CN107651964A - 一种AlN基复合陶瓷及其制备方法 - Google Patents
一种AlN基复合陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN107651964A CN107651964A CN201711020757.7A CN201711020757A CN107651964A CN 107651964 A CN107651964 A CN 107651964A CN 201711020757 A CN201711020757 A CN 201711020757A CN 107651964 A CN107651964 A CN 107651964A
- Authority
- CN
- China
- Prior art keywords
- aln
- zro
- preparation
- base composite
- composite ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本申请属于陶瓷技术领域,具体涉及一种AlN基复合陶瓷及其制备方法。本发明所提供的AlN基复合陶瓷包括:AlN和添加剂;所述添加剂为Re2O3和ZrO2;Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。本发明通过引入Re2O3促进AlN致密化,并引入ZrO2使其高温反应生成ZrN,进一步强化了本发明AlN基复合陶瓷的晶界。本发明还提供了上述AlN基复合陶瓷的制备方法,采用AlN作为基本原材料,以Re2O3作为烧结助剂,并适量添加纳米级ZrO2进行热压烧结。由本发明制备方法得到的AlN基复合陶瓷具有较好的热导率和断裂韧性,力学性能良好,可广泛应用于陶瓷、冶金、电子和化工等多种领域。
Description
技术领域
本发明属于陶瓷技术领域,具体涉及一种AlN基复合陶瓷及其制备方法。
背景技术
AlN陶瓷是以氮化铝为主晶相的陶瓷,具有高热导率、良好的电绝缘性能、较低的热膨胀系数、耐高温等优良的性能,是重要的基板封装材料和高温结构材料。但是AlN陶瓷的力学性能较差,尤其是断裂韧性,这增加了实际应用过程中的加工难度,从而限制了其广泛应用。
发明内容
为了解决现有AlN陶瓷断裂韧性较差的这一技术问题,本发明的目的在于提供一种力学性能较好的AlN基复合陶瓷。
本发明的具体技术方案如下:
一种AlN基复合陶瓷,其制备原料包括:AlN和添加剂;
所述添加剂为Re2O3和ZrO2;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述AlN、Re2O3和ZrO2的质量比优选为(80~98):(1~10):(0~15),更优选为(83~94):(2~6):(4~10)。
本发明还提供了一种AlN基复合陶瓷的制备方法,包括:在惰性气体和真空条件下,将AlN、Re2O3和ZrO2进行热压烧结,得到所述AlN基复合陶瓷;
其中,所述AlN、Re2O3和ZrO2的质量比为(80~98):(1~10):(1~10);
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述热压烧结包括:
a)将AlN、Re2O3和ZrO2的混合粉体以第一升温速率升温至第一温度1000~1250℃,得到一次烧结体;
b)将所述一次烧结体以第二升温速率升温至第二温度1300~1600℃,得到二次烧结体;
c)将所述二次烧结体以第三升温速率升温至第三温度1600~2000℃;保温0.5~4h后,以降温速率降至1000~1400℃,最后随炉冷却,得到所述AlN复合陶瓷。
更优选的,所述第一升温速率、第二升温速率和第三升温速率优选为5~15℃/min,更优选为15℃/min、10℃/min或5℃/min;
所述降温速率优选为5~15℃/min,更优选为10℃/min。
优选的,所述惰性气体为氮气;所述真空条件的真空度为10Pa~0.1MPa。
优选的,所述热压烧结的载荷为15~40MPa。
优选的,在所述热压烧结之前还包括:将AlN、Re2O3和ZrO2球磨,得到AlN、Re2O3和ZrO2的混合粉体;
球磨介质为ZrO2球,ZrO2球的粒径优选为1~5mm。
更优选的,所述球磨的球料比优选为(1~5):1,更优选为3:1;球磨时间优选为4~48h,更优选为24h。
优选的,在所述球磨和所述热压烧结之间还包括:对所述混合粉体进行预压;
所述预压的载荷优选为5~10MPa,更优选为10MPa。
