectrum chart of a resin represented by formula (I-1) according to Example 1. It is a schematic explanatory drawing which shows the printer used for evaluation of the transfer tolerance in an Example.
  • the electrophotographic photosensitive member includes a negatively charged laminated type photosensitive member, a positively charged single layered type photosensitive member, and a positively charged laminated type photosensitive member.
  • FIG. 1 is a schematic cross-sectional view of a photoconductor for use. As shown in the figure, in the negatively charged laminated type photoreceptor, an undercoat layer 2, a charge generation layer 4 having a charge generation function, and a charge transport layer 5 having a charge transport function are formed on a conductive substrate 1. The photosensitive layers 3 are sequentially laminated. In any type of photoreceptor, a surface protective layer 6 may be further provided on the photosensitive layer 3.
  • the conductive substrate 1 serves as one electrode of the photoconductor and also serves as a support for each layer constituting the photoconductor, and may have any shape such as a cylindrical shape, a plate shape, or a film shape.
  • a material of the conductive substrate 1 in addition to metals such as aluminum, stainless steel and nickel, the surface of glass or resin may be subjected to a conductive treatment.
  • the undercoat layer 2 is generally composed of a resin-based layer or a metal oxide film such as alumite, for controlling the charge injection property from the conductive substrate to the photosensitive layer, or for defects on the substrate surface. It is provided as necessary for the purpose of covering or improving the adhesion between the photosensitive layer and the substrate.
  • the resin used for the undercoat layer include acrylic resin, vinyl acetate resin, polyvinyl formal resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, melamine resin, polyvinyl butyral resin, polyvinyl acetal resin, vinyl phenol resin, and the like. These resins can be used alone or in combination as appropriate.
  • the undercoat layer 2 contains a polyamide resin, superiority in transfer resistance is observed.
  • the undercoat layer 2 can contain titanium oxide, tin oxide, zinc oxide, copper oxide and the like as metal oxide fine particles. These include a siloxane compound, an alkoxysilane compound, and a silane coupling.
  • the surface treatment may be performed with an organic compound such as an agent.
  • the charge generation layer 4 is formed by a method such as applying a coating solution in which particles of a charge generation material are dispersed in a resin binder, and receives light to generate charges. Further, at the same time as the charge generation efficiency is high, the injection property of the generated charges into the charge transport layer 5 is important, the electric field dependency is small, and it is desirable that the injection is good even at low electric fields.
  • R is any one of a hydrogen atom, a methyl group, an ethyl group, and a propyl group
  • the charge generation layer 4 contains the specific resin binder. Thereby, as described later, the desired effect of the present invention can be obtained in combination with the photosensitive layer 3 containing at least a phthalocyanine compound as a charge generating material.
  • R in the general formula (1) is a propyl group as a resin binder.
  • the degree of acetalization (x + z) is 100 mol%.
  • the amount is preferably 86 to 95 mol%.
  • the molar ratio x: z of the structural unit in the general formula (1) needs to satisfy the range of 95 to 50: 5 to 50, and more preferably 70 to 50:30 to 50. By setting the range, the transfer resistance is improved.
  • the resin binder represented by the general formula (1) is indispensable to use as the resin binder of the charge generation layer 4.
  • Polyvinyl acetate is used as a raw material for polyvinyl alcohol, which is a raw material for such a resin binder, but when synthesizing polyvinyl alcohol, the synthesized polyvinyl alcohol generally contains trace amounts of acetyl groups to a few percent. It may remain in the repeating unit, which may remain in the resin binder.
  • the case where the resin binder contains an optional component derived from such a raw material is included, and even if such a small amount of acetyl group is present in the repeating unit of the resin binder, Does not affect the effect and properties.
  • polycarbonate resin in addition to the resin binder, polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, phenoxy resin, polystyrene resin
  • Polysulfone resin, diallyl phthalate resin, methacrylic ester resin polymer and copolymer can be used in appropriate combination.
  • the content thereof is 10 to 90% by mass, preferably 40 to 60% by mass with respect to the solid content in the charge generation layer 4
  • a vinyl chloride copolymer resin is contained as a resin binder in an amount of 1 to 5% by mass with respect to the total amount of the resin binder in the charge generation layer, liquid stability is superior, which is preferable.
  • the charge generation layer 4 contains at least a phthalocyanine compound as a charge generation material.
  • phthalocyanine compounds various known metal phthalocyanines can be used, among which oxotitanyl phthalocyanine is preferable, ⁇ -type oxotitanyl phthalocyanine, ⁇ -type oxotitanyl phthalocyanine, amorphous oxotitanyl phthalocyanine, particularly Y-type oxotitanyl.
  • phthalocyanine or oxo titanyl phthalocyanine having a maximum peak of Bragg angle 2 ⁇ of 9.6 ° in the CuK ⁇ : X-ray diffraction spectrum described in JP-A-8-209023 or US Pat. No. 5,874,570 is used, the sensitivity And significantly improved effects in terms of image quality and transfer resistance.
  • the above-mentioned different crystalline oxotitanyl phthalocyanine can be used together, and together with the phthalocyanine compound, other charge generation materials such as various azo pigments, anthanthrone pigments, thiapyrylium pigments, perylene pigments, perinone pigments, A squarylium pigment, a quinacridone pigment, etc. can also be used together.
  • the film thickness is determined by the light absorption coefficient of the charge generation material, and is generally 1 ⁇ m or less, preferably 0.5 ⁇ m or less.
  • the content of the charge generation material is 10 to 90 mass%, preferably 40 to 60 mass%, based on the solid content in the charge generation layer 4.
  • the charge generation layer can also be used with a charge generation material as a main component and a charge transport material or the like added thereto.
  • the charge transport layer 5 is mainly composed of a charge transport material and a resin binder.
  • the charge transport material various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds, and the like can be used alone or in combination as appropriate.
  • the resin binder polycarbonate resin such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polystyrene resin, polyphenylene resin, etc. may be used alone or in appropriate combination. it can.
  • the amount of these compounds used is 2 to 50 parts by weight, preferably 3 to 30 parts by weight, based on 100 parts by weight of the resin binder.
  • the thickness of the charge transport layer is preferably in the range of 3 to 50 ⁇ m, more preferably 15 to 40 ⁇ m, in order to maintain a practically effective surface potential.
  • charge transport materials II-1 to II-5 used in the present invention are shown below, but the present invention is not limited thereto.
  • the undercoat layer 2, the charge generation layer 4 and the charge transport layer 5 have high durability including improved sensitivity, decreased residual potential, improved environmental resistance and stability against harmful light, and friction resistance.
  • Various additives can be used as needed for the purpose of improving the property. Additives include succinic anhydride, maleic anhydride, dibromosuccinic anhydride, pyromellitic anhydride, pyromellitic acid, trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquino Compounds such as dimethane, chloranil, bromanyl, o-nitrobenzoic acid and trinitrofluorenone can be used.
  • an antioxidant or a light stabilizer can be added to each of these layers.
  • Compounds used for such purposes include chromal derivatives such as tocopherol and ether compounds, ester compounds, polyarylalkane compounds, hydroquinone derivatives, diether compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives, phosphonic acids Examples include, but are not limited to, esters, phosphites, phenol compounds, hindered phenol compounds, linear amine compounds, cyclic amine compounds, hindered amine compounds, and the like.
  • the photosensitive layer 3 may contain a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting further lubricity.
  • a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting further lubricity.
  • a surface protective layer 6 may be further provided on the surface of the photosensitive layer 3 as necessary for the purpose of further improving the environmental resistance and mechanical strength.
  • the surface protective layer 6 is preferably made of a material having excellent durability against mechanical stress and environmental resistance, and has a capability of transmitting light sensitive to the charge generation layer with as low loss as possible.
  • the surface protective layer 6 is composed of a layer mainly composed of a resin binder or an inorganic thin film such as amorphous carbon.
  • resin binders silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide are used for the purpose of improving conductivity, reducing friction coefficient, and imparting lubricity.
  • Metal oxides such as barium sulfate and calcium sulfate, metal nitrides such as silicon nitride and aluminum nitride, fine particles of metal oxide, or fluororesins such as tetrafluoroethylene resin, fluorine comb type You may contain particles, such as graft polymerization resin.
  • the surface protective layer 6 contains a charge transport material and an electron acceptor used in the photosensitive layer, and improves the leveling property of the formed film and imparts lubricity.
  • a leveling agent such as silicone oil or fluorine-based oil may be contained.
  • the film thickness of the surface protective layer 6 itself depends on the blending composition of the protective layer, but can be arbitrarily set within a range that does not adversely affect the residual potential when repeatedly used continuously. it can.
  • the method for producing an electrophotographic photoreceptor of the present invention comprises a repeating process represented by the above general formula (1) as a coating solution on a conductive substrate, containing at least a phthalocyanine compound as a charge generation material and a resin binder. What is necessary is just to include the process of apply
  • various coating methods such as a dip coating method or a spray coating method can be applied to the coating solution, and the coating solution is not limited to any one of the coating methods.
  • the electrophotographic photoreceptor of the present invention can obtain the above-described effects when applied to various machine processes. Specifically, a charging process such as a contact charging method using a roller or a brush, a non-contact charging method using a corotron or scorotron, and a developing method such as a non-magnetic one component, a magnetic one component, or a two component are used. A sufficient effect can be obtained even in development processes such as the contact development and non-contact development methods.
  • FIG. 2 shows a schematic configuration diagram of an electrophotographic apparatus according to the present invention.
  • the illustrated electrophotographic apparatus 60 includes the electrophotographic photoreceptor 7 of the present invention including the conductive substrate 1, the undercoat layer 2 coated on the outer peripheral surface thereof, and the photosensitive layer 300. Further, the electrophotographic apparatus 60 includes a roller charging member 21, a high-voltage power source 22 that supplies an applied voltage to the roller charging member 21, an image exposure member 23, and a developing device, which are disposed on the outer peripheral edge of the photoreceptor 7.
