WO2017097194A1 - 一种全固相制备卡贝缩宫素的方法 - Google Patents

一种全固相制备卡贝缩宫素的方法 Download PDF

Info

Publication number
WO2017097194A1
WO2017097194A1 PCT/CN2016/108824 CN2016108824W WO2017097194A1 WO 2017097194 A1 WO2017097194 A1 WO 2017097194A1 CN 2016108824 W CN2016108824 W CN 2016108824W WO 2017097194 A1 WO2017097194 A1 WO 2017097194A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
carbetocin
solid phase
amino
Prior art date
Application number
PCT/CN2016/108824
Other languages
English (en)
French (fr)
Inventor
姚志军
马婧思
伍柯瑾
宓鹏程
陶安进
袁建成
Original Assignee
深圳翰宇药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳翰宇药业股份有限公司 filed Critical 深圳翰宇药业股份有限公司
Publication of WO2017097194A1 publication Critical patent/WO2017097194A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/16Oxytocins; Vasopressins; Related peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of preparation of polypeptide medicines, and in particular relates to a preparation method of carbetocin.
  • Carbetocin is a synthetic long-acting oxytocin nonapeptide analogue with agonist properties.
  • a single dose of intravenous administration after epidural or spinal anesthesia can be used to prevent uterine tension and postpartum hemorrhage.
  • carbetocin The clinical and pharmacological properties of carbetocin are similar to naturally occurring oxytocin. Like oxytocin, carbetocin binds to the oxytocin receptor of the uterine smooth muscle, causing a rhythmic contraction of the uterus, increasing its frequency and increasing uterine tension on the basis of the original contraction. In non-pregnant conditions, the uterine oxytocin receptor content is very low, increasing during pregnancy and peaking during childbirth. Therefore, carbetocin has no effect on the non-pregnant uterus, but has an effective uterine contraction effect on the uterus of the pregnancy and the newly produced uterus.
  • Carbetocin has the following structure:
  • the preparation method of carbetocin and its analogues is mainly liquid phase synthesis process in the early stage, which is complicated in operation, which is not conducive to industrial production and low application value.
  • carbetocin Including ES2115543, a Spanish company, is a solid-liquid phase synthesis method.
  • the base used also includes LiOH, NaHCO 3 , DIEA, DMAP.
  • the invention utilizes the principle of solid phase pseudo-dilution to develop a solid phase high efficiency cyclization method, the reaction time is shortened to 2 to 3 hours, and the reaction waste liquid is reduced to 1/10 or less of the liquid phase reaction. Moreover, the side reaction can be effectively reduced, the purity of the crude peptide can be improved, and the yield can be improved.
  • the former type uses brominated butyric acid as raw material. Because bromine is relatively active, there are more side reactions in the coupling, resulting in more impurities and lower yield. The latter method increases the cost of raw materials because it first protects the carboxyl group. And the side reaction caused by decarboxylation protection, the impurity situation is not improved than the former method, but the cost and operation complexity are increased.
  • the object of the present invention is to provide a solid phase synthesis process of carbetocin which is high in yield, low in cost, mild in reaction conditions, small in environmental pollution, and advantageous in industrialization.
  • One aspect of the invention relates to a method for preparing a solid solid phase of carbetocin, comprising the steps of:
  • amino group protected glycine is selected from the group consisting of Fmoc-Gly-OH; the amino group protected leucine is selected from the group consisting of Fmoc-Leu-OH; the amino group and the side chain protected valine are selected from the group consisting of Fmoc-Pro-OH; the amino and side chain protected cysteine is selected from the group consisting of Fmoc-Cys(Mmt)-OH; the amino and side chain protected asparagine is selected from the group consisting of Fmoc-Asn (Trt) -OH; the amino and side chain protected glutamine is selected from the group consisting of Fmoc-Gln(Trt)-OH; the amino and side chain protected isoleucine is selected from the group consisting of Fmoc-Ile-OH; The protected tyrosine and the side chain are selected from the group consisting of Fmoc-Tyr(Me)-OH.
