WO2017045191A1 - 一种光固化成型的高致密陶瓷的制备方法 - Google Patents

一种光固化成型的高致密陶瓷的制备方法 Download PDF

Info

Publication number
WO2017045191A1
WO2017045191A1 PCT/CN2015/089961 CN2015089961W WO2017045191A1 WO 2017045191 A1 WO2017045191 A1 WO 2017045191A1 CN 2015089961 W CN2015089961 W CN 2015089961W WO 2017045191 A1 WO2017045191 A1 WO 2017045191A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
debinding
green body
preparing
density
Prior art date
Application number
PCT/CN2015/089961
Other languages
English (en)
French (fr)
Inventor
伍尚华
周茂鹏
伍海东
刘伟
程利霞
古尚贤
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2017045191A1 publication Critical patent/WO2017045191A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers

Definitions

  • the invention relates to the technical field of ceramic preparation, in particular to a method for preparing a high-density ceramic formed by photocuring.
  • Special ceramic materials have been improved in energy, aviation, machinery, chemical, electronics, semiconductor, medical and other fields due to their high strength, high hardness, corrosion resistance, wear resistance, chemical stability and biocompatibility. More applications. Due to the traditional ceramic manufacturing process, the complex ceramics with complex shapes have complex process, long production time and high production cost. The special ceramics manufacturing process has not been able to keep up with the growing research and development of special ceramic products. And use requirements. Especially for high-density ceramics, it has the advantages of high hardness, good chemical stability and excellent high-temperature performance, but these advantages also bring great troubles to the molding and processing of high-density ceramic parts, especially the complicated shape.
  • Dense ceramic shaped parts usually require the use of complex molds for forming, while complex molds increase production costs and cycles, and are not suitable for small batch production or experimental production of highly dense ceramic parts.
  • new ceramic molding methods have been developed internationally, such as injection, casting, gel injection molding, direct solidification injection molding, etc., whether these new methods are traditional methods such as grouting and dry pressing. , can not get rid of the constraints of the mold on ceramic manufacturing.
  • the drying process in the traditional ceramic preparation process will cause a large deformation of the green body, and it is impossible to produce ceramic shaped parts with complicated shapes and precise debinding process. It is also unable to meet the requirements for firing high-density ceramics.
  • the 3D printing technology used in the present invention is Stereo lithography Appearance (SLA).
  • SLA Stereo lithography Appearance
  • the principle is as shown in FIG. 1.
  • the laser beam is scanned on the xy plane by computer to selectively cure the ceramic slurry to form a single sheet.
  • Layer section ; then the lifting table is lowered by a certain distance, the blade is swept, a layer of ceramic slurry is evenly coated on the solidified layer, and then the xy surface is scanned to form another layer of cross section and bonded to the previous layer. Together; in this cycle, a photocurable ceramic body is obtained.
  • the invention aims to manufacture a high-density ceramic having a complicated structure by the existing ceramic preparation method, and requires a complicated mold to be produced first, which leads to a high production cost and a long production cycle, and is difficult to manufacture a complicated shape and precision due to a large deformation amount of the green body.
  • the problem of ceramics is to provide a method for preparing high-density ceramics formed by photocuring.
  • the present invention employs the following technical solutions:
  • S1 preparation of slurry weigh each component according to the following mass percentage and mix well, 30-80% ceramic powder, 15-65% premix, 0.01-2% photoinitiator, 0.04-3% dispersant , to obtain a slurry.
  • the premix is composed of an organic solute and a solvent, the mass of the solvent being 0-90% of the mass of the premix;
  • the organic solute is acrylamide, N-N'methylenebisacrylamide, 1,6- At least one of hexanediol diacrylate and trimethylolpropane triacrylate.
  • the organic solute is formed by combining acrylamide with N-N'methylenebisacrylamide in a mass ratio of 9 to 29:1.
  • the mass of the solvent is 60-90% of the mass of the premix.
  • the solvent is at least one of deionized water, glycerin, absolute ethanol and acetone.
  • the solvent consists of deionized water and glycerol, and the mass of glycerol is 5-20% of the mass of the premix.
  • the ceramic powder is at least one of alumina, zirconia, lead zirconate titanate, silicon nitride, aluminum nitride, silicon carbide, boron carbide, titanium carbonitride, titanium carbide, titanium oxide, and silicon oxide.
  • the ceramic powder has an average particle diameter of less than or equal to 10 ⁇ m, and the ceramic powder has a purity of greater than or equal to 99.9%.
  • the photoinitiator is 2-hydroxy-2-methyl-1-phenyl-1-propanone, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-4'-(2-hydroxyethoxy)- At least one of 2-methylpropiophenone.
  • the dispersing agent is at least one of ammonium citrate, polyvinylpyrrolidone, sodium hexametaphosphate, and ammonium polyacrylate.
  • the specific step of preparing the slurry is: firstly mixing the organic solute and the solvent uniformly to form a premixed liquid, then adding the dispersing agent to the premixed liquid and mixing uniformly, then adding the ceramic powder to the premixed liquid and ball milling 0.1- 50h, the initial slurry is obtained; followed by the defoaming process: the initial slurry is placed under a negative pressure environment and the initial slurry is stirred for 1-120 minutes to remove bubbles, and finally the photoinitiator is added to the initial slurry and mixed uniformly. Get the slurry.
  • S2 molding The slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength ⁇ ⁇ 405 nm used).
  • the uncured slurry on the surface of the green body is washed and removed.
  • the blank is sequentially processed through the S31 drying step, the S32 debinding step, and the S33 sintering step to obtain a relative density greater than or equal to 90%, a Vickers hardness greater than or equal to 12 GPa, and a residual carbon content less than or equal to 0.5 wt%. Ceramic.
  • the S31 drying step is: drying the blank in a liquid desiccant for 1-72 h.
  • the liquid desiccant is polyethylene glycol having a molecular weight of from 200 to 600.
  • the liquid desiccant on the surface of the blank is cleaned with a cleaning solution; specifically, the body may be placed in ethanol and ultrasonically cleaned.
  • the green body is then irradiated with ultraviolet light to reinforce the green body; specifically, the green body may be placed under an ultraviolet lamp ( ⁇ ⁇ 405 nm), and the green body is irradiated with an ultraviolet lamp.
  • the S32 debinding step is: first performing vacuum debinding or atmosphere protection debinding treatment on the blank, and then performing air debinding treatment on the blank.
  • vacuum debinding or atmosphere protection debinding can reduce the rate of cracking of organic matter in the green body, thereby reducing defects such as cracking and foaming of the green body.
  • the carbon remaining in the body due to vacuum debinding or atmosphere protection debinding can be removed by air debinding.
  • the condition of the vacuum debinding or atmosphere protection debinding is: placing the blank in a vacuum debinding furnace or an inert gas/N 2 protective debinding furnace at 0.1-10 ° C/min. The rate is raised to 300-1000 ° C and held for 2-6 h, and the temperature is maintained at 50-150 ° C for 0-60 min; then, the blank is in a vacuum oven or inert gas / N 2 protective row Cool to room temperature in the oven.
  • the negative pressure debinding furnace means that the degree of vacuum in the debinding furnace is greater than or equal to 0.09 MPa.
  • the air is discharged under the conditions of: placing the blank in a debinding furnace in an air atmosphere, raising the temperature to 400-700 ° C at a rate of 1-10 ° C / min and maintaining the temperature for 0.5-10 h; Cool to room temperature with the furnace. Further preferably, after the body is kept for 0.5-10 hours, the temperature is raised to 800-1100 ° C at a rate of 2-15 ° C / min and held for 10 - 60 min, and then the body is cooled to room temperature with the furnace.
  • the S33 sintering step is carried out by placing the green body in a sintering furnace, raising the temperature to 1200-2200 ° C at a rate of 5-30 ° C/min and maintaining the ceramic for 1-8 h. Further preferably, the green body is sintered in a sintering furnace of an air/N 2 /inert gas atmosphere or sintered in a negative pressure sintering furnace.
  • the invention has the beneficial effects that the invention is suitable for 3D printing preparation of a high-density ceramic shaped blank having a complicated shape by optimizing the composition and ratio of the slurry, so that the preparation is high.
  • the solid content of the slurry of the present invention is less than 40 vol%, it can still be used for making a high-density ceramic green body, and the relative density of the finally obtained high-density ceramic can still be as high as 99% or more, overcoming the prior art.
  • the green body is dried by liquid drying, so that the various directions of the green body are uniformly shrunk, and the shape variable of the green body is effectively reduced, so that the invention is suitable for preparing a high-density ceramic body with complicated structure and precision, and solves the traditional natural drying.