  • a developing device 24 having a roller 241, a paper feeding member 25 having a paper feeding roller 251 and a paper feeding guide 252, a transfer charger (direct charging type) 26, and a cleaning device 27 having a cleaning blade 271; It is also possible to provide a color printer.
  • Example 1 As a material for the undercoat layer, 100 parts by mass of the polyamide resin described in Example 1 of JP 2007-178660 A or US Pat. No. 773000 is dissolved in a mixed solvent composed of 1500 parts by mass of methanol and 500 parts by mass of butanol. Then, a slurry was prepared by adding 400 parts by mass of titanium oxide obtained by treating fine particle titanium oxide JMT150 manufactured by Teika Co. with a 1/1 mixture of an aminosilane coupling agent and an isobutylsilane coupling agent.
  • the treatment for 20 passes was performed to obtain an undercoat layer coating solution.
  • the undercoat layer was formed on the cylindrical aluminum substrate by dip coating using the undercoat layer coating solution prepared above.
  • reaction vessel was set in an ice bath containing 5 kg of ice water, and it was confirmed that the reaction solution temperature was 15 ° C. or lower.
  • the precipitated polymer was taken out and transferred to a container containing an appropriate amount of ion-exchanged water to immerse the polymer and cure the polymer.
  • the cured polymer was then crushed and dried with hot air. In this way, 334 g of a resin having composition I-1 shown in Table 1 below was obtained.
  • 96 parts by mass of dichloromethane was prepared by adding 2 parts by mass of a Y-type oxotitanyl phthalocyanine compound described in JP-A-8-209023 as a charge generation material and 2 parts by mass of a polyvinyl acetal resin having the composition I-1 as a resin binder.
  • a disk-type bead mill filled with zirconia beads having a bead diameter of 0.4 mm at a bulk filling rate of 85 v / v% with respect to the vessel capacity 5 L of the slurry mixed in the process, the processing liquid flow rate was 300 mL, the disk peripheral speed was 3 m / Processing for 10 passes was performed at s to prepare a charge generation layer coating solution.
  • the post-drying film thickness of the charge generation layer obtained by drying under the conditions of a drying temperature of 80 ° C. and a drying time of 30 min was 0.3 ⁇ m.
  • Example 2 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-2 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 3 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-3 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 4 A photoconductor was prepared in the same manner as in Example 1 except that a resin having the composition I-4 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 5 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-5 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 6 A photoconductor was prepared in the same manner as in Example 1 except that the resin having composition I-6 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 7 A photoconductor was prepared in the same manner as in Example 1 except that the resin having composition I-7 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 8 A photoconductor was prepared in the same manner as in Example 1 except that the resin having composition I-8 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 9 A photoconductor was prepared in the same manner as in Example 1 except that a resin having the composition I-9 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 10 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-10 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 11 2.5 parts by mass of a styrene resin having a repeating unit containing a hydroxy group represented by the following structural formula (2) (Maruzarinka MH2 manufactured by Maruzen Petrochemical Co., Ltd.) and a melamine resin (Uvan 2021 resin solution manufactured by Mitsui Chemicals, Inc.) 2 0.5 part by mass was dissolved in a solvent consisting of 75 parts by mass of tetrahydrofuran and 15 parts by mass of butanol, and then a slurry was prepared by adding 5 parts by mass of aminosilane-treated titanium oxide fine particles.
  • structural formula (2) Maruzarinka MH2 manufactured by Maruzen Petrochemical Co., Ltd.
  • a melamine resin Uvan 2021 resin solution manufactured by Mitsui Chemicals, Inc.
  • the treatment for 20 passes was performed to obtain an undercoat layer coating solution.
  • a photoconductor was prepared in the same manner as in Example 1 except that this coating solution was used as the undercoat layer coating solution.
  • Example 12 In the same manner as in Example 1, except that ⁇ -type titanyl phthalocyanine described in JP-A-61-217050 or US Pat. No. 4,728,592 was used as the charge generation material in place of Y-type oxotitanyl phthalocyanine. The body was made.
  • Example 13 A photoconductor was prepared in the same manner as in Example 1 except that X-type metal-free phthalocyanine (Fastogen Blue 8120B manufactured by Dainippon Ink & Chemicals, Inc.) was used as the charge generation material instead of Y-type titanyl phthalocyanine. .
  • X-type metal-free phthalocyanine Fluorescent Blue 8120B manufactured by Dainippon Ink & Chemicals, Inc.
  • Example 14 As in Example 1, except that 5% by mass of vinyl chloride copolymer resin (MR110 manufactured by Nippon Zeon Co., Ltd.) was used as the resin binder of the charge generation layer with respect to the total amount of the resin in the charge generation layer. A photoconductor was prepared.
  • MR110 manufactured by Nippon Zeon Co., Ltd.
  • Example 15 As in Example 1, except that 1% by mass of vinyl chloride copolymer resin (MR110 manufactured by Nippon Zeon Co., Ltd.) was used as the resin binder of the charge generation layer with respect to the total amount of the resin in the charge generation layer. A photoconductor was prepared.
  • MR110 manufactured by Nippon Zeon Co., Ltd.
  • Example 16 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-11 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 17 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-12 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 18 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-13 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • a photoconductor was prepared in the same manner as in Example 1 except that polyvinyl butyral resin (BM-1 manufactured by Sekisui Chemical Co., Ltd.) was used as the resin binder for the charge generation layer.
  • BM-1 polyvinyl butyral resin manufactured by Sekisui Chemical Co., Ltd.
  • a photoconductor was prepared in the same manner as in Example 1 except that polyvinyl butyral resin (BM-S manufactured by Sekisui Chemical Co., Ltd.) was used as the resin binder for the charge generation layer.
  • BM-S polyvinyl butyral resin manufactured by Sekisui Chemical Co., Ltd.
  • Example 3 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-14 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • a photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-15 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 5 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-16 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • a photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-17 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 7 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-18 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 8 A photoconductor was prepared in the same manner as in Example 1 except that the resin having the composition I-19 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • Example 9 A photoconductor was prepared in the same manner as in Example 1 except that a resin having the composition I-20 shown in Table 1 below was used as the resin binder for the charge generation layer.
  • L, m, and n in the table represent mol% of each structural unit in the following formula, respectively.
  • exposure light split at 780 nm using a filter is irradiated for 5 seconds from the time when the surface potential becomes ⁇ 800 V, and it is necessary to attenuate the light until the surface potential becomes ⁇ 100 V.
  • the exposure amount was determined as sensitivity E100 ( ⁇ Jcm ⁇ 2 ).
  • the photoconductors obtained in the respective examples and comparative examples are mounted on a monochrome printer ML-2241 (manufactured by Samsung Electronics Co., Ltd.) modified so that the surface potential of the photoconductor can be observed.
  • solid white 3 in each environment (LL (low temperature and low humidity): 10 ° C. and 15% RH, NN (normal temperature and humidity): 25 ° C. and 50% RH, HH (high temperature and high humidity): 35 ° C. and 85% RH)
  • LL low temperature and low humidity
  • NN normal temperature and humidity
  • HH high temperature and high humidity
  • the post-exposure potential and the image memory after printing one sheet and three solid black sheets were evaluated.
  • pass / fail was judged by the potential fluctuation amount (LL to HH) after exposure under each environment.
  • the memory phenomenon in which the checker flag is reflected in the halftone part is read in the print evaluation of the image sample with the checker flag pattern in the first half of the scanner sweep and the halftone in the second half.
  • A very good
  • good
  • thin memory generated
  • x dark memory generated
  • the amount of change in surface potential during charging before and after printing 10,000 sheets in a normal temperature and humidity environment and the image memory were also evaluated.
  • the transfer electrode 10 was applied stepwise from a high voltage power source by constant voltage control at 0 kV (first sheet) and 1.2 kV (second sheet) to 2.2 kV (seventh sheet). This is carried out in each environment (LL (low temperature and low humidity): 10 ° C., 15% RH, NN (room temperature and normal humidity): 25 ° C., 50% RH).
  • LL low temperature and low humidity
  • NN room temperature and normal humidity
  • the dark part potential) ⁇ V7 (seventh dark part potential) was calculated, and the smaller ⁇ V, the better.
  • reference numeral 8 denotes a charger
  • reference numeral 9 denotes an exposure light source.
  • each charge generation layer coating solution prepared in each of the examples and comparative examples was sealed in a transparent glass bottle, at room temperature and humidity (25 ° C., 50% RH). Stored still below. The presence or absence of partial agglomeration, precipitation, separation, etc. in the coating solution was visually observed. Good ( ⁇ : very good, ⁇ : good, almost no separation, agglomeration or sedimentation, ⁇ to ⁇ : A state in which any one of separation, aggregation and sedimentation is observed). These results are shown in the table below.
  • a photoconductor that has good initial electrical characteristics, electrical characteristics in use environment fluctuations, memory characteristics, and good transfer resistance It can be seen that Further, it was confirmed that the transfer performance under each environment is stabilized by increasing the degree of acetalization to the range according to the present invention and decreasing the ratio of structural units (y) containing a highly hydrophilic hydroxyl group.
  • the difference between the value in the NN environment and the value in the LL environment of the ⁇ V value indicating the transfer resistance is smaller. It can be seen that the environment shows a stable fluctuation trend. Furthermore, the photoreceptor according to the combination with Y-type titanyl phthalocyanine as a charge generation material showed higher sensitivity and higher transfer resistance. Furthermore, the stability of the coating solution was the best when 1 to 5% by mass of vinyl chloride copolymer resin was combined with the total amount of resin in the charge generation layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

