WO2017098774A1 - 電極装置およびそれを用いた金属箔の製造方法 - Google Patents

電極装置およびそれを用いた金属箔の製造方法 Download PDF

Info

Publication number
WO2017098774A1
WO2017098774A1 PCT/JP2016/077931 JP2016077931W WO2017098774A1 WO 2017098774 A1 WO2017098774 A1 WO 2017098774A1 JP 2016077931 W JP2016077931 W JP 2016077931W WO 2017098774 A1 WO2017098774 A1 WO 2017098774A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
barrel
electrode device
shaft
peripheral surface
Prior art date
Application number
PCT/JP2016/077931
Other languages
English (en)
French (fr)
Inventor
篤志 岡本
佐藤 光司
松田 純一
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020187017804A priority Critical patent/KR102402804B1/ko
Priority to US16/060,656 priority patent/US10633753B2/en
Priority to EP16872674.3A priority patent/EP3388557B1/en
Priority to CN201680071631.XA priority patent/CN108368625B/zh
Priority to JP2017535111A priority patent/JP6521074B2/ja
Publication of WO2017098774A1 publication Critical patent/WO2017098774A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • C25D17/18Apparatus for electrolytic coating of small objects in bulk having closed containers
    • C25D17/20Horizontal barrels
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode device and a method for producing a metal foil using the electrode device.
  • Cu foil copper foil
  • Al foil aluminum foil
  • current collectors of power storage devices such as lithium ion secondary batteries and supercapacitors (electric double layer capacitors, redox capacitors, lithium ion capacitors, etc.) Is done.
  • Cu foil is produced by a rolling method or an electroplating method (electroforming method, electrolytic method).
  • electroplating method electroforming method, electrolytic method.
  • Al foil was produced exclusively by the rolling method, examination which applies the electroplating method is being performed recently.
  • a metal film containing a metal component serving as an anode is formed by energizing between a soluble or insoluble metal (anode) immersed in a liquid (plating solution) and a peripheral surface (cathode) of the drum. (Plating film) is formed on the peripheral surface of the drum to be the cathode.
  • the soluble metal (anode) is eluted into the liquid as metal ions, and the surface is covered with a coating (sludge coating) that is considered to be an oxide as the elution progresses.
  • a coating sludge coating
  • an oxidation reaction takes place on the surface of the metal (anode) in the liquid, and it is covered with the same sludge film formed by the reaction product.
  • the metal (anode) covered with the sludge film is not preferable because elution into the liquid is hindered.
  • Patent Document 1 discloses an electrode device (anode for electroplating) having a structure in which a soluble metal plate is inserted between a prismatic zinc (anode) and a current-carrying member in order to suppress the formation of a sludge film.
  • a means for adjusting the composition of the liquid so as to be suitable for the metal serving as the anode see Patent Document 2
  • the anode metal has a strong tendency to elute from the side close to the cathode (drum peripheral surface) having a different polarity, so the distance between the anode (metal) and the cathode (drum peripheral surface) (electrode) (Distance between) gradually increases.
  • An increase in the distance between the electrodes is not preferable because not only the electrolytic voltage increases and power consumption increases, but also the thickness and quality of the metal film formed on the peripheral surface of the drum are affected.
  • Patent Document 4 discloses a plurality of anode baskets that are attached to a rotating belt and are movable, and are filled with pellet-shaped metal particles (anode), and near the center. And an anode baffle plate with a constant distance from the cathode (distance between the electrodes), and the anode baffle plate can be energized by contacting only the specific anode basket.
  • An electrode device electroroplating device configured as described above has been proposed.
  • Patent Document 5 a plurality of metal plates (anodes) suspended by hooks are arranged so that the distance from the steel plate (cathode) is constant, and the consumption state of the metal plate and the distance from the steel plate ( There has been proposed an electrode device configured to detect an inter-electrode distance), extract a worn metal plate, and control to insert a new metal plate (anode).
  • An object of the present invention is to provide a novel electrode device having a structure capable of solving the above-described problem of the sludge coating covering the surface of the anode, and more preferably solving the problem of an increase in the distance between the anode and the cathode at the same time. And it is providing the manufacturing method of the novel metal foil using the same.
  • the present inventor has studied an electrode structure that can sequentially arrange or supply a metal to be an anode to a certain position, and has an electrode filled with an appropriate amount of metal (metal tip or the like) to be an anode inside the barrel, The inventors have found that the above-mentioned problems can be solved by causing mutual collision of metal (anode) by stirring inside the barrel, and have arrived at the present invention.
  • the electrode device of the present invention is an electrode device used by being immersed in a conductive liquid, and has an outer wall having a plurality of through holes, and can store a metal that is soluble in the liquid during energization. It has a barrel, a shaft that passes through the inside of the barrel and has a peripheral surface that can be energized, and a metal feeding portion for feeding the metal into the barrel, and the barrel rotates.
  • the barrel rises inward from the outer wall and has a plurality of partition walls having a gap with respect to the peripheral surface of the shaft, and a plurality of partition walls partitioned by the plurality of partition walls in the circumferential direction of the shaft. It is preferable to provide a private room (cell).
  • the said barrel is provided with the overhang
  • the metal is preferably spherical.
  • the said shaft has an outer cylinder provided with the said surrounding surface, and a shaft body which mounts the said outer cylinder. Further, it is preferable that the outer cylinder is attached to the shaft body by a taper structure.
  • the electrode device of the present invention described above can be used for the production of a metal foil such as an Al foil by an electrolytic method. That is, the metal foil manufacturing method of the present invention includes a conductive liquid that stores a metal soluble in the liquid during energization and a drum that has a different polarity with respect to the electrode device. A part of the peripheral surface of the electrode device is dipped to rotate the barrel of the electrode device, and while rotating the drum in one direction, between the peripheral surface of the drum and the peripheral surface of the shaft of the electrode device.
  • This is a method of forming a metal foil by energizing, depositing a metal film containing the metal component on the peripheral surface of the drum, and peeling the metal film from the peripheral surface of the drum.
  • the metal foil manufacturing method of the present invention preferably includes a process of feeding the metal into the barrel of the electrode device during the energization. Moreover, it is preferable to intermittently rotate the barrel of the electrode device.
  • the metal may contain 97% by mass or more of aluminum.
  • the sludge film generated on the surface of the anode is appropriately removed during energization, and the substantial variation in the distance between the anode and the cathode is suppressed. Therefore, by using the electrode device of the present invention, it is possible to produce a healthy and continuous metal foil by an electrolytic method.
  • FIG. 1 shows the structural example of the electrode apparatus of this invention in part using an axial direction cross section.
  • A is sectional drawing which shows the axial cross section of the position shown by line segment PP in FIG. 1 in the state which stored the metal inside the barrel
  • (b) is a partition in the inside of the barrel shown to (a).
  • It is sectional drawing which shows the axial cross section of the position shown by line segment PP in FIG.
  • It is sectional drawing which shows the state with which the metal used as an anode was filled into the inside of the barrel shown in FIG.
  • FIG. 6 is a cross-sectional view illustrating a state in which the barrel is rotated forward from the position illustrated in FIG. 5 by an angle corresponding to one private chamber. It is sectional drawing which shows the structural example of the axial cross section of the barrel applicable to this invention. It is sectional drawing which shows the structural example of the axial cross section of the barrel applicable to this invention. It is sectional drawing which shows the structural example of the axial cross section of the barrel applicable to this invention. It is sectional drawing which expands and shows the vicinity of one private room shown in FIG.
  • FIG. 11 is a cross-sectional view illustrating a state in which the barrel is rotated forward from the position illustrated in FIG. 10 by an angle corresponding to one private chamber.
  • FIG. 1 It is a figure which shows the structural example of a shaft in part using an axial direction cross section. It is sectional drawing which shows the structural example of the shaft which has another axial cross section different from FIG. It is a figure which shows the structural example of the manufacturing apparatus of metal foil using the electrode apparatus of this invention.
  • FIG. 1 An example of the configuration of the electrode device of the present invention is shown in FIG. 1 using a cross section in the axial direction, and the axial cross section at the position indicated by the line segment PP in FIG. 1 is shown with the metal M stored inside the barrel 2.
  • FIG. 2 (a) and FIG. 2 (b) shows a configuration example in which a partition wall 2c is provided inside the barrel 2 shown in FIG. 2 (a).
  • the axial cross section of the barrel 2 shown in FIG. 2 is circular, it can also be made into polygonal shapes, such as the hexagon and octagon mentioned later.
  • FIG. 1 is partially shown in FIG. Show. Further, in the configuration example shown in FIG. 4, a state in which the metal M serving as the anode is filled into the barrel 2 is shown in FIG. 5, and the barrel 2 is rotated by an angle corresponding to one individual chamber from the position shown in FIG. The state is shown in FIG.
  • the metal M shown in each figure referred in this specification is abbreviate
  • the electrode device 1 shown in FIG. 1 and the electrode device 1 shown in FIG. 3 have resistance to the electrolyte so that they can be used by being immersed in the electrolyte.
  • the electrode device 1 has an outer wall 2b having a plurality of through holes 2a, and a barrel 2 capable of storing a metal M that is soluble in an electrolyte during energization, and a peripheral surface that can be energized through the interior of the barrel 2.
  • a shaft 3 having 3a and a metal feeding part 4 for feeding the metal M into the barrel 2 are provided.
  • the electrode device 1 has a liquid feeding part 5 for discharging an electrolytic solution into the barrel 2.
  • the metal feed section 4 has a configuration in which an opening is provided in the peripheral surface 3a through the inside of the shaft 3 (not shown), and the metal M (individually) Metal) is preferable.
  • the metal feed-in portion 4 includes, for example, a configuration in which an opening is provided in a pipe or the like embedded in a groove formed on the peripheral surface 3a of the shaft 3 (see FIG. 1), A configuration in which an opening is provided on the peripheral surface 3a side of the three is also applicable.
  • the barrel 2 is connected to a drive shaft 6 for rotating the barrel 2 via gears 6a and 6b on one end side, and is positioned with respect to the shaft 3 by a sliding portion 7 so as to be rotatable.
  • the operation which the barrel 2 rotates around the longitudinal direction (for example, axial direction of the shaft 3) and its state are called the rotation of the barrel 2, and the drive shaft for barrel rotation may be provided at both ends.
  • the shaft 3 rotatably supports the barrel 2 by the sliding portion 7 and is not shown in the figure, but may be fixed at both ends, or may be pivotally supported at both ends. .
  • the barrel according to the present invention has one or more partition walls 2c which stand inward from the outer wall 2b and have a gap with respect to the peripheral surface 3a of the shaft 3, as in the barrel 2 shown in FIG.
  • the internal space of the barrel 2 can be partitioned.
  • the plurality of partition walls 2 c erected from the outer wall 2 b and having a gap with respect to the peripheral surface 3 a of the shaft 3, and the plurality of partition walls 2 c.
  • a plurality of individual chambers 2d partitioned with respect to the circumferential direction of the shaft 3.
  • a plurality of metals M (individual metals) stored in the barrel 2 are provided by providing a partition wall 2 c having a gap with respect to the peripheral surface 3 a of the shaft 3. ) Is moved so that the partition wall 2c is stirred, a plurality of metals M (individual metals) can be efficiently flowed.
  • the partition 2c moves upward while holding an appropriate amount of metal M (individual metal).
  • An appropriate amount of the metal M can be arranged to increase the electrolysis efficiency.
  • a plurality of metals M can be stored in the inside of the barrel 2 shown in FIG. 2B or in the plurality of individual chambers 2d inside the barrel 2 shown in FIG. is there.
  • the metal M (individual metal) is filled so that the total amount of metal becomes an appropriate amount with respect to the total volume of the barrel 2 before energization.
