CN110218096A - 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用 - Google Patents

一种高硬高耐磨氮化硅陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN110218096A
CN110218096A CN201910345751.XA CN201910345751A CN110218096A CN 110218096 A CN110218096 A CN 110218096A CN 201910345751 A CN201910345751 A CN 201910345751A CN 110218096 A CN110218096 A CN 110218096A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramics
powder
high abrasion
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910345751.XA
Other languages
English (en)
Inventor
郭伟明
谭大旺
陈志伟
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910345751.XA priority Critical patent/CN110218096A/zh
Publication of CN110218096A publication Critical patent/CN110218096A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于陶瓷切削刀具领域,公开了一种高硬高耐磨氮化硅基陶瓷及其制备方法和应用。所述氮化硅陶瓷是将Si3N4粉和烧结助剂Al2O3‑Re2O3进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,球磨混合,干燥得到Si3N4‑Al2O3‑Re2O3的混合粉体,再将混合粉体,在真空中以速率Ⅰ升温至700~900℃,再在氮气的保护下,轴向加压为25~50MPa下,以速率Ⅱ升温至1600~1800℃并保温,经放电等离子烧结制得。本发明陶瓷具有较好的耐磨性和切削性能,可应用于切削刀具领域中。

Description

一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
技术领域
本发明属于陶瓷切削刀具技术领域,更具体地,涉及一种高硬高耐磨氮化硅(Si3N4)陶瓷及其制备方法和应用。
背景技术
Si3N4陶瓷是一种液相烧结材料,在烧结致密化过程中通常伴随α→β的相变,α-Si3N4属低温稳定晶型,具有等轴状晶体形貌,硬度较高,耐磨性好;β-Si3N4属高温稳定晶型,具有长柱状或针状晶体形貌,具有这种微观结构的氮化硅陶瓷通常强度、韧性较高,但硬度低。常用的Si3N4零部件基本都是β-Si3N4,具有优良的力学性能及高温稳定性,但其硬度往往较低,故其应用范围也受到限制,特别是在切削刀具领域,其刀具寿命较低。
目前,有关高硬、高耐磨Si3N4陶瓷的研究主要集中在通过细化晶粒、添加硬质增强相(如TiN,TiCN,SiC)等方法实现。但是这些方法制备的氮化硅刀具一方面需要采用超细粉体以减轻晶型转变时的晶粒长大的最终尺寸,成本较高,另一方面添加第二相限制了其加工某些材料的使用效果,如与硬质增强相活性较高的金属等。而通过控制烧结助剂以及烧结工艺可以在低温下α-Si3N4向β-Si3N4转变完全前实现其致密化,从而制备出高α-Si3N4含量的氮化硅陶瓷材料,实现高硬、高耐磨Si3N4陶瓷刀具的制备。目前以该技术制备高硬高耐磨氮化硅陶瓷材料及其在刀具领域的应用未见报导。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供一种高硬高耐磨氮化硅陶瓷。
本发明的另一目的在于提供一种上述高硬高耐磨氮化硅陶瓷的制备方法。该方法通过以Al2O3粉体和稀土氧化物Re2O3粉体为烧结助剂,通过低温放电等离子烧结(SPS)实现高硬、高耐磨Si3N4陶瓷刀具材料的制备。
本发明的再一目的在于提供一种上述高硬高耐磨氮化硅陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高硬高耐磨氮化硅陶瓷,所述氮化硅陶瓷是将Si3N4粉和烧结助剂Al2O3-Re2O3进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,球磨混合,干燥得到Si3N4-Al2O3-Re2O3的混合粉体,再将Si3N4-Al2O3-Re2O3混合粉体,在真空中以速率Ⅰ升温至700~900℃,再在氮气的保护下,轴向加压为25~50MPa下,以速率Ⅱ升温至1600~1800℃并保温1~15min,经放电等离子烧结制得。
优选地,所述氮化硅陶瓷的相对密度为98~100%,所述氮化硅陶瓷的硬度为20~23GPa,所述氮化硅陶瓷的断裂韧性为5~8MPa·m1/2;所述氮化硅陶瓷的抗弯强度为500~900MPa。
优选地,所述Si3N4:Al2O3-Re2O3的体积比为(45~47):(3~5)。
优选地,所述Al2O3-Re2O3中Al2O3:Re2O3的体积比为(1~4):(1~4)。
优选地,所述中Re2O3中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选地,所述Si3N4粉的纯度为98~100wt.%,Si3N4粉的粒径为<5μm;所述Al2O3粉的纯度为99.8~99.99wt.%,所述Al2O3粉的粒径为<500nm;所述Re2O3粉的纯度为99~99.9wt.%,所述Re2O3粉的粒径为<1μm。
优选地,所述速率Ⅰ为150~300℃/min,所述速率Ⅱ为100~150℃/min。
所述的高硬高耐磨氮化硅陶瓷的制备方法,包括如下具体步骤:
S1.将Si3N4粉和烧结助剂Al2O3-Re2O3混料,干燥后得到Si3N4-Al2O3-Re2O3的混合粉体;
