CN107663093A - 一种Si3N4基复合陶瓷及其制备方法 - Google Patents

一种Si3N4基复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN107663093A
CN107663093A CN201711015047.5A CN201711015047A CN107663093A CN 107663093 A CN107663093 A CN 107663093A CN 201711015047 A CN201711015047 A CN 201711015047A CN 107663093 A CN107663093 A CN 107663093A
Authority
CN
China
Prior art keywords
composite ceramic
preparation
additive
base composite
heating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711015047.5A
Other languages
English (en)
Inventor
伍尚华
刘聪
郭伟明
赵哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201711015047.5A priority Critical patent/CN107663093A/zh
Publication of CN107663093A publication Critical patent/CN107663093A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本申请属于陶瓷技术领域,具体涉及一种Si3N4基复合陶瓷及其制备方法。本发明所提供的Si3N4基复合陶瓷包括:Si3N4和添加剂;所述添加剂为MxOy和Re2O3;M选自Mg或Al,1≤x≤3,1≤y≤3;Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。本发明选择MxOy和Re2O3作为烧结助剂,通过引入MxOy和Re2O促进Si3N4致密化,进一步改善了Si3N4陶瓷的致密性。本发明还提供了上述Si3N4基复合陶瓷的制备方法,工艺优化,产品质量稳定。经过实验证明,本发明Si3N4基复合陶瓷致密性高,具有高强硬、高强韧的优异综合力学性能,可广泛应用于陶瓷、冶金、电子和化工等多种领域。