  • the number of private chambers 2 d provided in the barrel 2 is eight.
  • some of the individual metals (metal M) can be deposited on and contact the peripheral surface 3a of the shaft 3 (see FIG. 5). .
  • the metal M (individual metal) stored in an appropriate amount in the barrel moves and flows, and mutual collision occurs between adjacent individual metals.
  • the mutual collision of these individual metals occurs during energization, so that the surface of the individual metal M that has become the anode is able to react uniformly in a fresh state while the generated sludge coating is appropriately removed. It becomes a surface that can. Therefore, according to the electrode device of the present invention, the above-mentioned problem of the sludge film covering the surface of the anode can be solved.
  • a preferable configuration capable of performing the above-described individual metal (metal M) flow more efficiently is an electrode device having a cross-sectional structure as shown in FIG. 4, FIG. 7, FIG.
  • the electrode device 1 shown in FIG. 4 when the barrel 2 rotates and a difference in rotational speed occurs between the shaft 3 and the barrel 2, the plurality of partition walls 2 c provided in the barrel 2 are arranged around the peripheral surface 3 a of the shaft 3. Will rotate. Therefore, the individual metals filled in the individual chamber 2d are moved so as to be agitated by the partition walls 2c, and mutual collision occurs between adjacent individual metals. Therefore, the surface of each metal M that has become an anode due to the mutual collision that occurs during energization becomes a surface that can be uniformly reacted in a fresh state while the generated sludge coating is appropriately removed.
  • each metal that has become an anode inside the barrel is dissolved (hereinafter referred to as “electrolysis”) by an electric field generated by energization, and its volume gradually decreases.
  • electrolysis the electric field generated by energization
  • the distance between the electrodes of the metal M serving as the anode and the cathode increases by an amount corresponding to the volume reduction of each metal.
  • the electrolysis of the metal M further proceeds and the volume decreases too much, the electric field reaches the shaft 3 or the peripheral surface 3a of the shaft 3 is exposed, so that the shaft 3 (the peripheral surface 3a) itself is electrolyzed. It can happen.
  • the metal M (individual metal) is introduced into the barrel during energization by having a metal infeed portion for injecting the metal M (individual metal) into the barrel. It can be sent in and refilled. Since the metal M can be fed into the barrel 2 at an appropriate timing by such a metal feeding section, the spread of the distance between the electrodes is suppressed and electrolysis of the shaft 3 (circumferential surface 3a) itself is performed. Can be prevented.
  • the metal M When the metal M is fed, the metal M is filled in the entire volume inside the barrel 2 (filling rate 100%) in consideration of the sludge film removal efficiency of the metal M and the contact formation efficiency. Therefore, it is preferable to control to an appropriate amount (for example, in the range of 70% to 95%). For example, if the removal of the sludge film is important, the filling rate is in the range of 70% to 80% and the gap is increased. If the formation of the contact is important, the filling rate is in the range of 85% to 95%. When the total amount of M is increased and both are in an appropriate balance, it is preferable to select an appropriate filling rate from a range of 75% to 90%.
  • the problem of the sludge film covering the surface of the anode as described above can be solved, and the problem of the increase in the interelectrode distance between the anode and the cathode can be solved at the same time. Can do.
  • a metal M (individual metal) in the individual chamber 2d located on the side closest to the cathode. Therefore, the distance between the cathode and the cathode becomes wider than that in the other individual chambers 2d.
  • a metal M that is soluble in the electrolyte deposits on the energized peripheral surface 3a of the shaft 3, and the individual metals come into contact with each other. It becomes a state. When energized in this contact state, current is applied to the individual metal from the peripheral surface 3a of the shaft 3, and the electrolysis of the surface of the individual metal closest to the cathode easily proceeds, so that volume reduction is likely to occur.
  • each chamber 2 d of the electrode device 1 moves forward in the rotation direction by the rotation of the barrel 2 with respect to the shaft 3.
  • the private room 2d 1 shown in FIG. 5 moves forward from the position closest to the surface of the cathode 8 by the rotation shown by the arrow 2f of the barrel 2
  • the next private room 2d 2 is the cathode as shown in FIG. 8, the metal M in the next chamber 2d 2 having no substantial volume reduction compared to the metal M 1 instead of the metal M 1 in the volume-reduced chamber 2d 1 by being located on the side closest to the surface of FIG.
  • each metal (metal M) inside the barrel according to the present invention When the volume of each metal (metal M) inside the barrel according to the present invention is reduced by electrolysis, a plurality of through holes are provided on the outer wall of the barrel, so that the surface area is consumed by electrolysis to be smaller than the size of the through holes.
  • Each metal with a reduced can be naturally discharged from the through hole by gravity or the like.
  • the outer wall 2b of the barrel 2 is provided with a plurality of through holes 2a, individual metals that have become smaller from the through holes 2a can be discharged naturally.
  • new metal M (individual metal) is supplied from the metal inlet to the inside of the barrel while controlling the amount corresponding to the amount of the reduction. can do.
  • the above-described control regarding the metal M is such that one or a plurality of openings to the peripheral surface 3 a of the shaft 3 of the metal feeding portion 4 are provided, and the individual chamber 2 d of the barrel 2 is positioned below. In this case, it is preferable that the new metal M (individual metal) is fed into the individual chamber 2d.
  • the metal M (individual metal) in the individual chamber 2d moves to the outer wall 2b side and accumulates, so that an appropriate gap is formed in the vicinity of the opening of the metal feeding portion 4. Since it is formed, the metal M cannot be fed from the opening.
  • the volume of the metal M stored in the private room 2d can always be easily hold
  • the barrel is shaped such that, for example, the shape, size, and mass of the metal stored in the interior, and the conditions such as the properties and temperature of the electrolyte are rotated most efficiently. Or a size.
  • the shape of the axial cross section of the barrel is such that the outer wall shown in FIG. 4 is cylindrical and has eight individual chambers, and the outer wall shown in FIG. 7 is octagonal.
  • the outer wall may have a polygonal shape, such as a configuration including eight individual chambers, or a configuration in which the outer wall illustrated in FIG. 8 is hexagonal and includes six individual chambers.
  • the axial cross-sectional shape of the outer wall and the number of individual chambers may be arbitrary, but the configuration as shown in FIG. 9, that is, between the adjacent partition walls 2c inside the individual chamber 2d, from the outer wall 2b toward the inside of the individual chamber 2d.
  • projection part 2g of the height which does not exceed the overhanging partition 2c may be sufficient.
  • the overhanging portion is not limited to the overhanging portion 2g shown in FIG.
  • a shape including a polygon such as a triangle, a shape including an arc or an elliptical arc, a shape including a bend such as an L-shape, P-shape, or T-shape at the tip may also be used.
  • the metal M (individual metal) filling rate, the shape and size of each metal, and the like can be selected as necessary.
  • the movement of the metal M (individual metal) flowing by the rotation of the barrel is further changed, and the change in the movement is the metal M (individual metal).
  • the removal efficiency of the individual metal sludge coating can be further increased. Note that the numbers shown in FIG. 7 are used for the sake of simplicity.
  • the plurality of partition walls provided in the barrel be set to an appropriate shape and number in consideration of the above-described conditions.
  • the shape of the partition wall may be a flat plate shape shown in FIG. 4, a curved plate shape, a corrugated plate shape, other different shapes, or a shape obtained by partially combining these shapes.
  • the number and arrangement of the partition walls are divided into eight parts in the circumferential direction of the shaft 3 (around the axis of the barrel 2) as shown in FIG.
  • the distance between the partition walls around the axis can be changed by adjusting the number of partition walls between the right side and the left side in the axial direction of the barrel 2 or the right side and the left side.
  • the partition mounting position (partition wall phase) around the axis of the barrel 2 can be changed.
  • the arrangement of the partition wall viewed from the axial cross-section with respect to the outer wall is in consideration of the above-mentioned conditions, and is arranged perpendicular to the outer wall, inclined around the axis, or axially like a spiral axial cross-section, for example. It can also arrange so that a phase may change gradually.
  • contact S In the individual chamber 2d 1 shown in FIG. 10 positioned above the shaft 3 of the barrel 2, for example, the individual metals constituting the metal M come into contact with each other by their own weights, and contact S (hereinafter referred to as contact S shown in the figure). represents 1.) constitute, some of the individual metal contacts S (hereinafter in contact with the circumferential surface 3a of the shaft 3, constitute a.) to represent in contacts S 0 shown in FIG. .
  • Individual metal positioned on the side closest to the contact point S 1 and, according to the contact S 0 between the individual metal in contact with the peripheral surface 3a, the farthest side or cathode 8 from the peripheral surface 3a between the above individual metal It can be set as the electrically continuous structure through the contact S. In this state, by supplying electric energy via a peripheral surface 3a of the shaft 3, it is possible to supply electrical energy to all the individual metal in private 2d 1 of the barrel 2 through the contact S.
  • each metal is spherical, that is, when a spherical metal is used as the metal M, the individual metals are likely to contact each other evenly, and the configuration of the above-described contact S (contact S 1 , contact S 0 ) is the same. It is preferable because it is performed more reliably and stably.
  • Rotating operation of barrel 2 can be applied to continuous operation or intermittent operation.
  • intermittent operation intermittent rotation that repeats rotation and stop at every predetermined time, and periodic rotation that repeats rotation and stop for several seconds to several minutes can be applied.
  • the metal M can be appropriately stirred inside the barrel 2 in any of the above-described operation patterns.
  • Rotation was attempted as intermittent operation or continuous operation. As a result, it was found that the electrolysis voltage during intermittent operation with respect to the electrolysis voltage during continuous operation was reduced by about 10% during stoppage, about 2% at the start of rotation, and about 5% at the time of rotation stability.
  • a sludge film by electrolysis is easily formed on the surface of the metal M (individual metal) located on the side closest to the cathode 8.
  • the metal M since the surfaces of the metals M (individual metals) rub against each other due to their own weight, even if a sludge film is formed on the surface, the metal M is removed by the occurrence of the rubs.
  • the individual metals are spherical, that is, it is preferable to use the spherical metal as the metal M. Since the individual metals are spherical, it becomes easy to contact each other evenly. Removal is performed more reliably and stably.
  • the surface of the individual metal as the anode is held substantially fresh, electrical energy between the metal M (individual metals) is stably transmitted by the contact S 1.
  • the sludge film (sludge residue) removed from the surface of the metal M (individual metal) is naturally discharged from the plurality of through holes 2a provided in the outer wall 2b of the barrel 2 described above.
  • the electrolytic solution is discharged from the liquid inlet 5 into the barrel 2, the inside of the individual chamber 2d is stirred by the electrolytic solution, and the discharge of sludge residue is promoted.
  • the metal M (individual metal) can be supplied to the inside of the barrel 2 during energization, the individual metal that is fresh and not consumed and the individual metal that is being consumed by electrolysis
  • the metal M coexisting with the metal and becomes an aggregate of individual metals having various sizes (hereinafter referred to as “steady-state metal M”) is stored in the barrel 2.
  • the flow of the metal M (individual metal) in the steady state by the stirring described above contributes to maintaining the metal ion concentration in each individual chamber 2d in a homogeneous state.
  • each individual chamber 2d includes a partition wall 2c having a gap 2e with respect to the peripheral surface 3a of the shaft 3, a steady state metal M (by rotation of the barrel 2 from the gap 2e to another adjacent chamber 2d ( Individual metals) can also flow.