  • the solid phase synthesis method described in the step 1) is a Fmoc solid phase polypeptide synthesis method, and the coupling agent selected is DIPCDI+A or DIPEA+A+B, wherein A is selected from HOBt or HOAt, and B is selected from PyBOP.
  • the solid phase carrier described in the step 1) is Rink Amide resin Rink Amide-AM resin or Rink Amide-MBHA resin, preferably, the resin substitution degree is 0.2-0.9 mmol/g, more preferably 0.4-0.6. Mmmol/g.
  • the removal reagent of the step 3) is a dichloromethane solution of trifluoroacetic acid and triisopropylsilane, the concentration of trifluoroacetic acid is 2 to 5%, and the concentration of triisopropylsilane is 3 to 8%.
  • the solvent of the step 4) is preferably DMF or N-methylpyrrolidone, and the reaction time is 2-3 hours.
  • a purification step is further included, and preferably the purification step is selected from the group consisting of recrystallization and reverse phase high pressure liquid phase methods.
  • the resin was washed 3 times with DMF, deprotected by DBLK for 5 min + 7 min, and the resin was washed 6 times with DMF.
  • the ninhydrin was detected to have a color.
  • 31.2 g (88.2 mmol) of Fmoc-Leu-OH and 13.1 g (97.0 mmol) of HOBT were weighed and dissolved in DMF.
  • 15.2 mL (105.8 mmol) of DIPCDI for 3 min in an ice water bath, the mixture was added to the reaction column at room temperature.
  • the reaction was carried out for 2 hours, and the reaction end point was detected by ninhydrin (if the resin was colorless and transparent, the reaction was terminated; if the resin developed color, the reaction was prolonged for 1 hour).
  • the resin was washed 3 times with DMF, deprotected by DBLK for 5 min + 7 min, DMF washed with resin 3 times, DCM washed with resin 3 times, and ninhydrin detection resin was colored.
  • Solid phase cyclization After the end of the Mmt protection reaction, it was washed 3 times with DCM and 3 times with DMF. Weigh 22.4g (147mmol) DBU and dissolve it into the solid phase reaction column with appropriate amount of DMF. After reacting for 2 hours at room temperature, the reaction end point is detected by DTNB (if the resin is colorless and transparent, the reaction is terminated; if the resin develops color, the reaction is prolonged for 0.5 hour. Until the resin is colorless).
  • reaction solution was drained, and the resin was washed 3 times with DMF, and the liquid was drained.
  • Example 3 Comparative example using bromobutyric acid as raw material
  • Example 1 4-chlorobutyric acid was changed to 4-bromobutyric acid for solid phase coupling to obtain BrCH 2 CH 2 CH 2 CO-Tyr(Me)-Ile-Gln(Trt)-Asn ( Trt)-Cys(Mmt)-Pro-Leu-Gly-Rink Amide resin, and then the Mmt protecting group was removed.
  • the solid phase cyclization step was carried out by DIPEA, cyclized at room temperature for 3 hours, and the reaction end point was detected by DTNB (if the resin was colorless and transparent, the reaction was terminated; if the resin developed color, the reaction was extended for 0.5 hour until the resin was colorless).
  • Example 4 Comparative example of first coupling thioether
  • the Fmoc-Tyr(Me)-Ile-Gln(Trt)-Asn(Trt)-Cys(Mmt)-Pro-Leu-Gly-Rink Amide resin was prepared by solid phase coupling, then the Mmt protecting group was removed and removed. After the Mmt protecting group, bromobutyric acid and DIPEA were weighed and dissolved in DMF and added to the reaction column. After the reaction for 0.5 h, the reaction end point was detected by DTNB (if the resin was colorless and transparent, the reaction was terminated; if the resin developed color, the reaction was extended for 0.5 hour until the resin was colorless).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供一种卡贝缩宫素的全固相制备方法,先将氯代丁酸通过酰胺偶联与肽链的酪氨酸氨基偶联,然后采用DBU为碱在固相上进行环化得到卡贝缩宫素粗肽。

