WO2017079999A1 - 合金催化剂用于碳水化合物催化制备低碳二元醇的方法 - Google Patents

合金催化剂用于碳水化合物催化制备低碳二元醇的方法 Download PDF

Info

Publication number
WO2017079999A1
WO2017079999A1 PCT/CN2015/095590 CN2015095590W WO2017079999A1 WO 2017079999 A1 WO2017079999 A1 WO 2017079999A1 CN 2015095590 W CN2015095590 W CN 2015095590W WO 2017079999 A1 WO2017079999 A1 WO 2017079999A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
tin
catalyst
reaction
cobalt
Prior art date
Application number
PCT/CN2015/095590
Other languages
English (en)
French (fr)
Inventor
孙睿岩
郑明远
张涛
庞纪峰
姜宇
王爱琴
王晓东
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to MYPI2017704732A priority Critical patent/MY187313A/en
Priority to US15/735,190 priority patent/US10654781B2/en
Priority to CA2988448A priority patent/CA2988448C/en
Publication of WO2017079999A1 publication Critical patent/WO2017079999A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an alloy catalyst for the catalytic conversion of carbohydrates to lower carbon diols, and more particularly to the process by which carbohydrates are catalytically produced under hydrothermal conditions to produce ethylene glycol.
  • Low-carbon glycols such as ethylene glycol are important energy liquid fuels and are also very important raw materials for polyester synthesis.
  • Ethylene glycol is mainly used in the synthesis of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). It can also be used as antifreeze, lubricant, plasticizer and surfactant.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • ethylene glycol is mainly based on the petroleum raw material route, that is, ethylene is epoxidized to obtain ethylene oxide, and then hydrated to obtain ethylene glycol.
  • Document 1 Cui Huaweing, development of ethylene glycol production at home and abroad, chemistry Industry, 2007, 25, (4), 15-21.
  • Document 2 Process for preparing ethanediol by catalyzing epoxyethane hydration, Patent No. CN1463960-A; CN1204103-C].
  • the synthesis method of ethylene glycol depends on non-renewable petroleum resources, and the production process includes selective oxidation or epoxidation steps, which is technically difficult, low in efficiency, high in by-products, high in energy consumption and serious in pollution.
  • the use of renewable biomass to produce ethylene glycol can reduce human dependence on fossil energy materials and contribute to environmentally friendly and economically sustainable development.
  • Carbohydrates such as cellulose are the most abundant renewable resources on the planet. The sources are very rich and the cost of use is very low.
  • the use of carbohydrates such as cellulose to produce ethylene glycol not only opens up new synthetic pathways, but also achieves products of high economic value from inexpensive carbohydrates. Moreover, since some carbohydrates such as cellulose cannot be eaten by humans, they do not affect human food security.
  • xylose is obtained by hydrolysis of corn cob
  • a mixture of ethylene glycol, propylene glycol and glycerol can also be obtained by catalytic hydrocracking [Document 4: CN 101704710 A corncob catalytic conversion to ethylene glycol, propylene glycol, C Method of triol]. This method achieves a selectivity of 30% ethylene glycol and propylene glycol.
  • the method provided by the invention uses carbohydrate as a raw material and water as a reaction medium, and under the action of an alloy catalyst, high-efficiency conversion of carbohydrates into low-carbon diol can be achieved through a one-step reaction process.
  • the method is not only simple in operation, low in cost, but also has a very low catalyst loss, good cycleability and easy recovery.
  • the method has the advantages of simple operation, low cost, extremely low catalyst loss, good cycleability and easy recovery.
  • the alloy catalyst contains metallic tin, and the remaining metal elements are one or more of transition metal iron, cobalt, ruthenium, rhodium, palladium, iridium, platinum, and copper.
  • the weight ratio of metal tin to other metals in the alloy catalyst is 0.01. -100 range between;
  • the catalyst is composed of a composite precursor before use, wherein one of the precursors is one or more of a simple substance or a compound of tin, and the remaining metal precursors are transition metal iron, cobalt, ruthenium, rhodium, palladium, iridium. , one or more of a simple substance or a compound in platinum or copper, forming an alloy during the reaction, and the weight ratio of the metal tin to the remaining metal in the alloy catalyst is in the range of 0.01-100;
  • the catalyst is a framework metal catalyst composed of a metal tin and a metal nickel alloy
  • the reaction is carried out in a closed batch, continuous or semi-continuous high pressure autoclave; the reactor is filled with hydrogen before the reaction, the reaction temperature is ⁇ 120 ° C, the reaction time is not less than 5 minutes, or the liquid reaction space velocity is not more than 20 h - 1 .
  • the weight concentration of the alloy catalyst is from 0.1% to 50% of the total mass of the reactants and the reaction solvent.
  • the reaction vessel Before the reaction, the reaction vessel is filled with hydrogen gas.
  • the initial pressure of hydrogen gas at room temperature is 1-12 MPa; the reaction temperature is ⁇ 120 ° C, and the upper temperature limit is based on the thermal decomposition of the reaction product.
  • the reaction temperature is 200-280 ° C
  • the hydrogen pressure in the reactor is 3-7 MPa at room temperature
  • the reaction time for the closed batch reactor is 0.5-5 h
  • the reaction space velocity GWSV is 0.1- 50h -1
  • GWSV represents the ratio of the dry basis weight of the reactants entering the reactor per hour to the weight of the catalyst in the reactor.
  • the alloy catalyst is an unsupported catalyst, that is, a framework metal catalyst using an alloy metal as a catalyst skeleton, and the weight ratio of the metal tin to the remaining metal in the framework metal catalyst is in the range of 0.1-10, and the weight of the alloy skeleton catalyst in the reaction vessel The concentration is from 1% to 30%.
  • the weight ratio of the metal tin to the remaining metal in the framework metal catalyst is in the range of 0.5-2, and the weight concentration of the alloy catalyst in the reaction system is 2%-20%.
