WO2017051464A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017051464A1
WO2017051464A1 PCT/JP2015/077018 JP2015077018W WO2017051464A1 WO 2017051464 A1 WO2017051464 A1 WO 2017051464A1 JP 2015077018 W JP2015077018 W JP 2015077018W WO 2017051464 A1 WO2017051464 A1 WO 2017051464A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type layer
impurity
type
semiconductor
Prior art date
Application number
PCT/JP2015/077018
Other languages
English (en)
French (fr)
Inventor
藤井 秀紀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/077018 priority Critical patent/WO2017051464A1/ja
Priority to DE112015006951.8T priority patent/DE112015006951B4/de
Priority to US15/568,489 priority patent/US10546961B2/en
Priority to JP2017541203A priority patent/JP6351863B2/ja
Priority to CN201580083340.8A priority patent/CN108028284B/zh
Publication of WO2017051464A1 publication Critical patent/WO2017051464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the technology disclosed in this specification relates to a semiconductor device, and particularly to a PIN diode used in a power semiconductor device.
  • a conventional PIN diode includes an n + type layer as a cathode layer, an n ⁇ type layer formed on the n + type layer, and an anode partially formed on a surface layer of the n ⁇ type layer.
  • a p-type layer that is a layer, and a p-type layer that is formed on the surface layer of the n-type layer so as to be spaced apart from each other and that surrounds the p-type layer in plan view.
  • Vf forward voltage
  • the technology disclosed in the present specification is for solving the above-described problems.
  • the carrier is recovered during the recovery operation.
  • the present invention relates to a semiconductor device capable of suppressing partial concentration.
  • a semiconductor device includes a first conductivity type semiconductor layer and an impurity concentration that is partially diffused on the back surface of the semiconductor layer and that is higher than the impurity concentration of the semiconductor layer.
  • a first conductivity type first impurity layer and a plurality of second conductivity type second impurity layers partially diffused on the surface of the semiconductor layer, wherein the first impurity layer is in plan view
  • the semiconductor layer is formed between the second impurity layers so as not to overlap the second impurity layer, and only the semiconductor layer exists between the second impurity layers on the surface of the semiconductor layer.
  • a semiconductor device includes a first conductivity type semiconductor layer and an impurity that is partially diffused on a back surface of the semiconductor layer and that has an impurity concentration higher than that of the semiconductor layer.
  • the first impurity layer is formed between the second impurity layers so as not to overlap the second impurity layer, and only the semiconductor layer exists between the second impurity layers on the surface of the semiconductor layer.
  • the first impurity layer is partially diffused only on the back surface of the semiconductor layer in the cell region, and is diffused on the back surface of the semiconductor layer, and the back surface of the semiconductor layer. Diffused in A fourth impurity layer of a first conductivity type, wherein the impurity concentration of the fourth impurity layer is lower than the impurity concentration of the first impurity layer, and the first impurity layer is formed on the fourth impurity layer. Partially diffused, the third impurity layer is partially diffused on the fourth impurity layer.
  • a semiconductor device includes a first conductivity type semiconductor layer and an impurity concentration that is partially diffused on the back surface of the semiconductor layer and that is higher than the impurity concentration of the semiconductor layer.
  • a first conductivity type first impurity layer and a plurality of second conductivity type second impurity layers partially diffused on the surface of the semiconductor layer, wherein the first impurity layer is in plan view
  • the semiconductor layer is formed between the second impurity layers so as not to overlap the second impurity layer, and only the semiconductor layer exists between the second impurity layers on the surface of the semiconductor layer.
  • the second impurity layer on the surface of the semiconductor layer and the first impurity layer on the back surface of the semiconductor layer are arranged at positions where they do not overlap in a plan view. Therefore, for example, the increase in the conductivity modulation level can be suppressed by adjusting the distance between the first impurity layer and the second impurity layer. Therefore, it is possible to suppress the carrier from being partially concentrated during the recovery operation without requiring electron beam irradiation.
  • a semiconductor device includes a first conductivity type semiconductor layer and an impurity that is partially diffused on a back surface of the semiconductor layer and that has an impurity concentration higher than that of the semiconductor layer.
  • the first impurity layer is formed between the second impurity layers so as not to overlap the second impurity layer, and only the semiconductor layer exists between the second impurity layers on the surface of the semiconductor layer.
  • the first impurity layer is partially diffused only on the back surface of the semiconductor layer in the cell region, and is diffused on the back surface of the semiconductor layer, and the back surface of the semiconductor layer. Diffused in A fourth impurity layer of a first conductivity type, wherein the impurity concentration of the fourth impurity layer is lower than the impurity concentration of the first impurity layer, and the first impurity layer is formed on the fourth impurity layer. Partially diffused, the third impurity layer is partially diffused on the fourth impurity layer.
  • the second impurity layer on the surface of the semiconductor layer and the first impurity layer on the back surface of the semiconductor layer are arranged at positions where they do not overlap in a plan view. Therefore, for example, the increase in the conductivity modulation level can be suppressed by adjusting the distance between the first impurity layer and the second impurity layer. Therefore, it is possible to suppress the carrier from being partially concentrated during the recovery operation without requiring electron beam irradiation. In addition, the breakdown voltage of the semiconductor device is stabilized by providing the fourth impurity layer. Therefore, the leakage current can be reduced.
  • FIG. 2 is a cross-sectional view illustrating the configuration of a semiconductor device.
  • FIG. 2 is a cross-sectional view illustrating the configuration of a semiconductor device.
  • FIG. 12 is a diagram illustrating an impurity concentration distribution in a depth direction of the PIN diode illustrated in FIGS. 10 and 11.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • FIGS. 10 and 11 are cross-sectional views illustrating the configuration of the semiconductor device.
  • a PIN diode as an example of a semiconductor device will be described.
  • the PIN diode includes an n + type layer 100 that is a cathode layer, an n ⁇ type layer 101 formed on the n + type layer 100, and an n ⁇ type layer 101.
  • the p-type layer 102 which is an anode layer, partially formed on the surface layer of the n-type layer 101 and the n-type layer 101 are formed to be spaced apart from each other, and each is a p-type layer in plan view.
  • a p-type layer 103 formed so as to surround 102.
  • the n + type layer 100 is formed on the entire back surface of the n ⁇ type layer 101.
  • FIG. 12 is a diagram illustrating an impurity concentration distribution in the depth direction of the PIN diode illustrated in FIGS. 10 and 11.
  • the vertical axis indicates the depth
  • the horizontal axis indicates the impurity concentration.
  • the impurity concentration of the n + type layer 100 is substantially constant from the back surface of the n ⁇ type layer 101 to a predetermined depth.
  • the impurity concentration of the n ⁇ type layer 101 is substantially constant with respect to the depth direction.
  • the impurity concentration of the p ⁇ type layer 102 decreases relatively rapidly from the surface of the n ⁇ type layer 101 to the n ⁇ type layer 101.
  • the conductivity modulation level is increased by the p ⁇ type layer 102 and the n + type layer 100, and a low on-resistance (low Vf) can be realized. it can.
  • Vf forward voltage
  • FIG. 1 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10 partially formed on the back surface of the n ⁇ type layer 101, and a surface layer of the n ⁇ type layer 101.
  • the n + type layer 10 and the p ⁇ type layer 12 are respectively formed at positions that do not overlap in a plan view in the cell region.
  • the n + type layer 10 and the p type layer 13 are formed at positions that do not overlap in the plan view in the termination region. More specifically, the n + -type layer 10 is, in plan view, between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13, and It is formed at a position that does not overlap with the mold layer 12 and the p-type layer 13.
  • n-type layer 101 exists between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13 on the surface of the n-type layer 101.
  • the impurity concentration of the n + type layer 10 is higher than the impurity concentration of the n ⁇ type layer 101.
  • the oxide film 14 is formed on the n ⁇ type layer 101 which is a semiconductor substrate such as silicon (Si).
  • the thickness of the oxide film 14 is, for example, about 3000 mm or more and about 10,000 mm or less.
  • boron is implanted onto the exposed n ⁇ type layer 101.
  • the amount of boron implanted is, for example, about 1 ⁇ 10 13 [1 / cm 2 ] or more and about 1 ⁇ 10 16 [1 / cm 2 ] or less.
  • driving is performed at about 900 ° C. or more, about 1200 ° C. or less, about 30 min or more, and about 120 min or less to form the p-type layer 13 in the termination region.
  • boron is implanted onto the exposed n ⁇ type layer 101.
  • the amount of boron implanted is, for example, about 1 ⁇ 10 12 [1 / cm 2 ] or more and about 1 ⁇ 10 15 [1 / cm 2 ] or less.
  • driving is performed at about 900 ° C. or more, about 1200 ° C. or less, about 30 min or more and about 120 min or less to form the p ⁇ type layer 12 in the cell region.