  • the problem of deformation of the blank that cannot be solved by the process.
  • the invention adopts the two-step degreasing method of vacuum/atmosphere protection debinding and air debinding to perform debinding, which can reduce the deformation and cracking of the blank due to the excessive degreasing heating rate of the blank or the excessive cracking rate of the organic matter in the green body.
  • Defects such as foaming, and vacuum/atmosphere protection, after debinding, combined with air debinding, can remove carbon remaining in the blank due to vacuum/atmosphere protection.
  • the high density ceramics prepared by the method of the invention have a relative density of more than 90%, a Vickers hardness of more than 12 GPa, and a residual carbon content of less than 0.5 wt%.
  • FIG. 1 is a schematic view showing the working principle of a photocuring molding apparatus
  • FIG. 2 is a schematic view showing a target structure of a high-density ceramic product in each embodiment
  • Figure 3 is a blank body after liquid drying treatment in Example 1;
  • Example 4 is a high-density ceramic finished product prepared in Example 1;
  • Figure 5 is an SEM image of the high density ceramic prepared in Example 1;
  • Fig. 6 is a body after natural drying in Comparative Example 1.
  • rapid prototyping data conforming to the target structure for the photocuring molding apparatus is produced according to the prior art before the high density ceramic is produced, especially before the slurry is formed into a blank by photocuring.
  • the rapid prototyping data file is imported into the control program of the photocuring molding equipment and is ready for use. Specifically: using the software UG for 3D solid modeling, the ceramic profiled part model is obtained; the model is imported into the rapid prototyping assistant software Magics to generate support and slice processing, and then the rapid prototyping data file is output, and the rapid prototyping data file is imported into the light. In the control program of the curing molding equipment.
  • the target structure of the high-density ceramic finished product prepared in the following examples is a triangular ceramic cutter with a side length of 16 mm and a height of 5 mm.
  • the triangular ceramic cutter has a circular perforation with a diameter of 4 mm in the middle, and on the upper and lower surfaces of the triangular ceramic cutter, along the There are three chipbreakers on the outside, as shown in Figure 2.
  • the corresponding rapid prototyping data can be made according to the structure of the actual high density ceramic product, and the structure of the high density ceramic product is not limited to the structure shown in the following embodiments.
  • the relative density of high-density ceramics prepared in the following examples was tested by the method of fine ceramic density and apparent porosity (GB: T 25995-2010), and the room temperature hardness test method of fine ceramics was used (GB: T 16534-2009). The hardness of the high density ceramics prepared in the following examples was tested.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Premix weigh 665g deionized water and 160g glycerol as solvent (75% of the mass of the premix); weigh 247.5g acrylamide and 27.5g N-N'methylenebisacrylamide as organic solutes ( 25% of the mass of the premix). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the body was dried in polyethylene glycol having a molecular weight of 400 for 48 hours, and then the body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the body.
  • the body after liquid drying is as shown in Fig. 3, and the structure and size of the body are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and discharged: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 600 ° C at a rate of 2 ° C/min and kept for 4 hours, and each time during the heating process Separate The temperature was kept at 100 ° C for 20 min; the vacuum of the debinding furnace was maintained, and the green body was cooled to room temperature with the debinding furnace.
  • the body is then air-elected: the body is placed in a debinding furnace in an air atmosphere, heated to 600 ° C at a rate of 2 ° C / min and held for 4 h; then heated to 1000 ° C at a rate of 15 ° C / min It was kept for 30 minutes, and then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace in an air atmosphere, and heated to 1,650 ° C at a rate of 15 ° C / min and held for 1 h to obtain a highly dense ceramic.
  • the slurry of this example had a solid content of 30 vol%, and the prepared high-density ceramic had a relative density of 99.5%, a Vickers hardness of 17.5 GPa, and a residual carbon content of 0.1% by weight.
  • the structure of the high-density ceramic prepared in this embodiment is shown in Fig. 4.
  • the structure and size of the high-density ceramic are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • the microstructure of the high-density ceramic prepared in this example is shown in Fig. 5 (SEM image). It can be observed from Fig. 5 that the grain size is between 1 and 15 ⁇ m, and the prepared ceramic has a low porosity.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Premix weigh 930g deionized water and 60g glycerol as solvent (90% of the mass of the premix); weigh 104.5g acrylamide and 5.5g N-N'methylenebisacrylamide as organic solutes ( 10% of the mass of the premix). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the green body was placed in polyethylene glycol having a molecular weight of 600 and dried for 72 hours, and then the green body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the green body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and degreased: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 900 ° C at a rate of 3 ° C/min and kept for 2 h, and each time during the heating process The temperature was kept at 100 ° C for 10 min; the vacuum of the debinding furnace was maintained, and the green body was cooled to room temperature with the debinding furnace.
  • the body is then air-elected: the body is placed in a degassing furnace in an air atmosphere, heated to 700 ° C at a rate of 3 ° C / min and held for 2 h; then heated to 1100 ° C at a rate of 10 ° C / min It was kept for 10 minutes, and then the body was cooled to room temperature with the furnace.
  • the blank is placed in a sintering furnace in an air atmosphere and heated to 1400 ° C at a rate of 10 ° C / min and After heat preservation for 3 hours, a high-density ceramic was obtained.
  • the high density ceramics prepared in this example had a relative density of 99.7%, a Vickers hardness of 18.5 GPa, and a residual carbon content of 0.1 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Premix Weigh 440g of deionized water and 220g of glycerol as solvent (60% of the mass of the premix); weigh 425.3g of acrylamide and 14.7g of N-N'methylenebisacrylamide as organic solutes ( 40% of the mass of the premix). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the body was dried in polyethylene glycol having a molecular weight of 200 for 3 hours, and then the body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and degreased: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 500 ° C at a rate of 0.2 ° C/min for 6 h, and each time during the heating process The temperature was maintained at 100 ° C for 60 min; the vacuum of the debinding furnace was maintained, and the green body was cooled to room temperature with the debinding furnace.
  • the air is discharged from the blank: the blank is placed in a degassing furnace in an air atmosphere, heated to 400 ° C at a rate of 1 ° C / min and held for 6 h; then heated to 800 ° C at a rate of 5 ° C / min It was kept for 60 minutes, and then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace in an air atmosphere, and heated to 1700 ° C at a rate of 5 ° C / min and held for 1 h to obtain a high-density ceramic.
  • the high density ceramics prepared in this example had a relative density of 96.2%, a Vickers hardness of 16.3 GPa, and a residual carbon content of 0.3 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Premix weigh 528g deionized water and 132g glycerol as solvent (premixed liquid) 60% by weight; 396 g of acrylamide and 44 g of N-N'methylenebisacrylamide were weighed as organic solutes (40% by mass of the premix). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the body was dried in polyethylene glycol having a molecular weight of 200 for 1 hour, and then the body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and discharged: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and the temperature is raised to 300 ° C at a rate of 0.1 ° C/min and kept for 6 hours; The degree of vacuum, the body is cooled to room temperature with the debinding furnace.
  • the air is discharged from the blank: the blank is placed in a rubber oven at 5 ° C / min. The rate was raised to 600 ° C and held for 0.5 h; then heated to 800 ° C at a rate of 2 ° C / min and held for 60 min, then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace in an air atmosphere, and heated to 1700 ° C at a rate of 10 ° C / min and held for 1 h to obtain a high-density ceramic.