综上所述,本发明提供了一种AlN基复合陶瓷,其制备原材料包括:AlN和添加剂;所述添加剂为Re2O3和ZrO2;Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。本发明通过引入Re2O3促进AlN致密化,并引入ZrO2使其高温反应生成ZrN,进一步强化了本发明AlN基复合陶瓷的晶界。本发明还提供了上述AlN基复合陶瓷的制备方法,采用AlN作为基本原材料,以Re2O3作为烧结助剂,并适量添加纳米级ZrO2进行热压烧结。由本发明制备方法得到的AlN基复合陶瓷,主相为AlN,并由Al5Y3O12、ZrN相,强化了晶界。因此,本发明AlN基复合陶瓷具有较好的热导率和断裂韧性,力学性能良好,可广泛应用于陶瓷、冶金、电子和化工等多种领域。经过实验证明,采用本发明方法得到的AlN基复合陶瓷的相对密度高于95%,硬度为10~15GPa,抗弯强度为300~400MPa,断裂韧性为2~4MPa﹒m1/2。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)以AlN粉末(粒径小于2μm,含氧量为0.53wt%)作为为原料,以Y2O3粉(纯度为99.9%)和ZrO2(四方晶,粒径为30nm)为添加剂,置于辊式球磨机中混合;按重量份数进行配料,91份AlN粉,4份Y2O3,5份ZrO2。
在球磨时,以乙醇为溶剂,以ZrO2球为球磨介质,球料比调节为3:1,球磨时间为24h,经混料、干燥后,得到混合均匀的AlN-Y2O3-ZrO2混合粉体。
(2)将AlN-Y2O3-ZrO2混合粉体放入石墨模具中,经预压(常温下以10MPa预压5min)后,在真空条件和惰性气体保护环境下进行热压烧结;首先以15℃/min的升温速率升温至第一温度1200℃,然后以10℃/min的升温速率继续将温度升至第二温度1600℃,接着再以5℃/min的升温速率将温度升至第三温度1800℃,接着以10℃/min的降温速率将温度降至1200℃,最后随炉冷却。
其中,热压烧结的载荷(热压烧结过程中模具压头施加的机械压力)为25MPa,最高温度下保温保压2h,整个烧结过程的气氛为N2,气压大小为0.1MPa。
经过检测,本实施的AlN基陶瓷的相对密度为100%,硬度为10.08GPa,抗弯强度为312.63MPa,断裂韧性为2.87MPa﹒m1/2。
实施例2
本实施例与实施例1的区别在于:在步骤(1)中,配料时:86份AlN粉,4份Y2O3,10份ZrO2。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施的AlN基陶瓷的相对密度为99.5%,硬度为10.45GPa,抗弯强度为302.12MPa,断裂韧性为3.02MPa﹒m1/2。
实施例3
本实施例与实施例1的区别在于:在步骤(1)中,配料时:84份AlN粉,4份Y2O3,12份ZrO2。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施的AlN基陶瓷的相对密度为99.6%,硬度为10.3GPa,抗弯强度为320MPa,断裂韧性为3.20MPa﹒m1/2。
实施例4
本实施例与实施例1的区别在于:在步骤(1)中,配料时:81份AlN粉,4份Y2O3,15份ZrO2。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施的AlN基陶瓷的相对密度为99.0%,硬度为10.0GPa,抗弯强度为317MPa,断裂韧性为3.30MPa﹒m1/2。
实施例5
本实施例与实施例1的区别在于:在步骤(1)中,配料时:96份AlN粉,4份Y2O3。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施的AlN基陶瓷的相对密度为100%,硬度为10.2GPa,抗弯强度为333MPa,断裂韧性为2.4MPa﹒m1/2。
Claims (10)
1.一种AlN基复合陶瓷,其特征在于,其制备原料包括:AlN和添加剂;
所述添加剂为Re2O3和ZrO2;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
2.根据权利要求1所述的AlN基复合陶瓷,其特征在于,所述AlN、Re2O3和ZrO2的质量比为(80~98):(1~10):(0~15)。
3.一种权利要求1或2所述的AlN基复合陶瓷的制备方法,其特征在于,包括:在惰性气体和真空条件下,将AlN、Re2O3和ZrO2进行热压烧结,得到所述AlN基复合陶瓷;
其中,所述AlN、Re2O3和ZrO2的质量比为(80~98):(1~10):(1~10);
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
4.根据权利要求3所述的制备方法,其特征在于,所述热压烧结包括:
a)将AlN、Re2O3和ZrO2的混合粉体以第一升温速率升温至第一温度1000~1250℃,得到一次烧结体;
b)将所述一次烧结体以第二升温速率升温至第二温度1300~1600℃,得到二次烧结体;
c)将所述二次烧结体以第三升温速率升温至第三温度1600~2000℃;保温0.5~4h后,以降温速率降至1000~1400℃,最后随炉冷却,得到所述AlN基复合陶瓷。
5.根据权利要求4所述的制备方法,其特征在于,所述第一升温速率、第二升温速率和第三升温速率为5~15℃/min;
所述降温速率为5~15℃/min。
6.根据权利要求3所述的制备方法,其特征在于,所述惰性气体为氮气;
所述真空条件的真空度为10Pa~0.1MPa。
7.根据权利要求3所述的制备方法,其特征在于,所述热压烧结的载荷为15~40MPa。