  • the alloy catalyst is a supported catalyst, and the metal tin component is co-supported on the same carrier with one or more of the metal components of iron, cobalt, ruthenium, rhodium, palladium, iridium, platinum, and copper.
  • the carrier is activated carbon, aluminum oxide, silicon oxide, silicon carbide, zirconium oxide, zinc oxide, titanium dioxide or a composite carrier of two or more kinds.
  • the content of the alloy on the catalyst is 0.01-50wt%, and the weight of the metal tin and the remaining metal is The ratio is between 0.1-10.
  • the preferred content of the alloy on the catalyst is from 1 to 35 wt%, and the weight ratio of the metal tin to the remaining metal is preferably in the range of from 0.5 to 2.
  • One or two or more of the transition metal iron, cobalt, rhodium, ruthenium, palladium, iridium, platinum, and copper are supported as one or more of the simple substance or compound of tin as a carrier.
  • the elemental or compound of tin as a carrier, the content of the transition metal on the catalyst is 0.01-50% by weight;
  • transition metal iron cobalt, ruthenium, rhodium, palladium, iridium, platinum, and copper, or one or more of them, and one or more of the simple substance or compound of tin.
  • the content of tin on the catalyst is 0.01 to 50% by weight on a simple substance or a combination of the transition metal iron, cobalt, ruthenium, rhodium, palladium, iridium, platinum, and copper as a carrier.
  • the amount of the reaction raw material and water may be partially or completely liquid under the reaction conditions;
  • the carbohydrate is cellulose, starch, hemicellulose, Jerusalem artichoke, sucrose, glucose, mannose, fructose, fructan, wood One or more of sugar, arabinose, soluble xylooligosaccharide, erythrose, chitosan;
  • the element or compound of tin is metal tin, stannous fluoride, stannous chloride, stannous bromide, stannous iodide, tin fluoride, tin chloride, tin bromide, tin iodide, tin hydroxide, hydrogen.
  • stannous oxide, stannous oxide, tin dioxide, stannous sulfate, tin acetate, stannous oxalate, sodium stannate, potassium stannate, calcium stannate, tin phosphide, tin pyrophosphate is metal tin, stannous fluoride, stannous chloride, stannous bromide, stannous iodide, tin fluoride, tin chloride, tin bromide, tin iodide, tin hydroxide, hydrogen.
  • the elemental or compound of transition metal iron, cobalt, ruthenium, rhodium, palladium, iridium, platinum, copper is metal iron, metal cobalt, metal ruthenium, metal ruthenium, metal palladium, metal ruthenium, metal platinum, metal copper, lanthanite , Rani Cobalt, Lenny Copper, Ferric Nitrate, Cobalt Nitrate, Barium Nitrate, Barium Nitrate, Palladium Nitrate, Barium Nitrate, Platinum Nitrate, Copper Nitrate, Iron Chloride, Cobalt Chloride, Barium Chloride, Barium Chloride, Chlorine Palladium, ruthenium chloride, platinum chloride, copper chloride, ferric oxide, ferric oxide, ferrous oxide, iron sulfate, cobalt oxide, cobalt sulphate, cobalt trioxide, cobalt sulfate, nickel sulfate, oxidation Copper, sulfuric acid One or more of
  • the reaction process provided by the invention does not consume fossil resources, has the advantages of renewable raw material resources, meets the requirements of sustainable development, and utilizes waste, It is of great significance for farmers to increase their income.
  • the alloy catalyst has a stable structure and the amount of metal loss is extremely low.
  • the catalyst Under the condition of stable use of the catalyst, the catalyst is neutral or weakly alkaline, so the long-term use is less corrosive to the reaction device, which can greatly save equipment investment and has good industrial application prospects.
  • the alloy catalyst is easily separated from the reaction liquid and has good cycle performance.
  • Figure 1 is an XRD pattern of a hydrothermally prepared skeletal nickel-tin alloy catalyst.
  • Preparation of supported alloy catalyst one or more of activated carbon, alumina, silica, silicon carbide, zirconia, zinc oxide, and titanium dioxide are used as carriers, and a metal salt solution of tin and transition metal iron, cobalt, nickel, and rhodium
  • a metal salt solution of tin and transition metal iron, cobalt, nickel, and rhodium An aqueous solution of a metal salt of ruthenium, palladium, rhodium, and platinum was co-loaded onto the support by an equal volume impregnation method, and dried at 120 ° C overnight. It was reduced with hydrogen at 300 ° C for 2 h and passivated in a 1% O 2 /N 2 (V/V) atmosphere for 4 h.
  • Preparation of tin dioxide-supported nickel catalyst Weigh 1.5g of SnO 2 , 1.8g of Ni(NO 3 ) 2 ⁇ 6H 2 O, dissolve barium chloride in 20ml of water, and then add SnO 2 to the dissolved complete barium chloride solution. In the 25 ° C water bath, stirring for 12 h until the solution was completely evaporated. It was dried in an oven at 120 ° C for 8 h, calcined in a N 2 atmosphere at 300 ° C for 2 h, and then reduced in an H 2 atmosphere at 300 ° C for 2 h.
  • metal hydrogenation catalyst one or more of activated carbon, alumina, silica, silicon carbide, zirconia, zinc oxide, and titanium dioxide are used as carriers, and chloroplatinic acid, palladium chloride, ruthenium chloride, ruthenium chloride An aqueous solution of cerium chloride, nickel nitrate, iron nitrate, cobalt nitrate, and copper nitrate was separately loaded onto the carrier by an equal volume impregnation method, and dried at 120 ° C overnight.
  • the above catalysts supporting noble metals such as ruthenium, rhodium, palladium, iridium, platinum, etc., need to be hydrogenated at 250 ° C for 2 h before use, passivated for 4 h in 1% O 2 /N 2 (V / V) atmosphere;
  • the catalysts of non-precious metals such as iron, cobalt and copper are reduced by hydrogen at 450 ° C for 2 h and passivated for 4 h in a 1% O 2 /N 2 (V/V) atmosphere before use.
  • In-situ preparation of the alloy catalyst one or more of the elemental or compound of tin is added to the reaction vessel together with the metal hydrogenation catalyst or the framework metal catalyst, and the reactant and solvent water are added according to the reaction conditions of Example 7. Hydrogen is charged, and the reaction is started at the reaction temperature to form an alloy catalyst in situ in the reaction.