  • the high density ceramics prepared in this example had a relative density of 95.1%, a Vickers hardness of 15.8 GPa, and a residual carbon content of 0.3 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Preparation of premix weigh 605g deionized water and 55g glycerol as solvent (60% of the mass of the premix); weigh 425g acrylamide and 15g N-N' methylene bis acrylamide as organic solute 40% of the quality of the mixture). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the body was dried in polyethylene glycol having a molecular weight of 200 for 50 hours, and then the body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and degreased: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 1000 ° C at a rate of 10 ° C/min and kept for 2 h, and each time during the heating process The temperature is maintained at 150 ° C for 60 min; the vacuum of the debinding furnace is maintained, and the green body is cooled to room temperature with the debinding furnace.
  • the body is then air-elected: the body is placed in a debinding furnace in an air atmosphere, heated to 600 ° C at a rate of 10 ° C / min and held for 10 h; and then heated to 1100 ° C at a rate of 10 ° C / min It was kept for 40 minutes, and then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace of an air atmosphere, and heated to 1300 ° C at a rate of 15 ° C / min and held for 8 hours to obtain a highly dense ceramic.
  • the high density ceramics prepared in this example had a relative density of 93.8%, a Vickers hardness of 14.1 GPa, and a residual carbon content of 0.2 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • Preparation of premix weigh 605g deionized water and 55g glycerol as solvent (60% of the mass of the premix); weigh 425g acrylamide and 15g N-N' methylene bis acrylamide as organic solute 40% of the quality of the mixture). The organic solute and the solvent were uniformly mixed, and the organic solute was completely dissolved to obtain 1,100 g of a yellowish transparent premix.
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the body was dried in polyethylene glycol having a molecular weight of 500 for 60 hours, and then the body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and discharged: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 1000 ° C at a rate of 5 ° C/min and kept for 3 hours, and each time during the heating process The temperature is maintained at 150 ° C for 60 min; the vacuum of the debinding furnace is maintained, and the green body is cooled to room temperature with the debinding furnace.
  • the air is discharged from the blank: the blank is placed in a debinding furnace in an air atmosphere, heated to 600 ° C at a rate of 5 ° C / min and held for 5 h; then heated to 1100 ° C at a rate of 10 ° C / min It was kept for 40 minutes, and then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace in an argon atmosphere, and heated to 1700 ° C at a rate of 10 ° C / min and held for 7 h to obtain a highly dense ceramic.
  • the high density ceramics prepared in this example had a relative density of 91.7%, a Vickers hardness of 12.8 GPa, and a residual carbon content of 0.5 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • This embodiment provides a method for preparing a photocurable high-density ceramic, and the specific steps are as follows:
  • the slurry was placed in a photocuring molding apparatus, and a green body was prepared by a photocuring molding method (wavelength: 355 nm). The blank is then removed and the uncured slurry on the surface of the blank is cleaned.
  • the green body was placed in polyethylene glycol having a molecular weight of 600 and dried for 72 hours, and then the green body was placed in absolute ethanol for ultrasonic cleaning to remove the liquid desiccant on the surface of the green body.
  • the structure and size of the body after liquid drying are consistent with the target structure.
  • the green body was placed under an ultraviolet lamp having a wavelength of ⁇ 405 nm, and the green body was irradiated with an ultraviolet lamp to reinforce the green body. Subsequently, the blank was dried in an oven.
  • the blank body is vacuum-discharged or atmosphere-protected and degreased: the blank body is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, and is heated to 900 ° C at a rate of 3 ° C/min and kept for 2 h, and each time during the heating process The temperature was kept at 100 ° C for 10 min; the vacuum of the debinding furnace was maintained, and the green body was cooled to room temperature with the debinding furnace.
  • the body is then air-elected: the body is placed in a degassing furnace in an air atmosphere, heated to 700 ° C at a rate of 3 ° C / min and held for 2 h; then heated to 1100 ° C at a rate of 10 ° C / min It was kept for 10 minutes, and then the body was cooled to room temperature with the furnace.
  • the green body was placed in a sintering furnace in an air atmosphere, and heated to 1400 ° C at a rate of 10 ° C / min and kept for 3 hours to obtain a highly dense ceramic.
  • the high density ceramics prepared in this example had a relative density of 99.6%, a Vickers hardness of 18.1 GPa, and a residual carbon content of 0.1 wt%.
  • the structure and size of the high-density ceramic prepared in this embodiment are basically the same as the target structure, and the shape variable is very small, negligible, and does not affect the quality of the finished product.
  • the present comparative example provides a method for preparing a ceramic, which comprises, in order, a slurry preparation step, a molding step, a drying step, a debinding step, and a sintering step.
  • the slurry used in this comparative example was the same as that used in Example 1, and the slurry preparation step, the molding step, the debinding step, and the sintering step were also the same as in Example 1, except that the drying step was carried out.
  • the drying step of this comparative example was as follows: the green body was allowed to stand at room temperature for 48 hours. The shape of the blank after standing for 48 hours is as shown in Fig. 6. The shape of the blank is very large and does not meet the generation requirements.
  • the ceramics prepared by the present comparative examples had a relative density of 93%, a Vickers hardness of 14.3 GPa, and a residual carbon content of 0.5% by weight. However, the ceramic has large deformation variables that do not meet the requirements of the target product.
  • the present comparative example provides a method for preparing a ceramic, which comprises, in order, a slurry preparation step, a molding step, a drying step, a debinding step, and a sintering step.
  • the slurry used in the present comparative example was the same as that used in Example 1, and the slurry preparation step, the molding step, the drying step, and the sintering step were also the same as in Example 1, except that the step of discharging the glue, the present comparison example only Vacuum debinding.
  • the debinding step of the comparative example is as follows: the blank is placed in a rubberizing furnace with a vacuum degree of ⁇ 0.09 MPa, heated to 600 ° C at a rate of 2 ° C/min and kept for 4 h, and kept at a temperature of 100 ° C for 20 min during the heating process. Maintaining the vacuum of the rubberizing furnace, the body is cooled to room temperature with the debinding furnace.
  • the ceramics prepared by this comparative example have obvious cracks and do not meet the product requirements.
  • the present comparative example provides a method for preparing a ceramic, which comprises, in order, a slurry preparation step, a molding step, a drying step, a debinding step, and a sintering step.
  • the slurry used in the present comparative example was the same as that used in Example 1, and the slurry preparation step, the molding step, the drying step, and the sintering step were also the same as in Example 1, except that the step of discharging the glue, the present comparison example only Perform air debinding.
  • the rubber step of this comparative example The procedure is as follows: the blank is placed in a debinding furnace in an air atmosphere, heated to 600 ° C at a rate of 2 ° C / min and held for 4 h; then heated to 1000 ° C at a rate of 15 ° C / min and held for 30 min, then the billet The body was cooled to room temperature with the furnace.
  • the ceramics prepared by this comparative example have very obvious cracks and do not meet the product requirements.
  • the organic solute constituting the premix may also be in acrylamide, N-N'methylenebisacrylamide, 1,6-hexanediol diacrylate, trimethylolpropane triacrylate. At least one.
  • the solvent constituting the premix may also be at least one of deionized water, glycerin, absolute ethanol, and acetone.
  • the ceramic powder may also be alumina, zirconia, lead zirconate titanate, silicon nitride, aluminum nitride, silicon carbide, boron carbide, titanium carbonitride, titanium carbide, titanium oxide, and silicon oxide. At least one of them.
  • the average particle diameter of the ceramic powder is less than or equal to 10 ⁇ m, and the purity of the ceramic powder is greater than or equal to 99.9%.
  • the photoinitiator can also be 2-hydroxy-2-methyl-1-phenyl-1-propanone (photoinitiator 1173), 1-hydroxycyclohexyl phenyl ketone (photoinitiator 184) At least one of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (photoinitiator 2959); the dispersing agent may also be ammonium citrate, polyvinylpyrrolidone, six At least one of sodium metaphosphate and ammonium polyacrylate.
  • the inert gas atmosphere in the debinding step, can be used to protect the debinding glue instead of the vacuum debinding, or the N 2 atmosphere can be used to replace the vacuum debinding, and the debinding effect is consistent with the vacuum debinding effect.
  • the light used for the photocuring molding may be ultraviolet rays of ⁇ ⁇ 405 nm, and is not limited to ultraviolet rays having a wavelength of 405 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