Description

一种全固相制备卡贝缩宫素的方法 技术领域
本发明属于多肽药物制备领域,具体涉及一种卡贝缩宫素的制备方法。
背景技术
卡贝缩宫素(Carbetocin)是一种合成的具有激动剂性质的长效催产素九肽类似物。硬膜外或腰麻下剖腹产术后可以立即单剂量静脉给药,以预防子宫张力不足和产后出血。
卡贝缩宫素的临床和药理特性与天然产生的催产素类似。像催产素一样,卡贝缩宫素与子宫平滑肌的催产素受体结合,引起子宫的节律性收缩,在原有的收缩基础上,增加其频率和增加子宫张力。在非妊娠状态下,子宫的催产素受体含量很低,在妊娠期间增加,分娩时达高峰。因此卡贝缩宫素对非妊娠的子宫没有作用,但是对妊娠的子宫和刚生产的子宫具有有效的子宫收缩作用。
研究表明,当硬膜外或腰麻下剖腹产术后立即单剂量静脉给予卡贝缩宫素100ug,在预防子宫张力不足和减少产后出血方面,卡贝缩宫素明显优于安慰剂。在产后的早期给予卡贝缩宫素也可以促进子宫的复旧。
卡贝缩宫素具有以下结构:
Figure PCTCN2016108824-appb-000001
用氨基酸缩写表示为:
Figure PCTCN2016108824-appb-000002
卡贝缩宫素及其类似物的制备方法早期主要是液相合成工艺,操作复杂,不利于工业生产、应用价值不高;目前在国外卡贝缩宫素申报的专利合成方面的也不多,其中包括一家西班牙公司的ES2115543,是固液相结合的合成方法,主要方法是:然后用常规固相多肽合成,采用HOBt/DIC体系得到 4-chlorobutyl-Tyr(OMe)-Ile-Gln-Asn-Cys(Trt)-Pro-Leu-Gly-PAL-Nle-pMBHA,然后用TFA/1-Dodecanethiol/H2O=8:1:1裂解2小时(注:1-Dodecanethiol十二硫醇),得到线形肽4-chlorobutyl-Tyr(OMe)-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2,线性肽用1:1的乙腈和水作溶剂,用1M NaOH调pH=9,环化得到卡贝缩宫素。它所用的碱还包括LiOH,NaHCO3,DIEA,DMAP。
捷克专利CS:8605461,先用固相多肽合成方法合成肽树脂再裂解得到Z-Ile-Gln-Asn-Cys(Bzl)-Pro-Leu-Gly-NH2,再氢化得到Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2再与4-Bromobutyric acid反应,得到Ile-Gln-Asn-Cys(C3H6COOH)-Pro-Leu-Gly-NH2再跟X-Tyr(OMe)-OH反应,脱保护,环化得到卡贝缩宫素。
在这些专利描述的方法中,都以液相方法进行环合,国内专利用液相环合的还有杭州和锦的专利(申请号:201010560715.4),上海苏豪逸明制药的专利(申请号:201110001400.0)以及苏州天马的专利(申请号201510001735.0),这种方法需要反应原料在极稀溶液中反应,且副反应较多,在规模化生产中需大量溶剂,随即产生大量废液。本发明利用固相假稀释原理,开发了固相高效环合方法,反应时间缩短至2~3小时,反应废液降为液相反应的1/10以下。并且能有效减少副反应,提高粗肽纯度,进而提高收率。
国内专利中有多篇也使用固相方法环化,根据先成硫醚键还是先成酰胺键可分为两类:第一类是先将溴代丁酸通过酰胺偶联与肽链的酪氨酸氨基偶联,再用碱(如DIPEA、NMM、LiCl、DMAP)作用下消除溴化氢形成硫醚键而关环。采用该方法的专利有深圳翰宇药业的专利(申请号200910106889.0)和杭州湃肽的专利(申请号201410461695.3);另一类是先将羧基保护的丁酸连接到半胱氨酸的巯基上,偶联完所有残基后脱除丁酸羧基保护基,再通过酰胺偶联与肽链上的酪氨酸氨基偶联环合,采用该方法的专利有深圳健元药业的专利(申请号201010544419.5),成都圣诺科技的专利(申请号201110151928.6),无锡凯利的专利(申请号201210255959.0),成都天台山药业的专利(申请号201410331088.5)。前一类采用溴代丁酸为原料,由于溴比较活泼,在偶联中副反应比较多,致使杂质较多,收率不高;后一类方法由于要先保护羧基,增加了原料的成本和脱羧基保护引起的副反应,杂质情况并没有比前一类方法改善,反而增加了成本和操作的复杂性