Description

一种Si3N4基复合陶瓷及其制备方法
技术领域
本发明属于陶瓷技术领域,具体涉及一种Si3N4基复合陶瓷及其制备方法。
背景技术
Si3N4陶瓷具有高强度、高硬度、耐腐蚀、耐磨损、耐高温和抗机械冲击和抗热冲击性好等优异的性能,是重要的基板封装材料和高温结构材料,被广泛应用于航天、化工、冶金、军工及机械制造等领域。然而,Si3N4陶瓷因其较强的共价键和较低的扩散系数而难以烧结致密化,故现有大部分的Si3N4陶瓷的致密性较低,进一步限制了Si3N4陶瓷的发展和应用。
发明内容
为了解决现有Si3N4陶瓷致密性较低的这一技术问题,本发明的目的在于提供一种致密性高、力学性能优良的Si3N4基复合陶瓷。
本发明的具体技术方案如下:
一种Si3N4基复合陶瓷,其制备原料包括:Si3N4和添加剂;
所述添加剂为MxOy和Re2O3
M选自Mg或Al,1≤x≤3,1≤y≤3;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述Si3N4和添加剂的质量比优选为(85~95):(5~15),更优选为(90~95):(5~10)。
优选的,所述添加剂中,MxOy和Re2O3的质量比优选为(1~50):(1~50),更优选为1:1。
本发明还提供了一种Si3N4基复合陶瓷的制备方法,包括:在惰性气体和真空条件下,将Si3N4和添加剂进行热压烧结,得到所述Si3N4基复合陶瓷;
其中,所述Si3N4和添加剂的质量比为(85~95):(5~15);
所述添加剂为MxOy和Re2O3
M选自Mg或Al,1≤x≤3,1≤y≤3;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述热压烧结包括:
a)将Si3N4、MxOy和Re2O3的混合粉体以第一升温速率升温至第一温度1000~1250℃,得到一次烧结体;
b)将所述一次烧结体以第二升温速率升温至第二温度1300~1600℃,得到二次烧结体;
c)保温0.5~2h后,以降温速率降至1000~1400℃,最后随炉冷却,得到所述Si3N4基复合陶瓷。
更优选的,在步骤b)和步骤c)之间还包括:将所述二次烧结体以第三升温速率升温至第三温度1600~2000℃,得到三次烧结体。
更优选的,所述第一升温速率、第二升温速率和第三升温速率为5~15℃/min;
所述降温速率为5~15℃/min。
优选的,所述惰性气体为氮气;所述真空条件的真空度为10Pa~0.1MPa。
优选的,所述热压烧结的载荷为20~40MPa。
优选的,在所述预压之前还包括:将Si3N4、MxOy和Re2O3球磨,得到Si3N4、MxOy和Re2O3的混合粉体;
球磨介质为Si3N4球,Si3N4球的粒径优选为5~10mm;
所述球磨的球料比优选为(1~5):1,更优选为2:1;
球磨时间优选为4~48h,更优选为24h。
更优选的,在所述球磨和所述热压烧结之间还包括:对所述混合粉体进行预压;
所述预压的载荷优选为5~10MPa,更优选为10MPa。
综上所述,本发明提供了一种Si3N4基复合陶瓷,其制备原料包括:Si3N4和添加剂;所述添加剂为MxOy和Re2O3;M选自Mg或Al,1≤x≤3,1≤y≤3;Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。本发明选择MxOy和Re2O3作为烧结助剂,通过引入MxOy和Re2O促进Si3N4致密化,进一步改善了Si3N4陶瓷的致密性。
本发明还提供了上述Si3N4基复合陶瓷的制备方法,包括:将Si3N4、MxOy和Re2O进行热压烧结。本发明方法对热压烧结过程中涉及的升温速率、烧结温度、保温时间和降温等条件参数进行了优化,结合上述优化的制备原料,建立了一个完善优化的热压烧结体系,工艺优化,产品质量稳定。
因此,通过上述技术方案得到的Si3N4基复合陶瓷致密性高,具有高强硬、高强韧的优异综合力学性能,可广泛应用于陶瓷、冶金、电子和化工等多种领域。经过实验证明,本发明Si3N4基复合陶瓷的相对密度高于95%,硬度为15~18GPa,抗弯强度为1000~1300MPa,断裂韧度为6~8MPa﹒m1/2
具体实施方式
为了解决传统Si3N4陶瓷力学性能较差的技术问题,本发明提供了一种Si3N4基复合陶瓷及其制备方法。
在本发明中,通过优化烧结助剂种类、含量,并对热压烧结中涉及的多个如升温速率、烧结温度和保温时间等条件参数进行了优化改进,建立了一个完善优化的热压烧结体系,从而制备了高致密、具不同显微形貌且综合力学性能优异的Si3N4陶瓷材料。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)以Si3N4粉末(粒径小于1μm,纯度为99.9%)作为原料,以MgO粉(纯度为99.9%)和Y2O3粉(纯度为99.9%)为烧结助剂,置于辊式球磨机中混合;按重量份数进行配料,90份Si3N4粉,5份MgO,5份Y2O3
在球磨时,以乙醇为溶剂,以Si3N4球为球磨介质,球料比调节为2:1,球磨时间为24h,经混料、干燥后,得到混合均匀的Si3N4-MgO-Y2O3混合粉体。
(2)将Si3N4-MgO-Y2O3混合粉体放入石墨模具中,经10MPa压力预压后,在真空条件和惰性气体保护环境下进行热压烧结;首先以15℃/min的升温速率升温至第一温度1200℃,然后以10℃/min的升温速率继续将温度升至第二温度1600℃,接着以10℃/min的降温速率将温度降至1200℃,最后随炉冷却。
其中,热压烧结的载荷(热压烧结过程中模具压头施加的机械压力)为30MPa,最高温度下保温保压1h,整个烧结过程的气氛为N2,气压大小为0.1MPa。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为100%,相组成为α-Si3N4、β-Si3N4和Y2Si3O3N4,硬度为16.53GPa,抗弯强度为1166.9MPa,断裂韧性为6.74MPa﹒m1/2
实施例2
本实施例与实施例1的区别在于:在步骤(1)中,配料时:92份Si3N4粉,4份MgO,4份Y2O3。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为98.93%,相组成为α-Si3N4和β-Si3N4,硬度为17.09GPa,抗弯强度为1192.02MPa,断裂韧性为7.29MPa﹒m1/2
实施例3
本实施例与实施例1的区别在于:在步骤(1)中,配料时:94份Si3N4粉,3份MgO,3份Y2O3。其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为99.11%,相组成为α-Si3N4和β-Si3N4,硬度为18.25GPa,抗弯强度为1188.92MPa,断裂韧性为6.1MPa﹒m1/2
实施例4
本实施例与实施例1的区别在于:在步骤(1)中,配料时:90份Si3N4粉,5份MgO,5份Y2O3;步骤(2)中进行热压烧结时:首先以15℃/min的升温速率升温至第一温度1200℃,然后以10℃/min的升温速率继续将温度升至第二温度1600℃,接着以5℃/min的升温速率继续将温度升至第三度1800℃,接着以10℃/min的降温速率将温度降至1200℃,最后随炉冷却。
其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为98.36%,相组成为β-Si3N4,硬度为15.21GPa,抗弯强度为1091MPa,断裂韧性为7.87MPa﹒m1/2
实施例5
本实施例与实施例1的区别在于:在步骤(1)中,采用纯度大于99.99%的Al2O3替换MgO;配料时:90份Si3N4粉,5份Al2O3,5份Y2O3
其余地方与实施例1基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为97.73%,相组成为α-Si3N4和β-Si3N4,硬度为16.94GPa,抗弯强度为852.59MPa,断裂韧性为5.06MPa﹒m1/2
实施例6
本实施例与实施例5的区别在于:步骤(2)中进行热压烧结时:首先以15℃/min的升温速率升温至第一温度1200℃,然后以10℃/min的升温速率继续将温度升至第二温度1600℃,接着以5℃/min的升温速率继续将温度升至第三度1800℃,接着以10℃/min的降温速率将温度降至1200℃,最后随炉冷却。
其余地方与实施例5基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为98.09%,相组成为β-Si3N4,硬度为15.6GPa,抗弯强度为1106MPa,断裂韧性为7.13MPa﹒m1/2
实施例7
本实施例与实施例6的区别在于:在步骤(1)中,配料时:92份Si3N4粉,4份Al2O3,4份Y2O3。其余地方与实施例6基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为98.01%,相组成为α-Si3N4和β-Si3N4,硬度为15.92GPa,抗弯强度为1114.42MPa,断裂韧性为5.44MPa﹒m1/2
实施例8
本实施例与实施例6的区别在于:在步骤(1)中,配料时:94份Si3N4粉,3份Al2O3,3份Y2O3。其余地方与实施例6基本相同,此处不再一一赘述。
经过检测,本实施例的Si3N4基复合陶瓷的相对密度为98.26%,相组成为α-Si3N4和β-Si3N4,硬度为16.95GPa,抗弯强度为1100.66MPa,断裂韧性为6.19MPa﹒m1/2