一种光固化成型的高致密陶瓷的制备方法。本方法通过优化浆料的组分及配比,使浆料适用于形状复杂的高致密陶瓷异形件坯体的3D打印制备,无需特别制作相应的模具。并且当浆料的固含量低于40vol%时仍能用于制作高致密陶瓷的坯体,最终制得的高致密陶瓷的相对密度仍可高达99%以上。坯体采用液态干燥方式进行干燥,使得本方法适于制作结构复杂且精密的高致密陶瓷的坯体。本方法采用真空/气氛保护排胶与空气排胶的二步脱脂法进行排胶,可减少坯体变形、开裂、起泡等缺陷问题。通过本方法制备的高致密陶瓷的相对密度在90%以上,维氏硬度在12GPa以上,残余碳含量小于0.5wt%。

Description

一种光固化成型的高致密陶瓷的制备方法 技术领域
本发明涉及陶瓷制备技术领域,尤其涉及一种光固化成型的高致密陶瓷的制备方法。
背景技术
特种陶瓷材料由于具有高强度、高硬度、耐腐蚀、耐磨损、化学稳定性和生物相容性好等优异性能,已在能源、航空、机械、化工、电子、半导体、医学等领域得到愈来愈多的应用。由于以传统的陶瓷制造工艺制造形状复杂的精密特种陶瓷存在工艺配备复杂、制作时间长、制作成本高等问题,通过传统的陶瓷制造工艺制备特种陶瓷已无法跟上现今对特种陶瓷产品日益增长的研发和使用需求。尤其是对于高致密陶瓷,其具有硬度高、化学稳定性好、高温性能优良等优点,但这些优点同时给高致密陶瓷件的成型及加工带来了很大的困扰,特别是形状复杂的高致密陶瓷异形件,通常需要使用复杂的模具来成型,而复杂的模具增加了生产成本和周期,不适于高致密陶瓷件的小批量生产或试验性生产。虽然目前国际上已开发出多种新型陶瓷成型方法,例如注射、流延、凝胶注模、直接凝固注模成型等,但无论是这些新型方法,还是传统的注浆、干压成型等方法,都无法摆脱模具对陶瓷制造的制约。另外,对于高致密陶瓷件,除了坯体成型的问题外,传统的陶瓷制备工艺中的干燥工艺会使坯体产生较大的形变量,无法制出形状复杂精密的陶瓷异形件,排胶工艺也无法满足烧制高致密陶瓷的要求。
鉴于上述的状况,尽快研究和推广快速无模成型技术对我国较落后的陶瓷工业来说势在必行。本发明所用的3D打印技术为光固化成型技术(Stereo lithography Appearance,缩写SLA),其原理如图1所示,通过计算机控制激光束在x-y面进行扫描,使陶瓷浆料选择性固化,形成单层截面;随后升降台下降一定的距离,刮刀扫过,在已固化层上均匀涂覆一层陶瓷浆料,再进行x-y面的扫描,形成另一层截面,并与前一层粘接在一起;如此循环,得到光固化陶瓷坯体。
发明内容
本发明针对以现有的陶瓷制备方法制造具有复杂结构的高致密陶瓷需先制出复杂的模具,导致生产成本高及生产周期长的问题,以及因坯体的形变量大难以制造形状复杂、精密的陶瓷的问题,提供一种以光固化成型的高致密陶瓷的制备方法。
为实现上述目的,本发明采用以下技术解决方案:
S1制备浆料:按以下质量百分比称取各组分并混合均匀,30-80%的陶瓷粉末,15-65%的预混液,0.01-2%的光引发剂,0.04-3%的分散剂,得到浆料。
所述预混液由有机溶质与溶剂组成,所述溶剂的质量为预混液的质量的0-90%;所述有机溶质为丙烯酰胺、N-N’亚甲基双丙烯酰胺、1,6-己二醇二丙烯酸酯和三羟甲基丙烷三丙烯酸酯中的至少一种。优选的,有机溶质由丙烯酰胺与N-N’亚甲基双丙烯酰胺以质量比9-29∶1复合而成。
优选的,所述溶剂的质量为预混液的质量的60-90%。
优选的,溶剂为去离子水、甘油、无水乙醇和丙酮中的至少一种。更优 选的,所述溶剂由去离子水和甘油组成,且甘油的质量为预混液的质量的5-20%。
优选的,所述陶瓷粉末为氧化铝、氧化锆、锆钛酸铅、氮化硅、氮化铝、碳化硅、碳化硼、碳氮化钛、碳化钛、氧化钛和氧化硅中的至少一种。更优选的,所述陶瓷粉末的平均粒径小于或等于10μm,陶瓷粉末的纯度大于或等于99.9%。
所述光引发剂为2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮和2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮中的至少一种。
所述分散剂为柠檬酸铵、聚乙烯吡咯烷酮、六偏磷酸钠和聚丙烯酸铵中的至少一种。
优选的,所述制备浆料的具体步骤是:首先将有机溶质与溶剂混合均匀,形成预混液,然后向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨0.1-50h,得到初浆料;接着是除泡工艺:将初浆料置于负压环境下并搅拌初浆料1-120min以除去气泡,最后向初浆料中加入光引发剂并混合均匀,制得浆料。
S2成型:将浆料置于光固化成型设备中,由光固化成型法(所用波长λ≤405nm)制备出坯体。
优选的,光固化成型法制出坯体后,清洗除去坯体表面未固化的浆料。
S3:然后,坯体依次经过S31干燥步骤、S32排胶步骤和S33烧结步骤的加工,制得相对密度大于或等于90%,维氏硬度大于或等于12GPa,残余碳含量小于或等于0.5wt%的陶瓷。
优选的,所述S31干燥步骤是:将坯体置于液态干燥剂中干燥1-72h。 优选的,所述液态干燥剂是分子量为200-600的聚乙二醇。
优选的,坯体干燥1-72h后,用清洗液将坯体表面的液态干燥剂清洗干净;具体可以是将所述坯体置于乙醇中,用超声波清洗。接着用紫外光照射坯体以加固坯体;具体可以是将坯体置于紫外灯(λ≤405nm)下,用紫外灯照射坯体。
优选的,所述S32排胶步骤是:先对坯体进行真空排胶或气氛保护排胶处理,再对坯体进行空气排胶处理。
采用真空排胶或气氛保护排胶可降低坯体中有机物的裂解速率,从而减少坯体出现开裂、起泡等缺陷。通过空气排胶可除去坯体中因真空排胶或气氛保护排胶而残留的碳。
更优选的,所述真空排胶或气氛保护排胶的条件是:将坯体置于负压的排胶炉内或惰性气体/N2保护的排胶炉内,以0.1-10℃/min的速率升温至300-1000℃并保温2-6h,且升温过程中每隔50-150℃保温0-60min;接着,坯体在负压的排胶炉内或惰性气体/N2保护的排胶炉内冷却至室温。进一步优选的,所述负压的排胶炉是指排胶炉内的真空度大于或等于0.09MPa。
更优选的,所述空气排胶的条件是:将坯体置于空气气氛的排胶炉中,以1-10℃/min的速率升温至400-700℃并保温0.5-10h;然后坯体随炉冷却至室温。进一步优选的,坯体保温0.5-10h后,以2-15℃/min的速率升温至800-1100℃并保温10-60min,然后坯体随炉冷却至室温。
优选的,所述S33烧结步骤的条件是:将坯体置于烧结炉中,以5-30℃/min的速率升温至1200-2200℃并保温1-8h,制得陶瓷。进一步优选的,坯体在空气/N2/惰性气体气氛的烧结炉中烧结,或在负压的烧结炉中烧 结。
与现有技术相比,本发明的有益效果是:本发明通过优化浆料的组分及配比,使浆料适用于形状复杂的高致密陶瓷异形件坯体的3D打印制备,使得制备高致密陶瓷异形件的过程中无需特别制作相应的模具,降低了高致密陶瓷异形件的生产成本及生成周期。并且当本发明的浆料的固含量低于40vol%时仍能用于制作高致密陶瓷的坯体,最终制得的高致密陶瓷的相对密度仍可高达99%以上,克服了现有技术中必需使用固含量在40vol%以上的浆料制作高致密陶瓷的限制。坯体采用液态干燥方式进行干燥,使坯体的各向收缩均匀,有效减少了坯体的形变量,使得本发明适于制作结构复杂及精密的高致密陶瓷的坯体,解决了传统自然干燥工艺无法解决的坯体变形的问题。本发明采用真空/气氛保护排胶与空气排胶的二步脱脂法进行排胶,可减少坯体由于一步脱脂升温速率过快或坯体中的有机物裂解速率过快而导致的变形、开裂、起泡等缺陷问题,而真空/气氛保护排胶后结合空气排胶,可排出坯体中因真空/气氛保护排胶而残留的碳。通过本发明方法制备的高致密陶瓷的相对密度均在90%以上,维氏硬度均在12GPa以上,残余碳含量均小于0.5wt%。
附图说明
图1为光固化成型设备的工作原理示意图;
图2为各实施例中高致密陶瓷产品的目标结构的示意图;
图3为实施例1中经液态干燥处理后的坯体;
图4为实施例1制备的高致密陶瓷成品图;
图5为实施例1制备的高致密陶瓷的SEM图;
图6为对比例1中经自然干燥后的坯体。
具体实施方式
为了更充分的理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明。
以下实施例中,在制作高致密陶瓷前,尤其是通过光固化成型法将浆料制成坯体前,根据现有技术制作出用于光固化成型设备的符合目标结构的快速成型数据,并将快速成型数据文件导入光固化成型设备的控制程序中,待用。具体是:采用软件UG进行三维实体建模,得到陶瓷异形件模型;将该模型导入快速成型辅助软件Magics中生成支撑并进行切片处理,然后输出快速成型数据文件,并将快速成型数据文件导入光固化成型设备的控制程序中。以下实施例制备的高致密陶瓷成品的目标结构是边长为16mm,高为5mm的三角形陶瓷刀具,三角形陶瓷刀具的中间有一直径为4mm的圆形穿孔,且在三角形陶瓷刀具的上下表面,沿外边设有三个断屑槽,如图2所示。在其它实施方案中,可根据实际的高致密陶瓷产品的结构制作相应的快速成型数据,高致密陶瓷产品的结构不限于下述实施例所示的结构。
采用精细陶瓷密度和显气孔率试验方法(国标:GB/T 25995-2010)测试以下实施例制备的高致密陶瓷的相对密度,采用精细陶瓷室温硬度试验方法(国标:GB/T 16534-2009)测试以下实施例制备的高致密陶瓷的硬度。
实施例1
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取665g去离子水和160g甘油作为溶剂(占预混液质量的75%);分别称取247.5g丙烯酰胺和27.5g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的25%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(38.85%),并分别称取30g聚乙烯吡络烷酮(分散剂,1.06%)、1700gα-氧化铝(陶瓷粉末,60%;粒径≤0.2μm,纯度为99.99%)、1.5g 2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173,0.05%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨8h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料30min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为400的聚乙二醇中干燥48h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体如图3所示,坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以2℃/min的速率升温至600℃并保温4h,且升温过程中每隔 100℃保温20min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以2℃/min的速率升温至600℃并保温4h;然后再以15℃/min的速率升温至1000℃并保温30min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以15℃/min的速率升温至1650℃并保温1h,制得高致密陶瓷。
本实施例的浆料的固含量为30vol%,所制备的高致密陶瓷的相对密度为99.5%,维氏硬度均为17.5GPa,残余碳含量为0.1wt%。本实施例制备的高致密陶瓷的结构如图4所示,高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。本实施例制备的高致密陶瓷的显微结构如图5(SEM图)所示,由图5可观察到晶粒的尺寸在1-15μm之间,所制备的陶瓷的气孔率很低。
实施例2
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取930g去离子水和60g甘油作为溶剂(占预混液质量的90%);分别称取104.5g丙烯酰胺和5.5g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的10%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(23.26%),并分别称取100g柠檬酸铵(分散 剂,2.1%)、3500gα-氧化铝(陶瓷粉末,74%;粒径≤0.5μm,纯度为99.99%)、30g 2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173,0.63%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨48h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料10min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为600的聚乙二醇中干燥72h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以3℃/min的速率升温至900℃并保温2h,且升温过程中每隔100℃保温10min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以3℃/min的速率升温至700℃并保温2h;然后再以10℃/min的速率升温至1100℃并保温10min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以10℃/min的速率升温至1400℃并 保温3h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为99.7%,维氏硬度均为18.5GPa,残余碳含量为0.1wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
