WO2017057248A1 - チップ抵抗器 - Google Patents

チップ抵抗器 Download PDF

Info

Publication number
WO2017057248A1
WO2017057248A1 PCT/JP2016/078225 JP2016078225W WO2017057248A1 WO 2017057248 A1 WO2017057248 A1 WO 2017057248A1 JP 2016078225 W JP2016078225 W JP 2016078225W WO 2017057248 A1 WO2017057248 A1 WO 2017057248A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
insulating substrate
chip
protective layer
electrodes
Prior art date
Application number
PCT/JP2016/078225
Other languages
English (en)
French (fr)
Inventor
松本 健太郎
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to US15/764,570 priority Critical patent/US10276285B2/en
Priority to CN201680057973.6A priority patent/CN108140460B/zh
Publication of WO2017057248A1 publication Critical patent/WO2017057248A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/012Mounting; Supporting the base extending along and imparting rigidity or reinforcement to the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the present invention relates to a chip resistor that is surface-mounted on a circuit board by soldering, and more particularly to a chip resistor suitable for bulk mounting.
  • a chip resistor is insulated so as to be connected to a pair of surface electrodes, a rectangular parallelepiped-shaped insulating substrate made of ceramics, a pair of front electrodes opposed to each other at a predetermined interval on the surface of the insulating substrate.
  • a resistor provided on the surface of the substrate, an insulating protective layer provided so as to cover the resistor, a pair of back electrodes disposed opposite to each other with a predetermined interval on the back surface of the insulating substrate, and a front electrode
  • a pair of end electrodes provided on both end faces of the insulating substrate so as to conduct the back electrode and a pair of external electrodes formed by plating the outer surfaces of these end face electrodes.
  • the external electrode is mounted on the land with the back electrode facing downward, and in this state, the solder paste is melted and melted. By solidifying, it is surface-mounted on the circuit board. At that time, there is no problem if the back surface of the insulating substrate is facing down, but if the side surface of the insulating substrate where no electrode is present is facing down, the electrode is placed on the solder paste on the land. Since it becomes difficult to adhere and solder connection strength (adhesiveness) becomes insufficient, a chip resistor in which no electrode is formed on the side surface of the insulating substrate is unsuitable for bulk mounting.
  • side electrodes connected to the end surface electrodes are formed also on the side surfaces of the chip body that is the secondary break surface, and the electrodes are provided on the four surfaces including the front and back surfaces of the rectangular parallelepiped insulating substrate. Since it exists, it can be mounted on the circuit board in any of the four positions (upper surface, lower surface, and both side surfaces).
  • the insulating substrate and the large substrate are reduced along with the downsizing of the chip resistor.
  • the depth of the dividing groove becomes very shallow, and there is a problem that a side electrode having a required size cannot be formed.
  • the area of the electrode is small compared to the case where it is mounted with the upper and lower surfaces of the insulating substrate facing downward.
  • a resistor and an internal electrode are embedded inside a prismatic chip body formed by joining two ceramic substrates. Since cap-shaped end surface electrodes are formed at both ends of the element body, stable bulk mounting without directivity is possible.
  • the manufacturing method is extremely difficult because a process of forming a resistor and internal electrodes on an unfired green sheet to be a ceramic substrate and then bonding another green sheet to the green sheet and firing is required. Trimming adjustment to form trimming grooves because the resistance value tends to vary due to thermal shrinkage when firing the green sheet, and the resistor and internal electrode are formed inside the chip body. There is also a problem that cannot be done.
  • the present invention has been made in view of the above-described prior art, and an object thereof is to provide a chip resistor that is easy to manufacture and suitable for bulk mounting.
  • a chip resistor of the present invention includes a rectangular parallelepiped insulating substrate made of ceramics, a pair of front electrodes provided at both ends in the longitudinal direction on the surface of the insulating substrate, A resistor connecting the electrodes; an insulating protective layer covering the entire surface of the insulating substrate including the resistor and the surface electrodes; and the surface electrode provided at both longitudinal ends of the insulating substrate. And a pair of cap-shaped end face electrodes connected to each other, and the external shape in which the insulating substrate and the protective layer are laminated is a substantially regular prism.
  • the entire surface of the insulating substrate is covered with the protective layer, and the appearance shape obtained by stacking the insulating substrate and the protective layer is a substantially square column, and the protective layer is exposed. Since the end face electrodes of the same size are formed on the four faces including the remaining face and the remaining three faces, it is possible to carry out bulk mounting with no directivity, such as front and back, and the protective layer more than the top face of the end face electrodes. Since the surface does not become high, stable bulk mounting can be performed without causing a chip standing phenomenon. Further, since the surface electrode and the resistor are formed on the surface of the insulating substrate, the variation in the resistance value is reduced, and the trimming groove or the like can be easily formed to adjust the resistance value.
  • the surface electrode is exposed from three end faces that are continuous in a U-shape of the insulating substrate, and when the end face electrode is connected to each exposed portion of the front electrode, the front electrode and the end face It is preferable because the connection reliability of the electrode can be improved.