  • Preparation of framework type alloy catalyst a hydrothermal preparation method is employed. 0.6 g of metal tin and 1.0 g of framework metal catalyst Raney nickel were added together to a hydrothermal synthesis kettle, 10-100 mL of water was added as a solvent, and hydrogen gas was charged at 7 MPa, and hydrothermally treated at 250 ° C for 3 h to filter. The catalyst was obtained to dry at 120 ° C overnight. It can be seen from Fig. 1 that the prepared alloy catalyst was confirmed by XRD to form a nickel-tin alloy.
  • Catalytic conversion experiment 0.25 g of carbohydrate, a certain mass of composite catalyst and 25 ml of water were added to a 75 ml reaction vessel, and then six times of gas was replaced by hydrogen gas, and then hydrogen gas was charged to 5 MPa, and the temperature was raised to a certain temperature for 30-240 minutes. After the reaction was completed, the temperature was lowered to room temperature, and the supernatant liquid after centrifugation was taken and analyzed by high performance liquid chromatography. Only the target products ethylene glycol, propylene glycol, and hexahydric alcohol (including sorbitol, mannitol) were calculated in the product yield.
  • the supported alloy catalyst has a promoting effect on the formation of ethylene glycol. Comparing the yields of ethylene glycol and hexahydric alcohol on the alloy catalyst and the single transition metal hydrogenation catalyst, it can be seen that the formation of the alloy promotes the formation of ethylene. The yield of alcohol is significantly improved, and the yield of hexahydric alcohol is significantly reduced.
  • the unsupported alloy catalyst also promotes the formation of ethylene glycol. Compared with the yield of ethylene glycol and hexavalent alcohol on the alloy catalyst and the Lanney single metal catalyst, it can be seen that the formation of the alloy promotes the formation of ethylene. The yield of alcohol is significantly improved, and the yield of hexahydric alcohol is significantly reduced.
  • the alloy catalyst was a supported alloy catalyst RuSn/AC, the mass ratio of Sn to Ru was 1:3.5, and the loading of Ru on the catalyst was 5%.
  • the reaction conditions were the same as in Example 7, and the catalytic conversion results of the catalyst on different carbohydrates (Table 3).
  • the total selectivity of RuSn alloy catalyst to ethylene glycol and propylene glycol during carbohydrate conversion is higher than that of sorbitol, indicating that the alloy catalyst has good fracture carbon for carbohydrates with unsaturated chemical bonds.
  • the role of carbon bonds The yield of ethylene glycol obtained from cellulose as a raw material is higher than that of other carbohydrates.
  • the relative selectivity of ethylene glycol and propylene glycol has a certain relationship with the kind of the raw material. When the raw material contains fructose or can be isomeric as fructose, the yield of propylene glycol is improved.
  • the alloy catalyst has very low catalytic activity on sorbitol, and cannot selectively break the carbon-carbon bond in sorbitol to form ethylene glycol and propylene glycol, and similarly, the conversion effect on xylitol and glycerol is also poor.
  • the alloy catalyst was the catalytic conversion result of cellulose under different reaction time of supported alloy catalyst PtSn/AC (0.5%Sn, 5%Pt) (Table 4).
  • the reaction conditions were the same as in Example 7 except that the reaction time was different.
  • the alloy catalyst system has a good ethylene glycol yield in a certain time range.
  • the preferred time is from 1 h to 2.5 h.
  • the alloy catalyst was a supported alloy catalyst 5% Ir3.5%Sn/AC, and the catalytic conversion results of cellulose at different reaction temperatures (Table 5), the reaction conditions were the same as in Example 7.
  • the alloy catalyst system has a good ethylene glycol yield in a certain temperature range.
  • the preferred temperature is 230-260 °C.
  • the alloy catalyst was a supported alloy catalyst IrSn/AC, and the cellulose catalytic conversion results were obtained under different Sn/Ir mass ratios (Table 6), and the reaction conditions were the same as those in Example 7.
  • the alloy catalyst system has a good ethylene glycol yield within a certain range of tin-bismuth mass ratio.
  • the preferred mass ratio of tin antimony in the alloy catalyst is from 0.6 to 1.8.
  • the alloy catalyst was a supported alloy catalyst 5% Ir4% Sn/AC, and the effects of different liquid space velocities were examined (Table 7).
  • the reaction conditions were the same as in Example 7.
  • the alloy catalyst system has a good total yield of ethylene glycol and propylene glycol in a certain liquid space velocity range.
  • the preferred liquid reaction space velocity in the continuous reaction is 0.8 h -1 .
  • the alloy catalyst was an unsupported Raney nickel tin catalyst (magnesium tin mass ratio of 3:1) and activated carbon supported 5% Ni3%Sn/AC, 5% Ir3%Sn/AC catalyst, and the cycleability of the catalyst was examined. VIII) The reaction conditions are the same as in Example 7.
  • the framework type alloy catalyst Lanney nickel tin can obtain a higher ethylene glycol yield in the first four cycles.
  • the results of ion analysis in the solution after the reaction showed that the concentration of nickel and tin ions in the reaction solution obtained by using the Raney nickel tin catalyst for each cycle was less than 1 ppm, and the amount of loss of the active component of the catalyst was extremely low.
  • the noble metal Ir and tin alloy catalysts also exhibit very good selectivity and stability.
  • the yield and stability of ethylene glycol of the activated carbon-supported nickel-tin catalyst NiSn/AC were significantly worse than those of the skeleton type catalyst.
  • the skeleton type nickel tin catalyst has a relatively superior catalytic effect.
  • the alloy catalyst system of the present invention can achieve efficient conversion of carbohydrates to ethylene glycol and propylene glycol.
  • the method is not only simple in operation, low in cost, but also has the advantages of extremely low catalyst loss, good cycleability, and easy recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种合金催化剂用于碳水化合物催化制备低碳二元醇的方法。该方法以碳水化合物为反应原料,以水作溶剂,以锡与过渡金属铁、钴、镍、钌、铑、钯、铱、铂、铜中的一种或两种以上二者构成的合金为催化剂,在120-300℃,氢气压力1-13MPa的水热条件下经过一步催化转化过程,实现碳水化合物高效、高选择性、高收率制备乙二醇等低碳二元醇。与现有的石油基乙二醇合成路线相比较,本发明所提供的反应具有原料为可再生资源、原子经济性高、环境友好的优点。此外,与其他的以生物质为原料制多元醇的技术相比较,本过程具有催化剂稳定流失量极低、循环性好、易于回收等优点。