  • the size of the gap 2e for example when considering internal private 2d 1 positioned upward as shown in FIG. 10, as an appropriate amount of metal M inside the private room 2d 1 is stored, adjacent individual metal It is preferable to set the degree to which an excessive flow to the separate chamber 2d is suppressed (for example, about 1.1 to 2.5 times the average particle diameter of the unelectrolyzed individual metal).
  • each metal is spherical, that is, if a spherical metal is used as the metal M, the individual metal easily passes through the gap 2e, and the above-described flow is performed more reliably and stably. .
  • the electrolytic solution is discharged toward the inside of the barrel 2 from the liquid feeding portion 5 opening in the peripheral surface 3 a of the shaft 3 is preferable.
  • the electrolyte discharged from the liquid inlet 5 passes between individual metals (metal M) inside the individual chamber 2d and is discharged to the outside of the barrel 2.
  • the passing electrolyte causes the metal M stored in the interior of the individual chamber 2d to flow and stir.
  • the homogenization of the metal ion concentration is promoted, and the electrolytic solution is discharged from the plurality of through holes 2a provided in the outer wall 2b of the barrel 2, thereby forming a liquid flow of the electrolytic solution having a uniform metal ion concentration. Is promoted.
  • the metal M (individual metal) in the individual chamber 2d moves to the peripheral surface 3a side of the shaft 3 and deposits, so that the electrolytic solution fed from the opening is deposited.
  • the gap between the metals M (individual metals) is reliably passed.
  • An electrolytic solution having a uniform metal ion concentration can be discharged to the outside, and a liquid flow toward the cathode 8 can be formed.
  • the electrode device 1 of the present invention having such a configuration is used as an anode, a liquid flow of an electrolytic solution having a uniform metal ion concentration is supplied to the cathode 8, so that stable electrolytic treatment can be performed.
  • the metal M stored in the private chamber 2d of the barrel 2 is most easily electrolyzed at the position above the shaft 3 shown in FIG. it is in the interior of the private 2d 1. Therefore, the circumferential surface 3a of the shaft 3 corresponding to the private 2d 1 also tends to electrolysis target.
  • the peripheral surface 3 a of the shaft 3 is located on the side farthest from the cathode 8 and constitutes a contact S 0 with the metal M (individual metal).
  • the metal M located closer to the cathode 8 is preferentially electrolyzed, and substantial wear of the peripheral surface 3a of the shaft 3 due to electrolysis can be suppressed.
  • the shape of the peripheral surface 3a of the shaft 3 can be, for example, an ellipse or a polygon in addition to the circular shape shown in FIG. 4 in a cross-sectional view, but the shape of the gap 2e of the barrel 2 and the metal M, etc. It is preferable to select in consideration of the relationship.
  • the peripheral surface 3a of the shaft 3 can suppress substantial wear due to electrolysis by the above-described configuration, for example. However, when energized for a long time, the wear of the peripheral surface 3a of the shaft 3 can be avoided due to the collision of the metal M (individual metal) due to the above stirring or due to the gradually proceeding electrolysis. Absent. Therefore, in the present invention, as shown in FIG. 12, the shaft 3 preferably has an outer cylinder 3b having a peripheral surface 3a and a shaft body 3c on which the outer cylinder 3b is mounted. With this configuration, when the peripheral surface 3a is consumed or damaged, it is only necessary to replace the outer cylinder 3b, and the shaft body 3c can be reused. Further, the outer cylinder 3b shown in FIG.
  • the outer cylinder 3b has a tapered structure in which the shaft body 3c is mounted on the tapered surface 3d, the outer cylinder 3b can be easily attached to and detached from the shaft body 3c.
  • a tapered structure has a shape in which the outer peripheral shape of the shaft body 3c increases in diameter from one to the other in the axial direction, and the inner peripheral shape of the corresponding 3b is similar to the outer peripheral shape of the shaft body 3c in the axial direction. It has a shape in which the diameter increases from one to the other, and has a structure that combines with each other.
  • manufacturing apparatus capable of continuously manufacturing the metal foil to which the manufacturing method is applied.
  • the manufacturing apparatus shown in FIG. 14 is disposed so as to face the electrolytic solution 11 that is a conductive liquid, the rotatable drum 12, and the peripheral surface 12 a of the drum 12, and with respect to the electrolytic solution 11 during energization.
  • a plurality of electrode devices 1 having a barrel 2 in which an appropriate amount of soluble metal M is stored are arranged in a sealed container 13.
  • the distance between the electrode device 1 and the peripheral surface 12a of the drum 12 is set to a predetermined range in which a more efficient electrolytic state can be obtained.
  • it has the circulation apparatus 14 of the electrolyte solution 11, the storage tank 15 of the electrolyte solution 11, and the stirrer 16 for stirring the electrolyte solution 11 in the storage tank 15.
  • the electrode device 1 is different from the electrode devices 1 having the metal M serving as an anode.
  • a part of the peripheral surface 12 a (corresponding to the cathode 8 shown in FIG. 5) of the drum 12 serving as a pole is immersed in the electrolytic solution 11.
  • the electrolytic solution 11 is filled up to the liquid level 11 b in the sealed container 13 and filled up to the liquid level 11 c in the storage tank 15.
  • the drum 12 is continuously rotated in the direction indicated by the arrow 18 by the rotating shaft 12b, and the barrel 2 included in the plurality of electrode devices 1 is as described above.
  • the metal film 10 a containing the metal M component is electrodeposited on the peripheral surface 12 a of the drum 12.
  • the process includes a process of feeding the metal M corresponding to the volume reduction consumed by the electrolysis of the metal M stored in the barrel 2 into the barrel 2 of the electrode device 1 during the energization. Therefore, it is preferable to always keep the volume of the metal M serving as the anode in a stable state.
  • the metal film 10a is electrodeposited on the peripheral surface 12a of the rotating drum 12, and the metal film 10a is formed on the metal foil 10 by continuously peeling from the peripheral surface 12a of the rotating drum 12. can do.
  • the metal film 10a is peeled to continuously form the metal foil 10, and immediately after that, the metal foil 10 is moved to the arrow while the front and back are drained by the wiper 17 provided on the outlet side of the sealed container 13. It is possible to continuously draw out in the direction indicated by 19 or to further wind the drawn metal foil 10 on a take-up reel (not shown).
  • the inside of the sealed container 13 is preferably an anaerobic dry atmosphere having a dew point of ⁇ 40 degrees or less, thereby suppressing deterioration of the electrolyte solution 11 due to moisture absorption.
  • the metal M serving as the anode may be, for example, an aluminum alloy containing 97% by mass or more of aluminum or substantially pure aluminum containing 99.9% by mass or more of aluminum.
  • the aluminum alloy whose aluminum is less than 97 mass% as the metal M it should be noted that the generation amount of the sludge film at the time of energization may increase and the electrolysis efficiency may decrease.
  • the electrolytic solution 11 is forcibly circulated by the circulation device 14 while the metal foil 10 is continuously formed.
  • the circulation device 14 sucks out the electrolyte solution 11 from the storage tank 15 in the direction indicated by the arrow 20a and forcibly sends it out in the direction indicated by the arrow 20b, thereby passing between the plurality of electrode devices 1.
  • a liquid flow of the electrolyte solution 11 toward the peripheral surface 12a of the drum 12 can be formed.
  • the liquid flow that has reached the peripheral surface 12a of the drum 12 turns in the direction along the peripheral surface 12a, moves toward the liquid surface 11a along the peripheral surface 12a, and overflows from the liquid surface 11a as indicated by an arrow 20d. .
  • the overflowing electrolyte solution 11 falls to the liquid surface 11b, flows in the direction indicated by the arrow 20e, and returns to the storage tank 15.
  • the electrolytic solution 11 having a uniform metal ion concentration and temperature is continuously circulated. Can do.
  • the liquid feeding portion 5 for discharging the electrolytic solution 11 into the barrel 2
  • the liquid feeding portion 5 The electrolytic solution 11 discharged into the barrel 2 can form a liquid flow of the electrolytic solution 11 having a uniform metal ion concentration indicated by an arrow 20f toward the peripheral surface 12a of the drum 12.
  • the supply of the electrolytic solution 11 to the liquid feeding unit 5 may be, for example, a branch from the circulation device 14 or a dedicated liquid supply device (not shown).
  • the manufacturing apparatus shown in FIG. 14 is not a manufacturing apparatus limited to the structure of the barrel 2 shown in FIG. 1 or the like, but is a manufacturing apparatus that can be widely applied to the manufacture of continuous metal foil and is effective.
  • One invention can be constituted.
  • a cathode drum that holds an electrolytic solution that is a conductive liquid and has a container (electrolyte tank) that has a foil outlet for drawing a metal foil, and can rotate (rotate) inside the container.
  • the apparatus can provide a metal foil manufacturing apparatus having a barrel capable of rotating (rotating) while storing a soluble metal (anode metal) during energization of the electrolytic solution.
  • the cathode drum that rotates via a conductive liquid (electrolyte), and the metal (anode) in the barrel that rotates in the electrode device (anode device) The metal film containing the metal component is continuously electrodeposited on the peripheral surface of the cathode drum, and the metal film is continuously peeled off from the peripheral surface of the cathode drum.
  • the manufacturing method of metal foil which can form metal foil continuously can be provided.
  • the barrel provided in the electrode device (anode device) rotates, the metal stored in an appropriate amount inside the barrel is agitated, and the metal collides and is rubbed.
  • the agitation of the metal and the polishing action caused by the collision and abrasion of the metals suppresses the generation of a sludge film on the surface of the metal by electrolysis, and even if a sludge film is generated on the surface of the metal, it is appropriately removed. be able to.
  • the manufacturing method of the metal foil of the present invention described above is applied by a manufacturing apparatus having the same configuration as that shown in FIG. 14, and the thickness is 9 ⁇ m and the width is 20 mm.
  • An aluminum foil having a length of about 20 m (example of the present invention) was prepared and annex A. of JIS-C6515: 1998 (copper foil for printed wiring board) was prepared.
  • a tensile test was performed according to 2.3. The aluminum foil used as a test specimen was collected at a length from the start of foil production (foil production length) in the vicinity of 1 m and in the vicinity of 20 m.
  • the manufacturing apparatus arranges two electrode devices including a barrel having a filling rate of 95% of the metal M having a cross-sectional structure shown in FIG. 9 to simplify the configuration on the anode side, and is suitable for the arrangement of the electrode devices.
  • a cathode drum was constructed.
  • the operation pattern of the barrel was controlled so that the temperature of the electrolytic solution was about 100 ° C. and the applied current was 15 A with intermittent operation in which the stop for 5 minutes and the rotation (3 rpm) for 40 seconds were repeated.
  • an aluminum bent plate is placed opposite the body surface of the cathode drum, and the temperature of the electrolyte is controlled to be about 100 ° C. and the applied current is 15 A.
  • a size aluminum foil (comparative example) was produced.
  • the tensile strength in the vicinity of 1 m from the start of foil production was 230 MPa for the comparative example and 250 MPa for the example of the present invention, and an improvement effect of about 8.7% was confirmed.
  • the tensile strength in the vicinity of 20 m from the start of foil production was 190 MPa for the comparative example and 245 MPa for the example of the present invention, confirming a significant improvement effect of about 22.4%.
  • the change in tensile strength depending on the foil length was 230 MPa in the vicinity of 1 m and 190 MPa in the vicinity of 20 m, confirming a large reduction of about 17.4%.
  • the electrode device of the present invention provided with a barrel that is filled with an appropriate amount of metal M and rotates and the method for producing the metal foil of the present invention using the same are effective.
  • the electrode device of the present invention and the metal foil manufacturing method using the electrode device can be used for continuous metal foil manufacturing by an electrolytic method.
  • Electrode device Barrel, 2a. Through hole, 2b. Outer wall, 2c. Septum, 2d. Private room, 2e. Gap, 2f. Arrow, 2g. 2. Overhang part, Shaft, 3a. Peripheral surface, 3b. Outer cylinder, 3c. Shaft, 3d. 3. Tapered surface 4. Metal infeed section, 5. Liquid feeding section, Drive shaft, 6a. Gears, 6b. Gears, 7. Sliding part, 8. Cathode, 10. Metal foil, 10a. Metal film, 11. Electrolyte solution, 11a. Liquid surface, 11b. Liquid level, 11c. Liquid level, 12. Drum, 12a. Peripheral surface, 12b. Rotation axis, 13. Sealed container, 14. Circulating device, 15. Storage tank, 16. Agitator, 17. Wiper, 18. Arrow, 19. Arrows, 20a-20f. Arrow, metal, S.P. contact