 高転写耐性、高メモリ特性および良好な電気特性を有する電子写真用感光体、その製造方法および電子写真装置を提供する。 導電性基体1上に下引き層2および感光層3を順次備える電子写真用感光体である。感光層3が、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして、下記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含む。(式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)

Description

電子写真用感光体、その製造方法および電子写真装置
 本発明は、電子写真方式のプリンターや複写機、ファクシミリなどの電子写真装置に用いられる、有機材料を含む感光層を有する電子写真用感光体(以下、単に「感光体」とも称する)、その製造方法および電子写真装置に関する。特には、本発明は、感光層の構成材料である樹脂バインダーの改良により、優れた画像特性および電気特性を有する積層型および単層型の電子写真用感光体、その製造方法および電子写真装置に関する。
 一般に、電子写真用感光体には、暗所で表面電荷を保持する機能、光を受容して電荷を発生する機能、および、同じく光を受容して電荷を輸送する機能が要求される。かかる電子写真用感光体としては、主として電荷発生に寄与する層と、暗所での表面電荷の保持および光受容時の電荷輸送に寄与する層とに機能分離した層を積層した、いわゆる積層型感光体と、一つの層でこれらの機能を併せ持った、いわゆる単層型感光体とがある。
 これらの電子写真用感光体を用いた電子写真法による画像形成には、例えば、カールソン法が適用される。この方式での画像形成は、暗所での感光体への帯電と、帯電された感光体表面上への原稿の文字や絵等に対応した露光による静電潜像の形成と、形成された静電潜像のトナーによる現像と、現像されたトナー像の紙等の支持体への転写および定着とにより行われる。トナー像転写後の感光体は、残留トナーの除去や除電等を行った後に、再使用に供される。
 上述の電子写真用感光体としては、セレン、セレン合金、酸化亜鉛あるいは硫化カドミウム等の無機光導電性材料を用いたものがあるが、近年、無機系光導電性材料に比べて熱安定性や成膜性等において利点がある有機光導電性材料を、樹脂バインダー中に分散させて感光層を形成したものが実用化されている。このような有機光導電性材料としては、例えば、ポリ-N-ビニルカルバゾール、9,10-アントラセンジオールポリエステル、ピラゾリン、ヒドラゾン、スチルベン、ブタジエン、ベンジジン、フタロシアニンおよびビスアゾ化合物等が知られている。
 最近では、電荷発生材料を含有する電荷発生層と、電荷輪送材料を含有する電荷輪送層とを積層して感光層を形成した、前述の機能分離積層型感光体が、有機系材料の豊富さを背景として、感光層の各機能に適した材料の広い選択性に基づく大きな設計自由度を有するために、主流となってきている。
 中でも、導電性基体上に、有機光導電性材料の蒸着により成膜した層、または、樹脂バインダー中に有機光導電性材料を分散させた塗布液を用いて浸漬塗布により成膜した層を電荷発生層として、この層上に、電荷輪送機能を有する有機低分子化合物を樹脂バインダー中に分散または溶解させた塗布液を用いて浸漬塗布により形成した層を電荷輸送層とした、負帯電型感光体については、数多く製品化されている。
 また、電荷発生材料と電荷輸送材料とを樹脂バインダー中に分散または溶解させて形成された単層の感光層を用いた、正帯電型感光体も多く知られている。
 近年、オフィス内のネットワーク化による印刷枚数の増加や、電子写真による軽印刷機の急発展等により、電子写真方式の印字装置には、高耐久性や高感度、高速応答性などの性能がますます求められている。また、繰り返し使用や使用環境(室温および環境)の変動による画像特性や電気特性の変動が小さいことも、強く要求されている。
 さらに、最近のカラープリンターの発展や普及率の向上に伴い、印字速度の高速化や装置の小型化および省部材化が進んでおり、様々な使用環境への対応も求められている。カラープリンターでは、トナーの色重ね転写や転写ベルトの採用によって、転写電流が増大する傾向にあり、様々なサイズの用紙を印字する場合に、用紙のある部分と用紙のない部分との転写疲労差が生じて、画像濃度差が助長される不具合がある。つまり、小サイズの用紙を多く印字した場合、用紙が通過する感光体部分(通紙部)に対し、用紙が通過しないむき出しの感光体部分(非通紙部)は、転写の影響を直に受け続けることになって、転写疲労が大きくなる。その結果、次に大サイズの用紙を印字した場合に、上記通紙部と非通紙部との転写疲労の相違により、現像部に電位差が生じて、濃度差が現れるのである。転写電流の増大により、この傾向はより顕著なものとなっている。このような状況の中、モノクロプリンターに対し、特にカラープリンターにおいて、繰り返し使用や使用環境(室温および環境)の変動による画像特性や電気特性の変動が小さく、かつ、転写回復性に優れた感光体に対する要求が顕著に高まっており、従来の技術では、これらの要求を同時に十分には満足できなくなってきている。
 前述のとおり、電荷発生層は、一般的に、電荷発生材料として、フタロシアニン化合物のような有機光導電性材料を樹脂バインダーに分散した分散液からなる層で形成されており、この樹脂バインダーとして、これまで種々の樹脂が検討されている。
 例えば、特許文献1や特許文献2で示されているように、ポリビニルアセタール樹脂やポリビニルブチラール樹脂は、感光体製造時の塗布液における顔料の分散性が良く、密着性にも優れていることが分かっており、特許文献3に記載されているように、ポリビニルアセタール樹脂自体の合成方法についても種々検討されている。
 また、特許文献4では、ブチラール化度が異なる2種類のポリビニルブチラール樹脂と水酸基の含有量が異なる2種類のポリビニルブチラール樹脂とを特定の混合比で含有する電荷発生層が検討されており、高温高湿環境での繰り返し安定性や感度の改良に効果が見られるが、転写耐性についての検討はなされていない。
 さらに、下引き層用バインダーとしてのポリアミドと電荷発生層用バインダーとしてのポリビニルブチラール樹脂との組み合わせや(特許文献5)、下引き層用バインダーとしての共重合ナイロンと電荷発生層用バインダーとしてのポリビニルブチラール樹脂との組み合わせ(特許文献6)等により、感度や繰り返し耐久性、液保管安定性の向上を図る技術も公知であるが、やはり転写耐性についての検討はなされていない。さらにまた、特許文献7には、特定の変性ポリビニルアセタール系樹脂を含有する硬化性樹脂組成物の層と基材層とからなる積層体が開示されており、フェニル基を含むポリビニルアセタール系樹脂に係る具体例(ブチル基:フェニル基=19:59)も記載されているが、感光体に係る記載はない。
特開昭62-95537号公報 特開昭58-105154号公報 特開平5-1108号公報 特開2006-133701号公報 特開昭58-30757号公報 特開平9-265202号公報 特開2001-105546号公報
 上述のように、ポリビニルブチラール樹脂を含むポリビニルアセタール樹脂を電子写真用感光体の感光層の構成材料として用いることは公知であり、その製法や使用方法等についても種々検討されているが、いずれも高転写耐性、高メモリ特性および良好な電気特性のすべてを十分に満足できるものではなかった。
 そこで、本発明の目的は、上記問題を解消して、高転写耐性、高メモリ特性および良好な電気特性を有する電子写真用感光体、その製造方法および電子写真装置を提供することにある。
 本発明者は鋭意検討した結果、構成モノマーとしてフェニル基を含有するポリビニルアセタール樹脂を感光層に用いること、特には、かかるフェニル基含有単位を特定の比率で含有するポリビニルアセタール樹脂を感光層に用いることにより、上記問題を解決できることを見出して、本発明を完成するに至った。
 すなわち、本発明の電子写真用感光体は、導電性基体上に下引き層および感光層を順次備える電子写真用感光体において、
 前記感光層が、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして、下記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含むことを特徴とするものである。
Figure JPOXMLDOC01-appb-I000003
(式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)
 本発明においては、前記樹脂バインダーとして、前記一般式(1)中のRがプロピル基であるポリビニルブチラール樹脂を用いることが好ましい。
 本発明において、前記フタロシアニン化合物としては、Y型オキソチタニルフタロシアニンを好適に用いることができる。また、本発明においては、前記下引き層がポリアミド樹脂を含有することが好ましい。
 さらに、本発明においては、前記感光層が電荷発生層と電荷輸送層とを含む積層型であり、かつ、該電荷発生層の樹脂バインダーとして、塩化ビニル系共重合樹脂を、該電荷発生層中の樹脂バインダーの全量に対して1~5質量%にて含有することが好ましい。
 また、本発明の電子写真用感光体の製造方法は、導電性基体上に、塗布液を塗布して感光層を形成する工程を包含する電子写真用感光体の製造方法において、
 前記塗布液が、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして、下記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含むことを特徴とするものである。
Figure JPOXMLDOC01-appb-I000004
(式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)
 さらに、本発明の電子写真装置は、上記本発明の感光体が搭載されていることを特徴とするものである。