Description

合金催化剂用于碳水化合物催化制备低碳二元醇的方法 技术领域
本发明涉及一种合金催化剂用于催化转化碳水化合物到低碳二元醇的方法,具体地说是碳水化合物在水热条件下经催化制备乙二醇的过程。
背景技术
乙二醇等低碳二元醇是重要的能源液体燃料,也是非常重要的聚酯合成原料。乙二醇主要用于合成聚对苯二甲酸乙二酯(PET)和聚萘二甲酸乙二醇酯(PEN),还可以用作防冻剂、润滑剂、增塑剂、表面活性剂,是用途广泛的有机化工原料。
目前,乙二醇的工业生产主要是采用石油原料路线,即乙烯环氧化后得到环氧乙烷,然后水合得到乙二醇【文献1:崔小明,国内外乙二醇生产发展概况,化学工业,2007,25,(4),15-21.文献2:Process for preparing ethanediol by catalyzing epoxyethane hydration,Patent No.CN1463960-A;CN1204103-C】。乙二醇的合成方法依赖于不可再生的石油资源,而且生产过程中包括选择氧化或环氧化步骤,技术难度大,效率低,副产物多,能耗高且污染严重。
利用具有可再生性的生物质制备乙二醇,可以减少人类对化石能源物质的依赖,有利于实现环境友好和经济可持续发展。纤维素等碳水化合物是地球上产量最大的可再生资源,来源非常丰富,利用成本非常低廉。利用纤维素等碳水化合物制乙二醇不仅可以开辟新的合成路径,实现由廉价的碳水化合物得到高经济价值的产品。而且,由于纤维素等部分碳水化合物不能被人类食用,因而不会对人类的粮食安全造成影响。
目前,通过水热条件下催化加氢转化纤维素制备乙二醇【文献1:Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts,Angew.Chem.Int.Ed.2008,47,8510-8513;文献2:Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol,ChemSusChem 2010,3,63-66;文献3:CN 102190562 A,一种多羟基化合物制乙二醇的方法】。该方法以钨基催化剂和加氢催化剂组成的复合催化剂对纤维素进行催化转化,从而获得60-75%的乙二醇。
类似地,通过玉米芯水解获得木糖,进而通过催化加氢裂解同样可以得到乙二醇、丙二醇和甘油的混合物【文献4:CN 101704710 A一种玉米芯催化转化制乙二醇、丙二醇、丙三醇的方法】。该方法可以获得30%的乙二醇和丙二醇的选择性。
本发明所提供的方法以碳水化合物为原料,以水为反应介质,在合金催化剂作用下,通过一步反应过程,即可以实现碳水化合物高效转化为低碳二元醇。此方法不仅操作简单,成本低廉,而且催化剂稳定流失量极低,循环性好、易于回收。
发明内容
本发明的目的在于提供一种快速、高效催化转化碳水化合物到低碳二元醇的方法,所述低碳二元醇为乙二醇、1,2-丙二醇。较常规过程此方法操作简单,成本低廉,催化剂稳定流失量极低,循环性好、易于回收等特点。
为实现上述目的,本发明采取的技术方案为:
以碳水化合物为反应原料,在高压反应釜内,于水中进行催化加氢反应,所采用的合金催化剂由至少两种以上的金属前驱体制备得到;
合金催化剂中含有金属锡,其余金属元素为过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的一种或二种以上,合金催化剂中金属锡与其余金属的重量比在0.01-100范围之 间;
或,催化剂使用前由复合前体构成,其中一种前驱体为锡的单质或化合物中的一种或二种以上,其余的金属前驱体为过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上,反应过程中形成合金,合金催化剂中金属锡与其余金属的重量比在0.01-100范围之间;
或催化剂为金属锡与金属镍合金构成的骨架金属催化剂;
反应于密闭间歇式、连续式或半连续式高压反应釜中搅拌进行;反应前反应釜中充填氢气,反应温度≥120℃,反应时间不少于5分钟,或液体反应空速不大于20h-1
在使用过程中,合金催化剂的重量浓度为反应物与反应溶剂质量总合的0.1%-50%。
反应前反应釜中充填氢气,室温时氢气的初始压力为1-12MPa;反应温度≥120℃,温度上限以反应产物不发生热分解为准。
反应温度为200-280℃,室温下反应釜中氢气压力3-7MPa,对于密闭间歇式反应釜的反应时间为0.5-5h,对于半连续或连续式高压反应釜,反应空速GWSV为0.1-50h-1,GWSV代表流动状态下反应物每小时进入反应器的干基重量与反应器中催化剂重量的比值。半连续高压反应釜工作方式:在反应温度和压力条件下,物料采用连续注入的方式进入到反应釜中,物料加入完毕后,停止物料加入并待反应结束后,一次性取出反应产物。
所述合金催化剂为非负载型催化剂,即以合金金属作为催化剂骨架的骨架金属催化剂,骨架金属催化剂中金属锡与其余金属的重量比在0.1-10范围之间,反应釜中合金骨架催化剂的重量浓度为1%-30%。
所述骨架金属催化剂中金属锡与其余金属的重量比在0.5-2范围之间,反应体系中合金催化剂的重量浓度在2%-20%。
所述合金催化剂为负载型催化剂,将金属锡组分与金属组分铁、钴、钌、铑、钯、铱、铂、铜中的一种或两种以上共同负载在同一载体上,所述载体为活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种载体或二种以上的复合载体,合金于催化剂上的含量在0.01-50wt%,金属锡与其余金属的重量比在0.1-10范围之间。合金于催化剂上的优选含量在1-35wt%,金属锡与其余金属的重量比优选在0.5-2范围之间。
