CN110483061A - 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用 - Google Patents

一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN110483061A
CN110483061A CN201910656251.8A CN201910656251A CN110483061A CN 110483061 A CN110483061 A CN 110483061A CN 201910656251 A CN201910656251 A CN 201910656251A CN 110483061 A CN110483061 A CN 110483061A
Authority
CN
China
Prior art keywords
silicon nitride
powder
nitride ceramics
intensitive
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910656251.8A
Other languages
English (en)
Inventor
郭伟明
张威
于俊杰
伍尚华
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910656251.8A priority Critical patent/CN110483061A/zh
Publication of CN110483061A publication Critical patent/CN110483061A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于多孔陶瓷材料技术领域,公开了一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用。所述氮化硅陶瓷是将硅粉、硼粉、MgO、Yb2O3、ZrO2加入溶剂进行球磨混合,其中ZrO2与硼粉的质量比为(2~6):(5~13),将混合粉体模压制成的混合粉末坯体,在反应气氛下,在真空条件下升温至800~1200℃煅烧并保温Ⅰ,再升温至1200~1600℃煅烧并充入反应气体N2保温Ⅱ制得。所述氮化硅陶瓷中气孔率达到了25~65vol%,室温抗弯强度为75~287MPa;氮化硅陶瓷中β‑Si3N4的含量10~60vol%。

Description

一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用。
背景技术
多孔氮化硅陶瓷作为多孔陶瓷材料的一种类别,可以看作是由气固两相组成的复相陶瓷材料,作为一种结构陶瓷它不仅具备了陶瓷材料强度高、耐腐蚀、耐热震等优点,还有着巨大的比表面积和可控的孔隙结构,使陶瓷材料具有了更小的密度、更轻的质量、更小的导热系数。这不仅拓宽了陶瓷材料的应用领域,而且使其成为替代传统材料最理想的材料之一,因其优异的物理化学性能,在环保、能源、航空、生物医学等传统和新型领域有着广泛的应用。在汽车尾气处理、工业废气排放、污水过滤等方面,多孔陶瓷材料作为催化剂载体的一种,有着传统金属催化剂载体无法比拟的自身优势,更长的使用寿命和更优异的物化性质使其在催化剂载体领域有着必然的应用趋势,也使得多孔陶瓷的制备成为近些年学者们关注的热点。
已报道文献中多孔氮化硅陶瓷的制备温度大多在1700~1800℃,且室温弯曲强度大多在10~150Mpa,这是由于α-Si3N4晶粒短小,无法形成有效的多孔材料的组织结构,提高陶瓷材料的整体强度,所以必须使得基体的Si3N4以β-Si3N4相存在,长柱状β-Si3N4晶粒具有能够改善材料的抗弯强度和断裂韧性特点,多种研究表明,长柱状β-Si3N4晶粒,能够起到支撑基体的作用,就如同水泥中的钢筋一样,能够提高整体的强度。多孔氮化硅陶瓷通过β-Si3N4之间交叉形成可以鸟巢状的结构,加强材料的整体强度,但是α-Si3N4到β-Si3N4的转变需要1700℃,这就使得多孔氮化硅陶瓷的烧结温度不能太低,现阶段大部分的多孔氮化硅陶瓷的制备都是通过造孔剂生成大量孔洞,并且在高温环境下,使得α-Si3N4发生相变,生成β-Si3N4,虽然生成的β-Si3N4能够有效的与加强材料结合得到一定的强度,但是由于使用高温烧结的方法,显著提高了此类陶瓷的生产成本。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明首要目的在于提供一种高孔隙率和高强度的氮化硅陶瓷。该陶瓷具有优异的力学性能和高孔隙率。
本发明的另一目的在于提供上述高孔隙率和高强度的氮化硅陶瓷的制备方法。该方法的制备成本低。
本发明再一目的在于提供上述高孔隙率和高强度的氮化硅陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高孔隙率和高强度的氮化硅陶瓷,所述氮化硅陶瓷是将硅粉、硼粉、MgO、Yb2O3、ZrO2加入溶剂进行球磨混合,其中ZrO2与硼粉的质量比为(2~6):(5~13),将混合粉体模压制成的混合粉末坯体,在反应气氛下,在真空条件下升温至800~1200℃煅烧并保温Ⅰ,再升温至1200~1600℃煅烧并充入反应气体N2保温Ⅱ制得。