Claims (10)

1.一种Si3N4基复合陶瓷,其特征在于,其制备原料包括:Si3N4和添加剂;
所述添加剂为MxOy和Re2O3
M选自Mg或Al,1≤x≤3,1≤y≤3;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
2.根据权利要求1所述的Si3N4基复合陶瓷,其特征在于,所述Si3N4和添加剂的质量比为(85~95):(5~15)。
3.根据权利要求1所述的Si3N4基复合陶瓷,其特征在于,所述添加剂中,MxOy和Re2O3的质量比为(1~50):(1~50)。
4.一种权利要求1至3任意一项所述的Si3N4基复合陶瓷的制备方法,其特征在于,包括:在惰性气体和真空条件下,将Si3N4和添加剂进行热压烧结,得到所述Si3N4基复合陶瓷;
其中,所述Si3N4和添加剂的质量比为(85~95):(5~15);
所述添加剂为MxOy和Re2O3
M选自Mg或Al,1≤x≤3,1≤y≤3;
Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
5.根据权利要求4所述的制备方法,其特征在于,所述热压烧结包括:
a)将Si3N4、MxOy和Re2O3的混合粉体以第一升温速率升温至第一温度1000~1250℃,得到一次烧结体;
b)将所述一次烧结体以第二升温速率升温至第二温度1300~1600℃,得到二次烧结体;
c)保温0.5~2h后,以降温速率降至1000~1400℃,最后随炉冷却,得到所述Si3N4基复合陶瓷。
6.根据权利要求5所述的制备方法,其特征在于,在步骤b)和步骤c)之间还包括:将所述二次烧结体以第三升温速率升温至第三温度1600~2000℃,得到三次烧结体。
7.根据权利要求5或6所述的制备方法,其特征在于,所述第一升温速率、第二升温速率和第三升温速率为5~15℃/min;
所述降温速率为5~15℃/min。
8.根据权利要求4所述的制备方法,其特征在于,所述惰性气体为氮气;
所述真空条件的真空度为10Pa~0.1MPa;
所述热压烧结的载荷为20~40MPa。
9.根据权利要求4所述的制备方法,其特征在于,在所述预压之前还包括:将Si3N4、MxOy和Re2O3球磨,得到Si3N4、MxOy和Re2O3的混合粉体;
球磨介质为Si3N4球;
所述球磨的球料比为(1~5):1;
球磨时间为4~48h。
10.根据权利要求9所述的制备方法,其特征在于,在所述球磨和所述热压烧结之间还包括:对所述混合粉体进行预压;
所述预压的载荷为5~10MPa。
CN201711015047.5A 2017-10-26 2017-10-26 一种Si3N4基复合陶瓷及其制备方法 Pending CN107663093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711015047.5A CN107663093A (zh) 2017-10-26 2017-10-26 一种Si3N4基复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711015047.5A CN107663093A (zh) 2017-10-26 2017-10-26 一种Si3N4基复合陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN107663093A true CN107663093A (zh) 2018-02-06