  • the protective layer has a similar color to the insulating substrate, the surface on which the protective layer of the chip resistor is exposed and the remaining three ceramic surfaces have the same color. It is preferable that the colors are similar when viewed from any direction when image processing is performed.
  • the end face electrodes having the same size can be formed on the four surfaces including the exposed surface and the remaining three surfaces of the protective layer, a chip resistor suitable for bulk mounting can be easily manufactured by a simple process. can do.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 2.
  • FIG. 3 is a sectional view taken along line VI-VI in FIG. 2.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG. 9.
  • FIG. 10 is a sectional view taken along line XI-XI in FIG. 9.
  • a chip resistor includes a rectangular parallelepiped insulating substrate 1 and an insulating substrate 1 as shown in FIGS.
  • a pair of front electrodes 2 provided at both ends in the longitudinal direction on the surface, a rectangular resistor 3 provided so as to be connected to the front electrodes 2, and insulation including both the front electrodes 2 and the resistors 3
  • It is mainly composed of a protective layer 4 that covers the entire surface of the substrate 1 and a pair of end face electrodes 5 provided at both ends in the longitudinal direction of the insulating substrate 1.
  • the insulating substrate 1 is made of ceramics, and a large number of the insulating substrates 1 are obtained by dicing along a primary dividing line and a secondary dividing line that extend in the horizontal and vertical directions, which will be described later.
  • the pair of front electrodes 2 is obtained by screen-printing Ag-based paste, dried and fired, and these front electrodes 2 are formed in a rectangular shape so as to be exposed from three end faces that are continuous in a U-shape of the insulating substrate 1. Has been.
  • the resistor 3 is obtained by screen-printing a resistor paste such as ruthenium oxide, drying and firing, and both ends of the resistor 3 in the longitudinal direction overlap the surface electrode 2 respectively. Although not shown, the resistor 3 is formed with a trimming groove for adjusting the resistance value.
  • the protective layer 4 is an overcoat layer obtained by heat-curing an epoxy resin paste by screen printing. In order to reduce damage to the resistor 3 when the trimming groove is formed, a resistor is provided below the protective layer 4. An undercoat layer 6 covering 3 is formed. The undercoat layer 6 is obtained by screen-printing glass paste, drying and firing. Since the protective layer 4 is formed so as to cover the entire surface of the insulating substrate 1 including both the surface electrodes 2 and the resistor 3, the protective layer 4 includes the left end of the surface electrode 2 positioned on the left side in FIGS. 3 and 4. The end surfaces are exposed from between the insulating substrate 1 and the protective layer 4, and the three end surfaces including the right end of the front electrode 2 located on the right side are exposed from between the insulating substrate 1 and the protective layer 4.
  • the protective layer 4 is formed in the same color as the ceramic that is the material of the insulating substrate 1, and in the case of the present embodiment, the white insulating material is added by adding a white pigment (for example, titanium oxide) to the epoxy resin paste.
  • a white pigment for example, titanium oxide
  • the entire surface of the substrate 1 is covered with a white protective layer 4.
  • the protective layer 4 does not necessarily have to be white, and can be formed in other colors such as black and gray.
  • the pair of end face electrodes 5 are obtained by dip-coating Ag paste or Cu paste and heat-curing. It is formed in a cap shape so as to cover the surface 1b. Thereby, the end face electrode 5 located on the left side in FIGS. 2 and 4 is connected to the three end faces of the left surface electrode 2 exposed from between the insulating substrate 1 and the protective layer 4, and the end face electrode 5 located on the right side is In addition, it is connected to the three end faces of the right surface electrode 2 exposed from between the insulating substrate 1 and the protective layer 4.
  • the pair of end surface electrodes 5 are covered with external electrodes, and these external electrodes are formed by electrolytically plating Ni, Sn or the like on the surface of the end surface electrode 5.
  • the external shape of the chip element body 10A before the end face electrode 5 is formed is a substantially square prism.
  • Cap-shaped end surface electrodes 5 are formed at both ends in the longitudinal direction of the shaped chip body 10A. That is, the insulating substrate 1 has a rectangular parallelepiped shape whose thickness is shorter than the width, but the protective layer 4 is laminated so as to cover the entire surface of the insulating substrate 1, so that the width W and the thickness T can be reduced.
  • the entire surface of the insulating substrate 1 made of ceramics is covered with the protective layer 4, and the chip in which the insulating substrate 1 and the protective layer 4 are laminated.
  • the external shape of the element body 10A is a substantially square prism, and the variation in height due to the thickness of the insulating substrate 1 can be adjusted by the thickness of the protective layer 4, so that the prismatic shape can be accurately formed. it can.
  • the cap-shaped end surface electrode 5 is formed in the longitudinal direction both ends of 10 A of chip
  • the end face electrode 5 can be extended.
  • the chip resistor can be mounted in the same manner in any orientation on the four surfaces, bulk mounting without directionality such as front and back can be performed, and the protective layer 4 can be mounted more than the upper surface of the end surface electrode 5. Since the surface does not become high, stable bulk mounting can be performed without causing a chip standing phenomenon. Further, since the surface electrode 2 and the resistor 3 are formed on the surface of the insulating substrate 1, the variation in resistance value is reduced, and the trimming groove or the like can be easily formed to adjust the resistance value.