Abstract

アノードの表面を覆うスラッジ被膜の問題と、アノードとカソードの電極間距離の増大の問題を、同時に解決できる新規な電極装置およびそれを用いた金属箔の製造方法を提供する。 導電性の液体に浸漬して用いる電極装置であって、複数の貫通孔を備える外壁を有し、通電中に前記液体に対して可溶性の金属を貯留可能なバレルと、前記バレルの内部を通り、通電可能な周面を備えるシャフトと、前記バレルの内部に前記金属を送入するための金属送入部と、を有し、前記バレルは自転する。前記バレルは、前記外壁から内部に向かって起立し、かつ前記シャフトの前記周面に対して間隙を有する複数の隔壁と、前記複数の隔壁によって前記シャフトの周方向に対して区切られた複数の個室と、を備えることが好ましい。

Description

電極装置およびそれを用いた金属箔の製造方法
 本発明は、電極装置およびそれを用いた金属箔の製造方法に関する。
 例えば、リチウムイオン二次電池やスーパーキャパシター(電気二重層キャパシター、レドックスキャパシター、リチウムイオンキャパシターなど)などの蓄電デバイスの集電体には、銅箔(Cu箔)やアルミニウム箔(Al箔)が使用される。Cu箔は、圧延法や電気めっき法(電鋳法、電解法)で作製される。また、かかるAl箔は、専ら圧延法で作製されていたが、最近、電気めっき法を適用する検討が行われつつある。こうした電気めっき法は、液体(めっき液)に浸漬した可溶性または不溶性の金属(アノード)と、ドラムの周面(カソード)との間で通電することにより、アノードとなる金属の成分を含む金属膜(めっき膜)をカソードとなるドラムの周面上に形成するものである。
 上記の電気めっき法において、通電中、可溶性の金属(アノード)は、金属イオンとなって液体中に溶出し、溶出の進行とともに表面が酸化物と考えられる被膜(スラッジ被膜)に覆われるようになる。また、不溶性の場合も、液体中で金属(アノード)の表面で酸化反応が起こり、その反応生成物による同様のスラッジ被膜に覆われるようになる。スラッジ被膜に覆われた金属(アノード)は、液体中への溶出が阻害されるため好ましくない。そこで、スラッジ被膜の生成を抑止する目的で、例えば特許文献1には、角柱状の亜鉛(アノード)と通電体との間に可溶性の金属板を挿入した構成の電極装置(電気めっき用アノード)が提案されている。その他、例えば、アノードとなる金属に適するように液体の組成を調整する手段(特許文献2参照)や、アノードとなるSn-Bi系の金属の組織構造を調整してSnのBi置換によるスラッジ被膜の生成を抑制する手段(特許文献3参照)が提案されている。
 また、通電中、アノードとなる金属は、異極性であるカソード(ドラムの周面)に近い側から溶出する傾向が強いため、アノード(金属)とカソード(ドラムの周面)との間隔(電極間距離)が次第に大きくなる。電極間距離の増大は、電解電圧が高くなって消費電力が増大してしまうだけでなく、ドラムの周面上に形成される金属膜の厚さや品質に影響を及ぼすため好ましくない。そこで、電極間距離を一定に保つ目的で、例えば特許文献4には、回動ベルトに取り付けて移動可能にするとともに、ペレット状の金属粒子(アノード)を充満した複数のアノードバスケットと、中央付近に開口部を限定して設けるとともに、カソードとの間隔(電極間距離)を一定としたアノードバッフル板とを有し、前記アノードバッフル板に対して特定のアノードバスケットのみを接触させて通電可能とする構成の電極装置(電気めっき装置)が提案されている。また、例えば特許文献5には、鋼板(カソード)との間隔が一定になるようにフックで吊り下げた複数の金属板(アノード)を配置し、前記金属板の消耗状態および鋼板との間隔(電極間距離)を検知し、消耗した金属板を抜き取るとともに新しい金属板(アノード)を挿入するように制御する構成の電極装置が提案されている。
特開昭62-294199号公報 特開平4-333590号公報 特開2011-58076号公報 特開2009-13440号公報 特開2013-181207号公報
 上述したリチウムイオン二次電池などの実用化や拡販が進むとともに、金属箔の品質安定化や生産性改善によるコスト低減などが強く希求されている。そのため、上述したアノードのスラッジ被膜の生成抑制や適切な除去に係る技術改善、同時に、アノードとカソードの電極間距離の増大に係る技術改善が、さらに重要になっている。しかし、特許文献1に記載の電極装置では、電極間距離の増大を抑制することができない。また、液体の組成を調整する手段(特許文献2参照)やSn-Bi系の金属の組織構造を調整する手段(特許文献3参照)では、アノードとなる金属の材質や液体の配合成分が異なる場合には適用が困難であり、例えば非水電解液(非水めっき液)を用いるAl箔(電解Al箔)の作製には適用できないと考えられる。
 また、特許文献4に記載の電極装置では、アノードバッフル板に接触しているアノードバスケット内において金属粒子(アノード)が充満して静止しているため、アノードの表面におけるスラッジ被膜の生成抑制や、生成したスラッジ被膜の除去を適切に行うことが困難と考えられる。この特許文献4に記載の電極装置では、アノードの表面にスラッジ被膜が形成されたタイミングで回動ベルトの移動によって新たなアノードバスケットを挿入することも可能であるが、スラッジ被膜が生成したアノードは十分に消耗していなくても交換しなければならず、アノードの使用効率の観点では実用的ではない。また、特許文献5に記載の電極装置では、アノード(金属板)がフックに吊り下げられて静止しているため、上述したアノードのスラッジ被膜の生成抑制や除去を適切に行うことが困難と考えられる。また、この特許文献5に記載の電極装置では、アノード(金属板)の消耗状態およびカソード(鋼板)との電極間距離を検知して制御する特別な制御装置の設置が必要であったり、アノードやカソードの形状および配置の自由度が極端に制限される不満がある。
 本発明の目的は、上述したアノードの表面を覆うスラッジ被膜の問題が解決できる構成を有し、より望ましくはアノードとカソードとの電極間距離の増大の問題が同時に解決できる新規な電極装置を提供し、それを用いた新規な金属箔の製造方法を提供することである。
 本発明者は、アノードとなる金属を一定の位置へ次々と配置もしくは供給できる電極構造を検討し、電極をバレルの内部にアノードとなる適量の金属(金属チップなど)が充填された構造とし、バレルの内部の撹拌により金属(アノード)の相互衝突を発生させることにより、上記の課題が解決できることを見出し、本発明に想到した。
 すなわち、本発明の電極装置は、導電性の液体に浸漬して用いる電極装置であって、複数の貫通孔を備える外壁を有し、通電中に前記液体に対して可溶性の金属を貯留可能なバレルと、前記バレルの内部を通り、通電可能な周面を備えるシャフトと、前記バレルの内部に前記金属を送入するための金属送入部と、を有し、前記バレルは自転する。
 前記バレルは、前記外壁から内部に向かって起立し、かつ前記シャフトの前記周面に対して間隙を有する複数の隔壁と、前記複数の隔壁によって前記シャフトの周方向に対して区切られた複数の個室(セル)と、を備えることが好ましい。
 また、前記バレルは、隣接する前記複数の隔壁の間に、前記外壁から内部に向かって張り出す前記隔壁を超えない高さの張り出し部を備えることが好ましい。
 本発明の電極装置において、前記金属は球形であることが好ましい。
 また、前記シャフトは、前記周面を備える外筒と、前記外筒を装着する軸体と、を有することが好ましい。
 また、前記外筒の前記軸体に対する装着はテーパ構造によることが好ましい。
 上述した本発明の電極装置は、電解法によるAl箔などの金属箔の製造に使用することができる。すなわち、本発明の金属箔の製造方法は、導電性の液体に、通電中に前記液体に対して可溶性の金属を貯留した本発明の電極装置と、前記電極装置に対して異極となるドラムの周面の一部とを浸漬し、前記電極装置のバレルを自転させるとともに、前記ドラムを一方向に自転させながら、前記ドラムの周面と、前記電極装置のシャフトの周面との間で通電し、前記ドラムの周面上に前記金属の成分を含む金属膜を電析させ、前記金属膜を前記ドラムの周面上から剥離することにより金属箔を形成する方法である。
 本発明の金属箔の製造方法において、前記通電中に、前記金属を前記電極装置のバレルの内部に送入するプロセスを含むことが好ましい。
 また、前記電極装置のバレルを間欠回転させることが好ましい。
 また、前記金属は97質量%以上のアルミニウムを含むものであってよい。
 本発明によれば、通電中に、アノードの表面に生成したスラッジ被膜が適度に除去されるとともに、アノードとカソードの電極間距離の実質的な変動が抑制される。したがって、本発明の電極装置を用いることにより、電解法によって健全かつ連続的な金属箔の製造が可能になる。
本発明の電極装置の構成例を一部に軸方向断面を用いて示す図である。 (a)は図1中に線分PPで示す位置の軸断面をバレルの内部に金属を貯留した状態で示す断面図であって、(b)は(a)に示すバレルの内部に隔壁を設けた構成例である。 図1とは異なる本発明の電極装置の構成例を一部に軸方向断面を用いて示す図である。 図2中に線分PPで示す位置の軸断面を示す断面図である。 図4に示すバレルの内部へアノードとなる金属を充填した状態を示す断面図である。 図5に示す位置から1つの個室に相当する角度分だけバレルが前方へ回転した状態を示す断面図である。 本発明に適用可能なバレルの軸断面の構成例を示す断面図である。 本発明に適用可能なバレルの軸断面の構成例を示す断面図である。 本発明に適用可能なバレルの軸断面の構成例を示す断面図である。 図4に示す1つの個室の近傍を拡大して示す断面図である。 図10に示す位置から1つの個室に相当する角度分だけバレルが前方へ回転した状態を示す断面図である。 シャフトの構成例を一部に軸方向断面を用いて示す図である。 図12とは異なる別の軸方向断面を有するシャフトの構成例を示す断面図である。 本発明の電極装置を用いた金属箔の製造装置の構成例を示す図である。
 本発明の電極装置について、適宜図面を参照して詳細に説明する。
 本発明の電極装置の構成例を一部に軸方向断面を用いて図1に示し、図1中に線分PPで示す位置の軸断面をバレル2の内部に金属Mを貯留した状態で図2(a)に示し、図2(a)に示すバレル2の内部に隔壁2cを設けた構成例を図2(b)に示す。なお、図2に示すバレル2の軸断面は円形状であるが、後述する六角形や八角形などの多角形状にすることもできる。また、図1に示す構成とは異なる本発明の電極装置の構成例を一部に軸方向断面を用いて図3に示し、図3中に線分PPで示す位置の軸断面を図4に示す。また、図4に示す構成例において、アノードとなる金属Mをバレル2の内部へ充填した状態を図5に示し、バレル2が図5に示す位置から1つの個室に相当する角度分だけ回転した状態を図6に示す。なお、本明細書で参照する各図に示す金属Mは、簡便のため、全体としてはハッチングを用いて略し、一部にのみ個々の金属を示す。