优选地,所述氮化硅陶瓷中气孔率达到了25~65vol%,室温抗弯强度为75~287MPa;氮化硅陶瓷中β-Si3N4的含量10~60vol%。
优选地,所述球磨混合中硅粉、硼粉、MgO、Yb2O3、ZrO2总质量和磨球的质量比为(2~5):(1~3),所述球磨的时间为4~24h。
优选地,所述硅粉、硼粉、ZrO2、MgO、Yb2O3的质量比为(70~84):(2~6):(5~13):(5~7.4):(4~6)。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮。
优选地,所述升温的速率均为5~20℃/min,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h。
优选地,所述煅烧的时间为1~30min,所述煅烧的压力为0.1~1MPa。
所述的高孔隙率和高强度的氮化硅陶瓷的制备方法,包括如下具体步骤:
S1.以硅粉、硼粉、MgO、Yb2O3、ZrO2为原料,加入溶剂和球磨介质,在辊式球磨机上混合6~24h,干燥后得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1200~1600℃并充入反应气体,保温0.5~2h,获得高孔隙率的和高强度的氮化硅陶瓷。
所述的高孔隙率和高强度的氮化硅陶瓷在高温气体/液体过滤器、支持分离膜、热绝缘体或催化剂领域中的应用。
本发明是以硅粉、硼粉、MgO、Yb2O3、ZrO2为原料,制备出高孔隙率的高强度氮化硅陶瓷,通过ZrO2与硼粉的作用,生成了ZrB2和B2O3,ZrB2与MgO、Yb2O3形成液相,能有效促进α-Si3N4向β-Si3N4转变,而之前生成的B2O3在1000℃是液相,由于其高的蒸汽压,在高于1400℃会挥发,有利于孔隙率的形成,并且在液相的作用下,β-Si3N4相互链接,形成具有高强度、高空隙率的鸟巢结构,解决了低温无法烧结含有大量具有增强作用的β-Si3N4的多孔氮化硅陶瓷,由于所生成的β-Si3N4以及氮化硅陶瓷本身的特性,使得其具组成元素稳定、孔隙率高、室温力学性能优异的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明制备的多孔氮化硅陶瓷,硅粉在快速氮化后伴随着大量α-Si3N4向β-Si3N4的转变,形成互锁结构,这主要由高强度β-Si3N4形成高空隙率的鸟巢结构,使得该多孔氮化硅陶瓷与现有技术相比,具有更加优异的力学性能。
2.本发明中ZrO2除了作为氮化催化剂,还可以在1000℃时与硼粉反应生成ZrB2和B2O3,生成的B2O3在1000℃是液相,由于其高的蒸汽压,在高于1400℃会挥发,有利于孔隙率的形成,产生的气相随着温度升高在基体形成孔洞;进一步提高温度到1200~1600℃时充入反应气体得到多孔Si3N4陶瓷,所生成ZrB2的与所加入的其他烧结助剂共同作用,有助于生成液相,提高α-Si3N4向β-Si3N4的转化率,生成更多的β-Si3N4,进一步提高基体的强度。
3.本发明的氮化硅陶瓷同时具有高的出孔隙率和高强度,解决了多孔氮化硅陶瓷孔隙率越高,强度越低的问题,使得多孔氮化硅陶瓷应用面更加的广泛,可用性提高。
4.本发明是以低成本的硅粉为原料原位合成多孔氮化硅陶瓷,ZrO2促进硅粉氮化,缩短制备周期,具有显著的制备成本优势。
5.本发明生成的ZrB2硬质相可显著提高多孔氮化硅的硬度,产生的气相随着温度升高在基体形成孔洞;进一步提高温度到1200~1600℃时充入反应气体得到多孔Si3N4陶瓷。
附图说明
图1为实施例4中制得坯体在1000℃保温1h制得的样品的XRD图谱;
图2为实施例4中制得的氮化硅陶瓷的XRD图谱;
图3为实施例4中制得的氮化硅陶瓷的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以硅粉(粉末的纯度99.9%,粒径2μm)、ZrO2(粉末的纯度99.9%,粒径2μm)、Yb2O3(粉末的纯度99.9%,粒径2μm)、MgO(粉末的纯度99%,粒径2μm)和硼粉(粉末的纯度97%,粒径2μm)为原料,将其按照85:5:5:3:2的质量比混合,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合4h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1100℃保温2h后,再以10℃/min升温至1600℃保温1h,整个烧结过程为N2气氛,压力为1069Pa,获得高孔隙率和强度的氮化硅陶瓷。
通过XRD分析测得本实施例的氮化硅陶瓷,β-Si3N4含量为12%,气孔率为25%,室温抗弯强度102MPa。
实施例2