将锡的单质或化合物中的一种或二种以上作为载体,将过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上担载在作为载体的锡的单质或化合物上,过渡金属于催化剂上的含量在0.01-50wt%;
或,将过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上作为载体,将锡的单质或化合物中的一种或二种以上担载在作为载体的过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合上,锡于催化剂上的含量在0.01-50wt%。
反应原料与水的用量以反应条件下反应物料部分或完全为液态即可;所述碳水化合物为纤维素、淀粉、半纤维素、菊芋、蔗糖、葡萄糖、甘露糖、果糖、果聚糖、木糖、阿拉伯糖、可溶性低聚木糖、赤藓糖、壳聚糖、中的一种或二种以上;
锡的单质或化合物为金属锡、氟化亚锡、氯化亚锡、溴化亚锡、碘化亚锡、氟化锡、氯化锡、溴化锡、碘化锡、氢氧化锡、氢氧化亚锡、氧化亚锡、二氧化锡、硫酸亚锡、醋酸锡、草酸亚锡、锡酸钠、锡酸钾、锡酸钙、磷化锡、焦磷酸锡中的一种或二种以上;
过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物为金属铁、金属钴、金属钌、金属铑、金属钯、金属铱、金属铂、金属铜、兰尼铁、兰尼钴、兰尼铜、硝酸铁、硝酸钴、硝酸钌、硝酸铑、硝酸钯、硝酸铱、硝酸铂、硝酸铜、氯化铁、氯化钴、氯化钌、氯化铑、氯化钯、氯化铱、氯化铂、氯化铜、三氧化二铁、四氧化三铁、氧化亚铁、硫酸铁、氧化亚钴、三氧化二钴、四氧化三钴、硫酸钴、硫酸镍、氧化铜、硫酸 铜中的一种或二种以上。
本发明有如下优点:
1.以自然界生物质中产量的最大的纤维素等类碳水化合物为原料,其来源广泛,成本低廉。而且,相对于现有的乙二醇工业合成路线中使用乙烯为原料,本发明所提供的反应过程不消耗化石资源,具有原料资源可再生的优点,符合可持续发展的要求,对废物利用、农民增收具有重要的意义。
2.此合金催化剂结构稳定,金属流失量极低。
3.在催化剂稳定使用状态下,催化剂呈中性或弱碱性,因而长期使用对反应装置腐蚀性小,可大大节省设备投入,工业应用前景好。
4.作为多相催化剂,此合金催化剂易于从反应液中分离,循环性能好。
下面通过具体实施例对本发明进行详细说明,但这些实施例并不对本发明的内容构成限制。
附图说明
图1为水热法制备的骨架型镍锡合金催化剂的XRD图谱。
具体实施方式
实施例1
负载型合金催化剂制备:将活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种或二种以上作为载体,将锡的金属盐水溶液和过渡金属铁、钴、镍、钌、铑、钯、铱、铂的金属盐水溶液通过等体积浸渍法共同负载到载体上,在120℃下干燥过夜。用氢气在300℃下还原2h,在1%O2/N2(V/V)气氛下钝化4h。
实施例2
二氧化锡负载镍催化剂制备:称取1.5g SnO2,1.8g Ni(NO3)2·6H2O,将氯化钌溶于20ml水中,再将SnO2加入到溶解完全的氯化钌溶液中,在25℃水浴条件下,搅拌12h至溶液蒸发完全。在120℃烘箱中干燥8h,在N2气氛,300℃下焙烧2h,然后在H2气氛,300℃下还原2h。
实施例3
三氧化二铁负载锡催化剂制备:称取1.5g Fe2O3,0.9g SnCl4·5H2O,将四氯化锡溶于20ml水中,再将Fe2O3加入到溶解完全的四氯化锡溶液中,在25℃水浴条件下,搅拌12h至溶液蒸发完全。在120℃烘箱中干燥8h,在N2气氛,300℃下焙烧2h,然后在H2气氛,300℃下还原2h。
实施例4
金属加氢催化剂制备:将活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种或二种以上作为载体,将氯铂酸、氯化钯、氯化钌、氯化铑、氯化铱、硝酸镍、硝酸铁、硝酸钴、硝酸铜的水溶液通过等体积浸渍法分别负载到载体上,在120℃下干燥过夜。
以上负载钌、铑、钯、铱、铂等贵金属的催化剂在使用前,需用氢气在250℃下还原2h,在1%O2/N2(V/V)气氛下钝化4h;负载镍、铁、钴、铜等非贵金属的催化剂在使用前,需用氢气在450℃下还原2h,在1%O2/N2(V/V)气氛下钝化4h。
实施例5
合金催化剂原位制备:将锡的单质或化合物中的一种或二种以上与金属加氢催化剂或骨架型金属催化剂共同加入到反应釜中,按照实施例7的反应条件加入反应物和溶剂水,充入氢气,升至反应温度开始反应,在反应中原位生成合金催化剂。
实施例6
骨架型合金催化剂制备:采用水热制备方法。将含有0.6g金属锡与1.0g骨架型金属催化剂兰尼镍共同加入到水热合成釜中,加入10-100mL的水作溶剂,充入7MPa压力的氢气,在250℃下水热处理3h,将过滤得到催化剂在120℃下干燥过夜。由图1可以看出制备得到的合金催化剂,经XRD表征确认形成了镍锡合金。
实施例7
催化转化实验:将0.25g碳水化合物,一定质量的复合催化剂和25ml水加入到75ml反应釜中,然后通入氢气置换六次气体后,充氢气至5MPa,升温到一定温度,反应30-240min。反应结束后,降至室温,取离心后的上清液体,在高效液相色谱上分析检测。产物收率中仅对目标产物乙二醇、丙二醇以及六元醇(包括山梨醇、甘露醇)进行计算。
实施例8
负载型合金催化剂下微晶纤维素的催化转化结果对比。合金催化剂中,一种金属组分为锡,负载量为3%,另一种金属组分为不同过渡金属,负载量为5%,反应条件同实施例7。
表一 负载型合金催化剂下纤维素催化转化的结果(负载型合金催化剂质量为0.1g;反应温度为245℃,反应时间为95min)
Figure PCTCN2015095590-appb-000001
如表一所示,负载型合金催化剂对乙二醇的生成具有促进作用,对比合金催化剂和单过渡金属加氢催化剂上乙二醇和六元醇的收率,可以看到合金的形成促使乙二醇的收率明显提高,六元醇收率明显降低。