 本発明によれば、上記構成としたことで、高転写耐性、高メモリ特性および良好な電気特性を有する電子写真用感光体、その製造方法および電子写真装置を実現することが可能となった。
本発明の電子写真用感光体の一例としての負帯電機能分離積層型電子写真用感光体の構成例を示す模式的断面図である。 本発明に係る電子写真装置の一例を示す概略構成図である。 実施例1に係る式(I-1)で示される樹脂のNMRスペクトルチャートである。 実施例における転写耐性の評価に用いたプリンターを示す概略説明図である。
 以下、本発明の電子写真用感光体の具体的な実施例について、図面を用いて詳細に説明する。本発明は、以下に説明する実施例に限定されるものではない。
 電子写真用感光体には、負帯電積層型感光体、正帯電単層型感光体、および、正帯電積層型感光体があるが、ここでは一例として、図1に、負帯電積層型電子写真用感光体の模式的断面図を示す。図示するように、負帯電積層型感光体においては、導電性基体1の上に、下引き層2と、電荷発生機能を備えた電荷発生層4および電荷輸送機能を備えた電荷輸送層5からなる感光層3とが、順次積層されている。なお、いずれのタイプの感光体においても、感光層3の上に、さらに表面保護層6を設けてもよい。
 導電性基体1は、感光体の一電極としての役目を有すると同時に、感光体を構成する各層の支持体ともなっており、円筒状や板状、フィルム状などのいずれの形状でもよい。導電性基体1の材質としては、アルミニウムやステンレス鋼、ニッケルなどの金属類の他、ガラス、樹脂などの表面に導電処理を施したものでもよい。
 下引き層2は、一般に、樹脂を主成分とする層や、アルマイトなどの金属酸化皮膜からなり、導電性基体から感光層への電荷の注入性を制御するため、または、基体表面の欠陥の被覆や、感光層と下地との接着性の向上などの目的で、必要に応じて設けられる。下引き層に用いられる樹脂としては、アクリル樹脂、酢酸ビニル樹脂、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、ビニルフェノール樹脂等が挙げられ、これらの樹脂は単独、あるいは、適宜組合せて混合して用いることができる。好ましくは、下引き層2にポリアミド樹脂を含有させた場合に、転写耐性に優位性が見られる。また、下引き層2中には、金属酸化物微粒子として、酸化チタン、酸化錫、酸化亜鉛、酸化銅等を含有させることが可能であり、これらは、シロキサン化合物、アルコキシシラン化合物、シランカップリング剤等の有機化合物で表面処理されたものでもよい。
 電荷発生層4は、前述したように、電荷発生材料の粒子を樹脂バインダー中に分散させた塗布液を塗布するなどの方法により形成され、光を受容して電荷を発生する。また、その電荷発生効率が高いことと同時に、発生した電荷の電荷輸送層5への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
 本発明においては、感光層3に、樹脂バインダーとして下記一般式(1)、
Figure JPOXMLDOC01-appb-I000005
(式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)で表される繰返し単位からなるポリビニルアセタール樹脂を含有させた点が重要であり、構成モノマーとしてフェニル基を含むことが特徴的である。ここで、積層型感光体の場合には、電荷発生層4が上記特定の樹脂バインダーを含有するものとする。これにより、後述するように、感光層3に電荷発生材料として少なくともフタロシアニン化合物を含有させることと併せて、本発明の所期の効果を得ることができる。
 本発明において、特には、樹脂バインダーとして、上記一般式(1)中のRがプロピル基であるポリビニルブチラール樹脂を含有させることが好ましい。
 上記一般式(1)中において、アセタール化度(x+z)については、100mol%であると、溶液にした際に顔料の凝集や沈降が見られるため、76~99mol%とすることが必要であり、好ましくは86~95mol%とする。また、上記一般式(1)中の構造単位のモル比x:zは、95~50:5~50の範囲を満足することが必要であり、より好ましくは、70~50:30~50の範囲とすることで、転写耐性が良好となる。
 本発明においては、電荷発生層4の樹脂バインダーとして、上記一般式(1)で表される樹脂バインダーを用いることが必要不可欠である。なお、かかる樹脂バインダーの原料であるポリビニルアルコールの原料としてはポリ酢酸ビニルが用いられるが、ポリビニルアルコールの合成の際、合成されたポリビニルアルコール中には、一般にアセチル基が極微量~数%にて繰返し単位中に残り、それが上記樹脂バインダー中にも残ることがある。本発明においては、上記樹脂バインダーがこのような原料由来の任意成分を含む場合を包含するものであり、このような微量のアセチル基が上記樹脂バインダーの繰り返し単位中にあっても、本発明の効果および特性に影響を及ぼすことはない。また、本発明においては、電荷発生層4の樹脂バインダーとして、上記樹脂バインダーに加えて、その他、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ジアリルフタレ-ト樹脂、メタクリル酸エステル樹脂の重合体および共重合体などを適宜組合せて使用することが可能である。上記一般式(1)で表されるバインダーを他の樹脂と併用する場合のその含有量は、電荷発生層4中の固形分に対して10~90質量%、好適には40~60質量%とする。中でも、樹脂バインダーとして、電荷発生層中の樹脂バインダーの全量に対して1~5質量%にて、塩化ビニル系共重合樹脂を含む場合に、液安定性に優位性が見られ、好ましい。
 また、本発明においては、電荷発生層4中に、電荷発生材料として、少なくともフタロシアニン化合物が含まれていることが必要不可欠である。かかるフタロシアニン化合物としては、公知の種々の金属フタロシアニンを用いることができ、中でもオキソチタニルフタロシアニンが好適であり、α型オキソチタニルフタロシアニン、β型オキソチタニルフタロシアニン、アモルファスオキソチタニルフタロシアニン、特にはY型オキソチタニルフタロシアニン、または、特開平8-209023号公報もしくは米国特許5874570号明細書に記載のCuKα:X線回折スペクトルにてブラッグ角2θが9.6°を最大ピークとするオキソチタニルフタロシアニンを用いると、感度や画質、転写耐性の点で著しく改善された効果を示す。さらに、前述の異なる結晶型のオキソチタニルフタロシアニンを併用することもでき、また、上記フタロシアニン化合物とともに、他の電荷発生材料、例えば、各種アゾ顔料、アントアントロン顔料、チアピリリウム顔料、ペリレン顔料、ペリノン顔料、スクアリリウム顔料、キナクリドン顔料等を併用することもできる。
 電荷発生層4は電荷発生機能を有すればよいので、その膜厚は電荷発生材料の光吸収係数により決まり、一般的には1μm以下であり、好適には0.5μm以下である。電荷発生材料の含有量は、電荷発生層4中の固形分に対して、10~90質量%、好適には40~60質量%である。電荷発生層は、電荷発生材料を主体として、これに電荷輸送性材料などを添加して使用することも可能である。
 電荷輸送層5は、主として電荷輸送材料と樹脂バインダーとにより構成される。電荷輸送材料としては、各種ヒドラゾン化合物、スチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物等を、単独、あるいは、適宜組合せて混合して用いることができる。また、樹脂バインダーとしては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型-ビフェニル共重合体などのポリカーボネート樹脂、ポリスチレン樹脂、ポリフェニレン樹脂などを、それぞれ単独、あるいは、適宜組み合わせで混合して用いることができる。これら化合物の使用量は、樹脂バインダー100質量部に対し、電荷輸送材料2~50質量部、好適には3~30質量部である。電荷輸送層の膜厚としては、実用上有効な表面電位を維持するためには3~50μmの範囲が好ましく、より好適には15~40μmである。
 以下に、本発明に供される電荷輸送材料の例II-1~II-5を示すが、本発明は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-I000006
 上記下引き層2、電荷発生層4および電荷輸送層5には、感度の向上や残留電位の減少、あるいは、耐環境性や有害な光に対する安定性の向上、耐摩擦性を含めた高耐久性の向上などを目的として、各種添加剤を必要に応じて用いることができる。添加剤としては、無水コハク酸、無水マレイン酸、ジブロム無水コハク酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4-ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o-ニトロ安息香酸、トリニトロフルオレノン等の化合物を使用することができる。
 また、これら各層には、酸化防止剤や光安定剤などを添加することもできる。このような目的に用いられる化合物としては、トコフェロールなどのクロマール誘導体およびエーテル化合物、エステル化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、ジエーテル化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物などが挙げられるが、これらに限定されるものではない。
 さらに、感光層3中には、形成した膜のレベリング性の向上や、さらなる潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。
 また、感光層3の表面には、耐環境性や機械的強度をより向上させる目的で、必要に応じて、さらに表面保護層6を設けてもよい。表面保護層6は、機械的ストレスに対する耐久性および耐環境性に優れた材料で構成され、電荷発生層が感応する光をできるだけ低損失で透過させる性能を有していることが望ましい。