  • the surface electrode 2 is exposed from three end surfaces that are continuous in a U-shape of the insulating substrate 1, and the end surface electrode 5 is exposed to each exposed portion of the surface electrode 2. Therefore, the connection reliability between the surface electrode 2 and the end face electrode 5 can be improved.
  • the protective layer 4 is formed in white of the same color as the ceramic of the insulating substrate 1, so that one surface where the protective layer 4 is exposed and the remaining three ceramic surfaces are formed. It is a similar color.
  • a large substrate 10 made of ceramic from which a large number of insulating substrates 1 are taken is prepared.
  • the large-sized substrate 10 is not formed with a primary dividing groove or a secondary dividing groove, the large-sized substrate 10 is divided into a primary dividing line L1 and a secondary dividing line L2 extending vertically and horizontally in the subsequent process shown in FIG.
  • Each of the squares that are diced along and divided by the two divided lines L1 and L2 is a chip formation region for one piece.
  • 7 shows a state in which the large-sized substrate 10 is viewed in a plan view
  • FIG. 8 shows a state in which one chip forming region in FIG.
  • a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-sized substrate 10 and dried and fired, thereby forming a pair of front electrodes 2 as shown in FIGS. 7 (c) and 8 (c). A plurality of resistors 3 are formed between them.
  • the formation order of the surface electrode 2 and the resistor 3 may be reverse to the above.
  • an undercoat layer 6 covering the resistor 3 is formed by screen-printing glass paste, drying and firing. Then, the band-shaped surface electrode 2 is individually cut with a laser or the like along the secondary dividing line L2 diced in the subsequent process, and then a trimming groove (not shown) is formed on the resistor 3 from above the undercoat layer 6. To adjust the resistance value. Thereafter, an epoxy resin paste added with a white pigment is screen-printed on the undercoat layer 6 and heat-cured, so that the surface electrode 2 and the electrode 2 are formed as shown in FIGS. 7 (d) and 8 (d). A white protective layer 4 covering the entire chip formation region of the large substrate 10 including the resistor 3 is formed.
  • a primary dividing line L1 extending in the longitudinal direction through the central portion in the width direction of the surface electrode 2 and a secondary orthogonal to the primary dividing line L1.
  • individual chip bodies 10A having substantially the same outer shape as the chip resistor are obtained.
  • the external shape of the chip body 10A is a substantially square prism (see FIG. 3), and the width dimension W and the thickness dimension T of the chip body 10A are equal at this point.
  • the peripheral portion of the large substrate 10 is a dummy region surrounding each chip formation region, and this dummy region is discarded as a discarded substrate 10B after dicing.
  • the primary dividing line L1 and the secondary dividing line L2 are virtual lines set for the large substrate 10, and as described above, the primary dividing groove and the secondary dividing corresponding to the dividing line are formed on the large substrate 10. No groove is formed.
  • a conductive paste such as an Ag paste or a Cu paste is dip-applied to the end face of the chip element body 10A, and is cured by heating, as shown in FIG. 8E, from both end surfaces in the longitudinal direction of the chip element body 10A.
  • a cap-shaped end face electrode 5 is formed to wrap around to a predetermined position on both end faces in the short direction.
  • the end face electrodes 5 that wrap around the four surfaces of the chip element body 10A are the same on the surface of the protective layer 4 and the remaining three ceramic surfaces. It becomes a rectangular shape.
  • each chip element body 10A an external electrode (not shown) that covers the end face electrode 5 is formed, and the chip resistance as shown in FIGS. The vessel is completed.
  • FIGS. 9 to 11 illustrate a chip resistor according to the second embodiment of the present invention, and portions corresponding to those in FIGS. 1 to 6 are denoted by the same reference numerals.
  • the second embodiment is different from the first embodiment described above in that the undercoat layer 6 covers the entire surface of the insulating substrate 1 including both the surface electrodes 2 and the resistors 3. Since the rest of the configuration is basically the same, redundant description will be omitted here. That is, the chip resistor according to the second embodiment is connected to the rectangular parallelepiped insulating substrate 1, the pair of front electrodes 2 provided at both ends in the longitudinal direction on the surface of the insulating substrate 1, and the front electrodes 2. A rectangular resistor 3, an undercoat layer 6 covering the entire surface of the insulating substrate 1 including both the surface electrodes 2 and the resistor 3, and a protective layer 4 covering the entire top surface of the undercoat layer 6. And a pair of end face electrodes 5 provided at both ends in the longitudinal direction of the insulating substrate 1.
  • an undercoat layer 6 covering the entire surface of the insulating substrate 1 including the resistor 3 and both surface electrodes 2 is formed below the protective layer 4. Since the step formed in the overlapping portion of the resistor 3 and the surface electrodes 2 is absorbed by the undercoat layer 6, the surface of the protective layer 4 can be made smoother, and the protective layer 4 is exposed. Four surfaces including the remaining surface and the remaining three surfaces are smooth surfaces of the same size. And since the end surface electrode 5 is formed in the smooth surface of the same magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