实施例9
非负载型合金催化剂下微晶纤维素的催化转化结果对比。非负载型合金催化剂中,一种金属组分为锡,另一种金属组分为不同过渡金属,反应条件同实施例7。
表二 非负载型合金催化剂下纤维素催化转化的结果(非负载型合金催化剂质量为0.05g,催化剂中锡与镍、铜、钴的质量比分别为1:3,1:5,1:2.5;反应温度为245℃,反应时间为95min)
Figure PCTCN2015095590-appb-000002
Figure PCTCN2015095590-appb-000003
如表二所示,非负载型合金催化剂对乙二醇的生成也具有促进作用,对比合金催化剂和兰尼单金属催化剂上乙二醇和六元醇收率,可以看到合金的形成促使乙二醇的收率明显提高,六元醇收率明显降低。
实施例10
合金催化剂为负载型合金催化剂RuSn/AC,Sn与Ru的质量比为1:3.5,Ru在催化剂上的负载量为5%。反应条件同实施例7,催化剂在不同碳水化合物上的催化转化结果(表三)。
表三 合金催化剂在不同碳水化合物上的催化转化结果(RuSn/AC质量为0.1g;反应温度为245℃,反应时间为95min)
Figure PCTCN2015095590-appb-000004
如表三所示,RuSn合金催化剂在碳水化合物转化过程中对乙二醇和丙二醇的总选择性要高于山梨醇,说明此合金催化剂对含有不饱和化学键的糖类碳水化合物具有很好的断裂碳碳键的作用。以纤维素作原料得到的乙二醇的收率高于其他碳水化合物。反应中,乙二醇、丙二醇的相对选择性与原料的种类由一定的关系,当原料中含有果糖或者可以被异构为果糖时,丙二醇的收率提高。另一方面,该合金催化剂对山梨醇催化活性极低,不能选择性断裂山梨醇中的碳碳键生成乙二醇和丙二醇,类似地对木糖醇、甘油的转化效果也很差。
实施例11
反应时间的影响。合金催化剂为负载型合金催化剂PtSn/AC(0.5%Sn,5%Pt)不同反应时间下纤维素催化转化结果(表四)。除反应时间不同外,反应条件同实施例7。
表四 不同反应时间下合金催化剂上纤维素催化转化结果(PtSn/AC质量为0.1g;反应温度为245℃)
Figure PCTCN2015095590-appb-000005
如表四所示,在一定时间范围内,此合金催化体系均有较好的乙二醇收率。较佳时间为1h-2.5h。
实施例12
反应温度的影响。合金催化剂为负载型合金催化剂5%Ir3.5%Sn/AC,不同反应温度下纤维素催化转化结果(表五),反应条件同实施例7。
表五 不同反应温度下合金催化剂上纤维素催化转化结果(IrSn/AC质量为0.2g;反应时间为95min)
Figure PCTCN2015095590-appb-000006
如表五所示,在一定温度范围内,此合金催化体系均有较好的乙二醇收率。较佳温度为230-260℃。
实施例13
合金催化剂上锡铱质量比例的影响。合金催化剂为负载型合金催化剂IrSn/AC,不同Sn/Ir质量比例下纤维素催化转化结果(表六),反应条件同实施例7。
表六 合金催化剂中不同锡铱质量比例下纤维素催化转化结果(IrSn/AC质量为0.1g;反应温度为245℃,反应时间为95min)
Figure PCTCN2015095590-appb-000007
如表六所示,在一定锡铱质量比例范围内,此合金催化体系均有较好的乙二醇收率。合金催化剂中锡铱较佳质量比例为0.6-1.8。
实施例14
连续式反应中液体反应空速影响。合金催化剂为负载型合金催化剂5%Ir4%Sn/AC,考查不同液体空速的影响(表七)反应条件同实施例7。
表七 不同液体反应空速下木糖转化的结果(IrSn/AC质量为5g,木糖反应液浓度20wt%,反应温度为245℃)
Figure PCTCN2015095590-appb-000008
如表七所示,在一定的液体空速范围内,此合金催化体系均有较好的乙二醇和丙二 醇的总收率。连续式反应中较佳液体反应空速为0.8h-1
实施例15
合金催化剂循环性的考查与对比。合金催化剂为非负载型兰尼镍锡催化剂(镍锡质量比为3:1)以及活性炭负载的5%Ni3%Sn/AC,5%Ir3%Sn/AC催化剂,考查此催化剂的循环性(表八),反应条件同实施例7。
表八 纤维素催化转化反应中,兰尼镍锡循环使用考查结果(兰尼镍锡催化剂质量为0.08g,NiSn/AC催化剂质量为0.1g,反应温度为245℃,反应时间为95min)
催化剂 循环次数 乙二醇收率% 丙二醇收率% 六元醇收率%
兰尼镍锡 第一次 60.4 13.2 4.6.
兰尼镍锡 第二次 59.8 10.9 4.2
兰尼镍锡 第三次 54.9 11.1 5.8
兰尼镍锡 第四次 53.7 13.6 2.9
NiSn/AC 第一次 38.7 9.5 6.1
NiSn/AC 第二次 28.5 8.2 5.4
NiSn/AC 第三次 20.3 6.5 4.5
NiSn/AC 第四次 14.4 4.2 3.1
IrSn/AC 第一次 54.4 13.2 4.6
IrSn/AC 第二次 52.3 13.0 4.0
IrSn/AC 第四次 50.1 12.0 4.7
如表八所示,骨架型合金催化剂兰尼镍锡前四次循环均能得到较高的乙二醇收率。反应后溶液中的离子分析检测结果显示,使用兰尼镍锡催化剂每次循环得到的反应溶液中,镍、锡离子的浓度小于1ppm,催化剂活性组分流失量极低。贵金属Ir与锡的合金催化剂同样表现出了非常好的选择性以及稳定性。与此不同,活性炭负载型镍锡催化剂NiSn/AC的乙二醇的收率以及稳定性均明显差于骨架型催化剂。骨架型镍锡催化剂具有相对更为优异的催化效果。
本发明中的合金催化体系可以实现碳水化合物高效转化为乙二醇、丙二醇。此方法不仅操作简单,成本低廉,而且催化剂稳定流失量极低、循环性好、易于回收等优点。