 表面保護層6は、樹脂バインダーを主成分とする層や、アモルファスカーボンなどの無機薄膜からなる。また、樹脂バインダー中には、導電性の向上や摩擦係数の低減、潤滑性の付与などを目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウムなどの金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物、金属酸化物の微粒子、または4フッ化エチレン樹脂等のフッ素系樹脂、フッ素系クシ型グラフト重合樹脂等の粒子を含有させてもよい。さらに、表面保護層6には、電荷輸送性を付与する目的で、上記感光層に用いられる電荷輸送物質や電子受容物質を含有させたり、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。なお、表面保護層6自体の膜厚は、該保護層の配合組成にも依存するが、繰り返し連続使用したときの残留電位が増大する等の悪影響が出ない範囲で、任意に設定することができる。
 本発明の電子写真用感光体の製造方法は、導電性基体上に、塗布液として、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして上記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含むものを塗布して、感光層を形成する工程を包含するものであればよい。本発明において、かかる塗布液には、浸漬塗布法または噴霧塗布法等の種々の塗布方法を適用することが可能であり、いずれかの塗布方法に限定されるものではない。
 本発明の電子写真用感光体は、各種マシンプロセスに適用することにより前述の効果が得られるものである。具体的には、ローラやブラシを用いた接触帯電方式、コロトロン、スコロトロンなどを用いた非接触帯電方式等の帯電プロセス、並びに、非磁性一成分、磁性一成分、二成分などの現像方式を用いた接触現像および非接触現像方式などの現像プロセスにおいても、十分な効果を得ることができる。
 一例として、図2に、本発明に係る電子写真装置の概略構成図を示す。図示する電子写真装置60は、導電性基体1とその外周面上に被覆された下引き層2、感光層300とを含む、本発明の電子写真用感光体7を搭載する。さらに、この電子写真装置60は、感光体7の外周縁部に配置された、ローラ帯電部材21と、このローラ帯電部材21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写帯電器(直接帯電型)26と、クリーニングブレード271を備えたクリーニング装置27と、除電部材28と、から構成され、カラープリンタとすることもできる。
 以下、本発明を実施例に基づいて説明するが、本発明の実施の形態は以下の例に限定されるものではない。
[実施例1]
 下引き層の材料として、特開2007-178660号公報もしくは米国特許7723000号明細書の実施例1に記載のポリアミド樹脂100質量部を、メタノール1500質量部およびブタノール500質量部からなる混合溶媒に溶解させた後、テイカ社製 微粒子酸化チタンJMT150を、アミノシラン系カップリング剤とイソブチルシラン系カップリング剤との1/1の混合物で処理してなる酸化チタン400質量部を加えたスラリーを作製した。このスラリーにつき、ビーズ径0.3mmのジルコニアビーズをベッセル容量に対して70v/v%の嵩充填率で充填したディスクタイプのビーズミルを用いて、処理液流量400mL、ディスク周速3m/sにて20パス分処理を行い、下引き層塗布液とした。
 上記で作製した下引き層塗布液を用いて、浸漬塗布により、円筒状アルミニウム基体上に下引き層を成膜した。乾燥温度120℃、乾燥時間30minの条件で乾燥することによって得られた下引き層の乾燥後膜厚は3μmであった。
 次に、反応容器中に、テトラヒドロフラン(和光純薬工業(株)製)5250g、ポリビニルアルコール((株)クラレ製)251g、36%塩酸(関東化学(株)製)90gを加えて攪拌した。氷水5kgを入れたアイスバスに反応容器をセットし、反応液温度が15℃以下になるのを確認した。次いで、フェニルプロピオンアルデヒド(東京化成工業(株)製)115g、ブチルアルデヒド(東京化成工業(株)製)129g、36%塩酸78gを順に滴下して攪拌した。滴下後、0.5時間かけて50℃まで加熱を行い、以後は同温度に保持し、2時間攪拌しながら反応させた。
 この反応液に、テトラヒドロフラン2750gを加えて、反応容器より取り出した後、120Lのイオン交換水に、攪拌しながらゆっくり投入した。析出したポリマーを取り出し、適量のイオン交換水を入れた容器に移し変え、ポリマーを浸漬してポリマーを硬化させた。次いで、硬化させたポリマーを粉砕し、温風乾燥させた。このポリマーを5wt%テトラヒドロフラン溶液となるよう調製し、このポリマー溶液を、ポリマー溶液比約5倍量のメタノール(関東化学(株)製)に攪拌しながらゆっくりと投入した。析出したポリマーを取り出し、適量のイオン交換水を入れた容器に移し変えて、ポリマーを浸漬し、ポリマーを硬化させた。次いで、硬化させたポリマーを粉砕し、熱風乾燥させた。このようにして、下記の表1中に示す組成I-1の樹脂334gを得た。
 なお、得られた化合物については、NMRスペクトル、質量分析スペクトル、赤外分光スペクトル等の機械分析を用いて構造の確認を実施した。このうち、かかる化合物のNMRスペクトルチャートを、図3に示す。
 次に、電荷発生材料としての特開平8-209023号公報に記載のY型オキソチタニルフタロシアニン化合物2質量部と、樹脂バインダーとしての組成I-1のポリビニルアセタール樹脂2質量部とをジクロロメタン96質量部に混合したスラリー5Lにつき、ビーズ径0.4mmのジルコニアビーズをベッセル容量に対して85v/v%の嵩充填率で充填したディスクタイプのビーズミルを用いて、処理液流量300mL、ディスク周速3m/sにて10パス分処理を行い、電荷発生層塗布液を作製した。
 得られた電荷発生層塗布液を用いて、上記下引き層を塗布した基体上に、電荷発生層を成膜した。乾燥温度80℃、乾燥時間30minの条件で乾燥することによって得られた電荷発生層の乾燥後膜厚は0.3μmであった。
 この電荷発生層上に、電荷輸送材料としての前記構造式II-1で示される化合物10質量部と、樹脂バインダーとしてのビスフェノールZ型ポリカーボネート樹脂(三菱ガス化学(株)製 ユピゼータPCZ-500)10質量部とをジクロロメタン90質量部に溶解した後、シリコーンオイル(信越ポリマー(株)製 KP-340)を0.01質量部加えて調製した塗布液を浸漬塗工し、温度90℃で60min乾燥して、25μmの電荷輸送層を形成し、電子写真用感光体を作製した。
[実施例2]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-2の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例3]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-3の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例4]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-4の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例5]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-5の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例6]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-6の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例7]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-7の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例8]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-8の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例9]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-9の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例10]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-10の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例11]
 下記構造式(2)に示すヒドロキシ基を含む繰返し単位を有するスチレン樹脂(丸善石油化学(株)製 マルカリンカMH2)2.5質量部と、メラミン樹脂(三井化学(株)製 Uvan2021樹脂液)2.5質量部とを、テトラヒドロフラン75質量部およびブタノール15質量部からなる溶媒に溶解させた後、アミノシラン処理された酸化チタン微粒子5質量部を加えたスラリーを作製した。このスラリーにつき、ビーズ径0.3mmのジルコニアビーズをベッセル容量に対して70v/v%の嵩充填率で充填したディスクタイプのビーズミルを用いて、処理液流量400mL、ディスク周速3m/sにて20パス分処理を行い、下引き層塗布液とした。下引き層塗布液として、この塗布液を用いた以外は実施例1と同様にして、感光体を作製した。
Figure JPOXMLDOC01-appb-I000007
[実施例12]