セラミックスからなる直方体形状の絶縁基板1と、絶縁基板1の表面における長手方向両端部に設けられた一対の表電極2と、両表電極2間を接続する抵抗体3と、両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆う樹脂からなる保護層4と、絶縁基板1の長手方向両端面に設けられて表電極2に導通する一対のキャップ状の端面電極5とを備え、端面電極5を形成する前の絶縁基板1と保護層4を積層したチップ素体10Aの外観形状が略正四角柱である。

Description

チップ抵抗器
 本発明は、回路基板上に半田付けによって面実装されるチップ抵抗器に係り、特に、バルク実装に好適なチップ抵抗器に関するものである。
 一般的にチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、これら一対の表面電極に接続するように絶縁基板の表面に設けられた抵抗体と、抵抗体を覆うように設けられた絶縁性の保護層と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を導通するように絶縁基板の両端面に設けられた一対の端面電極と、これら端面電極の外表面にめっき処理を施して形成された一対の外部電極とを備えている。
 このように構成されたチップ抵抗器は、回路基板に設けられたランド上に半田ペーストを印刷した後、裏電極を下向きにして外部電極をランド上に搭載し、この状態で半田ペーストを溶融・固化することによって回路基板上に面実装されるようになっている。その際、絶縁基板の裏面が下を向いた姿勢になっていれば問題ないが、電極の存在しない絶縁基板の側面が下を向いた姿勢になっていると、ランド上の半田ペーストに電極を密着させにくくなって半田接続強度(固着性)が不足してしまうため、絶縁基板の側面に電極が形成されていないチップ抵抗器はバルク実装に不向きなものとなっている。
 バルク実装に対応したチップ抵抗器の従来例として、特許文献1に記載されているように、大判基板から個々のチップ素体を多数個取りする製造過程で、大判基板を1次分割に沿って1次ブレイクして短冊状基板を得た後、この短冊状基板の端面に銀ペーストを塗布して端面電極を形成する際に、銀ペーストを端面だけでなく2次分割溝内に流れ込ませてから、短冊状基板を2次分割溝に沿って2次ブレイクしてチップ素体に個片化するという技術が知られている。このようにして製造されたチップ抵抗器では、2次ブレイク面であるチップ素体の側面にも端面電極に接続する側面電極が形成され、直方体形状の絶縁基板の表裏を含む4面に電極が存在するため、回路基板上に4面(上面と下面および両側面)いずれの姿勢でも搭載することができる。
 また、バルク実装に対応したチップ抵抗器の他の従来例として、特許文献2に記載されているように、2枚のセラミックス基板を接合して角柱形状のチップ素体を形成し、これらセラミックス基板の間に抵抗体と一対の内部電極を設けると共に、チップ素体の長手方向の両端部にキャップ状の端面電極を設け、これら端面電極をセラミックス基板の長手方向の端面から露出する内部電極に接続させた構成が知られている。このような構成のチップ抵抗器によれば、キャップ状の端面電極がチップ素体の上面と下面および両側面まで延びており、このチップ素体の外観形状が4面同じ大きさの角柱形状であるため、回路基板上に4面(上面と下面および両側面)いずれの姿勢でも搭載することができる。
特開2000-124001号公報 特開平6-283302号公報
 ところで、特許文献1に開示されたチップ抵抗器のように、大判基板に設けられた分割溝を利用して側面電極を形成するという方法では、チップ抵抗器の小型化に伴って絶縁基板や大判基板の板厚寸法が薄くなってくると、分割溝の溝深さが非常に浅くなってしまうため、必要とされる大きさの側面電極を形成することができないという問題がある。また、絶縁基板の側面における上面側と下面側の一部のみが側面電極の形成領域となるため、絶縁基板の上面や下面を下向きにして実装された場合に比べると、電極面積が少なく固着性が悪くなり、さらに、側面電極の形状が直線にならないため、セルフアライメント性が著しく悪いという問題がある。しかも、特許文献1に開示されたチップ抵抗器では、端面電極の上面よりも保護層の表面が高くなって出っ張っているため、保護層を下向きにした状態で実装されたときに、マンハッタン現象と呼ばれるチップ立ち現象が発生しやすくなるという問題がある。
 一方、特許文献2に開示されたチップ抵抗器では、2枚のセラミックス基板を接合して形成された角柱形状のチップ素体の内部に抵抗体と内部電極が埋め込まれており、このようなチップ素体の両端部にキャップ状の端面電極が形成されているため、方向性のない安定したバルク実装を可能にしている。しかしながら、セラミックス基板となる未焼成のグリーンシート上に抵抗体と内部電極を形成した後、このグリーンシートに別のグリーンシートを貼り合わせて焼成するという工程が必要であるため、製造方法が極めて困難であるという難点があり、グリーンシートを焼成する時の熱収縮によって抵抗値がバラツキやすく、さらに、抵抗体と内部電極がチップ素体の内部に形成されているため、トリミング溝を形成するトリミング調整ができないという問題もある。
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、その目的は、製造が簡単でバルク実装に好適なチップ抵抗器を提供することにある。
 上記の目的を達成するために、本発明のチップ抵抗器は、セラミックスからなる直方体形状の絶縁基板と、この絶縁基板の表面における長手方向両端部に設けられた一対の表電極と、これら両表電極間を接続する抵抗体と、この抵抗体と前記両表電極を含めて前記絶縁基板の表面全体を覆う絶縁性の保護層と、前記絶縁基板の長手方向両端部に設けられて前記表電極に接続する一対のキャップ状の端面電極とを備え、前記絶縁基板と前記保護層を積層した外観形状が略正四角柱になっているという構成にした。
 このように構成されたチップ抵抗器では、絶縁基板の表面全体が保護層によって覆われていると共に、これら絶縁基板と保護層を積層した外観形状が略正四角柱となっており、保護層の露出する面と残り3つの面を含めた4面に同じ大きさの端面電極が形成されるため、表裏等の方向性のないバルク実装を行うことができると共に、端面電極の上面よりも保護層の表面が高くならないため、チップ立ち現象が発生しない安定したバルク実装を行うことができる。また、絶縁基板の表面に表電極と抵抗体が形成されているので、抵抗値のバラツキが少なくなり、容易にトリミング溝などを形成して抵抗値調整を行うことができる。