Claims (10)

  1. 合金催化剂用于碳水化合物催化制备低碳二元醇的方法,其特征在于:其以碳水化合物为反应原料,在高压反应釜内,于水中进行催化加氢反应;
    所采用的合金催化剂由至少两种以上的金属组成;
    合金催化剂中含有金属锡和其余金属元素,其余金属元素为过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的一种或二种以上,合金催化剂中金属锡与其余金属的重量比在0.01-100范围之间;
    或,催化剂使用前由金属锡前驱体和其余金属元素前驱体构成,其中一种前驱体为锡的单质或化合物中的一种或二种以上,其余金属元素前驱体为过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上,反应过程中金属锡和其余金属元素形成合金,合金催化剂中金属锡与其余金属的重量比在0.01-100范围之间;
    反应于密闭间歇式、连续式或半连续式高压反应釜中搅拌进行;反应前反应釜中充填氢气,反应温度≥120℃,反应时间不少于5分钟,或液体反应空速不大于20h-1
    在使用过程中,合金催化剂的重量浓度为反应物与反应溶剂质量总和的0.1%-50%;
    所述低碳二元醇为乙二醇或1,2-丙二醇中的一种或二种。
  2. 按照权利要求1所述的方法,其特征在于:反应前反应釜中充填氢气,室温时氢气的初始压力为1-12MPa;反应温度≥120℃,温度上限以反应产物不发生热分解为准。
  3. 按照权利要求1所述的方法,其特征在于:反应温度为200-280℃,室温下反应釜中氢气压力3-7MPa,对于密闭间歇式反应釜的反应时间为0.5-5h,对于半连续或连续式高压反应釜,反应空速GWSV为0.1-50h-1,GWSV代表流动状态下反应物每小时进入反应器的干基重量与反应器中催化剂重量的比值。
  4. 按照权利要求1所述的方法,其特征在于:所述合金催化剂为非负载型催化剂,其以合金金属作为催化剂骨架的骨架金属催化剂;优选催化剂为锡镍合金构成的骨架金属催化剂;骨架金属催化剂中金属锡与其余金属元素的重量比在0.1-10范围之间,反应釜中合金骨架催化剂的重量浓度为反应物与反应溶剂质量总和的1%-30%。
  5. 按照权利要求4所述的方法,其特征在于:所述骨架金属催化剂中金属锡与其余金属元素的重量比在0.5-2范围之间,反应体系中合金催化剂的重量浓度在2%-20%。
  6. 按照权利要求1所述的方法,其特征在于:所述合金催化剂为负载型催化剂,将金属锡组分与金属组分铁、钴、钌、铑、钯、铱、铂、铜中的一种或两种以上共同负载在同一载体上,所述载体为活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种载体或二种以上的复合载体,合金于催化剂上的含量在0.01-50wt%,金属锡与其余金属的重量比在0.1-10范围之间。
  7. 按照权利要求6所述的方法,其特征在于:合金于催化剂上的含量在1-35wt%,金属锡与其余金属的重量比在0.5-2范围之间。
  8. 按照权利要求1所述的方法,其特征在于:将锡的单质或化合物中的一种或二种以上作为载体,将过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上担载在作为载体的锡的单质或化合物上,过渡金属于催化剂上的含量在0.01-50wt%;
    或,将过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物中一种或二种以上作为载体,将锡的单质或化合物中的一种或二种以上担载在作为载体的过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合上,锡于催化剂上的含量在0.01-50wt%。
  9. 按照权利要求1所述的方法,其特征在于:反应原料与水的用量以反应条件下反应物料部分或完全为液态即可;
    所述碳水化合物为纤维素、淀粉、半纤维素、菊芋、蔗糖、葡萄糖、甘露糖、果糖、果聚糖、木糖、阿拉伯糖、可溶性低聚木糖、赤藓糖、壳聚糖、中的一种或二种以上。
  10. 按照权利要求1所述的方法,其特征在于:
    锡的单质或化合物为金属锡、氟化亚锡、氯化亚锡、溴化亚锡、碘化亚锡、氟化锡、氯化锡、溴化锡、碘化锡、氢氧化锡、氢氧化亚锡、氧化亚锡、二氧化锡、硫酸亚锡、醋酸锡、草酸亚锡、锡酸钠、锡酸钾、锡酸钙、磷化锡、焦磷酸锡中的一种或二种以上;
    过渡金属铁、钴、钌、铑、钯、铱、铂、铜中的单质或化合物为金属铁、金属钴、金属钌、金属铑、金属钯、金属铱、金属铂、金属铜、兰尼铁、兰尼钴、兰尼铜、硝酸铁、硝酸钴、硝酸钌、硝酸铑、硝酸钯、硝酸铱、硝酸铂、硝酸铜、氯化铁、氯化钴、氯化钌、氯化铑、氯化钯、氯化铱、氯化铂、氯化铜、三氧化二铁、四氧化三铁、氧化亚铁、硫酸铁、氧化亚钴、三氧化二钴、四氧化三钴、硫酸钴、硫酸镍、氧化铜、硫酸铜中的一种或二种以上。
PCT/CN2015/095590 2015-11-12 2015-11-26 合金催化剂用于碳水化合物催化制备低碳二元醇的方法 WO2017079999A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2017704732A MY187313A (en) 2015-11-12 2015-11-26 A method of catalytic conversion of carbohydrates to low-carbon diols by using alloy catalysts
US15/735,190 US10654781B2 (en) 2015-11-12 2015-11-26 Method of catalytic conversion of carbohydrates to low-carbon diols by using alloy catalysts
CA2988448A CA2988448C (en) 2015-11-12 2015-11-26 A method of catalytic conversion of carbohydrates to low-carbon diols by using alloy catalysts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510770769.6 2015-11-12
CN201510770769.6A CN106694009B (zh) 2015-11-12 2015-11-12 合金催化剂用于碳水化合物催化制备低碳二元醇的方法

Publications (1)

Publication Number Publication Date
WO2017079999A1 true WO2017079999A1 (zh) 2017-05-18

Family

ID=58694608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095590 WO2017079999A1 (zh) 2015-11-12 2015-11-26 合金催化剂用于碳水化合物催化制备低碳二元醇的方法

Country Status (5)