 電荷発生材料として、Y型オキソチタニルフタロシアニンに代えて、特開昭61-217050号公報もしくは米国特許4728592号明細書に記載のα型チタニルフタロシアニンを用いた以外は実施例1と同様にして、感光体を作製した。
[実施例13]
 電荷発生材料として、Y型チタニルフタロシアニンに代えて、X型無金属フタロシアニン(大日本インキ化学工業(株)製 Fastogen Blue 8120B)を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例14]
 電荷発生層の樹脂バインダーとして、電荷発生層中の樹脂全量に対して5質量%の塩化ビニル系共重合樹脂(日本ゼオン(株)製 MR110)を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例15]
 電荷発生層の樹脂バインダーとして、電荷発生層中の樹脂全量に対して1質量%の塩化ビニル系共重合樹脂(日本ゼオン(株)製 MR110)を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例16]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-11の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例17]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-12の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[実施例18]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-13の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例1]
 電荷発生層の樹脂バインダーとして、ポリビニルブチラール樹脂(積水化学工業(株)製 BM-1)を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例2]
 電荷発生層の樹脂バインダーとして、ポリビニルブチラール樹脂(積水化学工業(株)製 BM-S)を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例3]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-14の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例4]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-15の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例5]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-16の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例6]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-17の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例7]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-18の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例8]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-19の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
[比較例9]
 電荷発生層の樹脂バインダーとして、下記表1中に示す組成I-20の樹脂を用いた以外は実施例1と同様にして、感光体を作製した。
Figure JPOXMLDOC01-appb-T000008
 なお、上記比較例1,2で用いたポリビニルブチラール樹脂BM-1およびBM-Sの構造式を、下記表中に示す。
Figure JPOXMLDOC01-appb-T000009
*)表中のl,m,nは、それぞれ下記式中の各構造単位のmol%を示す。
Figure JPOXMLDOC01-appb-I000010
 各実施例および比較例にて得られた感光体の電子写真電気特性を、ジェンテック社製のプロセスシミュレーター(CYNTHIA91)を使用して、以下の方法で評価した。まず、感光体表面を、暗所にてスコロトロン帯電装置によるコロナ放電により-800Vに帯電させた後、帯電直後の表面電位V0を測定した。続いて、帯電を中止して、暗所で5秒間放置後に表面電位V5を測定し、下記式(i)で定義される、帯電5秒後における電位保持率Vk5(%)を求めた。
         Vk5 =(V5/V0)×100     (i)
 次に、ハロゲンランプを光源とし、フィルターを用いて780nmに分光した露光光を、表面電位が-800Vとなった時点から5秒間照射し、表面電位が-100Vとなるまで光減衰するのに要する露光量を、感度E100(μJcm-2)として求めた。
 次に、各実施例および比較例にて得られた感光体を、感光体の表面電位が観察できるように改造を施したモノクロプリンターML-2241(サムスン電子(株)製)に搭載し、初期評価として、各環境下(LL(低温低湿):10℃15%RH,NN(常温常湿):25℃50%RH,HH(高温高湿):35℃85%RH)でのベタ白3枚およびベタ黒3枚印字後の露光後電位ならびに画像メモリを評価した。電位評価は、各環境下での露光後の電位変動量(LL~HH)によって、良否を判定した。また、画像メモリ評価については、スキャナー掃引の前半部分にチェッカーフラグ模様、後半部分にハーフトーンを施した画像サンプルの印字評価にて、ハーフトーン部分にチェッカーフラグが映りこむメモリ現象を読み取り、その濃淡により良否(◎:非常に良好、○:良好、△:薄いメモリ発生、×:濃いメモリ発生)を評価した。また、常温常湿環境での1万枚印字前後の帯電時表面電位の変動量および画像メモリに関しても評価した。
 転写耐性については、図4に示す、感光体の表面電位が観察できるように改造を施した市販のマルチファンクションプリンター(1600n,デル(株)製)を用いて、ベタ白7枚の印字を行い、転写極10に、高圧電源により、定電圧制御にて0kV(1枚目)、1.2kV(2枚目)~2.2kV(7枚目)と、段階的に印加した。これを各環境下(LL(低温低湿):10℃15%RH,NN(常温常湿):25℃50%RH)にて実施し、転写耐性の良否として、ΔV=V1(1枚目紙間暗部電位)-V7(7枚目暗部電位)を算出し、ΔVが小さいほど良好と判断した。なお、図4中、符号8は帯電器、符号9は露光光源をそれぞれ示す。
 塗布液の分散安定性評価については、各実施例および比較例において作製した各電荷発生層塗布液を、透明なガラス製の瓶に密封した状態で、常温常湿環境(25℃50%RH)下に静置保存した。塗布液中における部分的凝集、沈殿、分離等の有無を目視にて観察し、良否(◎:非常に良好、○:良好であり、分離、凝集、沈降がほとんど見られない状態、△~×:分離、凝集、沈降のいずれかが見られる状態)につき、評価した。
 これらの結果を、下記の表中に示す。
Figure JPOXMLDOC01-appb-T000011
 上記表3に示す実施例1~18の結果から、本発明に係る、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比x:z=95~50:5~50の範囲である特定のポリビニルアセタール樹脂を電荷発生層に含有させることにより、初期電気特性や使用環境変動における電気特性、メモリ特性が良好であって、かつ、良好な転写耐性を示す感光体が得られることがわかる。また、アセタール化度を本発明に係る範囲に高め、親水性の高い水酸基を含む構造単位比率(y)を下げることで、各環境下での転写性能が安定化することが確認された。特に、アセタール化度(x+z)が86mol%以上の樹脂を用いた実施例では、転写耐性を示すΔV値のNN環境での値とLL環境での値との差がより小さくなっており、各環境において安定した変動傾向を示していることがわかる。さらに、電荷発生材料としてのY型チタニルフタロシアニンとの組み合わせに係る感光体は、より高感度かつ高転写耐性を示していた。さらにまた、電荷発生層中の樹脂全量に対して、1~5質量%の塩化ビニル系共重合樹脂を組み合わせた場合に、塗布液の安定性が最も良好であった。
 一方、比較例1~9の結果から、市販のブチラール樹脂では、転写耐性において不十分な結果を示し、アセタール化度(x+z)が76~99mol%、かつ、構造単位のモル比x:z=95~50:5~50の範囲のいずれか一方でも満たさない場合には、初期電気特性、転写耐性およびメモリ特性に劣ることがわかる。また、アセタール化度が70mol%未満または100mol%の場合には、塗布液の安定性が悪く、フェニル基が50mol%以上の場合は、溶媒への溶解性が著しく劣ることがわかった。
 以上の結果より、本発明に係る特定の組成および構造単位比率を有するポリビニルアセタール樹脂を感光層中に含有させることにより、高メモリ特性、高解像度および良好な電気特性を示す感光体が得られることが確かめられた。さらに、特定の下引き層を組み合わせた際に、より効果が大きいことがわかった。
1 導電性基体
2 下引き層
3 感光層
4 電荷発生層
5 電荷輸送層
6 保護層
7 電子写真用感光体
8 帯電器
9 露光光源
10 転写極部
21 ローラ帯電部材
22 高圧電源
23 像露光部材
24 現像器
241 現像ローラ
25 給紙部材
251 給紙ローラ
252 給紙ガイド
26 転写帯電器(直接帯電型)
27 クリーニング装置
271 クリーニングブレード
28 除電部材
60 電子写真装置
300 感光層