  • an oxide film 14 of about 5000 mm or more and about 10,000 mm or less is deposited, and patterning of the contact portion and oxide film etching are performed. Thereafter, aluminum is sputtered with a thickness of about 1 ⁇ m or more and about 8 ⁇ m or less. Then, after patterning the wiring, the electrode 15 is formed by etching.
  • the lower layer of the protective film 16 is a semi-insulating film (SInSiN film), and the upper layer is an insulating film.
  • the lower semi-insulating film has a thickness of about 2000 mm or more and about 10,000 mm or less, and a refractive index of about 2.2 or more and about 2.7 or less.
  • the upper insulating film has a thickness of about 2000 mm or more and about 10,000 mm or less, and a refractive index of about 1.8 or more and about 2.2 or less.
  • the back surface is polished until the n-type layer 101, which is a semiconductor substrate, has a desired thickness, and is patterned by photoengraving so as not to overlap the p-type layer 12 and the p-type layer 13 on the surface of the n-type layer 101. Form.
  • Ion implantation is performed, and heat treatment (for example, laser annealing) is performed to form the n + -type layer 10.
  • Ion implantation for example, phosphorus or arsenic 1 ⁇ 10 13 [1 / cm 2] of about or more, and shall be implanted at 1 ⁇ 10 16 [1 / cm 2] of about or less.
  • the p ⁇ type layer 12 on the surface of the n ⁇ type layer 101 and the n + type layer 10 on the back surface of the n ⁇ type layer 101 do not overlap in plan view. Further, the p-type layer 13 on the surface of the n ⁇ type layer 101 and the n + type layer 10 on the back surface of the n ⁇ type layer 101 do not overlap in plan view. Therefore, an increase in the level of conductivity modulation can be suppressed, so that a semiconductor device having a low recovery loss specification, that is, a high forward voltage (Vf) specification can be realized.
  • Vf forward voltage
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10a partially formed on the back surface of the n ⁇ type layer 101, a p ⁇ type layer 12, and a p type layer. 13, an oxide film 14, an electrode 15, and a protective film 16.
  • the n + type layer 10a is formed only on the back surface of the n ⁇ type layer 101 corresponding to the cell region. Further, the n + type layer 10a and the p ⁇ type layer 12 are formed at positions that do not overlap each other in plan view.
  • the carrier level is suppressed in the termination region where the n + type layer 10a is not formed. Therefore, the SOA tolerance during the recovery operation can be improved.
  • FIG. 3 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • the structure in the cell region is schematically illustrated.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10 b partially formed on the back surface of the n ⁇ type layer 101, and a surface layer of the n ⁇ type layer 101.
  • P-type layer 12b and electrode 15 are provided.
  • n + type layer 10b and the p ⁇ type layer 12b are respectively formed at positions that do not overlap in a plan view.
  • the distance between the n + type layer 10b and the p ⁇ type layer 12b differs depending on the position of the end of the n + type layer 10b in plan view and the position of the end of the p ⁇ type layer 12b in plan view. Therefore, at least one of the formation position of the n + type layer 10b in plan view, the formation width of the n + type layer 10b, the formation position of the p ⁇ type layer 12b in plan view, and the formation width of the p ⁇ type layer 12b is determined. By adjusting, the distance between the n + type layer 10b and the p ⁇ type layer 12b can be controlled.
  • the formation width of all the n + type layers 10b so that the angle at which the p ⁇ type layer 12b is looked up from the n + type layer 10b is the angle ⁇ 1 or the angle ⁇ 2.
  • the distance between the n + type layer 10b and the p ⁇ type layer 12b can be made constant.
  • the formation width of a part of the n + type layer 10b is adjusted so that the angle at which the p + type layer 12b is looked up from the n + type layer 10b is the angle ⁇ 1, and the n + type layer 10b to the p ⁇ type layer
  • the distance between the n + -type layer 10 b and the p ⁇ -type layer 12 b may be controlled by adjusting the formation width of the remaining n + -type layer 10 b so that the angle looking up at 12 b becomes the angle ⁇ 2.
  • the level of conductivity modulation can be adjusted by controlling the distance between the n + type layer 10b and the p ⁇ type layer 12b.
  • the same effect as when elements having a plurality of characteristics are joined in parallel can be obtained.
  • the interlayer distance which is the distance in plan view between the n + type layer 10b and the p ⁇ type layer 12b, is equal to or less than the thickness of the n ⁇ type layer 101.
  • FIG. 4 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10c partially formed on the back surface of the n ⁇ type layer 101, a p ⁇ type layer 12, and a p type layer. 13, an oxide film 14, an electrode 15, a protective film 16, and a p-type layer 17 partially formed on the back surface of the n ⁇ type layer 101.
  • the n + type layer 10c is formed only on the back surface of the n ⁇ type layer 101 corresponding to the cell region.
  • the p-type layer 17 is formed only on the back surface of the n ⁇ type layer 101 corresponding to the termination region.
  • n + type layer 10c and the p ⁇ type layer 12 are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17 and the p-type layer 13 are formed at positions that do not overlap each other in plan view.
  • the carrier level is suppressed in the termination region where the n + type layer 10c is not formed. Therefore, the SOA tolerance during the recovery operation can be improved.
  • the termination region where the p-type layer 17 is formed has a transistor structure, and can perform ringing (oscillation) by performing a bipolar operation during the recovery operation.
  • FIG. 5 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • the PIN diode is partially formed on the n ⁇ type layer 101, the n type buffer layer 18 formed on the back surface of the n ⁇ type layer 101, and the back surface of the buffer layer 18.
  • N + type layer 10 d, p ⁇ type layer 12, p type layer 13, electrode 15, and p type layer 17 d partially formed on the back surface of buffer layer 18.
  • the impurity concentration of the buffer layer 18 is lower than the impurity concentration of the n + type layer 10d.
  • the n + -type layer 10d is formed only on the back surface of the buffer layer 18 corresponding to the cell region.
  • the p-type layer 17d is formed only in a region on the back surface of the buffer layer 18 excluding the region where the n + type layer 10d is formed.
  • n + type layer 10d and the p ⁇ type layer 12 are formed at positions that do not overlap each other in plan view.
  • the oxide film 14, the p-type layer 13 in the termination region, the p-type layer 12 in the cell region, the electrode 15, and the protective film 16 are formed.
  • the back surface is polished until the n-type layer 101 which is a semiconductor substrate has a desired thickness, and the n-type buffer layer 18 is formed on the back surface of the n-type layer 101. Then, a pattern is formed by photolithography so as not to overlap the p-type layer 12 on the surface of the n-type layer 101.
  • ion implantation is performed, and heat treatment (for example, laser annealing) is performed to form the n + -type layer 10d. Further, the p-type layer 17d is formed.
  • the breakdown voltage of the semiconductor device can be stabilized and the leakage current can be reduced.
  • FIG. 6 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • FIG. 6 schematically illustrates the structure in the cell region in particular.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10 e partially formed on the back surface of the n ⁇ type layer 101, and a partial surface layer of the n ⁇ type layer 101.
  • P-type layer 12e, electrode 15, and p-type layer 17e partially diffused on the back surface of n-type layer 101.
  • the p-type layer 17e is diffused on the back surface of the n ⁇ type layer 101 in the cell region.
  • the n + type layer 10e and the p type layer 17e are formed apart from each other in plan view.
  • the n + type layer 10e and the p ⁇ type layer 12e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17e and the p-type layer 12e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17e and the n + -type layer 10e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 12e and the electrode 15 in the cell region are formed.
  • the back surface is polished until the n-type layer 101 which is a semiconductor substrate has a desired thickness, and a pattern is formed by photolithography so as not to overlap the p-type layer 12e on the surface of the n-type layer 101.
  • ion implantation is performed, and heat treatment (for example, laser annealing) is performed to form the n + type layer 10e. Further, the p-type layer 17e is formed.
  • FIG. 7 is a diagram illustrating a waveform during the recovery operation.
  • the left vertical axis indicates the voltage value [V]
  • the right vertical axis indicates the current value [A]
  • the horizontal axis indicates time [ ⁇ s].
  • FIG. 8 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • FIG. 8 schematically illustrates the structure particularly in the cell region.
  • the PIN diode includes an n ⁇ type layer 101, a plurality of n + type layers 10f partially formed on the back surface of the n ⁇ type layer 101, a p ⁇ type layer 12e, and an electrode. 15 and a p-type layer 17f partially formed on the back surface of the n-type layer 101.
  • the n + type layer 10f and the p ⁇ type layer 12e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17f and the p-type layer 12e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17f is arranged so as to be sandwiched between the n + -type layers 10f in plan view.
  • FIG. 9 is a cross-sectional view schematically illustrating a configuration for realizing the semiconductor device according to this embodiment.
  • FIG. 9 schematically illustrates the structure in the cell region in particular.
  • the PIN diode includes an n ⁇ type layer 101, an n + type layer 10 g partially formed on the back surface of the n ⁇ type layer 101, a p ⁇ type layer 12 e, an electrode 15, and the like. , P-type layer 17g partially formed on the back surface of n ⁇ type layer 101.
  • the n + type layer 10g and the p ⁇ type layer 12e are respectively formed at positions that do not overlap in a plan view.