 上記の構成において、保護層の下層に、抵抗体と両表電極を含めて絶縁基板の表面全体を覆う絶縁性のアンダーコート層が形成されていると、抵抗体や両表電極の段差がアンダーコート層で吸収されることにより、保護層の表面をより平滑な面にすることができるため、保護層の露出する面と残り3つの面を含めた4面が同じ大きさの平滑面になる。そして、このように同じ大きさの平滑面に端面電極が形成されるため、より安定したバルク実装を行うことができる。
 また、上記の構成において、表電極が絶縁基板のコ字状に連続する3つの端面からそれぞれ露出しており、これら表電極の各露出部に端面電極が接続していると、表電極と端面電極の接続信頼性を高めることができて好ましい。
 また、上記の構成において、保護層が絶縁基板と同系色であると、チップ抵抗器の保護層が露出する一面と残り3つのセラミックス面とが同系色になるため、チップ抵抗器の実装状態を画像処理する際にいずれの方向から見ても同系色となって好ましい。
 本発明によれば、保護層の露出する面と残り3つの面を含めた4面に同じ大きさの端面電極を形成できるため、バルク実装に好適なチップ抵抗器を単純な工程により容易に製造することができる。
本発明の第1実施形態例に係るチップ抵抗器の斜視図である。 該チップ抵抗器の平面図である。 端面電極が形成される前のチップ素体を示す斜視図である。 図2のIV-IV線に沿う断面図である。 図2のV-V線に沿う断面図である。 図2のVI-VI線に沿う断面図である。 該チップ抵抗器の製造工程を示す説明図である。 該チップ抵抗器の製造工程を示す説明図である。 本発明の第2実施形態例に係るチップ抵抗器の断面図である。 図9のX-X線に沿う断面図である。 図9のXI-XI線に沿う断面図である。
 以下、発明の実施の形態について図面を参照しながら説明すると、本発明の実施形態例に係るチップ抵抗器は、図1~図6に示すように、直方体形状の絶縁基板1と、絶縁基板1の表面における長手方向両端部に設けられた一対の表電極2と、これら表電極2に接続するように設けられた長方形状の抵抗体3と、両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆う保護層4と、絶縁基板1の長手方向両端部に設けられた一対の端面電極5とによって主に構成されている。
 絶縁基板1はセラミックスからなり、この絶縁基板1は後述する大判基板を縦横に延びる1次分割ラインと2次分割ラインに沿ってダイシングすることにより多数個取りされたものである。
 一対の表電極2はAg系ペーストをスクリーン印刷して乾燥・焼成させたものであり、これら表電極2は絶縁基板1のコ字状に連続する3つの端面から露出するように矩形状に形成されている。
 抵抗体3は酸化ルテニウム等の抵抗ペーストをスクリーン印刷して乾燥・焼成させたものであり、この抵抗体3の長手方向の両端部はそれぞれ表電極2に重なっている。なお、図示省略されているが、抵抗体3には抵抗値を調整するためのトリミング溝が形成されている。
 保護層4はエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させたオーバーコート層であり、トリミング溝形成時の抵抗体3へのダメージを軽減するために、保護層4の下側には抵抗体3を覆うアンダーコート層6が形成されている。なお、このアンダーコート層6はガラスペーストをスクリーン印刷して乾燥・焼成させたものである。保護層4は両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆うように形成されているため、図3と図4中で左側に位置する表電極2の左端を含む3端面が絶縁基板1と保護層4間から露出し、右側に位置する表電極2の右端を含む3端面が絶縁基板1と保護層4間から露出している。
 保護層4は絶縁基板1の材料であるセラミックスと同系色に形成されており、本実施形態例の場合、エポキシ系樹脂ペーストに白色の顔料(例えば酸化チタン)を添加することにより、白色の絶縁基板1の表面全体が白色の保護層4で覆われた構成となっている。ただし、保護層4は必ずしも白色でなくても良く、黒色や灰色等の他の色に形成することも可能である。
 一対の端面電極5はAgペーストやCuペーストをディップ塗布して加熱硬化させたものであり、これら端面電極5は絶縁基板1の両端面1aから保護層4の上面と絶縁基板1の下面および両側面1bを覆うようにキャップ状に形成されている。これにより、図2と図4中で左側に位置する端面電極5は、絶縁基板1と保護層4間から露出する左側の表電極2の3端面と接続され、右側に位置する端面電極5は、絶縁基板1と保護層4間から露出する右側の表電極2の3端面と接続されている。
 図示省略されているが、一対の端面電極5は外部電極によって覆われており、これら外部電極は端面電極5の表面にNi,Sn等を電解メッキして形成されたものである。
 ここで、図3に示すように、第1実施形態例に係るチップ抵抗器では、端面電極5が形成される前のチップ素体10Aの外観形状が略正四角柱となっており、このような形状のチップ素体10Aの長手方向両端部にキャップ状の端面電極5が形成されている。すなわち、絶縁基板1は幅寸法に比べて厚み寸法が短い直方体形状であるが、この絶縁基板1の表面全体を覆うように保護層4が積層されることにより、幅寸法Wと厚み寸法Tを等しくするチップ素体10A(例えば、幅寸法W=0.125mm、厚み寸法T=0.125mm)が構成されるようになっている。
 以上説明したように、第1実施形態例に係るチップ抵抗器では、セラミックスからなる絶縁基板1の表面全体が保護層4によって覆われていると共に、これら絶縁基板1と保護層4を積層したチップ素体10Aの外観形状が略正四角柱となっており、絶縁基板1の厚さによる高さ寸法のバラツキが保護層4の厚さによって調整可能であるため、正確に四角柱形状にすることができる。そして、このような形状のチップ素体10Aの長手方向両端部にキャップ状の端面電極5が形成されているため、保護層4の露出する面と残り3つの面を含めた4面に同じ大きさの端面電極5を延在させることができる。したがって、チップ抵抗器を4面のいずれの姿勢で同じように実装することが可能となり、表裏等の方向性のないバルク実装を行うことができると共に、端面電極5の上面よりも保護層4の表面が高くなることがないため、チップ立ち現象が発生しない安定したバルク実装を行うことができる。また、絶縁基板1の表面に表電極2と抵抗体3が形成されているので、抵抗値のバラツキが少なくなり、容易にトリミング溝などを形成して抵抗値調整を行うことができる。