8.根据权利要求3所述的制备方法,其特征在于,在所述热压烧结之前还包括:将AlN、Re2O3和ZrO2球磨,得到AlN、Re2O3和ZrO2的混合粉体;
球磨介质为ZrO2球。
9.根据权利要求8所述的制备方法,其特征在于,所述球磨的球料比为(1~5):1;
球磨时间为4~48h。
10.根据权利要求8所述的制备方法,其特征在于,在所述球磨和所述热压烧结之间还包括:对所述混合粉体进行预压;
所述预压的载荷为5~10MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711020757.7A CN107651964A (zh) | 2017-10-26 | 2017-10-26 | 一种AlN基复合陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711020757.7A CN107651964A (zh) | 2017-10-26 | 2017-10-26 | 一种AlN基复合陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107651964A true CN107651964A (zh) | 2018-02-02 |
Family
ID=61095131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711020757.7A Pending CN107651964A (zh) | 2017-10-26 | 2017-10-26 | 一种AlN基复合陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107651964A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108793993A (zh) * | 2018-06-01 | 2018-11-13 | 中国科学院深圳先进技术研究院 | 一种单相陶瓷靶材及其制备方法和用途 |
CN112939616A (zh) * | 2021-02-22 | 2021-06-11 | 北京北方华创微电子装备有限公司 | 陶瓷烧结方法及采用该方法制成的陶瓷件 |
CN115504793A (zh) * | 2022-10-18 | 2022-12-23 | 福建华清电子材料科技有限公司 | 一种高导热氮化铝陶瓷的制备方法 |
CN115650730A (zh) * | 2022-05-31 | 2023-01-31 | 广东工业大学 | 一种氮化铝陶瓷基板及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0015421A1 (en) * | 1979-02-22 | 1980-09-17 | Kabushiki Kaisha Toshiba | Method of producing sintered body of ceramics |
CN85100177A (zh) * | 1985-04-01 | 1986-08-06 | 清华大学 | 高耐磨性高韧性氮化硅基陶瓷刀具材料 |
CN103664167A (zh) * | 2013-11-28 | 2014-03-26 | 山东理工大学 | 一种片状AlON/四方相ZrO2复合材料的制备方法 |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
-
2017
- 2017-10-26 CN CN201711020757.7A patent/CN107651964A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0015421A1 (en) * | 1979-02-22 | 1980-09-17 | Kabushiki Kaisha Toshiba | Method of producing sintered body of ceramics |
CN85100177A (zh) * | 1985-04-01 | 1986-08-06 | 清华大学 | 高耐磨性高韧性氮化硅基陶瓷刀具材料 |
CN103664167A (zh) * | 2013-11-28 | 2014-03-26 | 山东理工大学 | 一种片状AlON/四方相ZrO2复合材料的制备方法 |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
Non-Patent Citations (1)
Title |
---|
刘聪等: "ZrO2对热压AlN 陶瓷的显微结构与力学性能的影响", 《人工晶体学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108793993A (zh) * | 2018-06-01 | 2018-11-13 | 中国科学院深圳先进技术研究院 | 一种单相陶瓷靶材及其制备方法和用途 |