发明内容
本发明的目的是提供了一种高收率、低成本、反应条件温和、环境污染小、有利于实现产业化的卡贝缩宫素的固相合成工艺。
本发明一个方面涉及一种卡贝缩宫素的全固相制备方法,其包括如下步骤:
1)以固相合成树脂为载体,通过连接受保护的氨基酸,脱除氨基保护基,再 连接受保护的氨基酸的方法依次连接氨基和侧链经过保护的甘氨酸(Gly)、亮氨酸、脯氨酸(Pro)、半胱氨酸(Cys)、天冬酰胺(Asn)、谷氨酰胺(Gln)、异亮氨酸(Ile)、酪氨酸(Tyr),得到末端氨基经过保护的线性八肽片段树脂;
2)脱除末端氨基保护后,连接4-氯丁酸,得到全保护九肽片段树脂;
3)脱除半胱氨酸巯基保护基,得到裸露巯基的九肽片段树脂;
4)在DBU作用下,末端氯基团与半胱氨酸侧链巯基偶联成环,得到卡贝缩宫素肽树脂;
5)裂解卡贝缩宫素肽树脂,得到卡贝缩宫素。
进一步地,其中所述氨基经过保护的甘氨酸选自Fmoc-Gly-OH;所述氨基经过保护的亮氨酸选自Fmoc-Leu-OH;所述氨基和侧链经过保护的脯氨酸选自Fmoc-Pro-OH;所述氨基和侧链经过保护的半胱氨酸选自Fmoc-Cys(Mmt)-OH;所述氨基和侧链经过保护的天冬酰胺选自Fmoc-Asn(Trt)-OH;所述氨基和侧链经过保护的谷氨酰胺选自Fmoc-Gln(Trt)-OH;所述氨基和侧链经过保护的异亮氨酸选自Fmoc-Ile-OH;所述氨基和侧链经过保护的酪氨酸选自Fmoc-Tyr(Me)-OH。
进一步地,步骤1)中所述的固相合成方法是Fmoc固相多肽合成方法,选用的偶联剂为DIPCDI+A或者DIPEA+A+B,其中A选自HOBt或HOAt,B选自PyBOP、PyAOP、HATU、HBTU、TBTU中的一种或多种;优选地,偶联剂中各成分的比例以摩尔比例计为DIPCDI:A=1.1~1.5:1.0~1.4,DIPEA:A:B=1.8~2.2:1.0~1.4:0.95~1.05;更优选为DIPCDI:A=1.3:1.2,DIPEA:A:B=2.0:1.2:1.0
进一步地,其中,步骤1)中所述的固相载体为Rink Amide树脂Rink Amide-AM树脂或Rink Amide-MBHA树脂,优选地,树脂替代度为0.2-0.9mmol/g,更优选0.4~0.6mmol/g。
进一步地,步骤3)的脱除试剂为三氟乙酸和三异丙基硅烷的二氯甲烷溶液,三氟乙酸浓度为2~5%,三异丙基硅烷浓度为3~8%。
进一步地,步骤4)所述溶剂优选为DMF或N-甲基吡咯烷酮,反应时间为2-3小时。
进一步地,步骤5)采用的裂解试剂为TFA:TIS:H2O=85~95:2~8:2~8(V:V)。
进一步地,步骤5)获得产物后,还包括纯化步骤,优选所述纯化步骤选自重结晶、反相高压液相方法。
Figure PCTCN2016108824-appb-000003
具体实施方式
实施例1:卡贝缩宫素肽树脂的制备
称取替代度为0.557mmol/g的Rink Amide树脂52.8g(29.4mmol),加入到固相反应柱中,用DMF洗涤2次,用DMF溶胀树脂30分钟后,DBLK脱保护6min+8min,DMF洗涤6次。称取26.2g(88.2mmol)Fmoc-Gly-OH和13.1g(97.0mmol)HOBT用DMF溶解,加入15.2mL(106mmol)DIPCDI活化3min后,将混合液加入到反应柱中,室温反应2小时,以茚三酮检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应1小时)。
反应结束,用DMF洗涤树脂3次,加入DBLK脱保护5min+7min,DMF洗涤树脂6次,茚三酮检测树脂有颜色。称取31.2g(88.2mmol)Fmoc-Leu-OH和13.1g(97.0mmol)HOBT用DMF溶解,冰水浴下加入15.2mL(105.8mmol)DIPCDI活化3min后,将混合液加入到反应柱中,室温反应2小时,以茚三酮检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应1小时)。