 図1に示す電極装置1および図3に示す電極装置1(以下、まとめて「電極装置1」ということがある。)は、電解液に浸漬して使用できるように、電解液への耐性を有する。電極装置1は、複数の貫通孔2aを備える外壁2bを有し、通電中に電解液に対して可溶性の金属Mを貯留可能なバレル2と、バレル2の内部を通り、通電可能な周面3aを備えるシャフト3と、バレル2の内部に金属Mを送入するための金属送入部4とを有する。また、電極装置1は、バレル2の内部に電解液を吐出するための液送入部5を有する。また、図2および図4に示す電極装置1の液送入部5は、シャフト3の内部を通って(図示略)周面3aに開口を設けた構成であり、後述するように金属Mを効率よく流動させることができるので好ましい。また、金属送入部4も同様に、シャフト3の内部を通って(図示略)周面3aに開口を設けた構成であり、バレル2の軸方向における適切な位置から内部に金属M(個々の金属)を送入できるので好ましい。なお、金属送入部4は、上述した構成の他、例えば、シャフト3の周面3aに形成した溝に埋め込んだパイプなどに開口を設ける構成(図1参照)や、バレル2の側壁のシャフト3の周面3a側に開口を設ける構成なども適用可能である。
 バレル2は、一端側で歯車6a、6bを介してバレル2を回転させるための駆動軸6に連結されるとともに、摺動部7でシャフト3に対して位置決めされ、自転可能に構成されている。なお、バレル2がその内部の長手方向(例えばシャフト3の軸方向)の周りを回転する動作やその状態をバレル2の自転といい、バレル自転用の駆動軸は両端側に設けてもよい。また、シャフト3は、バレル2を摺動部7によって回転自在に支持するとともに、図示は略すが、両端側で固定されていてもよいし、両端側で回転自在に軸支されていてもよい。なお、シャフト3が自転する構成を採用する場合は、シャフト3とバレル2の間に回転速度の差を設けることが好ましい。
 また、本発明におけるバレルは、図2(b)に示すバレル2のように、外壁2bから内部に向かって起立し、かつシャフト3の周面3aに対して間隙を有する1以上の隔壁2cを備えることにより、バレル2の内部空間を区切ることができる。その場合、好ましくは、図4に示すバレル2のように、外壁2bから内部に向かって起立し、かつシャフト3の周面3aに対して間隙を有する複数の隔壁2cと、複数の隔壁2cによってシャフト3の周方向に対して区切られた複数の個室2dと、を備えることである。図2(b)あるいは図4に示すバレル2のように、シャフト3の周面3aに対して間隙を有する隔壁2cを備えることにより、バレル2の内部に貯留した複数の金属M(個々の金属)を隔壁2cが撹拌するように動かすため、複数の金属M(個々の金属)を効率よく流動させることができる。また、バレルが自転するとき、図2(b)や図5に示すように、隔壁2cが適量の金属M(個々の金属)を保持しながら上方へ移動するため、カソードのより近くにアノードとなる適量の金属Mを配置して電解効率を高めることができる。
 また、図2(b)に示すバレル2の内部や、図4に示すバレル2の内部の複数の個室2dには、図5に示すように複数の金属M(個々の金属)が貯留可能である。なお、金属M(個々の金属)は、通電前に、その全金属量がバレル2の全容積に対して適量となるように充填する。また、この図4に示す電極装置1の場合は、バレル2に備える個室2dは8個である。そして、シャフト3の上方に位置するバレル2の個室2d内においては、個々の金属(金属M)のうちの幾らかがシャフト3の周面3aに堆積して接することができる(図5参照)。したがって、その状態でシャフト3の周面3aに通電すれば、個室2d内の金属Mにも通電することができるため、バレル2の個室2d内に充填された個々の金属(金属M)をアノードとして作用させることができる。この点は、詳しく後述する。
 本発明の電極装置では、バレルが自転すると、バレルの内部に適量貯留された金属M(個々の金属)が動かされて流動し、隣接する個々の金属の間で相互衝突が発生する。こうした個々の金属の相互衝突が通電中に発生することにより、アノードとなった個々の金属Mの表面は、生成したスラッジ被膜が適度に除去されるとともに、新鮮な状態で均一に反応することができる表面となる。よって、本発明の電極装置によれば、上述したアノードの表面を覆うスラッジ被膜の問題を解決することができる。
 また、上述した個々の金属(金属M)の流動をより効率よく行うことができる好ましい構成は、図4、図7、図8、図9に示すような断面構造を有する電極装置である。例えば、図4に示す電極装置1では、バレル2が自転し、シャフト3とバレル2の間に回転速度の差が発生すると、バレル2に備わる複数の隔壁2cがシャフト3の周面3aの周りを回転することになる。そのため、個室2dの内部に充填された個々の金属は、隔壁2cによって撹拌されるように動かされ、隣接する個々の金属の間で相互衝突が発生する。したがって、通電中に発生した相互衝突により、アノードとなった個々の金属Mの表面は、生成したスラッジ被膜が適度に除去されるとともに、新鮮な状態で均一に反応することができる表面となる。
 ところで、バレルの内部でアノードとなった個々の金属は、通電によって発生した電界により溶解(以下、「電解」という。)し、その体積が徐々に減少する。そのため、個々の金属の体積減少の相当分だけ、アノードとなる金属Mとカソードとの電極間距離が広がるようになる。そして、金属Mの電解がさらに進んで体積が減少し過ぎると、電界がシャフト3まで達することにより、あるいはシャフト3の周面3aが露出することにより、シャフト3(周面3a)自体が電解することもあり得る。そこで、本発明の電極装置では、バレルの内部に金属M(個々の金属)を送入するための金属送入部を有することにより、通電中に金属M(個々の金属)をバレルの内部に送入して補充できるようにする。かかる金属送入部により、適切なタイミングでバレル2の内部に金属Mを送入することができるため、上記の電極間距離の広がりを抑制するとともに、シャフト3(周面3a)自体の電解を防止することができる。
 なお、かかる金属Mの送入に際しては、金属Mのスラッジ被膜の除去効率や接点の形成効率を考慮し、金属Mをバレル2の内部の全容積に充満した状態(充填率100%)に対して適量(例えば70%~95%の範囲)に制御することが好ましい。具体例を挙げると、スラッジ被膜の除去を重視する場合は充填率を70%~80%の範囲として空隙を増やし、接点の形成を重視する場合は充填率を85%~95%の範囲として金属Mの総量を増やし、両方を適切なバランスにした場合は75%~90%の範囲から適切な充填率を選択することが好ましい。かかる構成を有する本発明の電極装置によれば、上述したようにアノードの表面を覆うスラッジ被膜の問題を解決できるとともに、上述したアノードとカソードとの電極間距離の増大の問題を同時に解決することができる。
 また、図4に示すようなバレル2の内部を複数の個室2dで区切った断面構造を有する電極装置1では、カソードに最も近い側に位置している個室2d内の金属M(個々の金属)の体積減少が最も多く、個々の金属の体積減少が多い分だけ、他の個室2d内よりもカソードとの電極間距離が広がるようになる。例えば、カソードに最も近い側に位置している個室2d内では、通電中に電解液に対して可溶性の金属Mがシャフト3に備わる通電可能な周面3a上に堆積し、個々の金属が接触状態となる。この接触状態で通電すると、シャフトの3の周面3aから個々の金属に電流が印加され、カソードに最も近い側の個々の金属の表面の電解が進行しやすいため体積減少を起こしやすい。
 図4に示すような断面構造を有する電極装置1における上記の個々の金属の体積減少の問題は、電極装置1のそれぞれの個室2dが、シャフト3に対するバレル2の自転によって回転方向の前方に移動することにより解決できる。詳しくは、図5に示す個室2dが、カソード8の表面に最も近い側の位置からバレル2の矢印2fで示す回転によって前方へ移動し、次の個室2dが図6に示すようにカソード8の表面に最も近い側に位置することにより、体積減少した個室2d内の金属Mに替えて、金属Mとの対比で実質の体積減少がない次の個室2d内の金属Mをカソード8の表面の最も近い側に位置させることができるため解決できる。したがって、電極装置1の適用により、通電中に、アノードとなる金属Mのカソードに最も近い側の表面と、カソード8の表面との実質的な電極間距離の変動を抑制することができる。
 上述した本発明におけるバレルの内部の個々の金属(金属M)の電解による体積減少に際しては、バレルの外壁に複数の貫通孔を備えることにより、電解によって貫通孔のサイズよりも小さく消耗して表面積が小さくなった個々の金属を、貫通孔から重力などによって自然排出することができる。例えば電極装置1では、バレル2の外壁2bに複数の貫通孔2aを備えるため、その貫通孔2aから小さくなった個々の金属を自然排出することができる。また、上記の消耗や排出による個々の金属(金属M)の減量に際しては、その減量分に対応するように制御しながら新しい金属M(個々の金属)を金属送入部からバレルの内部へ供給することができる。
 また、金属Mに関する上記の制御は、例えば電極装置1では、金属送入部4のシャフト3の周面3aへの開口を1箇所または複数個所とし、さらに、バレル2の個室2dが下方に位置したときに、その個室2d内へ新しい金属M(個々の金属)が送入されるように行われることが好ましい。バレル2の個室2dが下方に位置した場合は、個室2d内の金属M(個々の金属)が外壁2b側に移動して堆積し、これにより金属送入部4の開口付近に適度な隙間が形成されるため、開口からの金属Mの送入が妨げられない。こうした金属送入部4を備えた構成であれば、個室2d内に貯留された金属Mの体積を常に安定した状態に容易に保持できる。なお、新しい金属M(個々の金属)の供給は、通電の影響が及び難いカソードに近接していない位置で行うことが好ましい。
 本発明において、バレルは、例えば、内部に貯留する金属の形状、サイズ、および質量や、電解液の性質および温度などの諸条件を考慮し、自身の回転が最も効率的に行われるような形状やサイズであることが好ましい。例えば図4に示す断面構造を有する電極装置1では、バレルの軸断面の形状は、図4に示す外壁が円筒形状で8個の個室を備える構成の他、図7に示す外壁が八角形で8個の個室を備える構成や、図8に示す外壁が六角形で6個の個室を備える構成など、外壁が多角形状であってもよい。また、外壁の軸断面形状や個室の個数は任意でよいが、図9に示すような構成、すなわち、個室2dの内部の隣接する隔壁2cの間に、外壁2bから個室2dの内部に向かって張り出す隔壁2cを超えない高さの1つ以上の張り出し部2gを備える構成であってもよい。