CN108793993B (zh) * | 2018-06-01 | 2021-04-23 | 中国科学院深圳先进技术研究院 | 一种单相陶瓷靶材及其制备方法和用途 |
CN112939616A (zh) * | 2021-02-22 | 2021-06-11 | 北京北方华创微电子装备有限公司 | 陶瓷烧结方法及采用该方法制成的陶瓷件 |
CN115650730A (zh) * | 2022-05-31 | 2023-01-31 | 广东工业大学 | 一种氮化铝陶瓷基板及其制备方法和应用 |
CN115504793A (zh) * | 2022-10-18 | 2022-12-23 | 福建华清电子材料科技有限公司 | 一种高导热氮化铝陶瓷的制备方法 |
CN115504793B (zh) * | 2022-10-18 | 2023-07-28 | 福建华清电子材料科技有限公司 | 一种高导热氮化铝陶瓷的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101757069B1 (ko) | 알루미나 복합체 세라믹스 조성물 및 그의 제조방법 | |
CN107651964A (zh) | 一种AlN基复合陶瓷及其制备方法 | |
JP6697363B2 (ja) | 半導体製造装置用部材、その製法及びシャフト付きヒータ | |
CN104909765B (zh) | 一种低成本、快速制备高性能Si3N4陶瓷球的方法 | |
CN109206141A (zh) | 一种高硬高韧氮化硅陶瓷及其制备方法和应用 | |
US10293581B2 (en) | Bonding material composition, aluminum nitride bonded body, and method for producing the same | |
CN112851365A (zh) | 一种氮化硅基复相导电陶瓷的制备方法 | |
Wang et al. | Improved thermal conductivity of β‐Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive | |
CN110156476A (zh) | 一种高硬高韧氮化硅基陶瓷及其制备方法和应用 | |
CN110218096A (zh) | 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用 | |
CN107663093A (zh) | 一种Si3N4基复合陶瓷及其制备方法 | |
CN111302809B (zh) | 一种高热导率、高强度氮化硅陶瓷材料及其制备方法 | |
CN109627014A (zh) | 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法 | |
CN107867828A (zh) | 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用 | |
CN105254307B (zh) | 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法 | |
CN107164803A (zh) | 一种简单控制相变制备β‑氮化硅晶须的方法 | |
Hongsheng et al. | Fabrication of β-Si3N4 with high thermal conductivity under ultra-high pressure | |
Zhang et al. | Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics | |
Zhang et al. | Microstructure evolution and high-temperature mechanical properties of porous Si3N4 ceramics prepared by SHS with a small amount of Y2O3 addition | |
CN109970454A (zh) | 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷 | |
CN109400176A (zh) | 一种高性能氮化硅陶瓷及其制备方法和应用 | |
CN105908043B (zh) | 一种Mo‑ZrB2‑SiC‑AlN复合材料及其制备方法 | |
CN104609864B (zh) | 一种利用氮化硅铁粉末制备块体陶瓷材料的方法 | |
CN112209722A (zh) | 氮化硅复合材料及其制备方法、发热体 | |
CN104844214A (zh) | 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180202 |
|
RJ01 | Rejection of invention patent application after publication |