反应结束,按以上同样方法依次偶联Fmoc-Pro-OH,Fmoc-Cys(Mmt)-OH,Fmoc-Asn(Trt)-OH,Fmoc-Gln(Trt)-OH,Fmoc-Ile-OH和Fmoc-Tyr(OMe)-OH。
反应结束,用DMF洗涤树脂3次,加入DBLK脱保护5min+7min,DMF洗涤树脂3次,DCM洗涤树脂3次,茚三酮检测树脂有颜色。称取36.0g(294mmol)4- 氯丁酸用DCM溶解,冰水浴下加入23.3ml(162mmol)DIPCDI和19.0g DIPEA(147mmol)活化3min后,将混合液加入到反应柱中,室温反应2.5小时,以茚三酮检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应0.5小时)。
脱除Mmt保护基:用DCM洗涤树脂6次,将DCM:TFA:TIS=90:3:7的脱保护液加入固相反应柱中,氮气鼓气反应10分钟后,抽掉,再加入脱保护液氮气反应10分钟,抽掉,再重复两次脱保护反应。
固相环化:脱Mmt保护反应结束后,用DCM洗涤3次,DMF洗涤3次。称取22.4g(147mmol)DBU用适量DMF溶解加入固相反应柱中,室温反应2小时后,以DTNB检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应0.5小时,直至树脂无色)。
反应结束,抽干反应液,DMF洗涤树脂3次,抽干液体。甲醇收缩树脂3次,肽树脂真空干燥得到78.5g卡贝缩宫素肽树脂,树脂增重22.7g,理论增重22.0g,增重率103.2%。
实施例2:卡贝缩宫素精肽的制备
将实施例1得到的卡贝缩宫素肽树脂78.5克加入到2000ml三口瓶中,氮气保护。加入预先配制好的TFA:TIS:H2O=90:5:5(V:V)785ml,室温反应2小时,过滤树脂,收集滤液。用少量TFA洗涤树脂,合并滤液。将滤液缓慢加入7850ml冰乙醚\中沉淀、离心,乙醚洗涤2次,减压干燥得到粗肽28.7克,HPLC纯度87.23%。经过高压液相制备纯化,冻干得到卡贝缩宫素精肽19.7g,纯度99.42%,最大单杂0.15%。理论产量29.04g,总收率67.8%。
实施例3:采用溴丁酸为原料的对比例
按照实施例1的方法,将4-氯丁酸改为4-溴丁酸进行固相偶联后,得到BrCH2CH2CH2CO-Tyr(Me)-Ile-Gln(Trt)-Asn(Trt)-Cys(Mmt)-Pro-Leu-Gly-Rink Amide树脂,然后脱除Mmt保护基。固相环化步骤采用DIPEA,室温环化3小时,以DTNB检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应0.5小时,直至树脂无色)。反应结束,抽干反应液,DMF洗涤树脂3次,抽干液体。甲醇收缩树脂3次,肽树脂真空干燥。采用实施例3的方法裂解得到粗肽,粗肽纯度60.4%,明显低于实施例1。
实施例4:先偶联硫醚的对比例
先采用固相偶联制备Fmoc-Tyr(Me)-Ile-Gln(Trt)-Asn(Trt)-Cys(Mmt)-Pro-Leu-Gly-Rink Amide树脂,然后脱除Mmt保护基,脱除Mmt保护基后,称取溴丁酸和DIPEA溶于DMF后加 入反应柱中。反应0.5h后以DTNB检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应0.5小时,直至树脂无色)。DMF洗涤树脂3次后,加入DBLK脱保护5min+7min。DCM洗涤3次,1%TFA/DCM溶液洗涤3次,DMF洗涤3次,得到H-Tyr(Me)-Ile-Gln(Trt)-Asn(Trt)-Cys(CH2CH2CH2COOH)-Pro-Leu-Gly-Rink Amide树脂。
环化:向上述树脂中加入TBTU和DIPEA的DMF溶液,室温反应2小时,以茚三酮检测反应终点(如树脂无色透明则终止反应;如树脂显色则延长反应1小时)。反应完毕,抽干反应液,DMF洗涤树脂3次,抽干液体。甲醇收缩树脂3次,肽树脂真空干燥。采用实施例4的方法裂解得到粗肽,粗肽纯度53.3%,明显低于实施例1。
Figure PCTCN2016108824-appb-000004