Family

ID=61098090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711015047.5A Pending CN107663093A (zh) 2017-10-26 2017-10-26 一种Si3N4基复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107663093A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369193A (zh) * 2018-09-30 2019-02-22 广东工业大学 一种具有高硬、高韧性能的氮化硅陶瓷及其制备方法和应用
CN110483061A (zh) * 2019-07-19 2019-11-22 广东工业大学 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用
CN110483062A (zh) * 2019-08-21 2019-11-22 广东工业大学 一种高性能氮化硅陶瓷及其制备方法和应用
CN113956052A (zh) * 2021-11-15 2022-01-21 广东省科学院新材料研究所 陶瓷微通道的成形方法、陶瓷微通道材料及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334543A2 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Method of producing high density silicon nitride sintered bodies
CN1230531A (zh) * 1998-12-22 1999-10-06 武汉工业大学 添加氧化镁及稀土氧化物的烧结氮化硅陶瓷
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN106957176A (zh) * 2016-01-12 2017-07-18 河北高富氮化硅材料有限公司 一种高导热性能氮化硅陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334543A2 (en) * 1988-03-23 1989-09-27 Ngk Insulators, Ltd. Method of producing high density silicon nitride sintered bodies
CN1230531A (zh) * 1998-12-22 1999-10-06 武汉工业大学 添加氧化镁及稀土氧化物的烧结氮化硅陶瓷
CN106957176A (zh) * 2016-01-12 2017-07-18 河北高富氮化硅材料有限公司 一种高导热性能氮化硅陶瓷的制备方法
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭伟明等: "含MgO–Gd2O3/Lu2O3 烧结助剂的Si3N4 陶瓷刀具的切削性能", 《硅酸盐学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369193A (zh) * 2018-09-30 2019-02-22 广东工业大学 一种具有高硬、高韧性能的氮化硅陶瓷及其制备方法和应用
CN110483061A (zh) * 2019-07-19 2019-11-22 广东工业大学 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用
CN110483062A (zh) * 2019-08-21 2019-11-22 广东工业大学 一种高性能氮化硅陶瓷及其制备方法和应用
CN113956052A (zh) * 2021-11-15 2022-01-21 广东省科学院新材料研究所 陶瓷微通道的成形方法、陶瓷微通道材料及应用

Similar Documents

Publication Publication Date Title
CN107663093A (zh) 一种Si3N4基复合陶瓷及其制备方法
CN101508574B (zh) 一种具有非晶/纳米晶结构的陶瓷材料及其制备方法
CN104909765B (zh) 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN108637268B (zh) 一种微波碳热还原制备复合Ti(C,N)金属陶瓷粉体的方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN107651964A (zh) 一种AlN基复合陶瓷及其制备方法
CN108558411A (zh) 一种Si3N4陶瓷及其制备方法
CN104744046A (zh) 接合材组合物、氮化铝接合体及其制造方法
CN110218096A (zh) 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
CN105948759A (zh) 真空热压烧结法制备的氮化铝陶瓷基片及其制备方法
CN108046808A (zh) 一种Si3N4梯度材料及其制备方法
CN105254307B (zh) 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法
CN107164803A (zh) 一种简单控制相变制备β‑氮化硅晶须的方法
CN107963891A (zh) 一种单相氮化硅陶瓷材料及其微波烧结制备工艺
CN114671689A (zh) 一种热压液相烧结碳化硼复合陶瓷及其制备方法
CN104591769B (zh) 一种铝镁硼增韧增强陶瓷及其制备方法
CN104446459A (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
CN104609864B (zh) 一种利用氮化硅铁粉末制备块体陶瓷材料的方法
CN105924179A (zh) 一种氮化硅陶瓷加热器保护管及其制备方法与应用
CN106631028A (zh) 一种金属复合镁碳化硅防弹陶瓷的制备工艺
CN109970454A (zh) 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷
CN109336614A (zh) 一种Sialon/Ti-22Al-25Nb陶瓷基复合材料的制备方法
CN108085783B (zh) 高韧性碳化硅及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180206