  • the p-type layer 17g and the p-type layer 12e are formed at positions that do not overlap each other in plan view.
  • the p-type layer 17g is disposed so as to be sandwiched between the n + -type layers 10g in plan view.
  • the depth of formation of the n ⁇ type layer 101 from the back surface is deeper in the n + type layer 10g than in the p type layer 17g.
  • the depletion layer is prevented from extending during reverse bias. Therefore, an increase in leakage current can be suppressed.
  • the semiconductor device includes an n ⁇ type layer 101 corresponding to the first conductivity type (n type) semiconductor layer, and an n + type layer 10 corresponding to the first impurity layer of the first conductivity type.
  • a p-type layer 12 corresponding to a plurality of second impurity layers of the second conductivity type (p-type), and a p-type layer 13.
  • the n + type layer 10 is partially diffused on the back surface of the n ⁇ type layer 101 and has an impurity concentration higher than that of the n ⁇ type layer 101.
  • the p-type layer 12 and the p-type layer 13 are partially diffused on the surface of the n-type layer 101, respectively.
  • n + -type layer 10 is, in plan view, between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13, and includes the p-type layer 12 and the p-type layer 13. It is formed at a position that does not overlap with the layer 13.
  • n-type layer 101 exists between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13 on the surface of the n-type layer 101.
  • the p ⁇ type layer 12 on the surface of the n ⁇ type layer 101 and the n + type layer 10 on the back surface of the n ⁇ type layer 101 are arranged at positions where they do not overlap in plan view.
  • the p-type layer 13 on the surface of the n ⁇ type layer 101 and the n + type layer 10 on the back surface of the n ⁇ type layer 101 are arranged at positions where they do not overlap in plan view. Therefore, for example, the increase in the conductivity modulation level can be suppressed by adjusting the distance between the n + -type layer 10 and the p ⁇ -type layer 12. Therefore, it is possible to suppress the carrier from being partially concentrated during the recovery operation without requiring electron beam irradiation. That is, a semiconductor device having a low recovery loss specification, that is, a high forward voltage (Vf) specification can be realized. In addition, a high-speed recovery operation (low EREC) can be realized.
  • the second impurity layer includes the p ⁇ type layer 12 corresponding to the cell impurity layer partially diffused in the cell region, and the p type layer corresponding to the plurality of termination impurity layers. 13 is included.
  • the p-type layer 13 is diffused while being spaced apart from each other on the surface of the n-type layer 101, and is formed so as to surround the p-type layer 12 in a plan view in a termination region surrounding the cell region in a plan view.
  • the breakdown voltage of the semiconductor device can be improved by the guard ring structure in the termination region.
  • the n + -type layer 10 a corresponding to the first impurity layer is partially diffused only on the back surface of the n ⁇ -type layer 101 in the cell region.
  • the carrier level is suppressed in the termination region where the n + type layer 10a is not formed. Therefore, the SOA tolerance during the recovery operation can be improved.
  • the semiconductor device includes the p-type layer 17 corresponding to the second impurity layer of the second conductivity type, which is partially diffused on the back surface of the n ⁇ -type layer 101 in the termination region. .
  • the termination region where the p-type layer 17 is formed has a transistor structure, and ringing (oscillation) can be suppressed by performing a bipolar operation during the recovery operation.
  • the p-type layer 17e corresponding to the third impurity layer is also partially diffused on the back surface of the n ⁇ type layer 101 in the cell region.
  • the breakdown voltage of the semiconductor device can be stabilized and the leakage current can be reduced.
  • the p-type layer 17 is located between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13 in plan view.
  • the p-type layer 12 and the p-type layer 13 are formed so as not to overlap.
  • the p ⁇ type layer 12 on the surface of the n ⁇ type layer 101 and the n + type layer 10c on the back surface of the n ⁇ type layer 101 are arranged at positions where they do not overlap in a plan view.
  • the p-type layer 13 on the surface of the n ⁇ type layer 101 and the n + type layer 10c on the back surface of the n ⁇ type layer 101 are arranged at positions where they do not overlap in plan view. Therefore, for example, the distance between the n + -type layer 10 c and the p ⁇ -type layer 12 can be adjusted to suppress an increase in the conductivity modulation level.
  • the semiconductor device includes the buffer layer 18 corresponding to the first conductivity type (n-type) fourth impurity layer diffused on the back surface of the n ⁇ -type layer 101.
  • the impurity concentration of the buffer layer 18 is lower than the impurity concentration of the n + -type layer 10d corresponding to the first impurity layer.
  • the n + type layer 10 d is partially diffused on the buffer layer 18. Further, the p-type layer 17 d corresponding to the third impurity layer is partially diffused on the buffer layer 18.
  • the withstand voltage of the semiconductor device is stabilized by providing the buffer layer 18. Therefore, the leakage current can be reduced.
  • the n + -type layer 10e corresponding to the first impurity layer and the p-type layer 17e corresponding to the third impurity layer are formed apart from each other in plan view.
  • the semiconductor device includes the n + -type layer 10 f corresponding to the plurality of first impurity layers.
  • a p-type layer 17f corresponding to the third impurity layer is formed sandwiched between the n + -type layer 10f in plan view.
  • the breakdown voltage can be stabilized.
  • the formation depth of the n + -type layer 10 g corresponding to the first impurity layer on the back surface of the n ⁇ -type layer 101 corresponds to the third impurity layer on the back surface of the n ⁇ -type layer 101. It is deeper than the formation depth of the p-type layer 17g.
  • Such a configuration prevents the depletion layer from extending during reverse bias. Therefore, an increase in leakage current can be suppressed.
  • the interlayer distance that is the distance in plan view between the n + type layer 10b corresponding to the first impurity layer and the second impurity layer is equal to or less than the thickness of the n ⁇ type layer 101. is there.
  • the level of conductivity modulation is adjusted by adjusting the distance between the n + type layer 10 and the p ⁇ type layer 12 in a range where the interlayer distance is equal to or less than the thickness of the n ⁇ type layer 101. Can be suppressed.
  • the plurality of interlayer distances include interlayer distances different from other interlayer distances.
  • the level of conductivity modulation can be adjusted by controlling the distance between the n + type layer 10b and the p ⁇ type layer 12b.
  • the same effect as that obtained when elements having a plurality of characteristics are joined in parallel can be obtained.
  • the semiconductor device includes an n ⁇ type layer 101 corresponding to the first conductivity type (n type) semiconductor layer and an n + type layer corresponding to the first conductivity type first impurity layer. 10d, a p-type layer 12 corresponding to a plurality of second impurity layers of the second conductivity type (p-type), a p-type layer 13 and a p-type layer corresponding to the third impurity layer of the second conductivity type 17d and a buffer layer 18 corresponding to the first conductivity type fourth impurity layer.
  • the n + -type layer 10 d is partially diffused on the back surface of the n ⁇ -type layer 101 and has an impurity concentration higher than that of the n ⁇ -type layer 101.
  • the p-type layer 12 and the p-type layer 13 are partially diffused on the surface of the n-type layer 101, respectively.
  • n + -type layer 10d is, in plan view, between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13, and between the p-type layer 12 and the p-type layer 13. It is formed at a position that does not overlap with the layer 13.
  • n-type layer 101 exists between the p-type layers 12, between the p-type layers 13, or between the p-type layer 12 and the p-type layer 13 on the surface of the n-type layer 101. . Further, the n + type layer 10d is partially diffused only on the back surface of the n ⁇ type layer 101 in the cell region.
  • the p-type layer 17d is diffused on the back surface of the n-type layer 101.
  • the buffer layer 18 is diffused on the back surface of the n ⁇ type layer 101.
  • the impurity concentration of the buffer layer 18 is lower than the impurity concentration of the n + -type layer 10d.
  • the n + type layer 10 d is partially diffused on the buffer layer 18.
  • the p-type layer 17d is partially diffused on the buffer layer 18.
  • the p ⁇ type layer 12 on the surface of the n ⁇ type layer 101 and the n + type layer 10d on the back surface of the n ⁇ type layer 101 are arranged at positions where they do not overlap in plan view.
  • the p-type layer 13 on the surface of the n ⁇ type layer 101 and the n + type layer 10d on the back surface of the n ⁇ type layer 101 are arranged at positions that do not overlap in a plan view. Therefore, for example, the distance between the n + type layer 10d and the p ⁇ type layer 12 can be adjusted to suppress an increase in the conductivity modulation level.
  • the buffer layer 18 the breakdown voltage of the semiconductor device is stabilized. Therefore, the leakage current can be reduced.
  • each component is a conceptual unit, and one component consists of a plurality of structures, one component corresponds to a part of the structure, and a plurality of components. And the case where the component is provided in one structure.
  • Each component includes a structure having another structure or shape as long as the same function is exhibited.
  • the material when a material name or the like is described without being particularly specified, the material includes other additives, for example, an alloy or the like unless a contradiction arises. .
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It may be.