 また、第1実施形態例に係るチップ抵抗器では、表電極2が絶縁基板1のコ字状に連続する3つの端面からそれぞれ露出しており、これら表電極2の各露出部に端面電極5が接続されているため、表電極2と端面電極5の接続信頼性を高めることができる。
 また、第1実施形態例に係るチップ抵抗器では、保護層4が絶縁基板1のセラミックスと同系色の白色に形成されているため、保護層4が露出する一面と残り3つのセラミックス面とが同系色になっている。これにより、チップ抵抗器が回路基板のランド上に正しく実装されたか否かを撮像して画像処理する際に、チップ抵抗器の搭載姿勢にかかわらず同じ色の画像が撮影されるため、画像処理を簡単かつ精度良く行うことができる。
 次に、上記の如く構成されたチップ抵抗器の製造方法について、図7と図8を参照しながら説明する。
 まず、図7(a)と図8(a)に示すように、絶縁基板1が多数個取りされるセラミックスからなる大判基板10を準備する。この大判基板10に1次分割溝や2次分割溝は形成されていないが、図7(e)に示す後工程で大判基板10は縦横に延びる1次分割ラインL1と2次分割ラインL2に沿ってダイシングされ、これら両分割ラインL1,L2によって区切られたマス目の1つ1つが1個分のチップ形成領域となる。なお、図7は大判基板10を平面的に見た状態を示し、図8は図7中の1個分のチップ形成領域を断面した状態を示している。
 そして、このような大判基板10の表面にAg系ペーストを印刷して乾燥・焼成させることにより、図7(b)と図8(b)に示すように、大判基板10の表面に所定間隔を存して帯状に延びる複数対の表電極2を形成する。
 次に、大判基板10の表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成させることにより、図7(c)と図8(c)に示すように、対をなす表電極2間に跨る複数の抵抗体3を形成する。なお、表電極2と抵抗体3の形成順序は上記と逆であっても良い。
 次に、トリミング溝形成時の抵抗体3へのダメージを軽減するものとして、ガラスペーストをスクリーン印刷して乾燥・焼成することにより、抵抗体3を覆うアンダーコート層6を形成する。そして、後工程でダイシングされる2次分割ラインL2に沿ってレーザ等で帯状の表電極2を個々に切断した後、このアンダーコート層6の上から抵抗体3にトリミング溝(図示せず)を形成して抵抗値を調整する。しかる後、アンダーコート層6の上から白色顔料を添加したエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化させることにより、図7(d)と図8(d)に示すように、表電極2と抵抗体3を含めて大判基板10のチップ形成領域全体を覆う白色の保護層4を形成する。
 次に、図7(e)に示すように、大判基板10を表電極2の幅方向中央部を通って長手方向へ延びる1次分割ラインL1と、この1次分割ラインL1に直交する2次分割ラインL2とに沿ってダイシングブレードで切断することにより、図7(f)に示すように、チップ抵抗器と外形をほぼ同じくする個々のチップ素体10Aを得る。前述したように、このチップ素体10Aの外観形状は略正四角柱となっており(図3参照)、この時点でチップ素体10Aの幅寸法Wと厚み寸法Tは等しくなっている。なお、大判基板10の周辺部は各チップ形成領域を包囲するダミー領域となっており、このダミー領域はダイシング後に捨て基板10Bとして破棄される。また、これら1次分割ラインL1と2次分割ラインL2は大判基板10に対して設定された仮想線であり、前述したように大判基板10に分割ラインに対応する1次分割溝や2次分割溝は形成されていない。
 次に、チップ素体10Aの端面にAgペーストやCuペースト等の導電ペーストをディップ塗布して加熱硬化させることにより、図8(e)に示すように、チップ素体10Aの長手方向両端面から短手方向両端面の所定位置まで回り込むキャップ状の端面電極5を形成する。その際、チップ素体10Aの外観形状が略正四角柱となっているため、チップ素体10Aの4面に回り込んだ端面電極5は、保護層4の表面と残り3つのセラミックス面で全て同じ大きさの矩形状となる。
 最後に、個々のチップ素体10Aに対してNi,Sn等の電解メッキを施すことにより、端面電極5を被覆する図示せぬ外部電極を形成し、図1と図2に示すようなチップ抵抗器が完成する。
 図9~図11は本発明の第2実施形態例に係るチップ抵抗器を説明するものであり、図1~図6に対応する部分には同一符号を付してある。
 この第2実施形態例が前述した第1実施形態例と相違する点は、アンダーコート層6が両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆っていることにあり、それ以外の構成は基本的に同じであるため、ここでは重複説明を省略することとする。すなわち、第2実施形態例に係るチップ抵抗器は、直方体形状の絶縁基板1と、絶縁基板1の表面における長手方向両端部に設けられた一対の表電極2と、これら表電極2に接続するように設けられた長方形状の抵抗体3と、両表電極2と抵抗体3を含めて絶縁基板1の表面全体を覆うアンダーコート層6と、アンダーコート層6の上面全体を覆う保護層4と、絶縁基板1の長手方向両端部に設けられた一対の端面電極5とによって主に構成されている。
 このように構成された第2実施形態例に係るチップ抵抗器では、抵抗体3と両表電極2を含めて絶縁基板1の表面全体を覆うアンダーコート層6が保護層4の下側に形成されており、抵抗体3と両表電極2の重なり部分に生じる段差がアンダーコート層6で吸収されるため、保護層4の表面をより平滑な面にすることができ、保護層4の露出する面と残り3つの面を含めた4面が同じ大きさの平滑面になる。そして、このように同じ大きさの平滑面に端面電極5が形成されるため、より安定したバルク実装を行うことができる。また、Agペーストを用いて表電極2を形成した場合でも、アンダーコート層6が表電極2を含めて覆うことで硫化しにくくなり、マイグレーションが発生しないチップ抵抗器を実現することができる。
 1 絶縁基板
 2 表電極
 3 抵抗体
 4 保護層
 5 端面電極
 6 アンダーコート層
 10 大判基板
 10A チップ素体
 L1 1次分割ライン
 L2 2次分割ライン