S2.将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以150~300℃/min升温至700~900℃,然后充入1atm氮气,充气完成后轴向加压至30~50MPa,并在充气开始的同时以100~150℃/min升温至1600~1800℃,保温1~15min,此后以80~150℃/min降温至700~900℃,轴向卸压,并随炉冷却,制得高硬高耐磨的Si3N4陶瓷。
所述的高硬高耐磨氮化硅陶瓷在切削刀具领域中的应用。
优选地,所述氮化硅陶瓷的相对密度为98~100%,所述氮化硅陶瓷的硬度为20~23GPa,所述氮化硅陶瓷的断裂韧性为5~8MPa·m1/2;所述氮化硅陶瓷的抗弯强度为500~900MPa。
与现有技术相比,本发明具有以下有益效果:
1.本发明的氮化硅陶瓷具有高硬度和高耐磨的性能,这主要是由于在保证致密度的前提下,通过低温短时间放电等离子烧结的方式,在α型Si3N4转变为β型Si3N4之前实现其致密化,实现高硬高耐磨Si3N4陶瓷的制备。
2.本发明采用放电等离子烧结制备氮化硅陶瓷时的温度较常规烧结温度低,时间较常规烧结方法短,节约了成本。
3.本发明由于Si3N4陶瓷是在低温短时间内实现致密化,其晶粒尺寸较小,能进一步提高硬度,因此,其具有较好的耐磨性和切削性能,该高性能Si3N4陶瓷可应用于切削刀具。
附图说明
图1为实施例1制备的高硬高韧氮化硅陶瓷坯体显微形貌照片。
图2为对比例1未加ZrB2粉制备得到Si3N4陶瓷坯体显微形貌照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。
实施例1
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为91:4.5:4.5进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至35MPa,并在充气开始的同时以100℃/min的速率升温至1680℃,保温5min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.5%,硬度为21.5GPa,断裂韧性为6.1MPa·m1/2,抗弯强度为580MPa。
对比例1
1.制备:按照实施例1方法,制备得到Si3N4陶瓷坯体。与实施例1不同在于,其步骤(2)为将Si3N4-Al2O3-Re2O3混合粉体放入热压炉石墨模具中,在小于1mbar的真空度条件下,以20℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在15min内轴向加压至30~50(30)MPa,并在充气开始的同时以10℃/min的速率升温至1600~1800(1800)℃,保温1h,此后以20℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得Si3N4陶瓷刀具。
2.性能测试:本对比例1所得的Si3N4陶瓷的相对密度为99.8%,硬度为16.5GPa,断裂韧性为6.5MPa·m1/2,抗弯强度为850MPa。
与对比例1相比,实施例1中强度和韧性降低,但仍能保持较高的水平;且实施例1中氮化硅陶瓷的硬度比对比例1的高30%以上。因此,通过低温短时间放电等离子烧结的方式,实现高硬高耐磨Si3N4陶瓷刀具的制备。图1为本实施例制得的氮化硅陶瓷的显微形貌照片。图2为对比例1制得的Si3N4陶瓷的显微形貌照片。从图1中可知,样品晶粒为等轴状,且晶粒细小;从图2中可知,样品晶粒基本均为长柱状,晶粒粗大。结合实施例1与对比例1中性能测试可明显看出,在实施例1中通过低温短时间放电等离子烧结的方式,实现超细晶、高硬高耐磨Si3N4陶瓷刀具的制备。
实施例2
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为94:4:2进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至50MPa,并在充气开始的同时以100℃/min的速率升温至1600℃,保温1min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为98.3%,硬度为22.9GPa,断裂韧性为5.2MPa·m1/2,抗弯强度为511MPa。
实施例3
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为90:3:7进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至30MPa,并在充气开始的同时以100℃/min的速率升温至1780℃,保温15min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为100%,硬度为20.2GPa,断裂韧性为7.7MPa·m1/2,抗弯强度为889MPa。
实施例4
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为92:4:4进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至40MPa,并在充气开始的同时以100℃/min的速率升温至1700℃,保温1min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.4%,硬度为22.1GPa,断裂韧性为5.8MPa·m1/2,抗弯强度为550MPa。
实施例5
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为92:4:4进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至40MPa,并在充气开始的同时以100℃/min的速率升温至1700℃,保温15min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.9%,硬度为20.8GPa,断裂韧性为7.2MPa·m1/2,抗弯强度为793MPa。
实施例6
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为92:4:4进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至38MPa,并在充气开始的同时以100℃/min的速率升温至1600℃,保温8min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.5%,硬度为21.9GPa,断裂韧性为6.0MPa·m1/2,抗弯强度为627MPa。