实施例3
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取440g去离子水和220g甘油作为溶剂(占预混液质量的60%);分别称取425.3g丙烯酰胺和14.7g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的40%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(59.46%),并分别称取1g柠檬酸铵(分散剂,0.05%)、734gα-氧化铝(陶瓷粉末,39.68%;粒径≤0.1μm,纯度为99.99%)、15g 2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173,0.81%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨3h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料60min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为200的聚乙二醇中干燥3h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以0.2℃/min的速率升温至500℃并保温6h,且升温过程中每隔100℃保温60min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以1℃/min的速率升温至400℃并保温6h;然后再以5℃/min的速率升温至800℃并保温60min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以5℃/min的速率升温至1700℃并保温1h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为96.2%,维氏硬度均为16.3GPa,残余碳含量为0.3wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
实施例4
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取528g去离子水和132g甘油作为溶剂(占预混液质 量的60%);分别称取396g丙烯酰胺和44g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的40%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(65%),并分别称取0.68g柠檬酸铵(分散剂,0.04%)、591gα-氧化铝(陶瓷粉末,34.95%;粒径≤0.1μm,纯度为99.99%)、0.17g 2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮(光引发剂2959,0.01%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨1h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料120min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为200的聚乙二醇中干燥1h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以0.1℃/min的速率升温至300℃并保温6h;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以5℃/min 的速率升温至600℃并保温0.5h;然后再以2℃/min的速率升温至800℃并保温60min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以10℃/min的速率升温至1700℃并保温1h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为95.1%,维氏硬度均为15.8GPa,残余碳含量为0.3wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
实施例5
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取605g去离子水和55g甘油作为溶剂(占预混液质量的60%);分别称取425g丙烯酰胺和15g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的40%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(15%),并分别称取220g柠檬酸铵(分散剂,3%)、5866gα-氧化铝(陶瓷粉末,80%;粒径≤0.1μm,纯度为99.99%)、147g 1-羟基环己基苯基甲酮(光引发剂184,2%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨50h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料1min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为200的聚乙二醇中干燥50h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以10℃/min的速率升温至1000℃并保温2h,且升温过程中每隔150℃保温60min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以10℃/min的速率升温至600℃并保温10h;然后再以10℃/min的速率升温至1100℃并保温40min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以15℃/min的速率升温至1300℃并保温8h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为93.8%,维氏硬度均为14.1GPa,残余碳含量为0.2wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
实施例6
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
制预混液:分别称取605g去离子水和55g甘油作为溶剂(占预混液质量的60%);分别称取425g丙烯酰胺和15g N-N’亚甲基双丙烯酰胺作为有机溶质(占预混液质量的40%)。将有机溶质与溶剂混合均匀,使有机溶质全部溶解,得到1100g微黄色透明预混液。
制浆料:取用上述预混液(69.95%),并分别称取0.63g柠檬酸铵(分散剂,0.04%)、471gα-氧化铝(陶瓷粉末,30%;粒径≤0.1μm,纯度为99.99%)、0.16g 1-羟基环己基苯基甲酮(光引发剂184,0.01%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨30h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料20min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为500的聚乙二醇中干燥60h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以5℃/min的速率升温至1000℃并保温3h,且升温过程中每隔150℃保温60min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以5℃/min的速率升温至600℃并保温5h;然后再以10℃/min的速率升温至1100℃并保温40min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于氩气气氛的烧结炉中,以10℃/min的速率升温至1700℃并保温7h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为91.7%,维氏硬度均为12.8GPa,残余碳含量为0.5wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
实施例7
本实施例提供一种光固化成型的高致密陶瓷的制备方法,具体步骤如下:
(1)制备浆料
称取1100g 1,6-己二醇二丙烯酸酯作为预混液(23.26%),并分别称取100g柠檬酸铵(分散剂,2.1%)、3500gα-氧化铝(陶瓷粉末,74%;粒径≤0.5μm,纯度为99.99%)、30g 2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173,0.63%)。向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨48h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料10min以除去气泡,最后向初浆料中加入光引发剂并搅拌均匀,制得浆料。
(2)成型
将浆料置于光固化成型设备中,由光固化成型法(波长为355nm)制备出坯体。然后取出坯体并将坯体表面未固化的浆料清洗干净。
(3)干燥
将坯体置于分子量为600的聚乙二醇中干燥72h,然后将坯体置于无水乙醇中进行超声波清洗以除去坯体表面的液态干燥剂。经液态干燥后的坯体的结构和尺寸与目标结构一致。接着,将坯体置于波长≤405nm的紫外灯下,用紫外灯照射坯体以加固坯体。随后,将坯体置于烘箱中烘干。
(4)排胶
先对坯体进行真空排胶或气氛保护排胶:将坯体置于真空度≥0.09MPa的排胶炉内,以3℃/min的速率升温至900℃并保温2h,且升温过程中每隔100℃保温10min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
再对坯体进行空气排胶:将坯体置于空气气氛的排胶炉中,以3℃/min的速率升温至700℃并保温2h;然后再以10℃/min的速率升温至1100℃并保温10min,接着坯体随炉冷却至室温。
(5)烧结
将坯体置于空气气氛的烧结炉中,以10℃/min的速率升温至1400℃并保温3h,制得高致密陶瓷。
本实施例所制备的高致密陶瓷的相对密度为99.6%,维氏硬度均为18.1GPa,残余碳含量为0.1wt%。本实施例制备的高致密陶瓷的结构和尺寸与目标结构基本一致,形变量非常小,可忽略不计,不影响成品的品质。
对比例1
本对比例提供一种陶瓷的制备方法,依次包括制备浆料步骤、成型步骤、干燥步骤、排胶步骤、烧结步骤。本对比例所用的浆料与实施例1所用的浆料相同,制备浆料步骤、成型步骤、排胶步骤和烧结步骤也与实施例1的相同,不同之处在于干燥步骤。本比较例的干燥步骤如下:坯体在室温下静置48h。静置48h后的坯体的形状如图6所示,坯体的形变量非常大,不符合生成要求。
由本对比例所制备的陶瓷的相对密度为93%,维氏硬度均为14.3GPa,残余碳含量为0.5wt%。但陶瓷的形变量大,不符合目标产品的要求。
对比例2
本对比例提供一种陶瓷的制备方法,依次包括制备浆料步骤、成型步骤、干燥步骤、排胶步骤、烧结步骤。本对比例所用的浆料与实施例1所用的浆料相同,制备浆料步骤、成型步骤、干燥步骤和烧结步骤也与实施例1的相同,不同之处在于排胶步骤,本对比例只进行真空排胶。本比较例的排胶步骤如下:将坯体置于真空度≥0.09MPa的排胶炉内,以2℃/min的速率升温至600℃并保温4h,且升温过程中每隔100℃保温20min;保持排胶炉的真空度,坯体随排胶炉冷却至室温。
由本对比例所制备的陶瓷有明显的裂缝,不符合产品要求。
对比例3
本对比例提供一种陶瓷的制备方法,依次包括制备浆料步骤、成型步骤、干燥步骤、排胶步骤、烧结步骤。本对比例所用的浆料与实施例1所用的浆料相同,制备浆料步骤、成型步骤、干燥步骤和烧结步骤也与实施例1的相同,不同之处在于排胶步骤,本对比例只进行空气排胶。本比较例的排胶步 骤如下:将坯体置于空气气氛的排胶炉中,以2℃/min的速率升温至600℃并保温4h;然后再以15℃/min的速率升温至1000℃并保温30min,接着坯体随炉冷却至室温。
由本对比例所制备的陶瓷有非常明显的裂缝,不符合产品要求。
在其它实施方案中,组成预混液的有机溶质还可以是丙烯酰胺、N-N’亚甲基双丙烯酰胺、1,6-己二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯中的至少一种。组成预混液的溶剂还可以是去离子水、甘油、无水乙醇、丙酮中的至少一种。
在其它实施方案中,陶瓷粉末还可以是氧化铝、氧化锆、锆钛酸铅、氮化硅、氮化铝、碳化硅、碳化硼、碳氮化钛、碳化钛、氧化钛和氧化硅中的至少一种。陶瓷粉末的平均粒径小于或等于10μm,陶瓷粉末的纯度大于或等于99.9%。
在其它实施方案中,光引发剂还可以是2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173)、1-羟基环己基苯基甲酮(光引发剂184)、2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮(光引发剂2959)中的至少一种;分散剂还可以是柠檬酸铵、聚乙烯吡咯烷酮、六偏磷酸钠、聚丙烯酸铵中的至少一种。
在其它实施方案中,排胶步骤中,也可采用惰性气体气氛保护排胶取代真空排胶,或采用N2气氛保护排胶取代真空排胶,排胶效果与真空排胶的效果一致。固化步骤中,光固化成型所用光可以是λ≤405nm的紫外线,不限于波长为405nm的紫外线。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延 伸或再创造,均受本发明的保护。