Abstract

 本明細書に開示される技術は、伝導度変調のレベルを調整することによって、リカバリー動作時にキャリアが部分的に集中することを抑制することができる。半導体装置は、第1導電型の半導体層(101)と、半導体層の裏面において部分的に拡散され、かつ、半導体層の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層(10、10aから10g)と、半導体層の表面において部分的に拡散される第2導電型の複数の第2不純物層(12、13)とを備え、第1不純物層は、平面視において、第2不純物層同士の間であって、第2不純物層と重ならない位置に形成され、半導体層の表面における第2不純物層同士の間には、半導体層のみが存在する。

Description

半導体装置
 本明細書に開示される技術は、半導体装置に関し、特に、パワー半導体装置で用いられるPINダイオードに関するものである。
 従来のPINダイオードは、カソード層(cathode)であるn+型層と、n+型層上に形成されるn-型層と、n-型層の表層に部分的に形成される、アノード(anode)層であるp-型層と、n-型層の表層に互いに離間して形成され、かつ、平面視においてそれぞれがp-型層を囲んで形成されるp型層とを備える。
 上記の構成によれば、p-型層と、n+型層とで伝導度変調(modulation)のレベルを上げ、低オン抵抗(低Vf)を実現することができる。伝導度変調のレベルを調整するため、アノード層であるp-型層の不純物濃度とカソード層であるn+型層の不純物濃度とを、深さ方向に対してほぼ一定とする構造も開示される(たとえば、特許文献1を参照)。
特許第5309360号公報
 近年、主にパワー半導体装置で用いられるPINダイオードは、半導体基板を薄厚化することで、順方向電圧(Vf)とリカバリー損失とのトレードオフ(trade-off)を改善した。しかし、半導体基板が非常に薄く形成されるため、オン状態での伝導度変調のレベルが非常に高く、リカバリー動作時にキャリアが部分的に集中して破壊が起こる場合がある。すなわち、safe operating area(SOA)が劣化するという問題がある。
 また、特性を調整して低リカバリー損失仕様、すなわち、高順方向電圧(Vf)仕様とするためには、電子線照射などによってライフタイム制御(life time control)を行う必要があった。
 本明細書に開示される技術は、上記のような問題を解決するためのものであり、電子線照射などを必要とせずに、伝導度変調のレベルを調整することによって、リカバリー動作時にキャリアが部分的に集中することを抑制することができる半導体装置に関するものである。
 本明細書に開示される技術の一態様に関する半導体装置は、第1導電型の半導体層と、前記半導体層の裏面において部分的に拡散され、かつ、前記半導体層の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層と、前記半導体層の表面において部分的に拡散される第2導電型の複数の第2不純物層とを備え、前記第1不純物層は、平面視において、前記第2不純物層同士の間であって、前記第2不純物層と重ならない位置に形成され、前記半導体層の表面における前記第2不純物層同士の間には、前記半導体層のみが存在する。
 本明細書に開示される技術の別の態様に関する半導体装置は、第1導電型の半導体層と、前記半導体層の裏面において部分的に拡散され、かつ、前記半導体層の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層と、前記半導体層の表面において部分的に拡散される第2導電型の複数の第2不純物層とを備え、前記第1不純物層は、平面視において、前記第2不純物層同士の間であって、前記第2不純物層と重ならない位置に形成され、前記半導体層の表面における前記第2不純物層同士の間には、前記半導体層のみが存在し、前記第1不純物層が、セル領域の前記半導体層の裏面においてのみ部分的に拡散され、前記半導体層の裏面において拡散される第2導電型の第3不純物層と、前記半導体層の裏面において拡散される第1導電型の第4不純物層とをさらに備え、前記第4不純物層の不純物濃度は、前記第1不純物層の不純物濃度よりも低く、前記第1不純物層は、前記第4不純物層上に部分的に拡散され、前記第3不純物層は、前記第4不純物層上に部分的に拡散される。
 本明細書に開示される技術の一態様に関する半導体装置は、第1導電型の半導体層と、前記半導体層の裏面において部分的に拡散され、かつ、前記半導体層の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層と、前記半導体層の表面において部分的に拡散される第2導電型の複数の第2不純物層とを備え、前記第1不純物層は、平面視において、前記第2不純物層同士の間であって、前記第2不純物層と重ならない位置に形成され、前記半導体層の表面における前記第2不純物層同士の間には、前記半導体層のみが存在する。
 このような構成によれば、半導体層の表面における第2不純物層と、半導体層の裏面における第1不純物層とが、平面視において重ならない位置に配置される。よって、たとえば、第1不純物層と第2不純物層との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。そのため、電子線照射などを必要とせずに、リカバリー動作時にキャリアが部分的に集中することを抑制することができる。
 本明細書に開示される技術の別の態様に関する半導体装置は、第1導電型の半導体層と、前記半導体層の裏面において部分的に拡散され、かつ、前記半導体層の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層と、前記半導体層の表面において部分的に拡散される第2導電型の複数の第2不純物層とを備え、前記第1不純物層は、平面視において、前記第2不純物層同士の間であって、前記第2不純物層と重ならない位置に形成され、前記半導体層の表面における前記第2不純物層同士の間には、前記半導体層のみが存在し、前記第1不純物層が、セル領域の前記半導体層の裏面においてのみ部分的に拡散され、前記半導体層の裏面において拡散される第2導電型の第3不純物層と、前記半導体層の裏面において拡散される第1導電型の第4不純物層とをさらに備え、前記第4不純物層の不純物濃度は、前記第1不純物層の不純物濃度よりも低く、前記第1不純物層は、前記第4不純物層上に部分的に拡散され、前記第3不純物層は、前記第4不純物層上に部分的に拡散される。
 このような構成によれば、半導体層の表面における第2不純物層と、半導体層の裏面における第1不純物層とが、平面視において重ならない位置に配置される。よって、たとえば、第1不純物層と第2不純物層との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。そのため、電子線照射などを必要とせずに、リカバリー動作時にキャリアが部分的に集中することを抑制することができる。また、第4不純物層を備えることにより、半導体装置の耐圧が安定する。よって、リーク電流を小さくすることができる。
 本明細書に開示される技術に関する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、より明白となる。
実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 リカバリー動作時の波形を例示する図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 実施形態に関する、半導体装置を実現するための構成を概略的に例示する断面図である。 半導体装置の構成を例示する断面図である。 半導体装置の構成を例示する断面図である。 図10および図11に例示されたPINダイオードの、深さ方向における不純物濃度分布を例示する図である。
 以下、添付される図面を参照しながら実施形態について説明する。なお、図面は概略的に示されるものであり、異なる図面にそれぞれ示される画像の大きさと位置との相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。よって、それらについての詳細な説明を省略する場合がある。
 また、以下に示される説明において、「上」、「下」、「側」、「底」、「表」または「裏」などの特定の位置と方向とを意味する用語が用いられる場合があっても、これらの用語は、実施形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の方向とは関係しない。
 また、以下では、第1導電型がn型であり、第2導電型がp型であるとして説明する。
 <第1実施形態>
 以下、本実施形態に関する半導体装置について説明する。
 図10および図11は、半導体装置の構成を例示する断面図である。以下では、半導体装置の一例としてのPINダイオードについて説明する。
 図10および図11に例示されるように、PINダイオードは、カソード層(cathode)であるn+型層100と、n+型層100上に形成されるn-型層101と、n-型層101の表層に部分的に形成される、アノード(anode)層であるp-型層102と、n-型層101の表層に互いに離間して形成され、かつ、平面視においてそれぞれがp-型層102を囲んで形成されるp型層103とを備える。n+型層100は、n-型層101の裏面の全面に形成される。