实施例7
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为92:4:4进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至38MPa,并在充气开始的同时以100℃/min的速率升温至1800℃,保温8min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.8%,硬度为20.7GPa,断裂韧性为6.8MPa·m1/2,抗弯强度为823MPa。
实施例8
1.制备:
(1)以Si3N4粉为(粒径<5μm)基体原料,以Al2O3粉(纯度为99.9%)、Yb2O3(纯度为99.99%),按照Si3N4:Al2O3:Yb2O3的体积比为90:3:7进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机混合8h后,得到混合均匀的Si3N4-Al2O3-Yb2O3粉体。
(2)将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以200℃/min的速率升温至800℃,然后在1min内充入1atm氮气,充气完成后,在2min内轴向加压至35MPa,并在充气开始的同时以100℃/min的速率升温至1650℃,保温10min,此后以120℃/min的降温速率降温至800℃,轴向卸压,并随炉冷却,取出样品后经后续机械加工获得高硬高耐磨Si3N4陶瓷刀具。
2.性能测试:本实施例所得的Si3N4陶瓷的相对密度为99.2%,硬度为21.0GPa,断裂韧性为6.5MPa·m1/2,抗弯强度为690MPa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高硬高耐磨氮化硅陶瓷,其特征在于,所述氮化硅陶瓷是将Si3N4粉和烧结助剂Al2O3-Re2O3进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,球磨混合,干燥得到Si3N4-Al2O3-Re2O3的混合粉体,再将Si3N4-Al2O3-Re2O3混合粉体,在真空中以速率Ⅰ升温至700~900℃,再在氮气的保护下,轴向加压为25~50MPa下,以速率Ⅱ升温至1600~1800℃并保温1~15min,经放电等离子烧结制得。
2.根据权利要求1所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述氮化硅陶瓷的相对密度为98~100%,所述氮化硅陶瓷的硬度为20~23GPa,所述氮化硅陶瓷的断裂韧性为5~8MPa·m1/2;所述氮化硅陶瓷的抗弯强度为500~900MPa。
3.根据权利要求1所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述Si3N4:Al2O3-Re2O3的体积比为(45~47):(3~5)。
4.根据权利要求2所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述Al2O3-Re2O3中Al2O3:Re2O3的体积比为(1~4):(1~4)。
5.根据权利要求1所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述中Re2O3中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
6.根据权利要求1所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述Si3N4粉的纯度为98~100wt.%,Si3N4粉的粒径为<5μm;所述Al2O3粉的纯度为99.8~99.99wt.%,所述Al2O3粉的粒径为<500nm;所述Re2O3粉的纯度为99~99.9wt.%,所述Re2O3粉的粒径为<1μm。
7.根据权利要求1所述的高硬高耐磨氮化硅陶瓷,其特征在于,所述速率Ⅰ为150~300℃/min,所述速率Ⅱ为100~150℃/min。
8.根据权利要求1-7任一项所述的高硬高耐磨氮化硅陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将Si3N4粉和烧结助剂Al2O3-Re2O3混料,干燥后得到Si3N4-Al2O3-Re2O3的混合粉体;
S2.将Si3N4-Al2O3-Re2O3混合粉体放入放电等离子烧结炉石墨模具中,在小于1mbar的真空度条件下,以150~300℃/min升温至700~900℃,然后充入1atm氮气,充气完成后轴向加压至30~50MPa,并在充气开始的同时以100~150℃/min升温至1600~1800℃,保温1~15min,此后以80~150℃/min降温至700~900℃,轴向卸压,并随炉冷却,制得高硬高耐磨的Si3N4陶瓷。
9.权利要求1~7任一项所述的高硬高耐磨氮化硅陶瓷在切削刀具领域中的应用。
10.根据权利要9所述的高硬高耐磨氮化硅陶瓷在刀具领域中的应用,其特征在于,所述氮化硅陶瓷的相对密度为98~100%,所述氮化硅陶瓷的硬度为20~23GPa,所述氮化硅陶瓷的断裂韧性为5~8MPa·m1/2;所述氮化硅陶瓷的抗弯强度为500~900MPa。
CN201910345751.XA 2019-04-26 2019-04-26 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用 Pending CN110218096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910345751.XA CN110218096A (zh) 2019-04-26 2019-04-26 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910345751.XA CN110218096A (zh) 2019-04-26 2019-04-26 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110218096A true CN110218096A (zh) 2019-09-10