Claims (10)

  1. 一种光固化成型的高致密陶瓷的制备方法,其特征在于,包括以下步骤:
    S1制备浆料:按以下质量百分比称取各组分并混合均匀,30-80%的陶瓷粉末,15-65%的预混液,0.01-2%的光引发剂,0.04-3%的分散剂,得到浆料;
    所述预混液由有机溶质与溶剂组成,所述溶剂的质量为预混液的质量的0-90%;所述有机溶质为丙烯酰胺、N-N’亚甲基双丙烯酰胺、1,6-己二醇二丙烯酸酯和三羟甲基丙烷三丙烯酸酯中的至少一种;
    S2成型:将浆料置于光固化成型设备中,由光固化成型法制备出坯体;
    然后,坯体依次经过干燥步骤、排胶步骤和烧结步骤的加工,制得相对密度大于或等于90%,维氏硬度大于或等于12GPa,残余碳含量小于或等于0.5wt%的陶瓷。
  2. 根据权利要求1所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述干燥步骤是:将坯体置于液态干燥剂中干燥1-72h。
  3. 根据权利要求1所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述排胶步骤是:先对坯体进行真空排胶或气氛保护排胶处理,再对坯体进行空气排胶处理。
  4. 根据权利要求3所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述真空排胶或气氛保护排胶的条件是:将坯体置于负压的排胶炉内或惰性气体/N2保护的排胶炉内,以0.1-10℃/min的速率升温至300-1000℃并保温2-6h,且升温过程中每隔50-150℃保温0-60min;接着, 坯体在负压的排胶炉内或惰性气体/N2保护的排胶炉内冷却至室温。
  5. 根据权利要求4所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述负压的排胶炉是指排胶炉内的真空度大于或等于0.09MPa。
  6. 根据权利要求3所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述空气排胶的条件是:将坯体置于空气气氛的排胶炉中,以1-10℃/min的速率升温至400-700℃并保温0.5-10h;然后坯体随炉冷却至室温。
  7. 根据权利要求6所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述空气排胶步骤中,坯体保温0.5-10h后,以2-15℃/min的速率升温至800-1100℃并保温10-60min,然后坯体随炉冷却至室温。
  8. 根据权利要求1所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述烧结步骤的条件是:将坯体置于烧结炉中,以5-30℃/min的速率升温至1200-2200℃并保温1-8h,制得陶瓷。
  9. 根据权利要求1所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述制备浆料步骤中:首先将有机溶质与溶剂混合均匀,形成预混液,然后向预混液中加入分散剂并混合均匀,接着向预混液中加入陶瓷粉末并球磨0.1-50h,得到初浆料;将初浆料置于负压环境下并搅拌初浆料1-120min以除去气泡,最后向初浆料中加入光引发剂并混合均匀,制得浆料。
  10. 根据权利要求1所述一种光固化成型的高致密陶瓷的制备方法,其特征在于,所述陶瓷粉末为氧化铝、氧化锆、锆钛酸铅、氮化硅、氮化铝、碳化硅、碳化硼、碳氮化钛、碳化钛、氧化钛和氧化硅中的至少一种。
PCT/CN2015/089961 2015-09-16 2015-09-18 一种光固化成型的高致密陶瓷的制备方法 WO2017045191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510590675.0 2015-09-16
CN201510590675.0A CN105198449B (zh) 2015-09-16 2015-09-16 一种光固化成型的高致密陶瓷的制备方法

Publications (1)

Publication Number Publication Date
WO2017045191A1 true WO2017045191A1 (zh) 2017-03-23

Family

ID=54946477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089961 WO2017045191A1 (zh) 2015-09-16 2015-09-18 一种光固化成型的高致密陶瓷的制备方法

Country Status (2)