 図12は、図10および図11に例示されたPINダイオードの、深さ方向における不純物濃度分布を例示する図である。図12においては、縦軸が深さを示し、横軸が不純物濃度を示す。
 図12に例示されるように、n+型層100の不純物濃度は、n-型層101の裏面から所定の深さに亘りほぼ一定である。n-型層101の不純物濃度は、深さ方向に対してほぼ一定である。p-型層102の不純物濃度は、n-型層101の表面からn-型層101にかけて比較的急激に減少する。
 上記の構成によれば、図12における点線で例示されるように、p-型層102とn+型層100とで伝導度変調のレベルを上げ、低オン抵抗(低Vf)を実現することができる。伝導度変調のレベルを調整するため、アノード層であるp-型層102の不純物濃度とカソード層であるn+型層100の不純物濃度とを、深さ方向に対してほぼ一定とする構造も開示される(たとえば、特許文献1を参照)。
 近年、主にパワー半導体装置で用いられるPINダイオードは、半導体基板を薄厚化することで、順方向電圧(Vf)とリカバリー損失とのトレードオフを改善した。しかし、半導体基板が非常に薄く形成されるため、オン状態での伝導度変調のレベルが非常に高く、リカバリー動作時にキャリアが部分的に集中して破壊が起こる場合がある。すなわち、safe operating area(SOA)が劣化する。
 また、特性を調整して低リカバリー損失仕様、すなわち、高順方向電圧(Vf)仕様とするためには、電子線照射などによってライフタイム制御(life time control)を行う必要があった。
 <構成>
 図1は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。
 図1に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10と、n-型層101の表層に部分的に形成されるp-型層12と、n-型層101の表層に互いに離間して形成され、かつ、平面視においてそれぞれがp-型層12を囲んで形成されるp型層13と、p-型層12とp型層13とに挟まれたn-型層101上、および、p型層13とp型層13とに挟まれたn-型層101上に形成される酸化膜14と、p-型層12上とp型層13上とに形成される電極15と、酸化膜14を覆って形成される保護膜16とを備える。
 ここで、n+型層10とp-型層12とは、セル領域において平面視において重ならない位置にそれぞれ形成される。また、n+型層10とp型層13とは、終端領域において平面視において重ならない位置にそれぞれ形成される。より具体的には、n+型層10は、平面視において、p-型層12同士、p型層13同士、または、p-型層12とp型層13との間であって、p-型層12およびp型層13と重ならない位置に形成される。
 また、n-型層101の表面におけるp-型層12同士、p型層13同士、または、p-型層12とp型層13との間には、n-型層101のみが存在する。また、n+型層10の不純物濃度は、n-型層101の不純物濃度よりも高い。
 <製造方法>
 次に、図1に例示される半導体装置の製造方法について説明する。
 まず、シリコン(Si)などの半導体基板であるn-型層101上に酸化膜14を形成する。酸化膜14の厚さは、たとえば、3000Å程度以上、かつ、10000Å程度以下である。
 次に、写真製版とエッチングとでパターンを形成した後、露出したn-型層101上にボロンを注入する。ボロンの注入量は、たとえば、1×1013[1/cm]程度以上、かつ、1×1016[1/cm]程度以下とする。そして、たとえば、900℃程度以上、かつ、1200℃程度以下、30min程度以上、かつ、120min程度以下でドライブを行い、終端領域のp型層13を形成する。
 続いて、写真製版とエッチングとでパターンを形成した後、露出したn-型層101上にボロンを注入する。ボロンの注入量は、たとえば、1×1012[1/cm]程度以上、かつ、1×1015[1/cm]程度以下とする。そして、たとえば、900℃程度以上、かつ、1200℃程度以下、30min程度以上、かつ、120min程度以下でドライブを行い、セル領域のp-型層12を形成する。
 次に、5000Å程度以上、かつ、10000Å程度以下の酸化膜14を堆積させ、コンタクト部分のパターニングと酸化膜エッチングとを行う。その後、アルミニウムを1μm程度以上、かつ、8μm程度以下の厚さでスパッタする。そして、配線のパターンニング後、エッチングによって電極15を形成する。
 続いて、保護膜16を成膜し、さらに、ワイヤー接続部の保護膜16を除去する。ここで、保護膜16は、下層が半絶縁膜(SInSiN膜)であり、上層が絶縁膜である。
 下層の半絶縁膜は、厚さが2000Å程度以上、かつ、10000Å程度以下であり、屈折率が2.2程度以上、かつ、2.7程度以下である。また、上層の絶縁膜は、厚さが2000Å程度以上、かつ、10000Å程度以下であり、屈折率が1.8程度以上、かつ、2.2程度以下である。
 その後、半導体基板であるn-型層101が所望の厚みとなるまで裏面を研磨し、写真製版でn-型層101の表面におけるp-型層12およびp型層13と重ならないようにパターンを形成する。
 その後、イオン注入を行い、さらに熱処理(たとえば、laser annealなど)を行うことにより、n+型層10を形成する。イオン注入は、たとえば、リンまたはヒ素を1×1013[1/cm]程度以上、かつ、1×1016[1/cm]程度以下で注入するものとする。
 <作用>
 上記の構成によれば、n-型層101の表面におけるp-型層12と、n-型層101の裏面におけるn+型層10とが、平面視において重ならない。また、n-型層101の表面におけるp型層13と、n-型層101の裏面におけるn+型層10とが、平面視において重ならない。よって、伝導度変調のレベルの上昇を抑制することができるため、低リカバリー損失仕様、すなわち、高順方向電圧(Vf)仕様の半導体装置を実現することができる。
 <第2実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図2は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。
 図2に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10aと、p-型層12と、p型層13と、酸化膜14と、電極15と、保護膜16とを備える。
 ここで、n+型層10aは、セル領域に対応するn-型層101の裏面においてのみ形成される。また、n+型層10aとp-型層12とは、平面視において重ならない位置にそれぞれ形成される。
 <作用>
 上記の構成によれば、n+型層10aが形成されない終端領域においては、キャリアレベルが抑えられる。そのため、リカバリー動作時のSOA耐量を向上させることができる。
 <第3実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図3は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。なお、図3においては、特にセル領域における構造が概略的に例示される。
 図3に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10bと、n-型層101の表層に部分的に形成されるp-型層12bと、電極15とを備える。
 ここで、n+型層10bとp-型層12bとは、平面視において重ならない位置にそれぞれ形成される。
 n+型層10bとp-型層12bとの間の距離は、n+型層10bの端部の平面視における位置とp-型層12bの端部の平面視における位置とによって異なる。よって、n+型層10bの平面視における形成位置、n+型層10bの形成幅、p-型層12bの平面視における形成位置、および、p-型層12bの形成幅のうちの少なくとも1つを調整することにより、n+型層10bとp-型層12bとの間の距離を制御することができる。
 たとえば、図3に例示される断面図における、n+型層10bからp-型層12bを見上げる角度が角度θ1または角度θ2となるように、すべてのn+型層10bの形成幅を調整することにより、n+型層10bとp-型層12bとの間の距離を一定にすることができる。
 また、たとえば、n+型層10bからp-型層12bを見上げる角度が角度θ1となるように、一部のn+型層10bの形成幅を調整し、かつ、n+型層10bからp-型層12bを見上げる角度が角度θ2となるように、残りのn+型層10bの形成幅を調整することにより、n+型層10bとp-型層12bとの間の距離を制御してもよい。
 <作用>
 上記の構成によれば、n+型層10bとp-型層12bとの間の距離を制御することによって、伝導度変調のレベルを調整することができる。また、n+型層10bとp-型層12bとの間の距離が複数パターン混在した構成とすることで、複数の特性を有する素子が並列接合された場合と同じ効果が得られる。
 なお、電流は、n+型層10bからp-型層12bを見上げる角度が45度以上となるようには流れないため、伝導度変調のレベルの調整が可能な角度範囲は45度以内である。すなわち、n+型層10bとp-型層12bとの間の平面視における距離である層間距離は、n-型層101の厚さ以下である。
 <第4実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図4は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。