Claims (5)

  1.  セラミックスからなる直方体形状の絶縁基板と、この絶縁基板の表面における長手方向両端部に設けられた一対の表電極と、これら両表電極間を接続する抵抗体と、この抵抗体と前記両表電極を含めて前記絶縁基板の表面全体を覆う絶縁性の保護層と、前記絶縁基板の長手方向両端部に設けられて前記表電極に接続する一対のキャップ状の端面電極とを備え、前記絶縁基板と前記保護層を積層した外観形状が略正四角柱であることを特徴とするチップ抵抗器。
  2.  請求項1の記載において、前記保護層の下層に、前記抵抗体と前記両表電極を含めて前記絶縁基板の表面全体を覆う絶縁性のアンダーコート層が形成されていることを特徴とするチップ抵抗器。
  3.  請求項1の記載において、前記表電極が前記絶縁基板のコ字状に連続する3つの端面からそれぞれ露出しており、これら表電極の各露出部に前記端面電極が接続していることを特徴とするチップ抵抗器。
  4.  請求項2の記載において、前記表電極が前記絶縁基板のコ字状に連続する3つの端面からそれぞれ露出しており、これら表電極の各露出部に前記端面電極が接続していることを特徴とするチップ抵抗器。
  5.  請求項1の記載において、前記保護層が前記絶縁基板と同系色であることを特徴とするチップ抵抗器。
PCT/JP2016/078225 2015-09-30 2016-09-26 チップ抵抗器 WO2017057248A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/764,570 US10276285B2 (en) 2015-09-30 2016-09-26 Chip resistor
CN201680057973.6A CN108140460B (zh) 2015-09-30 2016-09-26 芯片电阻器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194663A JP2017069441A (ja) 2015-09-30 2015-09-30 チップ抵抗器
JP2015-194663 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057248A1 true WO2017057248A1 (ja) 2017-04-06

Family

ID=58423470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078225 WO2017057248A1 (ja) 2015-09-30 2016-09-26 チップ抵抗器

Country Status (4)