Claims (8)

  1. 一种卡贝缩宫素的全固相制备方法,其包括如下步骤:
    1)以固相合成树脂为载体,通过连接受保护的氨基酸,脱除氨基保护基,再连接受保护的氨基酸的方法依次连接氨基和侧链经过保护的甘氨酸(Gly)、亮氨酸、脯氨酸(Pro)、半胱氨酸(Cys)、天冬酰胺(Asn)、谷氨酰胺(Gln)、异亮氨酸(Ile)、酪氨酸(Tyr),得到末端氨基经过保护的线性八肽片段树脂;
    2)脱除末端氨基保护后,连接4-氯丁酸,得到全保护九肽片段树脂;
    3)脱除半胱氨酸巯基保护基,得到裸露巯基的九肽片段树脂;
    4)在DBU作用下,末端氯基团与半胱氨酸侧链巯基偶联成环,得到卡贝缩宫素肽树脂;
    5)裂解卡贝缩宫素肽树脂,得到卡贝缩宫素。
  2. 根据权利要求1所述的卡贝缩宫素的全固相制备方法,其中所述氨基经过保护的甘氨酸选自Fmoc-Gly-OH;所述氨基经过保护的亮氨酸选自Fmoc-Leu-OH;所述氨基和侧链经过保护的脯氨酸选自Fmoc-Pro-OH;所述氨基和侧链经过保护的半胱氨酸选自Fmoc-Cys(Mmt)-OH;所述氨基和侧链经过保护的天冬酰胺选自Fmoc-Asn(Trt)-OH;所述氨基和侧链经过保护的谷氨酰胺选自Fmoc-Gln(Trt)-OH;所述氨基和侧链经过保护的异亮氨酸选自Fmoc-Ile-OH;所述氨基和侧链经过保护的酪氨酸选自Fmoc-Tyr(Me)-OH。
  3. 根据权利要求1或2任一项所述的卡贝缩宫素的全固相制备方法,步骤1)中所述的固相合成方法是Fmoc固相多肽合成方法,选用的偶联剂为DIPCDI+A或者DIPEA+A+B,其中A选自HOBt或HOAt,B选自PyBOP、PyAOP、HATU、HBTU、TBTU中的一种或多种;优选地,偶联剂中各成分的比例以摩尔比例计为DIPCDI:A=1.1~1.5:1.0~1.4,DIPEA:A:B=1.8~2.2:1.0~1.4:0.95~1.05;更优选为DIPCDI:A=1.3:1.2,DIPEA:A:B=2.0:1.2:1.0。
  4. 根据权利要求1-3任一项所述的卡贝缩宫素的全固相制备方法,其中,步骤1)中所述的固相载体为Rink Amide树脂Rink Amide-AM树脂或Rink Amide-MBHA树脂,优选地,树脂替代度为0.2-0.9mmol/g,更优选0.4~0.6mmol/g。
  5. 根据权利要求1-4任一项所述的卡贝缩宫素的全固相制备方法,步骤3)的脱除试剂为三氟乙酸和三异丙基硅烷的二氯甲烷溶液,三氟乙酸浓度为2~5%,三异丙基硅烷浓度为3~8%。
  6. 根据权利要求1-4任一项所述的卡贝缩宫素的全固相制备方法,步骤4)所述溶剂优选为DMF或N-甲基吡咯烷酮,反应时间为2-3小时。
  7. 根据权利要求1-5任一项所述的卡贝缩宫素的全固相制备方法,步骤5)采用的裂解试剂为TFA:TIS:H2O=85~95:2~8:2~8(V:V)。
  8. 根据权利要求1-5任一项所述的卡贝缩宫素的全固相制备方法,步骤5)获得产物后,还包括纯化步骤,优选所述纯化步骤选自重结晶、反相高压液相方法。
PCT/CN2016/108824 2015-12-08 2016-12-07 一种全固相制备卡贝缩宫素的方法 WO2017097194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510897391.6A CN106854234A (zh) 2015-12-08 2015-12-08 一种全固相制备卡贝缩宫素的方法
CN201510897391.6 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017097194A1 true WO2017097194A1 (zh) 2017-06-15