 かかる張り出し部は、図9に示す張り出し部2g(断面視で平板形状)に限られない。例えば、断面視で、三角形などの多角形を含む形状、円弧や楕円弧を含む形状、先端がL字やP字やT字などの曲がりを含む形状なども、バレルの内部の個室の個数や容積や金属M(個々の金属)の充填率、個々の金属の形状や大きさなどを考慮し、必要に応じて選択することができる。個室を備えるバレル構成の場合、こうした張り出し部を備えることにより、バレルの自転により流動する金属M(個々の金属)の動きに一層の変化を与え、その動きの変化が金属M(個々の金属)の撹拌をより促進するため、個々の金属のスラッジ被膜の除去効率をより高めることができる。なお、図7~図9に記載の番号は、簡便のため図4に記載の番号を援用している。
 また、バレルの内部を複数の個室で区切った電極装置の場合、バレルに備える複数の隔壁は、上記の諸条件を考慮し、適切な形状および個数に設定することが好ましい。具体的には、隔壁の形状は、図4に示す平板状の他、湾曲板状、波板状、その他の異形状、あるいはこれら形状を部分的に組合せた形状であってもよい。また、隔壁の個数や配置は、上記の諸条件を考慮し、図4に示すようにシャフト3の周方向(バレル2の軸回り)の8箇所に区切って均等に配置することや、8箇所未満あるいは8箇所を超えて区切ることや、隔壁間距離を均等に区切るのではなく例えば1つおきに同等となるように区切ることや、すべての隔壁間距離が異なるように区切ることも可能である。例えば、図3に示すバレル2を参照すれば、バレル2の軸方向の右側と左側とで、隔壁の個数を調整するなどして軸回りの隔壁間距離を変えることや、前記右側と前記左側とでバレル2の軸回りにおける隔壁の取付位置(隔壁の位相)を変えて配置することもできる。また、隔壁の外壁に対する軸断面で見た配置は、上記の諸条件を考慮し、外壁に対して垂直な配置や、軸回りに傾斜する配置や、例えば螺旋の軸断面のように軸方向に徐々に位相が変化するように配置することもできる。
 次に、図4に示す断面構造を有する電極装置1について、バレル2が自転したときの個室2d内に適量貯留された金属Mの挙動について、図面を参照して説明する。図5および図6に示すバレル2の個室2dのおよび個室2dの近傍を拡大し、図10および図11に示す。なお、図10および図11に記載の番号は、簡便のため図5および図6に記載の番号を援用している。
 バレル2の例えばシャフト3の上方に位置する図10に示す個室2dの内部では、金属Mを構成する個々の金属は、その自重で互いに接触して接点S(以下、図中に示す接点Sで代表する。)を構成し、その個々の金属の幾つかはシャフト3の周面3aと接触して接点S(以下、図中に示す接点Sで代表する。)を構成している。上記の個々の金属間の接点Sや周面3aに接触する個々の金属の間の接点Sによれば、周面3aから最も遠い側すなわちカソード8に最も近い側に位置する個々の金属まで接点Sを介して電気的に連続した構成とすることができる。この状態で、シャフト3の周面3aを経由して電気エネルギーを供給することにより、接点Sを介してバレル2の個室2d内の個々の金属のすべてに電気エネルギーを供給することができる。
 また、通電中、バレル2の自転によって個室2dが図11に示す位置に移動されると、上述した状態にあった個々の金属(金属M)は、回転による傾きによって個室2d内で流動して連続的に位置が変わり、撹拌される。しかし、個々の金属は、その自重によって互いの表面が接触しているため、互いの表面を擦り合いながら連続的に位置を変えることができる。そのため、個々の金属間の接点Sは、撹拌によって離れたとしても直後瞬時に再構成することができる。この接点の再構成については、周面3aとの接点Sについても同様である。なお、個々の金属が球形であると、つまり、球形金属を金属Mとして使用すると、個々の金属が互いに均等的に接触しやすく、上記の接点S(接点S、接点S)の構成が、より確実に、かつ安定的に行われるため好ましい。
 バレル2の自転稼働(自転動作)は、連続稼働や間欠稼働を適用することができる。間欠稼働の場合、所定の時間毎に回転と停止を繰り返す間欠回転や、数秒間乃至数分間の回転と停止を繰り返す周期回転を適用することができる。このような自転動作となるようにバレル2を稼働すれば、上述したいずれの稼働パターンであってもバレル2の内部で金属Mを適度に撹拌することができる。また、バレル2を間欠稼働することは好ましく、自転と停止を繰り返すバレル2が停止している間に、沈降して静止した金属M(個々の金属)の間で構成される接点がより安定化される。なお、間欠稼働におけるバレル2の停止時間は、スラッジ被膜の除去に支障がない限り長く設定することが好ましい。
 上述したバレル2の間欠稼働の有効性を評価するための試行を行った。具体的には、図9に示す、八角形状の外壁2bと、2つの隔壁2cによる2つの個室2dと、各々の個室2dの3箇所に備わる張り出し部2gを有する構造のバレル2(長さが750mm、内径が110mm、外壁2bの厚さが1.5mm、周面3aの外径が70mm)を用いて、金属Mの充填率を70%~95%の範囲で幾つか変えて、バレル2の自転を間欠稼働または連続稼働として試行した。その結果、連続稼働時の電解電圧に対する間欠稼働時の電解電圧が、停止中で約10%、自転の始動時で約2%、自転の安定時で約5%、それぞれ低減することが分かった。なお、かかる試行に際しては、バレル2の稼働パターンを除き、シャフト3を静止させてバレル2の回転数を3rpmとし、電解液の配合および電解条件(印加電流密度を100mA/cm、液送入部5で計測した流量を25L/分、電解液の温度を100℃)を同等に設定した。そして、間欠稼働では、5分間の停止と40秒間の回転を繰り返すパターンと、10分間の停止と2分間の回転を繰り返すパターンとした。かかる試行結果から、好ましいバレル2の稼働(回転動作)は間欠稼働であり、電解電圧の低減効果が得られることが分かった。
 また、撹拌中、カソード8に最も近い側に位置する金属M(個々の金属)の表面には、上述したように電解によるスラッジ被膜が形成されやすい。しかし、金属M(個々の金属)は、その自重によって互いの表面が擦れ合っているため、その表面にスラッジ被膜が形成されたとしても、その擦れ合いの発生によって除去される。このとき、個々の金属が球形であることが好ましく、つまり、球形金属を金属Mとして使用することが好ましく、個々の金属が球形であることで互いに均等的に接触しやすくなるので、スラッジ被膜の除去が、より確実に、かつ安定的に行われる。したがって、通電中、アノードとなる個々の金属の表面は実質的に新鮮な状態に保持され、金属M(個々の金属)の間の電気エネルギーは接点Sによって安定に伝達される。なお、金属M(個々の金属)の表面から除去されたスラッジ被膜(スラッジ残渣)は、上述したバレル2の外壁2bに備える複数の貫通孔2aから自然排出される。このとき、液送入部5からバレル2の内部に電解液が吐出されていると、電解液によって個室2d内が撹拌されてスラッジ残渣の排出が促進される。
 また、通電中、上述したように新しい金属M(個々の金属)をバレル2の内部へ供給可能な構成であると、新鮮で消耗していない個々の金属と、電解によって消耗しつつある個々の金属とが共存し、大きさが様々な個々の金属の集合体となった金属M(以下、「定常状態の金属M」という。)がバレル2内に貯留されることになる。上述した撹拌による定常状態の金属M(個々の金属)の流動は、個々の個室2d内の金属イオン濃度を均質な状態に保持することに寄与する。また、個々の個室2dはシャフト3の周面3aに対して間隙2eを有する隔壁2cを備えているため、間隙2eから隣接する別の個室2dへ、バレル2の回転によって定常状態の金属M(個々の金属)が流動することもできる。なお、間隙2eの大きさは、例えば図10に示す上方に位置した個室2dの内部を考えたとき、個室2dの内部に適量の金属Mが貯留されるように、個々の金属の隣接する別の個室2dへの過剰な流動が抑制される程度(例えば未電解の個々の金属の平均粒径の1.1倍から2.5倍程度)の設定が好ましい。したがって、定常状態の金属Mを個々の個室2dに貯留しているバレル2内もまた、全体としての金属イオン濃度が均質な状態に保持される。なお、個々の金属が球形であると、つまり、球形金属を金属Mとして使用すると、個々の金属が間隙2eを通過しやすく、上記の流動が、より確実に、かつ安定的に行われるため好ましい。
 このとき、例えばシャフト3の周面3aに開口する液送入部5からバレル2の内部に向かって電解液が吐出されている構成が好ましい。液送入部5から吐出した電解液は、個室2dの内部の個々の金属(金属M)の間を通過してバレル2の外部へ吐出される。このとき、通過する電解液が、個室2dの内部に貯留された金属Mを流動させて撹拌させる。これにより、金属イオン濃度の均質化が促進されるとともに、バレル2の外壁2bに備える複数の貫通孔2aから電解液が吐出されることにより、金属イオン濃度が均質な電解液の液流の形成が促進される。例えば、液送入部5のシャフト3の周面3aへの開口を1箇所または複数個所とし、さらに、通電中、常時あるいはバレル2の個室2dが上方に位置したとき、新しい電解液が送入されるように制御することが好ましい。バレル2の個室2dが上方に位置した場合は、個室2d内の金属M(個々の金属)がシャフト3の周面3a側に移動して堆積し、これにより開口から送入された電解液が金属M(個々の金属)の隙間を確実に通過する。こうした液送入部5を備えた構成とし、液送入部5から例えば図5や図10に示す個室2dの内部へ電解液を吐出することにより、複数の貫通孔2aからバレル2の外部へ金属イオン濃度が均質な電解液を吐出させることができ、さらにカソード8に向かう液流を形成することができる。こうした構成を有する本発明の電極装置1をアノードとして使用すれば、金属イオン濃度が均質な電解液の液流がカソード8に供給されるため、安定した電解処理を行うことができる。