 図4に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10cと、p-型層12と、p型層13と、酸化膜14と、電極15と、保護膜16と、n-型層101の裏面において部分的に形成されるp型層17を備える。
 ここで、n+型層10cは、セル領域に対応するn-型層101の裏面においてのみ形成される。また、p型層17は、終端領域に対応するn-型層101の裏面においてのみ形成される。
 そして、n+型層10cとp-型層12とは、平面視において重ならない位置にそれぞれ形成される。また、p型層17とp型層13とは、平面視において重ならない位置にそれぞれ形成される。
 <作用>
 上記の構成によれば、n+型層10cが形成されない終端領域においては、キャリアレベルが抑えられる。そのため、リカバリー動作時のSOA耐量を向上させることができる。
 また、p型層17が形成される終端領域はトランジスタ構造となり、リカバリー動作時にバイポーラ動作することで、リンギング(発振)を抑えることができる。
 <第5実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図5は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。
 図5に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において形成されるn型のバッファ層18と、バッファ層18の裏面において部分的に形成されるn+型層10dと、p-型層12と、p型層13と、電極15と、バッファ層18の裏面において部分的に形成されるp型層17dとを備える。バッファ層18の不純物濃度は、n+型層10dの不純物濃度よりも低い。
 ここで、n+型層10dは、セル領域に対応するバッファ層18の裏面においてのみ形成される。また、p型層17dは、バッファ層18の裏面におけるn+型層10dが形成される領域を除く領域にのみ形成される。
 そして、n+型層10dとp-型層12とは、平面視において重ならない位置にそれぞれ形成される。
 <製造方法>
 次に、図5に例示される半導体装置の製造方法について説明する。
 まず、第1実施形態に例示される場合と同様に、酸化膜14、終端領域のp型層13、セル領域のp-型層12、電極15、保護膜16をそれぞれ形成する。
 その後、半導体基板であるn-型層101が所望の厚みとなるまで裏面を研磨し、n-型層101の裏面においてn型のバッファ層18を形成する。そして、写真製版でn-型層101の表面におけるp-型層12と重ならないようにパターンを形成する。
 その後、イオン注入を行い、さらに熱処理(たとえば、laser annealなど)を行うことにより、n+型層10dを形成する。また、p型層17dを形成する。
 <作用>
 上記の構成によれば、半導体装置の耐圧が安定し、リーク電流を小さくすることができる。
 <第6実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図6は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。なお、図6においては、特にセル領域における構造が概略的に例示される。
 図6に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10eと、n-型層101の表層において部分的に形成されるp-型層12eと、電極15と、n-型層101の裏面において部分的に拡散されるp型層17eとを備える。なお、p型層17eは、セル領域のn-型層101の裏面に拡散される。また、n+型層10eとp型層17eとは、平面視において互いに離間して形成される。
 ここで、n+型層10eとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17eとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17eとn+型層10eとは、平面視において重ならない位置にそれぞれ形成される。
 <製造方法>
 次に、図6に例示される半導体装置の製造方法について説明する。
 まず、第1実施形態に例示される場合と同様に、セル領域のp-型層12e、電極15をそれぞれ形成する。
 その後、半導体基板であるn-型層101が所望の厚みとなるまで裏面を研磨し、写真製版でn-型層101の表面におけるp-型層12eと重ならないようにパターンを形成する。
 その後、イオン注入を行い、さらに熱処理(たとえば、laser annealなど)を行うことにより、n+型層10eを形成する。また、p型層17eを形成する。
 <作用>
 上記の構成によれば、キャリア密度を小さくすることができるため、リカバリー動作時にセル領域内でバイポーラ動作することで、リンギング(発振)を抑えることができる。
 図7は、リカバリー動作時の波形を例示する図である。図7において、左側の縦軸が電圧値[V]を示し、右側の縦軸が電流値[A]を示し、横軸が時間[μs]を示す。
 図7に例示されるように、バイポーラ動作をする場合(太線)の方が、バイポーラ動作をしない場合(細線)に比べて、リンギング(発振)が抑えられることが分かる。
 <第7実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図8は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。なお、図8においては、特にセル領域における構造が概略的に例示される。
 図8に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成される複数のn+型層10fと、p-型層12eと、電極15と、n-型層101の裏面において部分的に形成されるp型層17fとを備える。
 ここで、n+型層10fとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17fとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17fは、平面視においてn+型層10fに挟まれて配置される。
 <作用>
 上記の構成によれば、同じ導電型である層同士の間の距離を離すことができるため、耐圧を安定化させることができる。
 <第8実施形態>
 本実施形態に関する半導体装置について説明する。以下では、上記の実施形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <構成>
 図9は、本実施形態に関する半導体装置を実現するための構成を概略的に例示する断面図である。なお、図9においては、特にセル領域における構造が概略的に例示される。
 図9に例示されるように、PINダイオードは、n-型層101と、n-型層101の裏面において部分的に形成されるn+型層10gと、p-型層12eと、電極15と、n-型層101の裏面において部分的に形成されるp型層17gとを備える。
 ここで、n+型層10gとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17gとp-型層12eとは、平面視において重ならない位置にそれぞれ形成される。また、p型層17gは、平面視においてn+型層10gに挟まれて配置される。また、n-型層101の裏面からの形成深さは、p型層17gよりもn+型層10gが深い。
 <作用>
 上記の構成によれば、逆バイアス時の空乏層の伸びが阻止される。そのため、リーク電流の増加を抑えられることができる。
 <効果>
 以下に、上記の実施形態による効果を例示する。なお、以下では、上記の実施形態に例示された具体的な構成に基づく効果が記載されるが、同様の効果が生じる範囲で、本明細書に例示される他の具体的な構成と置き換えられてもよい。また、当該置き換えは、複数の実施形態に跨ってなされてもよい。すなわち、異なる実施形態において例示された各構成が組み合わされて、同様の効果が生じる場合であってもよい。
 上記の実施形態によれば、半導体装置が、第1導電型(n型)の半導体層に対応するn-型層101と、第1導電型の第1不純物層に対応するn+型層10と、第2導電型(p型)の複数の第2不純物層に対応するp-型層12、さらにはp型層13とを備える。
 n+型層10は、n-型層101の裏面において部分的に拡散され、かつ、n-型層101の不純物濃度よりも高い不純物濃度である。p-型層12およびp型層13は、n-型層101の表面においてそれぞれ部分的に拡散される。
 n+型層10は、平面視において、p-型層12同士、p型層13同士、または、p-型層12とp型層13との間であって、p-型層12およびp型層13と重ならない位置に形成される。
 また、n-型層101の表面におけるp-型層12同士、p型層13同士、または、p-型層12とp型層13との間には、n-型層101のみが存在する。
 このような構成によれば、n-型層101の表面におけるp-型層12と、n-型層101の裏面におけるn+型層10とが、平面視において重ならない位置に配置される。また、n-型層101の表面におけるp型層13と、n-型層101の裏面におけるn+型層10とが、平面視において重ならない位置に配置される。よって、たとえば、n+型層10とp-型層12との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。そのため、電子線照射などを必要とせずに、リカバリー動作時にキャリアが部分的に集中することを抑制することができる。すなわち、低リカバリー損失仕様、すなわち、高順方向電圧(Vf)仕様の半導体装置を実現することができる。また、高速リカバリー動作(低EREC)を実現することができる。