Claims (7)

  1.  導電性基体上に下引き層および感光層を順次備える電子写真用感光体において、
     前記感光層が、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして、下記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含むことを特徴とするものである。
    Figure JPOXMLDOC01-appb-I000001
    (式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)
  2.  前記樹脂バインダーとして、前記一般式(1)中のRがプロピル基であるポリビニルブチラール樹脂を用いる請求項1記載の電子写真用感光体。
  3.  前記フタロシアニン化合物が、Y型オキソチタニルフタロシアニンである請求項1記載の電子写真用感光体。
  4.  前記下引き層がポリアミド樹脂を含有する請求項1記載の電子写真用感光体。
  5.  前記感光層が電荷発生層と電荷輸送層とを含む積層型であり、かつ、該電荷発生層の樹脂バインダーとして、塩化ビニル系共重合樹脂を、該電荷発生層中の樹脂バインダーの全量に対して1~5質量%にて含有する請求項1記載の電子写真用感光体。
  6.  導電性基体上に、塗布液を塗布して感光層を形成する工程を包含する電子写真用感光体の製造方法において、
     前記塗布液が、電荷発生材料として少なくともフタロシアニン化合物を含有し、かつ、樹脂バインダーとして、下記一般式(1)で表される繰返し単位からなるポリビニルアセタール樹脂を含むことを特徴とする電子写真用感光体の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    (式(1) 中、Rは水素原子、メチル基、エチル基またはプロピル基のいずれかであり、x,y,zはそれぞれ各構造単位のmol%を示し、x+y+z=100であり、nは1~5の整数であり、アセタール化度(x+z)が76~99mol%であって、かつ、構造単位のモル比(x:z)が95~50:5~50である)
  7.  請求項1記載の電子写真用感光体が搭載されていることを特徴とする電子写真装置。
PCT/JP2012/053410 2011-02-15 2012-02-14 電子写真用感光体、その製造方法および電子写真装置 WO2012111672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/985,037 US9081313B2 (en) 2011-02-15 2012-02-14 Electrophotographic photoconductor, production method thereof, and electrophotographic device
KR1020137021120A KR101806277B1 (ko) 2011-02-15 2012-02-14 전자 사진용 감광체, 그 제조 방법 및 전자 사진 장치
JP2012557976A JP5585668B2 (ja) 2011-02-15 2012-02-14 電子写真用感光体、その製造方法および電子写真装置
CN201280008707.6A CN103384851B (zh) 2011-02-15 2012-02-14 电子照相光电导体及其制备方法,以及电子照相装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/053186 2011-02-15
PCT/JP2011/053186 WO2012111099A1 (ja) 2011-02-15 2011-02-15 電子写真用感光体、その製造方法および電子写真装置