 また、例えばバレル2がカソード8の下方に配置された構成例の場合、バレル2の個室2d内に貯留された金属Mが最も電解されやすいのは、図10に示すシャフト3の上方に位置した個室2dの内部においてである。したがって、その個室2dに対応するシャフト3の周面3aもまた電解のターゲットとなりやすい。しかし、この構成例では、シャフト3の周面3aは、カソード8から最も遠い側に位置して金属M(個々の金属)との接点Sを構成している。そのため、カソード8により近い側に位置する金属Mが優先的に電解され、電解によるシャフト3の周面3aの実質的な消耗を抑制することができる。なお、シャフト3の周面3aの形状は、断面視において、図4に示すような円形の他、例えば、楕円形や多角形にもできるが、バレル2の隙間2eや金属Mの形状などとの関係を考慮して選択することが好ましい。
 シャフト3の周面3aは、例えば上記の構成によって電解による実質的な消耗を抑制することができる。しかし、長時間の通電を経ると、上記の撹拌による金属M(個々の金属)の衝突に起因して、あるいは徐々に進行する電解に起因して、シャフト3の周面3aの消耗は避けられない。したがって、本発明においてシャフト3は、図12に示すように、周面3aを備える外筒3bと、外筒3bを装着する軸体3cとを有することが好ましい。この構成により、周面3aが消耗あるいは損傷したときには外筒3bを交換するだけでよく、軸体3cは再使用することができる。また、図12に示す外筒3bは軸体3cに対する装着を円筒面で行う構成を有するが、より好ましくは図13に示す構成を有する外筒3bである。この外筒3bは、軸体3cに対する装着をテーパ面3dで行うテーパ構造を有するため、軸体3cとの着脱が容易になる。かかるテーパ構造は、軸体3cの外周形状が軸方向の一方から他方にかけて径が大きくなる形状を有し、これに対する該当3bの内周形状が軸体3cの外周形状に相似して軸方向の一方から他方にかけて径が大きくなる形状を有しており、互いに組み合う構造となっている。
 次に、上述した本発明の電極装置を用いる本発明の金属箔の製造方法について、その製造方法を適用した金属箔を連続して製造可能な装置(以下、「製造装置」という。)の構成例を挙げて、適宜図面を参照して説明する。
 図14に示す製造装置は、導電性の液体である電解液11と、自転可能なドラム12と、そのドラム12の周面12aに対向するように配置され、通電中に電解液11に対して可溶性の金属Mが適量貯留されたバレル2を有する複数の電極装置1とが、密閉容器13内に配置されている。そして、電極装置1とドラム12の周面12aとの距離は、より効率のよい電解状態が得られる所定の範囲に設定されている。また、電解液11の循環装置14と、電解液11の貯留槽15と、貯留槽15内で電解液11を撹拌するための攪拌機16とを有する。また、電解液11がドラム12の周面12aと電極装置1の間において液面11aまで満たされているため、アノードとなる金属Mを有する複数の電極装置1と、電極装置1に対して異極となるドラム12の周面12a(図5に示すカソード8に対応する)の一部とが、電解液11に浸漬された状態になっている。また、電解液11は、密閉容器13内において液面11bまで満たされ、貯留槽15内において液面11cまで満たされている。
 上記の製造装置によって金属箔10を形成する場合は、ドラム12が回転軸12bによって矢印18で示す方向に連続的に自転する状態とし、かつ、複数の電極装置1に有するバレル2が上述したような間欠稼働もしくは連続稼働のパターンで自転する状態とし、かかる状態を保ちながら、ドラム12の周面12aと、バレル2の内部を通るシャフト3の周面3aとの間で適切に通電することにより、ドラム12の周面12a上に金属Mの成分を含む金属膜10aを電析させる。また、かかる通電中に、バレル2の内部に貯留された金属Mの電解によって消耗した体積減少分に対応するだけの金属Mを、電極装置1のバレル2の内部に送入するプロセスを含むことにより、アノードとなる金属Mの体積を常に安定した状態に保持することが好ましい。
 上記の操作により、自転するドラム12の周面12a上に金属膜10aを電析させ、その金属膜10aを自転するドラム12の周面12a上から連続的に剥離することによって金属箔10に形成することができる。この製造装置では、金属膜10aを剥離して連続的に金属箔10を形成し、その直後に、表裏の液切りを密閉容器13の出口側に設けたワイパー17によって行いながら金属箔10を矢印19で示す方向へ連続的に引き出すことや、さらに引き出した金属箔10を連続的に巻取りリール(図示略)に巻取ることができる。なお、密閉容器13の内部は、露点が-40度以下の嫌気性乾燥雰囲気とすることにより、吸湿による電解液11の劣化を抑制することが好ましい。
 本発明においてアノードとなる金属Mは、例えば、97質量%以上のアルミニウムを含むアルミニウム合金や、99.9質量%以上のアルミニウムを含む実質的な純アルミニウムなどであってよい。なお、アルミニウムが97質量%未満であるアルミニウム合金を金属Mとして使用する場合は、通電時のスラッジ被膜の生成量が増加して電解効率が低下する可能性があることに留意すべきである。
 また、上記の製造装置では、金属箔10を連続的に形成する間、循環装置14により電解液11が強制的に循環されるように構成されている。具体的には、循環装置14は、貯留槽15から矢印20aで示す方向に電解液11を吸い出し、矢印20bで示す方向に強制的に送り出し、これにより複数の電極装置1の間を通過しながらドラム12の周面12aへと向かう電解液11の液流を形成することができる。そして、ドラム12の周面12aに達した液流は、周面12aに沿う方向に流れを転じるとともに周面12aに沿って液面11aに向かい、液面11aから矢印20dで示すように溢れ出す。その後、溢れ出た電解液11は、液面11bに落下して矢印20eで示す方向に流れ、貯留槽15に戻る。こうした循環装置14による電解液11の循環と、貯留槽15内での攪拌機16による電解液11の十分な撹拌により、金属イオン濃度や温度が均質な状態の電解液11を連続的に循環させることができる。なお、電解液11の循環プロセスにおいては、循環装置14を含む循環経路の適切な箇所に流量計を設けて流量制御を行うことが好ましい。
 また、上述したようにバレル2の内部に電解液11を吐出するための液送入部5を有する電極装置1であれば、上記の電解液11の循環に加えて、液送入部5からバレル2の内部に吐出した電解液11により、ドラム12の周面12aへと向かう矢印20fで示す金属イオン濃度が均質な電解液11の液流を形成することができる。この場合の液送入部5への電解液11の供給は、例えば、循環装置14からの分岐であってもよいし、専用の液供給装置(図示を略す)を設けてもよい。
 なお、図14に示す製造装置は、図1などに示すバレル2の構造に限られる製造装置ではなく、連続的な金属箔の製造に広く適用でき、かつ有効な製造装置であり、それだけでも1つの発明を構成することができる。例えば、導電性の液体である電解液を保持するとともに、金属箔を引出すための箔引出し口を備える容器(電解液槽)を有し、前記容器の内部に、自転(回転)可能な陰極ドラムと、複数の電極装置(陽極装置)とを有し、前記複数の電極装置(陽極装置)は前記陰極ドラムの周面に沿うように対向して配置されており、ぞれぞれの前記電極装置(陽極装置)は電解液に対して通電中に可溶性の金属(アノード金属)を貯留するとともに、自転(回転)可能なバレルを有する、金属箔の製造装置を提供することができる。
 また、かかる金属箔の製造装置を用いて、導電性の液体(電解液)を介して、自転する前記陰極ドラムと、前記電極装置(陽極装置)に備わる自転する前記バレルの内部の金属(アノード金属)との間で通電し、前記陰極ドラムの周面上に前記金属の成分を含む金属膜を連続的に電析させ、前記金属膜を前記陰極ドラムの周面上から連続的に剥離することにより、金属箔を連続的に形成することができる金属箔の製造方法を提供することができる。また、電極装置(陽極装置)に備わるバレルが自転すると、前記バレルの内部に適量貯留されている金属が撹拌されるとともに、金属同士の衝突や擦過が発生する。かかる金属の撹拌や、金属同士の衝突や擦過による研磨作用により、電解による金属の表面のスラッジ被膜の生成が抑制されるとともに、たとえ金属の表面にスラッジ被膜が生成されたとしても適度に除去することができる。
 上述した本発明の電極装置の有効性を確認するため、図14に示すものと同様な構成の製造装置により上述した本発明の金属箔の製造方法を適用し、厚さが9μm、幅が20mm、長さが約20mのアルミニウム箔(本発明例)を作製し、JIS-C6515:1998(プリント配線板用銅はく)の附属書A.2.3に準じて引張試験を行った。試験体となるアルミニウム箔は、製箔開始からの長さ(製箔長さ)が1m付近および20m付近で採取した。但し、製造装置は、図9に示す断面構造の金属Mの充填率が95%のバレルを備える2つの電極装置を配置して陽極側の構成を簡略化し、かかる電極装置の配置に適するように陰極ドラムを構成した。また、バレルの稼働パターンは、5分間の停止と40秒間の回転(3rpm)を繰り返す間欠稼働とし、電解液の温度が約100℃、印加電流が15Aとなるように制御した。一方、比較のため、2つの上記電極装置に替えてアルミニウム製曲り板を陰極ドラムの胴体表面に対向配置し、電解液の温度が約100℃、印加電流が15Aとなるように制御し、同等サイズのアルミニウム箔(比較例)を製造した。
 上述した引張試験を行った結果、製箔開始から1m付近の引張強さは、比較例が230MPaで本発明例が250MPaとなり、約8.7%の向上効果が確認された。そして、製箔開始から20m付近の引張強さは、比較例が190MPaで本発明例が245MPaとなり、約22.4%の大きな向上効果が確認された。また、製箔長さによる引張強さの変化は、比較例では、1m付近が230MPaで20m付近が190MPaとなり、約17.4%の大きな低減が確認された。一方、本発明例では、1m付近が250MPaで20m付近が245MPaとなり、約2.0%の僅かな低減に止まることが確認された。したがって、内部に金属Mが適量充填されて自転するバレルを備える本発明の電極装置、およびそれを用いた本発明の金属箔の製造方法が有効であることが確認された。
 本発明の電極装置およびそれを用いた金属箔の製造方法は、電解法による連続的な金属箔の製造に利用することができる。
1.電極装置、2.バレル、2a.貫通孔、2b.外壁、2c.隔壁、2d.個室、2e.間隙、2f.矢印、2g.張り出し部、3.シャフト、3a.周面、3b.外筒、3c.軸体、3d.テーパ面、4.金属送入部、5.液送入部、6.駆動軸、6a.歯車、6b.歯車、7.摺動部、8.カソード、10.金属箔、10a.金属膜、11.電解液、11a.液面、11b.液面、11c.液面、12.ドラム、12a.周面、12b.回転軸、13.密閉容器、14.循環装置、15.貯留槽、16.攪拌機、17.ワイパー、18.矢印、19.矢印、20a~20f.矢印、金属、S.接点