 なお、これらの構成以外の本明細書に例示される他の構成については適宜省略することができる。すなわち、これらの構成のみで、上記の効果を生じさせることができる。しかし、本明細書に例示される他の構成のうちの少なくとも1つを上記の構成に適宜追加した場合、すなわち、上記の構成としては記載されなかった本明細書に例示される他の構成を上記の構成に追加した場合でも、同様に上記の効果を生じさせることができる。
 また、上記の実施形態によれば、第2不純物層には、セル領域に部分的に拡散されるセル不純物層に対応するp-型層12と、複数の終端不純物層に対応するp型層13とが含まれる。
 p型層13は、n-型層101の表面において互いに離間して拡散され、かつ、セル領域を平面視において囲む終端領域においてそれぞれがp-型層12を平面視において囲んで形成される。
 このような構成によれば、終端領域におけるガードリング構造により、半導体装置の耐圧を向上させることができる。
 また、上記の実施形態によれば、第1不純物層に対応するn+型層10aが、セル領域のn-型層101の裏面においてのみ部分的に拡散される。
 このような構成によれば、n+型層10aが形成されない終端領域においては、キャリアレベルが抑えられる。そのため、リカバリー動作時のSOA耐量を向上させることができる。
 また、上記の実施形態によれば、半導体装置が、終端領域のn-型層101の裏面において部分的に拡散される、第2導電型の第3不純物層に対応するp型層17を備える。
 このような構成によれば、p型層17が形成される終端領域はトランジスタ構造となり、リカバリー動作時にバイポーラ動作することで、リンギング(発振)を抑えることができる。
 また、上記の実施形態によれば、第3不純物層に対応するp型層17eが、セル領域のn-型層101の裏面においても部分的に拡散される。
 このような構成によれば、半導体装置の耐圧が安定し、リーク電流を小さくすることができる。
 また、上記の実施形態によれば、p型層17が、平面視において、p-型層12同士、p型層13同士、または、p-型層12とp型層13との間であって、p-型層12およびp型層13と重ならない位置に形成される。
 このような構成によれば、n-型層101の表面におけるp-型層12と、n-型層101の裏面におけるn+型層10cとが、平面視において重ならない位置に配置される。また、n-型層101の表面におけるp型層13と、n-型層101の裏面におけるn+型層10cとが、平面視において重ならない位置に配置される。よって、たとえば、n+型層10cとp-型層12との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。
 また、上記の実施形態によれば、半導体装置が、n-型層101の裏面において拡散される第1導電型(n型)の第4不純物層に対応するバッファ層18を備える。
 バッファ層18の不純物濃度は、第1不純物層に対応するn+型層10dの不純物濃度よりも低い。また、n+型層10dは、バッファ層18上に部分的に拡散される。また、第3不純物層に対応するp型層17dは、バッファ層18上に部分的に拡散される。
 このような構成によれば、バッファ層18を備えることにより、半導体装置の耐圧が安定する。よって、リーク電流を小さくすることができる。
 また、上記の実施形態によれば、第1不純物層に対応するn+型層10eと第3不純物層に対応するp型層17eとが、平面視において互いに離間して形成される。
 このような構成によれば、キャリア密度を小さくすることができるため、リカバリー動作時にセル領域内でバイポーラ動作することで、リンギング(発振)を抑えることができる。また、高速リカバリー動作(低EREC)を実現することができる。
 また、上記の実施形態によれば、半導体装置が、複数の第1不純物層に対応するn+型層10fを備える。また、第3不純物層に対応するp型層17fが、平面視においてn+型層10fに挟まれて形成される。
 このような構成によれば、同じ導電型である層同士の間の距離を離すことができるため、耐圧を安定化させることができる。
 また、上記の実施形態によれば、n-型層101の裏面における第1不純物層に対応するn+型層10gの形成深さが、n-型層101の裏面における第3不純物層に対応するp型層17gの形成深さよりも深い。
 このような構成によれば、逆バイアス時の空乏層の伸びが阻止される。そのため、リーク電流の増加を抑えられることができる。
 また、上記の実施形態によれば、第1不純物層に対応するn+型層10bと第2不純物層との間の平面視における距離である層間距離は、n-型層101の厚さ以下である。
 このような構成によれば、層間距離がn-型層101の厚さ以下である範囲において、n+型層10とp-型層12との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。
 また、上記の実施形態によれば、複数の層間距離には、他の層間距離と異なる層間距離が含まれる。
 このような構成によれば、n+型層10bとp-型層12bとの間の距離を制御することによって、伝導度変調のレベルを調整することができる。また、n+型層10bとp-型層12bとの間の距離が複数パターン混在した構成とすることで、複数の特性を有する素子が並列接合された場合と同じ効果が得られる。
 また、上記の実施形態によれば、半導体装置が、第1導電型(n型)の半導体層に対応するn-型層101と、第1導電型の第1不純物層に対応するn+型層10dと、第2導電型(p型)の複数の第2不純物層に対応するp-型層12、さらにはp型層13と、第2導電型の第3不純物層に対応するp型層17dと、第1導電型の第4不純物層に対応するバッファ層18とを備える。
 n+型層10dは、n-型層101の裏面において部分的に拡散され、かつ、n-型層101の不純物濃度よりも高い不純物濃度である。p-型層12およびp型層13は、n-型層101の表面においてそれぞれ部分的に拡散される。
 n+型層10dは、平面視において、p-型層12同士、p型層13同士、または、p-型層12とp型層13との間であって、p-型層12およびp型層13と重ならない位置に形成される。
 また、n-型層101の表面におけるp-型層12同士、p型層13同士、または、p-型層12とp型層13との間には、n-型層101のみが存在する。また、n+型層10dが、セル領域のn-型層101の裏面においてのみ部分的に拡散される。
 また、p型層17dは、n-型層101の裏面において拡散される。また、バッファ層18は、n-型層101の裏面において拡散される。
 また、バッファ層18の不純物濃度は、n+型層10dの不純物濃度よりも低い。また、n+型層10dは、バッファ層18上に部分的に拡散される。また、p型層17dは、バッファ層18上に部分的に拡散される。
 このような構成によれば、n-型層101の表面におけるp-型層12と、n-型層101の裏面におけるn+型層10dとが、平面視において重ならない位置に配置される。また、n-型層101の表面におけるp型層13と、n-型層101の裏面におけるn+型層10dとが、平面視において重ならない位置に配置される。よって、たとえば、n+型層10dとp-型層12との間の距離を調整して、伝導度変調のレベルの上昇を抑制することができる。また、バッファ層18を備えることにより、半導体装置の耐圧が安定する。よって、リーク電流を小さくすることができる。
 <変形例>
 上記実施形態では、各構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本明細書に記載されたものに限られることはない。よって、例示されていない無数の変形例が、本明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施形態における少なくとも1つの構成要素を抽出し、他の実施形態の構成要素と組み合わせる場合が含まれる。
 また、矛盾が生じない限り、上記実施形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていてもよい。さらに、各構成要素は概念的な単位であって、1つの構成要素が複数の構造物から成る場合と、1つの構成要素がある構造物の一部に対応する場合と、さらには、複数の構成要素が1つの構造物に備えられる場合とを含む。また、各構成要素には、同一の機能を発揮する限り、他の構造または形状を有する構造物が含まれる。
 また、本明細書における説明は、本技術に関するすべての目的のために参照され、いずれも、従来技術であると認めるものではない。
 また、上記実施形態において、特に指定されずに材料名などが記載された場合は、矛盾が生じない限り、当該材料に他の添加物が含まれた、たとえば、合金などが含まれるものとする。
 上記実施形態では、第1導電型がn型であり、第2導電型がp型であるとして説明されたが、逆に、第1導電型がp型であり、第2導電型がn型であってもよい。
 10,10a,10b,10c,10d,10e,10f,10g,100 n+型層、12,12b,12e,102 p-型層、13,17,17d,17e,17f,17g,103 p型層、14 酸化膜、15 電極、16 保護膜、18 バッファ層、101 n-型層。