Family

ID=67820084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910345751.XA Pending CN110218096A (zh) 2019-04-26 2019-04-26 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110218096A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517805A (zh) * 2020-07-06 2020-08-11 佛山华骏特瓷科技有限公司 高耐磨的氮化硅基陶瓷及其制备方法和应用
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN112745127A (zh) * 2020-12-30 2021-05-04 广东工业大学 一种氮化硅陶瓷刀具及其制备方法和应用
CN113880592A (zh) * 2021-11-08 2022-01-04 北京理工大学 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107434416A (zh) * 2017-08-02 2017-12-05 上海海事大学 一种高强韧氮化硅陶瓷材料及其烧结助剂和烧结方法
CN109160816A (zh) * 2018-08-27 2019-01-08 广东工业大学 一种对称且连续变化的表硬心韧氮化硅梯度陶瓷及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107434416A (zh) * 2017-08-02 2017-12-05 上海海事大学 一种高强韧氮化硅陶瓷材料及其烧结助剂和烧结方法
CN109160816A (zh) * 2018-08-27 2019-01-08 广东工业大学 一种对称且连续变化的表硬心韧氮化硅梯度陶瓷及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG GUI-HUA,ET AL: "Spark plasma sintered high hardness α/β Si3N4 composites with MgSiN2 as additives", 《SCRIPTA MATERIALIA》 *
王迎军: "《新型材料科学与技术 无机材料卷 上》", 31 October 2016, 华南理工大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN111517806B (zh) * 2020-04-26 2021-12-07 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN111517805A (zh) * 2020-07-06 2020-08-11 佛山华骏特瓷科技有限公司 高耐磨的氮化硅基陶瓷及其制备方法和应用
CN112745127A (zh) * 2020-12-30 2021-05-04 广东工业大学 一种氮化硅陶瓷刀具及其制备方法和应用
CN113880592A (zh) * 2021-11-08 2022-01-04 北京理工大学 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺
CN113880592B (zh) * 2021-11-08 2022-07-05 北京理工大学 一种高硬高韧氮化硅陶瓷复杂结构件制备工艺

Similar Documents

Publication Publication Date Title
CN110218096A (zh) 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
CN111253162B (zh) 一种制备高强高韧高热导率氮化硅陶瓷的方法
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109206141A (zh) 一种高硬高韧氮化硅陶瓷及其制备方法和应用
CN110156476A (zh) 一种高硬高韧氮化硅基陶瓷及其制备方法和应用
US8003042B2 (en) Toughened silicon carbide and method for making the same
JP2001080964A (ja) 多結晶SiC成形体、その製法及びそれからなる応用品
JP2000034172A (ja) 高熱伝導性窒化けい素焼結体およびその製造方法
CA1272581A (en) Nitriding silicon powder articles using high temperature and pressure dwells
CN109305816A (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN109160816A (zh) 一种对称且连续变化的表硬心韧氮化硅梯度陶瓷及其制备方法和应用
Shan et al. Highly infrared transparent spark plasma sintered AlON ceramics
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
Luo et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4
CN107651964A (zh) 一种AlN基复合陶瓷及其制备方法
Lee et al. Effect of raw-Si particle size on the properties of sintered reaction-bonded silicon nitride
CN105948761B (zh) 一种等轴状β-Si3N4+TiN+O′-Sialon复相陶瓷材料及其制备方法
Wang et al. Effect of sintering aids content and powder characteristics on gas pressure sintered Si3N4 ceramics
CN112830792A (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
Kim et al. Characterization of porous sintered reaction-bonded silicon nitride containing three different rare-earth oxides
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
Aiyi et al. Low-temperature fabrication of Si3N4 ceramics with high thermal conductivities using a single Mg2Si sintering additive
JP2004059346A (ja) 窒化珪素質セラミックス焼結体及びその製造方法
CN106977198A (zh) 热压烧结氧化锆复合陶瓷绝缘件及其制备方法
JPH09183666A (ja) 高熱伝導性窒化けい素焼結体およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190910

RJ01 Rejection of invention patent application after publication