Country Link
CN (1) CN105198449B (zh)
WO (1) WO2017045191A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233334A1 (en) * 2016-06-03 2019-08-01 Basf Se Production of a photocurable formulation for additive manufacturing
CN110372398A (zh) * 2019-07-05 2019-10-25 武汉理工大学 一种光固化成型陶瓷坯体的快速脱脂烧结方法
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法
CN111302771A (zh) * 2020-02-23 2020-06-19 西北工业大学 一种3d打印陶瓷型芯素坯的两步脱脂方法
CN111704805A (zh) * 2020-07-02 2020-09-25 成都东软学院 用于3d打印软耗材的打印液体、制备方法和用打印液体制备3d打印软耗材的方法与应用
CN113620716A (zh) * 2021-09-02 2021-11-09 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷基板及其制备方法
CN113733293A (zh) * 2021-08-18 2021-12-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN113860880A (zh) * 2021-09-03 2021-12-31 萍乡旭材科技有限公司 一种具有良好固化性能的氮化硅陶瓷浆料
CN114188157A (zh) * 2021-12-17 2022-03-15 广东风华邦科电子有限公司 一种大功率多层片式电容器的半干法成型工艺
CN114524676A (zh) * 2022-02-25 2022-05-24 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN114800767A (zh) * 2022-03-18 2022-07-29 嘉兴饶稷科技有限公司 基于光固化3d打印技术一次成型制备透明陶瓷的方法
CN115180955A (zh) * 2021-10-19 2022-10-14 中国科学院沈阳自动化研究所 一种碳化硅陶瓷浆料及其制备方法和光固化成型体的热解工艺
CN115259864A (zh) * 2022-09-26 2022-11-01 江苏富乐华功率半导体研究院有限公司 一种电子陶瓷坯体的排胶方法
CN115838288A (zh) * 2021-09-18 2023-03-24 中国科学院上海硅酸盐研究所 一种光固化3D打印用SiC陶瓷光敏浆料及其制备方法
CN115894011A (zh) * 2022-06-17 2023-04-04 超瓷材料技术(深圳)有限公司 一种微波介质陶瓷滤波器及其制备方法
CN116024563A (zh) * 2022-12-14 2023-04-28 索罗曼(常州)合金新材料有限公司 一种钛合金表面复合层及其制备方法
CN116354720A (zh) * 2023-03-14 2023-06-30 中国科学院上海光学精密机械研究所 一种光聚合3D打印Ce:LuAG墨水、在荧光陶瓷材料中的应用、及其增材制造方法
CN116425535A (zh) * 2023-03-16 2023-07-14 深圳奇遇科技有限公司 用于光固化成型的锆钛酸铅浆料及其制备方法、制件
CN116789462A (zh) * 2023-05-31 2023-09-22 成都飞机工业(集团)有限责任公司 一种耐高温陶瓷吸波蜂窝的制备方法
CN118307312A (zh) * 2024-06-07 2024-07-09 山东理工大学 一种氧化锆改善漂珠基轻质隔热材料的制备方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693945B (zh) * 2016-02-05 2018-02-06 湖南正阳精密陶瓷有限公司 一种光固化材料及其制备方法和应用
CN106007671B (zh) * 2016-05-19 2019-02-01 深圳长朗智能科技有限公司 3d打印用陶瓷复合材料及其制备方法
CN106007723B (zh) * 2016-05-20 2018-10-30 中国科学院上海硅酸盐研究所 一种SiC陶瓷素坯的制造方法
CN106083074B (zh) * 2016-06-02 2019-01-25 瑞泰科技股份有限公司 一种用于3D打印的Al2O3-ZrO2原料及生产高抗热震、特异形制品的工艺
CN106563799A (zh) * 2016-11-08 2017-04-19 西安铂力特激光成形技术有限公司 一种用于光固化的金属材料及其制备方法
CN106735241B (zh) * 2016-12-29 2018-09-25 西安铂力特增材技术股份有限公司 一种加强型树脂光固化成形方法
CN106810215B (zh) * 2017-01-18 2022-08-16 重庆摩方科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN106747360A (zh) * 2017-01-18 2017-05-31 武汉纺织大学 一种3d打印光固化陶瓷浆料的制备方法
CN106673627A (zh) * 2017-01-20 2017-05-17 广东工业大学 一种基于光固化成型的3d打印制备氧化铝增韧陶瓷的方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法
CN106673646A (zh) * 2017-01-20 2017-05-17 广东工业大学 一种基于光固化成型的3d打印制备氧化锆陶瓷的方法
CN106699137A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备zta复相陶瓷的方法
CN106927847B (zh) * 2017-02-27 2020-08-18 西安交通大学 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置
CN106966709B (zh) * 2017-04-01 2020-08-11 广东工业大学 一种基于光固化成型的3d打印制备透明氧化铝陶瓷的方法
CN107296985B (zh) * 2017-05-15 2020-09-22 广东工业大学 一种基于光固化成型三维打印生物陶瓷支架的方法和应用
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用
CN107382312B (zh) * 2017-07-11 2021-01-01 宁波匠心快速成型技术有限公司 一种3d打印用陶瓷浆料的制备方法及其3d打印成型方法
CN107382327B (zh) * 2017-09-20 2020-02-21 苏州中瑞智创三维科技股份有限公司 陶瓷3d打印浆料的制备及应用
CN107540352A (zh) * 2017-09-20 2018-01-05 吴江中瑞机电科技有限公司 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN107651964A (zh) * 2017-10-26 2018-02-02 广东工业大学 一种AlN基复合陶瓷及其制备方法
CN108033777A (zh) * 2017-10-31 2018-05-15 西安铂力特增材技术股份有限公司 一种用于光固化技术的氧化铝浆料及其制备方法
CN108218440B (zh) * 2017-12-29 2021-10-22 深圳长朗智能科技有限公司 光固化树脂基陶瓷复合材料及陶瓷胚体脱脂方法
CN108249930B (zh) * 2017-12-29 2021-10-22 深圳长朗智能科技有限公司 提供光洁轮廓的光固化树脂基陶瓷复合材料及胚体脱脂方法
CN108456002B (zh) * 2018-02-08 2021-03-16 广东工业大学 一种适用于自修复/自增强的基于光固化成型的3d打印陶瓷部件的方法
CN108503365B (zh) * 2018-02-28 2021-08-24 广东工业大学 一种基于光固化技术的碳化硅陶瓷及其制备方法
CN108558372A (zh) * 2018-05-02 2018-09-21 中国科学院空间应用工程与技术中心 一种膏体的快速成型工艺方法
CN108675796B (zh) * 2018-06-05 2021-05-11 广东工业大学 一种氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法和应用
CN109095918A (zh) * 2018-08-29 2018-12-28 济南大学 一种3dp成型工艺钛酸锶铋介电陶瓷粉体的制备方法
CN109884992B (zh) * 2018-12-29 2021-08-03 湖南金炉科技股份有限公司 基于ocx控件的间歇式窑炉烧结工艺设定系统及方法
CN109467438A (zh) * 2019-01-09 2019-03-15 北京理工大学 一种碳化硅陶瓷光固化成型方法
CN109626967A (zh) * 2019-01-25 2019-04-16 西北工业大学 一种光固化3d打印氧化铝陶瓷素坯的真空脱脂方法
CN112010641A (zh) * 2019-05-31 2020-12-01 圣戈班研发(上海)有限公司 一种陶瓷组合物、其制品及其制备方法
FR3099079B1 (fr) * 2019-07-22 2021-06-25 S A S 3Dceram Sinto Procede de fabrication, par stereolithographie, de pieces crues en materiau ceramique ou metallique par voie photo-thermique
CN110498686B (zh) * 2019-09-02 2021-08-20 中建材蚌埠玻璃工业设计研究院有限公司 一种夹层碳化硅微波热结构坩埚及其制备方法
CN112979283A (zh) * 2019-12-17 2021-06-18 北京恒创增材制造技术研究院有限公司 基于面曝光快速成型工艺的陶瓷浆料及其制备方法和应用
CN111233493A (zh) * 2020-01-17 2020-06-05 中国科学院金属研究所 一种熔模铸造用光固化硅基陶瓷型芯素坯烧结方法
CN112171848A (zh) * 2020-09-29 2021-01-05 江西金石三维智能制造科技有限公司 一种光固化碳化硅陶瓷浆料及其制备方法与应用
CN112521134A (zh) * 2020-12-24 2021-03-19 广东工业大学 一种带断屑槽的陶瓷刀具及其制备方法
CN112723895A (zh) * 2020-12-29 2021-04-30 广东工业大学 一种α-SiAlON陶瓷数控车刀及其制备方法
CN112745127A (zh) * 2020-12-30 2021-05-04 广东工业大学 一种氮化硅陶瓷刀具及其制备方法和应用
CN112939581A (zh) * 2021-02-02 2021-06-11 广东工业大学 一种氧化锆增韧氧化铝刀具及其制备方法
CN115872724B (zh) * 2022-12-06 2023-12-08 西北工业大学 一种光固化3d打印高性能复杂结构共晶成分陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315340A (ja) * 2003-02-26 2004-11-11 Kyocera Corp 三次元構造体の製造方法およびそれを用いたセラミック焼結体
CN101148360A (zh) * 2007-08-14 2008-03-26 西安交通大学 一种梯度多孔结构陶瓷的定制化成型方法
CN101306950A (zh) * 2008-06-23 2008-11-19 西安交通大学 一种空心叶片陶瓷铸型的光固化直接制造方法
CN101503298A (zh) * 2009-03-13 2009-08-12 西安交通大学 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
US20110217557A1 (en) * 2010-03-08 2011-09-08 Ngk Insulators, Ltd. Ceramic green body and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172959B (zh) * 2010-12-28 2013-01-02 哈尔滨工业大学 粉末注射成形碳化硅陶瓷零件的方法
CN102248167A (zh) * 2011-07-05 2011-11-23 中南大学 一种大尺寸挤压成形坯的快速无缺陷脱脂方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315340A (ja) * 2003-02-26 2004-11-11 Kyocera Corp 三次元構造体の製造方法およびそれを用いたセラミック焼結体
CN101148360A (zh) * 2007-08-14 2008-03-26 西安交通大学 一种梯度多孔结构陶瓷的定制化成型方法
CN101306950A (zh) * 2008-06-23 2008-11-19 西安交通大学 一种空心叶片陶瓷铸型的光固化直接制造方法
CN101503298A (zh) * 2009-03-13 2009-08-12 西安交通大学 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
US20110217557A1 (en) * 2010-03-08 2011-09-08 Ngk Insulators, Ltd. Ceramic green body and method for producing the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233334A1 (en) * 2016-06-03 2019-08-01 Basf Se Production of a photocurable formulation for additive manufacturing
CN110372398A (zh) * 2019-07-05 2019-10-25 武汉理工大学 一种光固化成型陶瓷坯体的快速脱脂烧结方法
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法
CN111302771A (zh) * 2020-02-23 2020-06-19 西北工业大学 一种3d打印陶瓷型芯素坯的两步脱脂方法
CN111704805A (zh) * 2020-07-02 2020-09-25 成都东软学院 用于3d打印软耗材的打印液体、制备方法和用打印液体制备3d打印软耗材的方法与应用
CN113733293A (zh) * 2021-08-18 2021-12-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN113733293B (zh) * 2021-08-18 2023-02-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN113620716A (zh) * 2021-09-02 2021-11-09 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷基板及其制备方法
CN113620716B (zh) * 2021-09-02 2022-11-29 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷基板及其制备方法
CN113860880A (zh) * 2021-09-03 2021-12-31 萍乡旭材科技有限公司 一种具有良好固化性能的氮化硅陶瓷浆料
CN115838288A (zh) * 2021-09-18 2023-03-24 中国科学院上海硅酸盐研究所 一种光固化3D打印用SiC陶瓷光敏浆料及其制备方法
CN115838288B (zh) * 2021-09-18 2023-12-26 中国科学院上海硅酸盐研究所 一种光固化3D打印用SiC陶瓷光敏浆料及其制备方法
CN115180955A (zh) * 2021-10-19 2022-10-14 中国科学院沈阳自动化研究所 一种碳化硅陶瓷浆料及其制备方法和光固化成型体的热解工艺
CN114188157A (zh) * 2021-12-17 2022-03-15 广东风华邦科电子有限公司 一种大功率多层片式电容器的半干法成型工艺
CN114188157B (zh) * 2021-12-17 2023-09-29 广东风华邦科电子有限公司 一种大功率多层片式电容器的半干法成型方法
CN114524676A (zh) * 2022-02-25 2022-05-24 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN114524676B (zh) * 2022-02-25 2023-09-01 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN114800767A (zh) * 2022-03-18 2022-07-29 嘉兴饶稷科技有限公司 基于光固化3d打印技术一次成型制备透明陶瓷的方法
CN115894011A (zh) * 2022-06-17 2023-04-04 超瓷材料技术(深圳)有限公司 一种微波介质陶瓷滤波器及其制备方法
CN115894011B (zh) * 2022-06-17 2024-04-26 超瓷材料技术(深圳)有限公司 一种微波介质陶瓷滤波器及其制备方法
CN115259864A (zh) * 2022-09-26 2022-11-01 江苏富乐华功率半导体研究院有限公司 一种电子陶瓷坯体的排胶方法
CN116024563B (zh) * 2022-12-14 2023-09-19 索罗曼(常州)合金新材料有限公司 一种钛合金表面复合层及其制备方法
CN116024563A (zh) * 2022-12-14 2023-04-28 索罗曼(常州)合金新材料有限公司 一种钛合金表面复合层及其制备方法
CN116354720A (zh) * 2023-03-14 2023-06-30 中国科学院上海光学精密机械研究所 一种光聚合3D打印Ce:LuAG墨水、在荧光陶瓷材料中的应用、及其增材制造方法
CN116425535A (zh) * 2023-03-16 2023-07-14 深圳奇遇科技有限公司 用于光固化成型的锆钛酸铅浆料及其制备方法、制件
CN116789462A (zh) * 2023-05-31 2023-09-22 成都飞机工业(集团)有限责任公司 一种耐高温陶瓷吸波蜂窝的制备方法
CN118307312A (zh) * 2024-06-07 2024-07-09 山东理工大学 一种氧化锆改善漂珠基轻质隔热材料的制备方法