Family

ID=59013668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108824 WO2017097194A1 (zh) 2015-12-08 2016-12-07 一种全固相制备卡贝缩宫素的方法

Country Status (2)

Country Link
CN (1) CN106854234A (zh)
WO (1) WO2017097194A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437312A (zh) * 2019-08-15 2019-11-12 翔宇药业股份有限公司 一种制备卡贝缩宫素的环保工艺
CN110507811A (zh) * 2019-09-17 2019-11-29 南京赛弗斯医药科技有限公司 一种3d打印卡贝缩宫素舌下口崩片及其制备方法
CN112409458A (zh) * 2019-08-21 2021-02-26 深圳翰宇药业股份有限公司 一种卡贝缩宫素的制备方法
CN112574285A (zh) * 2019-09-29 2021-03-30 深圳翰宇药业股份有限公司 一种含一对二硫键的多肽药物的固液相合成方法
CN112778402A (zh) * 2021-02-05 2021-05-11 南京工业大学 一种利用微通道模块化反应装置合成缩宫素的方法
CN113801200A (zh) * 2021-09-28 2021-12-17 浙江湃肽生物有限公司 一种卡贝缩宫素的制备方法
CN114591403A (zh) * 2022-04-14 2022-06-07 新发药业有限公司 基于液相环合的卡贝缩宫素制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343149A (zh) * 2019-07-25 2019-10-18 成都诺和晟泰生物科技有限公司 一种环肽药物卡贝缩宫素的合成方法
CN111217892A (zh) * 2019-07-26 2020-06-02 翔宇药业股份有限公司 卡贝缩宫素的合成方法
CN113801199B (zh) * 2020-06-15 2024-03-05 深圳翰宇药业股份有限公司 一种卡贝缩宫素的全固相合成方法
CN115626954B (zh) * 2022-10-26 2023-05-23 深圳新声药业有限公司 卡贝缩宫素的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555272A (zh) * 2009-04-24 2009-10-14 深圳市翰宇药业有限公司 一种固相制备卡贝缩宫素的方法
CN102260326A (zh) * 2011-06-08 2011-11-30 成都圣诺科技发展有限公司 卡贝缩宫素的制备方法
CN102796178A (zh) * 2012-07-23 2012-11-28 无锡市凯利药业有限公司 一种卡贝缩宫素的固相合成方法
CN103992390A (zh) * 2013-09-10 2014-08-20 杭州诺泰制药技术有限公司 一种合成卡贝缩宫素的方法
CN104592362A (zh) * 2015-01-05 2015-05-06 苏州天马医药集团天吉生物制药有限公司 卡贝缩宫素的合成工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262464B (zh) * 2014-09-12 2017-04-12 浙江湃肽生物有限公司 一种制备卡贝缩宫素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555272A (zh) * 2009-04-24 2009-10-14 深圳市翰宇药业有限公司 一种固相制备卡贝缩宫素的方法
CN102260326A (zh) * 2011-06-08 2011-11-30 成都圣诺科技发展有限公司 卡贝缩宫素的制备方法
CN102796178A (zh) * 2012-07-23 2012-11-28 无锡市凯利药业有限公司 一种卡贝缩宫素的固相合成方法
CN103992390A (zh) * 2013-09-10 2014-08-20 杭州诺泰制药技术有限公司 一种合成卡贝缩宫素的方法
CN104592362A (zh) * 2015-01-05 2015-05-06 苏州天马医药集团天吉生物制药有限公司 卡贝缩宫素的合成工艺