Publications (1)

Publication Number Publication Date
WO2012111672A1 true WO2012111672A1 (ja) 2012-08-23

Family

ID=46672063

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/053186 WO2012111099A1 (ja) 2011-02-15 2011-02-15 電子写真用感光体、その製造方法および電子写真装置
PCT/JP2012/053410 WO2012111672A1 (ja) 2011-02-15 2012-02-14 電子写真用感光体、その製造方法および電子写真装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053186 WO2012111099A1 (ja) 2011-02-15 2011-02-15 電子写真用感光体、その製造方法および電子写真装置

Country Status (5)

Country Link
US (1) US9081313B2 (ja)
KR (1) KR101806277B1 (ja)
CN (1) CN103384851B (ja)
TW (1) TWI545410B (ja)
WO (2) WO2012111099A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295537A (ja) * 1985-10-23 1987-05-02 Mitsubishi Chem Ind Ltd 電子写真用感光体
JPS62160455A (ja) * 1986-01-09 1987-07-16 Canon Inc 電子写真感光体
JPH028256A (ja) * 1988-11-05 1990-01-11 Mitsubishi Kasei Corp 結晶型オキシチタニウムフタロシアニンおよび電子写真用感光体
JPH0323462A (ja) * 1989-06-20 1991-01-31 Mitsubishi Kasei Corp 電子写真感光体
JP2000129155A (ja) * 1998-10-28 2000-05-09 Sharp Corp 結晶型オキソチタニルフタロシアニン及び電子写真感光体
JP2010164945A (ja) * 2008-12-16 2010-07-29 Sharp Corp 電子写真感光体およびそれを備えた画像形成装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830757A (ja) 1981-08-18 1983-02-23 Canon Inc 電子写真感光体
JPS58105154A (ja) 1982-07-21 1983-06-22 Canon Inc 電子写真感光体
JP3036896B2 (ja) 1991-06-26 2000-04-24 積水化学工業株式会社 ポリビニルアセタール樹脂の製造方法
JP2967724B2 (ja) * 1995-07-25 1999-10-25 富士ゼロックス株式会社 電子写真感光体及び電子写真装置
US5874570A (en) * 1995-11-10 1999-02-23 Fuji Electric Co., Ltd. Titanyloxyphthalocyanine crystals, and method of preparing the same
JP3646273B2 (ja) 1996-03-27 2005-05-11 コニカミノルタホールディングス株式会社 電子写真感光体およびその製造方法
DE69928896T2 (de) 1998-10-28 2006-08-24 Sharp K.K. Elektrophotographischer Photorezeptor, der kristallines Oxotitanylphthalocyanin enthält
US6555617B1 (en) 1999-07-29 2003-04-29 Mitsubishi Chemical Corporation Composition of cyclic anhydride modified polyvinyl acetal and curable resin and laminated products
JP2001105546A (ja) 1999-07-30 2001-04-17 Mitsubishi Chemicals Corp 積層体
KR100644610B1 (ko) * 2004-02-11 2006-11-10 삼성전자주식회사 전기적 및 기계적 특성이 우수한 전자사진 감광체 및 이를채용한 전자사진 화상형성장치
JP2006133701A (ja) 2004-11-09 2006-05-25 Kyocera Mita Corp 積層型電子写真感光体
WO2007066790A2 (en) * 2005-12-07 2007-06-14 Canon Kabushiki Kaisha Polyvinyl acetal resin, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295537A (ja) * 1985-10-23 1987-05-02 Mitsubishi Chem Ind Ltd 電子写真用感光体
JPS62160455A (ja) * 1986-01-09 1987-07-16 Canon Inc 電子写真感光体
JPH028256A (ja) * 1988-11-05 1990-01-11 Mitsubishi Kasei Corp 結晶型オキシチタニウムフタロシアニンおよび電子写真用感光体
JPH0323462A (ja) * 1989-06-20 1991-01-31 Mitsubishi Kasei Corp 電子写真感光体
JP2000129155A (ja) * 1998-10-28 2000-05-09 Sharp Corp 結晶型オキソチタニルフタロシアニン及び電子写真感光体
JP2010164945A (ja) * 2008-12-16 2010-07-29 Sharp Corp 電子写真感光体およびそれを備えた画像形成装置

Also Published As

Publication number Publication date
CN103384851B (zh) 2016-08-10
WO2012111099A1 (ja) 2012-08-23
KR20140021541A (ko) 2014-02-20
US20130316276A1 (en) 2013-11-28
CN103384851A (zh) 2013-11-06
US9081313B2 (en) 2015-07-14
KR101806277B1 (ko) 2017-12-07
TWI545410B (zh) 2016-08-11
TW201250412A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
WO2017110300A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
TWI599860B (zh) Photoreceptor for electrophotography, process for producing the same, and electrophotographic apparatus
WO2016076298A1 (ja) 電子写真感光体、画像形成装置、及び感光層形成用塗布液
US8709689B2 (en) Electrophotographic photoreceptor, image-forming apparatus, and electrophotographic cartridge
JP5077441B2 (ja) 電子写真感光体、その製造方法および電子写真装置
JP6540898B2 (ja) 電子写真用感光体およびそれを搭載した電子写真装置
JP6238718B2 (ja) 電子写真感光体の製造方法
JP5069483B2 (ja) 電子写真感光体及び画像形成装置
US11073770B2 (en) Electrophotographic photoreceptor, production method thereof, and electrophotographic apparatus
JP5585668B2 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP6421599B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP4466414B2 (ja) 電子写真感光体、該感光体を用いた画像形成装置、およびカートリッジ
JP6264084B2 (ja) 電子写真感光体、カートリッジ、及び画像形成装置
WO2012111672A1 (ja) 電子写真用感光体、その製造方法および電子写真装置
JP2008146076A (ja) 電子写真感光体及びこれを含む電子写真画像の形成装置
JP6357853B2 (ja) 電子写真感光体、カートリッジ、及び画像形成装置
JP5069477B2 (ja) 電子写真感光体及び画像形成装置
JP7346974B2 (ja) 電子写真用感光体、その製造方法およびそれを搭載した電子写真装置
JP2005062221A (ja) 単層型正帯電電子写真感光体
JP2002214806A (ja) 単層型正帯電有機感光体
JP2011138030A (ja) 負帯電用電子写真感光体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747596

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012557976

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021120

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747596

Country of ref document: EP

Kind code of ref document: A1