Also Published As

Publication number Publication date
CN105198449B (zh) 2018-03-09
CN105198449A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2017045191A1 (zh) 一种光固化成型的高致密陶瓷的制备方法
TWI712486B (zh) 用於光固化3d列印的漿料、其製備方法及其使用方法
Wu et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography
CN105330266B (zh) 一种齿状异形陶瓷的制备方法
WO2017092713A1 (zh) 积层制造3d打印物品的方法
CN107353036B (zh) 一种基于增材制造技术的多孔氮化硅陶瓷、其制备方法及其应用
CN108456002B (zh) 一种适用于自修复/自增强的基于光固化成型的3d打印陶瓷部件的方法
CN106747457B (zh) 一种基于硅胶模具凝胶注模成型的精密SiC陶瓷的制备方法及其精密SiC陶瓷
JP6162311B1 (ja) 積層造形法による粉末冶金焼結体の製造方法
CN114380583B (zh) 一种陶瓷材料的制备方法
CN106810215A (zh) 一种陶瓷浆料的制备及3d打印光固化成型方法
CN105330268B (zh) 一种层状陶瓷的制备方法
US20070072762A1 (en) Method of Making Ceramic Discharge Vessels Using Stereolithography
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
CN104628393B (zh) 一种高性能陶瓷的制备方法
CN110732637A (zh) 一种涡轮叶片气膜孔精密成形方法
JP2014015389A (ja) 透明シリカガラス製品の製造方法
WO2019227661A1 (zh) 一种氮化硅陶瓷及其制备方法
CN113372114A (zh) 一种氧化锆陶瓷材料挤出式3d打印材料的制备方法
AU2015354040B2 (en) Surface treatment agent for wax pattern and method of manufacturing dental prosthesis
CN106083205B (zh) 一种通过化学气相渗透提高整体式氧化铝基陶瓷铸型高温强度的方法
CN114524676A (zh) 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
KR101661114B1 (ko) 산화알루미늄과 산화지르코늄이 첨가된 고인성 산화이트륨 소결체의 제조 방법
US10870218B2 (en) Speciality ceramic components
CN114907133B (zh) 一种硅基陶瓷型芯材料、制备方法以及硅基陶瓷型芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903881

Country of ref document: EP

Kind code of ref document: A1