Claims (13)

  1.  第1導電型の半導体層(101)と、
     前記半導体層(101)の裏面において部分的に拡散され、かつ、前記半導体層(101)の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層(10、10aから10g)と、
     前記半導体層(101)の表面において部分的に拡散される第2導電型の複数の第2不純物層(12、13)とを備え、
     前記第1不純物層(10、10aから10g)は、平面視において、前記第2不純物層(12、13)同士の間であって、前記第2不純物層(12、13)と重ならない位置に形成され、
     前記半導体層(101)の表面における前記第2不純物層(12、13)同士の間には、前記半導体層(101)のみが存在する、
     半導体装置。
  2.  前記第2不純物層には、
     セル領域に部分的に拡散されるセル不純物層(12)と、
     前記半導体層(101)の表面において互いに離間して拡散され、かつ、前記セル領域を平面視において囲む終端領域においてそれぞれが前記セル不純物層(12)を平面視において囲んで形成される複数の終端不純物層(13)とが含まれる、
     請求項1に記載の半導体装置。
  3.  前記第1不純物層(10aから10g)が、前記セル領域の前記半導体層(101)の裏面においてのみ部分的に拡散される、
     請求項2に記載の半導体装置。
  4.  前記終端領域の前記半導体層(101)の裏面において部分的に拡散される、第2導電型の第3不純物層(17、17dから17g)をさらに備える、
     請求項2または請求項3に記載の半導体装置。
  5.  前記第3不純物層(17dから17g)が、前記セル領域の前記半導体層(101)の裏面においても部分的に拡散される、
     請求項4に記載の半導体装置。
  6.  前記第3不純物層(17、17eから17g)が、平面視において、前記第2不純物層(12、13)同士の間であって、前記第2不純物層(12、13)と重ならない位置に形成される、
     請求項4に記載の半導体装置。
  7.  前記半導体層(101)の裏面において拡散される第1導電型の第4不純物層(18)をさらに備え、
     前記第4不純物層(18)の不純物濃度は、前記第1不純物層(10d)の不純物濃度よりも低く、
     前記第1不純物層(10d)は、前記第4不純物層(18)上に部分的に拡散され、
     前記第3不純物層(17d)は、前記第4不純物層(18)上に部分的に拡散される、
     請求項5に記載の半導体装置。
  8.  前記第1不純物層(10e)と前記第3不純物層(17e)とが、平面視において互いに離間して形成される、
     請求項4に記載の半導体装置。
  9.  複数の前記第1不純物層(10f)を備え、
     前記第3不純物層(17f)が、平面視において前記第1不純物層(10f)に挟まれて形成される、
     請求項4に記載の半導体装置。
  10.  前記半導体層(101)の裏面における前記第1不純物層(10g)の形成深さが、前記半導体層(101)の裏面における前記第3不純物層(17g)の形成深さよりも深い、
     請求項4に記載の半導体装置。
  11.  前記第1不純物層(10b)と前記第2不純物層(12、13)との間の平面視における距離である層間距離は、前記半導体層(101)の厚さ以下である、
     請求項1または請求項2に記載の半導体装置。
  12.  複数の前記第1不純物層(10b)と、複数の前記第2不純物層(12、13)とを備え、
     複数の前記層間距離には、他の前記層間距離と異なる前記層間距離が含まれる、
     請求項11に記載の半導体装置。
  13.  第1導電型の半導体層(101)と、
     前記半導体層(101)の裏面において部分的に拡散され、かつ、前記半導体層(101)の不純物濃度よりも高い不純物濃度である第1導電型の第1不純物層(10d)と、
     前記半導体層(101)の表面において部分的に拡散される第2導電型の複数の第2不純物層(12、13)とを備え、
     前記第1不純物層(10d)は、平面視において、前記第2不純物層(12、13)同士の間であって、前記第2不純物層(12、13)と重ならない位置に形成され、
     前記半導体層(101)の表面における前記第2不純物層(12、13)同士の間には、前記半導体層(101)のみが存在し、
     前記第1不純物層(10d)が、セル領域の前記半導体層(101)の裏面においてのみ部分的に拡散され、
     前記半導体層(101)の裏面において拡散される第2導電型の第3不純物層(17d)と、
     前記半導体層(101)の裏面において拡散される第1導電型の第4不純物層(18)とをさらに備え、
     前記第4不純物層(18)の不純物濃度は、前記第1不純物層(10d)の不純物濃度よりも低く、
     前記第1不純物層(10d)は、前記第4不純物層(18)上に部分的に拡散され、
     前記第3不純物層(17d)は、前記第4不純物層(18)上に部分的に拡散される、
     半導体装置。
PCT/JP2015/077018 2015-09-25 2015-09-25 半導体装置 WO2017051464A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/077018 WO2017051464A1 (ja) 2015-09-25 2015-09-25 半導体装置
DE112015006951.8T DE112015006951B4 (de) 2015-09-25 2015-09-25 Halbleitervorrichtungen
US15/568,489 US10546961B2 (en) 2015-09-25 2015-09-25 Semiconductor device with non-overlapping impurity layers
JP2017541203A JP6351863B2 (ja) 2015-09-25 2015-09-25 半導体装置
CN201580083340.8A CN108028284B (zh) 2015-09-25 2015-09-25 半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077018 WO2017051464A1 (ja) 2015-09-25 2015-09-25 半導体装置

Publications (1)

Publication Number Publication Date
WO2017051464A1 true WO2017051464A1 (ja) 2017-03-30

Family

ID=58386345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077018 WO2017051464A1 (ja) 2015-09-25 2015-09-25 半導体装置

Country Status (5)

Country Link
US (1) US10546961B2 (ja)
JP (1) JP6351863B2 (ja)
CN (1) CN108028284B (ja)
DE (1) DE112015006951B4 (ja)
WO (1) WO2017051464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355142B2 (en) 2016-02-29 2019-07-16 Mitsubishi Electric Corporation Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366231A (zh) * 2020-11-20 2021-02-12 济南新芯微电子有限公司 一种稳压二极管及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191475A (ja) * 1987-10-02 1989-04-11 Toyota Autom Loom Works Ltd pn接合ダイオード
JPH0629558A (ja) * 1992-07-08 1994-02-04 Naoshige Tamamushi プレーナ構造を有する静電誘導ダイオード
JPH07106605A (ja) * 1993-10-05 1995-04-21 Toyo Electric Mfg Co Ltd 高速ダイオード

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539360A (en) 1976-07-12 1978-01-27 Fuji System Drink flavor enhancing composition
US5682044A (en) * 1995-01-31 1997-10-28 Takashige Tamamushi Reverse conducting thyristor with a planar-gate, buried-gate, or recessed-gate structure
JP4260402B2 (ja) * 2002-01-29 2009-04-30 新電元工業株式会社 二端子サイリスタ
JP2008244312A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 半導体装置
JP5309360B2 (ja) 2008-07-31 2013-10-09 三菱電機株式会社 半導体装置およびその製造方法
JP5175872B2 (ja) * 2010-01-21 2013-04-03 株式会社東芝 半導体整流装置
JP5321669B2 (ja) * 2010-11-25 2013-10-23 株式会社デンソー 半導体装置
JP2014063980A (ja) * 2012-08-30 2014-04-10 Toshiba Corp 半導体装置
KR101427948B1 (ko) 2012-12-18 2014-08-08 현대자동차 주식회사 쇼트키 배리어 다이오드 및 그 제조 방법
JP2014241367A (ja) * 2013-06-12 2014-12-25 三菱電機株式会社 半導体素子、半導体素子の製造方法
JP6118471B2 (ja) * 2013-12-23 2017-04-19 アーベーベー・テクノロジー・アーゲー 逆導通半導体素子
CN104051547B (zh) * 2014-06-18 2017-04-19 江苏润奥电子制造股份有限公司 一种高压快速软恢复二极管及其制备方法
JP2016029685A (ja) * 2014-07-25 2016-03-03 株式会社東芝 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191475A (ja) * 1987-10-02 1989-04-11 Toyota Autom Loom Works Ltd pn接合ダイオード
JPH0629558A (ja) * 1992-07-08 1994-02-04 Naoshige Tamamushi プレーナ構造を有する静電誘導ダイオード
JPH07106605A (ja) * 1993-10-05 1995-04-21 Toyo Electric Mfg Co Ltd 高速ダイオード

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355142B2 (en) 2016-02-29 2019-07-16 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JPWO2017051464A1 (ja) 2017-11-02
US10546961B2 (en) 2020-01-28
DE112015006951T5 (de) 2018-06-14
CN108028284B (zh) 2021-06-22
US20180158963A1 (en) 2018-06-07
DE112015006951B4 (de) 2022-09-08
CN108028284A (zh) 2018-05-11
JP6351863B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
US10840238B2 (en) Semiconductor device
JP6728953B2 (ja) 半導体装置及びその製造方法
WO2013030943A1 (ja) 半導体装置
US20170018637A1 (en) Semiconductor device and manufacturing method of the same
US9397206B2 (en) Semiconductor device and method for manufacturing the same
JP5473397B2 (ja) 半導体装置およびその製造方法
JP2018082007A (ja) 半導体装置の製造方法
US10756200B2 (en) Silicon carbide semiconductor element and method of manufacturing silicon carbide semiconductor
US10121862B2 (en) Switching device and method of manufacturing the same
JPWO2014087543A1 (ja) 半導体装置の製造方法
JP6293688B2 (ja) ダイオード及びそのダイオードを内蔵する逆導通igbt
JP6351863B2 (ja) 半導体装置
JP2020155581A (ja) 半導体装置
US10109749B2 (en) Semiconductor device and semiconductor device manufacturing method
WO2022193357A1 (zh) 一种肖特基二极管结构及其制造方法
JP6935373B2 (ja) 半導体装置
CN115064535A (zh) 半导体装置
US11107887B2 (en) Semiconductor device
JP2006196502A (ja) 電力用半導体装置
JP2013135078A (ja) ダイオード
JP2016063119A (ja) ダイオード
JP2016201498A (ja) ダイオード
US20210005711A1 (en) Vertical power transistor having heterojunctions
KR102335328B1 (ko) 반도체 소자의 제조 방법
JPWO2019224913A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541203

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006951

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904721

Country of ref document: EP

Kind code of ref document: A1