Country Link
US (1) US10276285B2 (ja)
JP (1) JP2017069441A (ja)
CN (1) CN108140460B (ja)
WO (1) WO2017057248A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188584A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 抵抗器
DE202018004354U1 (de) * 2018-09-19 2018-10-15 Heraeus Sensor Technology Gmbh Widerstandsbauelement zur Oberflächenmontage auf einer Leiterplatte und Leiterplatte mit zumindest einem darauf angeordneten Widerstandsbauelement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275702A (ja) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd チップ抵抗器
JP2000124001A (ja) * 1999-09-27 2000-04-28 Matsushita Electric Ind Co Ltd 角形チップ抵抗器
JP2003264101A (ja) * 2002-03-08 2003-09-19 Koa Corp 両面実装型チップ抵抗器
JP2003282304A (ja) * 2002-03-25 2003-10-03 Koa Corp チップ抵抗器およびその製造方法
JP2006339589A (ja) * 2005-06-06 2006-12-14 Koa Corp チップ抵抗器およびその製造方法
JP2013110304A (ja) * 2011-11-22 2013-06-06 Rohm Co Ltd チップ抵抗器およびチップ抵抗器の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283302A (ja) 1993-03-29 1994-10-07 Ribaa Eretetsuku Kk チップ抵抗器及びその製法
US5680092A (en) * 1993-11-11 1997-10-21 Matsushita Electric Industrial Co., Ltd. Chip resistor and method for producing the same
US6462304B2 (en) * 1997-07-22 2002-10-08 Rohm Co., Ltd. Method of laser-trimming for chip resistors
US6609292B2 (en) * 2000-08-10 2003-08-26 Rohm Co., Ltd. Method of making chip resistor
JP4050496B2 (ja) * 2001-11-06 2008-02-20 ローム株式会社 チップ抵抗器の製造方法
JP4204029B2 (ja) * 2001-11-30 2009-01-07 ローム株式会社 チップ抵抗器
JP3845030B2 (ja) * 2002-02-25 2006-11-15 コーア株式会社 チップ抵抗器の製造方法
JP4841914B2 (ja) * 2005-09-21 2011-12-21 コーア株式会社 チップ抵抗器
JP2007088161A (ja) * 2005-09-21 2007-04-05 Koa Corp チップ抵抗器
TWI395232B (zh) * 2009-02-06 2013-05-01 Yageo Corp 晶片電阻器及其製造方法
JP5543146B2 (ja) * 2009-07-27 2014-07-09 ローム株式会社 チップ抵抗器およびチップ抵抗器の製造方法
JP6274789B2 (ja) * 2013-08-30 2018-02-07 ローム株式会社 チップ抵抗器
CN106688053B (zh) * 2014-09-25 2019-01-01 兴亚株式会社 贴片电阻器及其制造方法
US9997281B2 (en) * 2015-02-19 2018-06-12 Rohm Co., Ltd. Chip resistor and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275702A (ja) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd チップ抵抗器
JP2000124001A (ja) * 1999-09-27 2000-04-28 Matsushita Electric Ind Co Ltd 角形チップ抵抗器
JP2003264101A (ja) * 2002-03-08 2003-09-19 Koa Corp 両面実装型チップ抵抗器
JP2003282304A (ja) * 2002-03-25 2003-10-03 Koa Corp チップ抵抗器およびその製造方法
JP2006339589A (ja) * 2005-06-06 2006-12-14 Koa Corp チップ抵抗器およびその製造方法
JP2013110304A (ja) * 2011-11-22 2013-06-06 Rohm Co Ltd チップ抵抗器およびチップ抵抗器の製造方法

Also Published As

Publication number Publication date
CN108140460B (zh) 2020-01-21
JP2017069441A (ja) 2017-04-06
US20180286541A1 (en) 2018-10-04
US10276285B2 (en) 2019-04-30
CN108140460A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP2018032670A (ja) チップ部品、チップ部品の実装構造、チップ抵抗器の製造方法
JP2016213352A (ja) チップ抵抗器
JP2007073693A (ja) チップ抵抗器とのその製造方法
WO2017057248A1 (ja) チップ抵抗器
WO2016158240A1 (ja) チップ抵抗器
JP5706186B2 (ja) チップ抵抗器およびその製造方法
JP2006339589A (ja) チップ抵抗器およびその製造方法
US8854175B2 (en) Chip resistor device and method for fabricating the same
JP6688025B2 (ja) チップ抵抗器およびチップ抵抗器の製造方法
WO2016121203A1 (ja) チップ抵抗器
JP2017228701A (ja) チップ抵抗器およびチップ抵抗器の実装構造
JP2017224677A (ja) チップ抵抗器およびその製造方法
JP6577315B2 (ja) チップ抵抗器の製造方法
JP6629013B2 (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP6715002B2 (ja) チップ抵抗器の実装構造
JP6695415B2 (ja) チップ抵抗器
TWI817476B (zh) 晶片電阻器及晶片電阻器之製造方法
JPH04372101A (ja) 角形チップ抵抗器及びその製造方法
JP6688035B2 (ja) チップ抵抗器
JP6599759B2 (ja) チップ抵抗器
US20220399140A1 (en) Chip component
JP2017220596A (ja) チップ抵抗器
KR101538416B1 (ko) 칩 저항기 및 그 제작 방법
JP2022159807A (ja) チップ抵抗器
KR101544393B1 (ko) 칩 저항기 및 그 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851419

Country of ref document: EP

Kind code of ref document: A1