Country Link
US (1) US10654781B2 (zh)
CN (1) CN106694009B (zh)
CA (1) CA2988448C (zh)
MY (1) MY187313A (zh)
WO (1) WO2017079999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203252A (zh) * 2020-03-24 2020-05-29 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种用于草酸酯制乙二醇及乙醇的铜催化剂及其制备方法
CN117486694A (zh) * 2023-12-29 2024-02-02 山东新和成药业有限公司 一种藜芦醛的连续化制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109107581A (zh) * 2017-06-22 2019-01-01 长春美禾科技发展有限公司 一种耐酸合金催化剂
CN107337580B (zh) * 2017-07-24 2021-01-08 中国石油大学(华东) 一种低温自产氢-自加氢制备二元醇的方法
CN107573213A (zh) * 2017-08-11 2018-01-12 厦门大学 一种生物质制乙醇和乙二醇的化学方法
CN109225329B (zh) * 2018-09-26 2021-08-17 浙江恒澜科技有限公司 一种用于甘油氢解制备1,3-丙二醇的催化剂及其应用
CN110586100A (zh) * 2019-10-08 2019-12-20 扬州大学 Fe2O3/FeO异质结构及其制备方法及应用
CN111085195B (zh) * 2019-12-30 2022-12-27 宁波中科科创新能源科技有限公司 金属合金催化剂及其制备方法
CN112934235B (zh) * 2021-03-05 2024-04-02 河北思动环保科技有限公司 一种新能源燃料电池的氢气净化用催化剂
KR102619058B1 (ko) * 2021-11-02 2023-12-28 한국화학연구원 1,3-프로판디올 제조용 촉매 및 이를 이용한 1,3-프로판디올의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199930A (zh) * 2006-12-14 2008-06-18 马波 一种高碳多元醇加氢裂解催化剂,其制备方法和应用
JP2013060379A (ja) * 2011-09-12 2013-04-04 Chiba Univ アルコールを製造する方法及びアルコール製造用触媒
CN104119203A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种在氮气氛下高碳多元醇催化裂解制备二元醇的方法
CN104119207A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种碳水化合物催化转化制备乙二醇的方法
CN104710277A (zh) * 2013-12-17 2015-06-17 中国科学院大连化学物理研究所 一种糖及糖醇氢解制备低碳醇的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1204103C (zh) 2002-06-12 2005-06-01 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN101723802B (zh) * 2008-10-24 2013-06-19 中国科学院大连化学物理研究所 一种纤维素制乙二醇的方法
CN101704710B (zh) 2009-08-24 2013-04-03 江苏索普(集团)有限公司 一种玉米芯催化转化制取乙二醇、丙二醇和丙三醇的方法
MY159308A (en) * 2009-12-30 2016-12-30 Virent Inc Catalysts for hydrodeoxygenation of polyols
CN102190562B (zh) * 2010-03-17 2014-03-05 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
FR2969602B1 (fr) * 2010-12-22 2013-03-29 IFP Energies Nouvelles Procede de transformation de biomasse lignocellulosique ou de cellulose par des catalyseurs a base d'oxyde d'etain et/ou d'oxyde d'antimoine et d'un metal choisi dans les groupes 8 a 11
CN102675045B (zh) * 2011-03-15 2015-04-01 中国科学院大连化学物理研究所 一种糖溶液制备乙二醇、1,2-丙二醇的方法
EP2720991B1 (en) * 2011-06-14 2015-07-22 Shell Internationale Research Maatschappij B.V. Co-production of biofuels and glycols
CN104471145B (zh) * 2012-06-28 2016-11-23 国际壳牌研究有限公司 用于在分布的浆料催化剂存在下水热煮解纤维质生物质固体的方法
CN111606781B (zh) * 2014-09-28 2023-11-28 长春美禾科技发展有限公司 一种制备二元醇的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199930A (zh) * 2006-12-14 2008-06-18 马波 一种高碳多元醇加氢裂解催化剂,其制备方法和应用
JP2013060379A (ja) * 2011-09-12 2013-04-04 Chiba Univ アルコールを製造する方法及びアルコール製造用触媒
CN104119203A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种在氮气氛下高碳多元醇催化裂解制备二元醇的方法
CN104119207A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种碳水化合物催化转化制备乙二醇的方法
CN104710277A (zh) * 2013-12-17 2015-06-17 中国科学院大连化学物理研究所 一种糖及糖醇氢解制备低碳醇的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203252A (zh) * 2020-03-24 2020-05-29 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种用于草酸酯制乙二醇及乙醇的铜催化剂及其制备方法
CN111203252B (zh) * 2020-03-24 2023-07-14 新疆至臻化工工程研究中心有限公司 一种用于草酸酯制乙二醇及乙醇的铜催化剂及其制备方法
CN117486694A (zh) * 2023-12-29 2024-02-02 山东新和成药业有限公司 一种藜芦醛的连续化制备方法
CN117486694B (zh) * 2023-12-29 2024-03-26 山东新和成药业有限公司 一种藜芦醛的连续化制备方法

Also Published As

Publication number Publication date
CN106694009B (zh) 2019-12-13
CA2988448A1 (en) 2017-05-18
US20180178201A1 (en) 2018-06-28
US10654781B2 (en) 2020-05-19
CN106694009A (zh) 2017-05-24
MY187313A (en) 2021-09-21
CA2988448C (en) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2017079999A1 (zh) 合金催化剂用于碳水化合物催化制备低碳二元醇的方法
US11746074B2 (en) Methods for preparing diol
JP5575911B2 (ja) 多価化合物からエチレングリコールを調製する方法
CN105289592B (zh) 催化乙酰丙酸加氢制备γ‑戊内酯的方法
CN104998659B (zh) 一种用于催化糠醛或糠醇重排加氢制备环戊醇的催化剂及其制备方法和应用方法
US20150057469A1 (en) Process for highly efficient catalytic conversion of cellulose raw material to diol
EP2248793A2 (en) Production method for a monohydric alcohol from a monocarboxylic acid or from a derivative thereof
CN102731257B (zh) 一种含糖化合物选择性制丙二醇的方法
CN102091624A (zh) 一种多元醇氢解制二元醇的催化剂及其制备方法
CN103071512A (zh) 一种催化剂及其在由四氢糠醇氢解制备1,5-戊二醇的工艺中的用途
CN104119207A (zh) 一种碳水化合物催化转化制备乙二醇的方法
CN111054339B (zh) 制乙二醇的催化剂组合物
CN111054320B (zh) 用于生物质制乙二醇的催化剂
CN106866361B (zh) 铂锡-介孔氧化铝催化碳水化合物制1,2-丙二醇方法
CN110845301A (zh) 一种1,2-戊二醇的生产方法
CN111054335A (zh) 用于制备生物质基乙二醇的催化剂
CN111054342A (zh) 用于碳水化合物制备乙二醇的催化剂及其制备方法
CN107308934A (zh) 一种负载型钌非晶合金催化剂及其制备方法和应用
CN103785477B (zh) 一种苯加氢制环己烯催化剂及其制备方法和应用
JP2016150270A (ja) ポリオール類またはアルコール類の製造方法
CN112619660A (zh) 用于合成乙二醇的催化剂及其制备方法和应用
CN112570012A (zh) 用于制备生物基乙二醇的催化剂及其制备方法和应用
CN111054336A (zh) 用于制生物质基乙二醇的催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2988448

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15735190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908129

Country of ref document: EP

Kind code of ref document: A1