 

Claims (10)

  1.  導電性の液体に浸漬して用いる電極装置であって、
     複数の貫通孔を備える外壁を有し、通電中に前記液体に対して可溶性の金属を貯留可能なバレルと、前記バレルの内部を通り、通電可能な周面を備えるシャフトと、前記バレルの内部に前記金属を送入するための金属送入部と、を有し、前記バレルは自転する、電極装置。
  2.  前記バレルは、前記外壁から内部に向かって起立し、かつ前記シャフトの前記周面に対して間隙を有する複数の隔壁と、前記複数の隔壁によって前記シャフトの周方向に対して区切られた複数の個室と、を備える、請求項1に記載の電極装置。
  3.  前記バレルは、隣接する前記複数の隔壁の間に、前記外壁から内部に向かって張り出す前記隔壁を超えない高さの張り出し部を備える、請求項2に記載の電極装置。
  4.  前記金属は球形である、請求項1乃至3のいずれか1項に記載の電極装置。
  5.  前記シャフトは、前記周面を備える外筒と、前記外筒を装着する軸体と、を有する、請求項1乃至4のいずれか1項に記載の電極装置。
  6.  前記外筒の前記軸体に対する装着はテーパ構造による、請求項5に記載の電極装置。
  7.  導電性の液体に、通電中に前記液体に対して可溶性の金属を貯留した請求項1乃至6のいずれか1項に記載の電極装置と、前記電極装置に対して異極となるドラムの周面の一部とを浸漬し、
     前記電極装置のバレルを自転させるとともに、前記ドラムを一方向に自転させながら、前記ドラムの周面と、前記電極装置のシャフトの周面との間で通電し、
     前記ドラムの周面上に前記金属の成分を含む金属膜を電析させ、前記金属膜を前記ドラムの周面上から剥離することにより金属箔を形成する、金属箔の製造方法。
  8.  前記通電中に、前記金属を前記電極装置のバレルの内部に送入するプロセスを含む、請求項7に記載の金属箔の製造方法。
  9.  前記電極装置のバレルを間欠回転させる、請求項7または8に記載の金属箔の製造方法。
  10.  前記金属は97質量%以上のアルミニウムを含む、請求項7乃至9のいずれか1項に記載の金属箔の製造方法。

     
PCT/JP2016/077931 2015-12-11 2016-09-23 電極装置およびそれを用いた金属箔の製造方法 WO2017098774A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187017804A KR102402804B1 (ko) 2015-12-11 2016-09-23 전극 장치 및 그것을 이용한 금속박의 제조 방법
US16/060,656 US10633753B2 (en) 2015-12-11 2016-09-23 Electrode device and metal foil manufacturing method using same
EP16872674.3A EP3388557B1 (en) 2015-12-11 2016-09-23 Apparatus for manufacturing a metal foil and metal foil manufacturing method using same
CN201680071631.XA CN108368625B (zh) 2015-12-11 2016-09-23 电极装置和使用该装置的金属箔的制造方法
JP2017535111A JP6521074B2 (ja) 2015-12-11 2016-09-23 電極装置およびそれを用いた金属箔の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-242149 2015-12-11
JP2015242149 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017098774A1 true WO2017098774A1 (ja) 2017-06-15

Family

ID=59013010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077931 WO2017098774A1 (ja) 2015-12-11 2016-09-23 電極装置およびそれを用いた金属箔の製造方法

Country Status (7)

Country Link
US (1) US10633753B2 (ja)
EP (1) EP3388557B1 (ja)
JP (1) JP6521074B2 (ja)
KR (1) KR102402804B1 (ja)
CN (1) CN108368625B (ja)
TW (1) TWI633212B (ja)
WO (1) WO2017098774A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383105A (zh) * 2018-04-28 2018-08-10 青岛科技大学 一种滚筒式电弧法分散碳纳米管的装置
CN109778290B9 (zh) * 2019-04-01 2024-01-12 河南理工大学 一种可溶性阳极机构
CN110923791B (zh) * 2019-10-25 2021-07-30 深圳市鑫钛真空镀膜科技有限公司 一种仿金制品表面歇转联程电镀设备
CN114622257B (zh) * 2022-02-16 2023-04-25 西比里电机技术(苏州)有限公司 一种辊压式热电化学氧化单面镀箔设备
CN114921840B (zh) * 2022-05-16 2023-04-11 西安泰金新能科技股份有限公司 一种大规格阴极辊及制造方法
CN116534956B (zh) * 2023-05-10 2024-03-29 郑楷集团有限公司 一种用于污水处理的高效电解装置及其电解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502378B1 (ja) * 1969-02-26 1975-01-25
JPS5334633A (en) * 1976-09-14 1978-03-31 Toppan Printing Co Ltd High speed electrocasting device
JPS5887872U (ja) * 1981-12-04 1983-06-14 株式会社中島銅工所 バレルめつき装置
JPS61201799A (ja) * 1985-03-05 1986-09-06 Kawasaki Steel Corp 電気めつき装置の可溶性陽極
JPS6320497A (ja) * 1986-07-14 1988-01-28 Takuji Yamamoto 大形物体の高速電鋳装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502378A (ja) * 1973-05-15 1975-01-10
US4390399A (en) 1980-11-24 1983-06-28 Mcinnes Robert Method and apparatus for plating articles
JPS61207587A (ja) 1985-03-11 1986-09-13 Nippon Kokan Kk <Nkk> 鋼管の管端めつき用アノ−ド装置
JPS62294199A (ja) 1986-06-12 1987-12-21 Kobe Steel Ltd 電気めつき用アノ−ド
JPH03120562U (ja) * 1990-03-20 1991-12-11
JPH04333590A (ja) 1991-05-08 1992-11-20 Toyo Kohan Co Ltd 電気錫めっきにおけるスラッジ抑制方法
JP3949198B2 (ja) 1996-10-23 2007-07-25 赤穂化成株式会社 V−ATPase 脱共役 H+ ポンプ阻害剤
EP1826294A1 (en) * 2002-06-25 2007-08-29 Integran Technologies Inc. Process for electroplating metallic and metal matrix composite foils and microcomponents
CN201024221Y (zh) 2007-04-13 2008-02-20 叶树成 卧式流镀机
JP2009013440A (ja) 2007-06-29 2009-01-22 Hitachi Maxell Ltd 電気めっき装置及び電気めっき方法
JP5700366B2 (ja) 2009-09-12 2015-04-15 千住金属工業株式会社 鉛フリーめっき用陽極
JP5884169B2 (ja) 2012-03-01 2016-03-15 Jfeスチール株式会社 電気めっき鋼板の製造ラインの自溶性電極の消費量自動監視システム及び方法
WO2014041928A1 (ja) 2012-09-12 2014-03-20 Necエナジーデバイス株式会社 電極ロール体及び電極ロール体の製造方法
CN103741173B (zh) 2013-12-30 2016-08-17 菏泽天宇科技开发有限责任公司 一种高一致性泡沫镍制备设备及制备方法
CN105063730B (zh) 2015-07-14 2017-04-19 北京大学东莞光电研究院 一种电镀滚筒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502378B1 (ja) * 1969-02-26 1975-01-25
JPS5334633A (en) * 1976-09-14 1978-03-31 Toppan Printing Co Ltd High speed electrocasting device
JPS5887872U (ja) * 1981-12-04 1983-06-14 株式会社中島銅工所 バレルめつき装置
JPS61201799A (ja) * 1985-03-05 1986-09-06 Kawasaki Steel Corp 電気めつき装置の可溶性陽極
JPS6320497A (ja) * 1986-07-14 1988-01-28 Takuji Yamamoto 大形物体の高速電鋳装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388557A4 *

Also Published As

Publication number Publication date
EP3388557A1 (en) 2018-10-17
TW201720970A (zh) 2017-06-16
TWI633212B (zh) 2018-08-21
CN108368625B (zh) 2020-04-28
KR20180092999A (ko) 2018-08-20
US10633753B2 (en) 2020-04-28
JP6521074B2 (ja) 2019-05-29
EP3388557A4 (en) 2019-05-22
CN108368625A (zh) 2018-08-03
KR102402804B1 (ko) 2022-05-27
EP3388557B1 (en) 2020-11-11
JPWO2017098774A1 (ja) 2018-06-21
US20190017186A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017098774A1 (ja) 電極装置およびそれを用いた金属箔の製造方法
US2503863A (en) Apparatus for electroplating the inside of pipes
US4395320A (en) Apparatus for producing electrodeposited wires
KR101648537B1 (ko) 실린더용 도금방법 및 장치
JP2013060658A (ja) 軸体に電気めっきを形成するための装置、めっき皮膜を有する軸体の製造方法および軸体上に亜鉛系めっき皮膜を形成するためのめっき液
JP6528939B2 (ja) 電解アルミニウム箔の製造方法および製造装置
JP2017171973A (ja) 電極装置およびそれを用いた金属箔の製造方法
JP5506916B2 (ja) 棒の連続電解表面仕上げ装置及び方法
US7560015B2 (en) Process for electrolytic coating of a strand casting mould
EP3733934A1 (en) Electroplating assembly mechanism
JP5440958B2 (ja) メッキ装置
WO2002077328A1 (fr) Procede et dispositif de traitement de film de phosphate
JP2018135584A (ja) アルミニウム箔の製造方法
JP6670444B2 (ja) 電解アルミニウム箔製造用金属およびその製造方法並びに電解アルミニウム箔の製造方法
JP4457963B2 (ja) バレルめっき装置
KR20170056383A (ko) 배럴 도금 장치
JPH06170648A (ja) 工作物の表面処理装置
JP7155809B2 (ja) 陽極装置、アルミニウム箔の製造装置、アルミニウム箔の製造方法
KR200228330Y1 (ko) 소형제품 전기도금용 바렐
WO2022208895A1 (ja) バレルめっき用の水平回転バレル
JP5631567B2 (ja) 電気めっきにより被膜を工作物に被着させる装置及び方法
JP5610128B2 (ja) メッキ装置
JP2008223109A (ja) めっき装置及びめっき方法
US626361A (en) blackman
JP6045481B2 (ja) 電気銅の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017535111

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016872674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016872674

Country of ref document: EP

Effective date: 20180711