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437312A (zh) * 2019-08-15 2019-11-12 翔宇药业股份有限公司 一种制备卡贝缩宫素的环保工艺
CN112409458A (zh) * 2019-08-21 2021-02-26 深圳翰宇药业股份有限公司 一种卡贝缩宫素的制备方法
CN112409458B (zh) * 2019-08-21 2024-02-06 深圳翰宇药业股份有限公司 一种卡贝缩宫素的制备方法
CN110507811A (zh) * 2019-09-17 2019-11-29 南京赛弗斯医药科技有限公司 一种3d打印卡贝缩宫素舌下口崩片及其制备方法
CN112574285A (zh) * 2019-09-29 2021-03-30 深圳翰宇药业股份有限公司 一种含一对二硫键的多肽药物的固液相合成方法
CN112574285B (zh) * 2019-09-29 2023-05-16 深圳翰宇药业股份有限公司 一种含一对二硫键的多肽药物的固液相合成方法
CN112778402A (zh) * 2021-02-05 2021-05-11 南京工业大学 一种利用微通道模块化反应装置合成缩宫素的方法
CN112778402B (zh) * 2021-02-05 2023-08-18 南京工业大学 一种利用微通道模块化反应装置合成缩宫素的方法
CN113801200A (zh) * 2021-09-28 2021-12-17 浙江湃肽生物有限公司 一种卡贝缩宫素的制备方法
CN113801200B (zh) * 2021-09-28 2023-07-25 浙江湃肽生物有限公司 一种卡贝缩宫素的制备方法
CN114591403A (zh) * 2022-04-14 2022-06-07 新发药业有限公司 基于液相环合的卡贝缩宫素制备方法

Also Published As

Publication number Publication date
CN106854234A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2017097194A1 (zh) 一种全固相制备卡贝缩宫素的方法
US11518794B2 (en) Synthesis method for liraglutide with low racemate impurity
US9260474B2 (en) Method for solid phase synthesis of liraglutide
US8828938B2 (en) Method for the manufacture of degarelix
CN106892968B (zh) 一种利那洛肽的合成方法
CN104974237B (zh) 一种片段法固相合成齐考诺肽的方法
JP2008534628A (ja) ペプチド誘導体の製造のための方法
CN106854235B (zh) 一种固相片段法合成卡贝缩宫素
WO2019113872A1 (zh) 一种合成利那洛肽的方法
CN104177490B (zh) 片段缩合制备醋酸鲑鱼降钙素的方法
US6897289B1 (en) Peptide synthesis procedure in solid phase
CN107022021A (zh) 一种利拉鲁肽的固相合成法
CN106854230A (zh) 一种固相片段法合成卡贝缩宫素
CN103467573B (zh) 一种卡贝缩宫素的制备方法
CA2915439A1 (en) Peptide-resin conjugate and use thereof
US9150615B2 (en) Process for the preparation of leuprolide and its pharmaceutically acceptable salts
CN113801199B (zh) 一种卡贝缩宫素的全固相合成方法
CN110922453A (zh) 一种戈舍瑞林的合成方法
WO2021103458A1 (zh) 一种地加瑞克的固相合成方法
CN103204923B (zh) 固相片段法制备卡培立肽
CN112175046A (zh) 一种多肽固液组合合成曲普瑞林的方法
WO2020125045A1 (zh) 一种罗米地辛的合成方法
CN111018963B (zh) 一种胰高血糖素的制备方法
CN109748950B (zh) 一种固相合成血管升压素受体肽激动剂selepressin的方法
CN117551176A (zh) 一种醋酸曲普瑞林的高效制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872385

Country of ref document: EP

Kind code of ref document: A1