1.以硅粉(粉末的纯度99.9%,粒径1.5μm)、硼粉(粉末的纯度99.9%,粒径1.5μm)、Yb2O3(粉末的纯度99.9%,粒径1.5μm)、MgO(粉末的纯度99%,粒径1.5μm)和硼粉(粉末的纯度97%,粒径2μm)为原料,将其按照83:6:6:3:2的质量比混合,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合6h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的末坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温2h后,再以10℃/min升温至1500℃保温1h,整个烧结过程为N2气氛,压力为1069Pa,获得高孔隙率和强度的氮化硅陶瓷。
通过XRD分析测得本实施例的氮化硅陶瓷,β-Si3N4含量为10%,气孔率为35%,室温抗弯强度75MPa。
实施例3
1.将硅粉(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、硼粉(粉末的纯度99.9%,粒径1μm)、MgO(粉末的纯度99%,粒径1μm)和硼粉(粉末的纯度97%,粒径2μm)按质量比为85:5:5:3:2混合,以乙醇为溶剂,以Si3N4球为球磨介质,在行星球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的末坯体放入石墨坩埚中,以10℃/min的速率升温至1100℃保温1h后,再以10℃/min升温至1500℃保温2h,整个烧结过程为N2气氛,压力为1069Pa,获得高孔隙率和强度的氮化硅陶瓷。
通过XRD分析测得本实施例的氮化硅陶瓷,β-Si3N4含量为15%,气孔率为45%,室温抗弯强度150MPa。
实施例4
1.以硅粉(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Yb2O3(粉末的纯度99.9%,粒径1μm)、MgO(粉末的纯度99%,粒径1μm)和硼粉(粉末的纯度97%,粒径2μm)为原料,将其按质量比74.2:12.3:7.4:4.1:2混合,以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合8h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的末坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温1h后,再以5℃/min升温至1400℃保温1h,最后以3℃/min升温至1550℃保温2h,其中0~1300为真空环境,在1300℃时充入N2,真空压力为0.1Pa,气氛压力为一个大气压,获得高孔隙率和强度的多孔氮化硅陶瓷
图1为本实施案例中所制得的坯体在1000℃保温1h制得的样品的XRD衍射图谱,从图1中可以看到,在1000℃时,样品中的ZrO2与硼发生了反应,生成了ZrB2。通过XRD分析测得本实施例高孔隙率高强度氮化硅陶瓷体中,β-Si3N4的含量为60%,其气孔率达到了65%,室温下弯曲强度达到了287Mpa。图2为本实施例中制得的氮化硅陶瓷体的XRD图谱,从图2中可以看出,除添加剂的峰,有大量的β-S3N4的峰,证明所制得的氮化硅陶瓷体中生成了大量的β-Si3N4。且按照计算公式(1):
其中:Iβ101为β相在101晶面的衍射峰强度;Iβ210为β相在210晶面的衍射峰强度;为α相在102晶面的衍射峰强度;Iα210为α相在210晶面的衍射峰强度;计算得到β-Si3N4的含量为60%。图3为本实施例中制得的多孔氮化硅陶瓷体的SEM照片,其中,(a)为低倍照片(×5k),(b)为高倍照片(×20k)。从图3中(a)中可以明显看出,所得的氮化硅陶瓷体中有大量的气孔,证明已成功制备出高气孔率的氮化硅陶瓷,还观察到有大量的棒状晶粒,区别于α-Si3N4所形成的类似圆形的晶粒,此为β-Si3N4,与XRD结果一致,从图3中(b)中可以明显看出棒状晶粒与晶粒之间连接紧密,由于β-Si3N4的存在,极大的加强了制得的多孔氮化硅的强度,证明本发明例制备了具有气孔率高、强度高的氮化硅陶瓷。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述氮化硅陶瓷是将硅粉、硼粉、MgO、Yb2O3、ZrO2加入溶剂进行球磨混合,其中ZrO2与硼粉的质量比为(2~6):(5~13),将混合粉体模压制成的混合粉末坯体,在反应气氛下,在真空条件下升温至800~1200℃煅烧并保温Ⅰ,再升温至1200~1600℃煅烧并充入反应气体N2保温Ⅱ制得。
2.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述氮化硅陶瓷中气孔率达到了25~65vol%,室温抗弯强度为75~287MPa;氮化硅陶瓷中β-Si3N4的含量10~60vol%。
3.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述球磨混合中硅粉、硼粉、MgO、Yb2O3、ZrO2总质量和磨球的质量比为(2~5):(1~3),所述球磨的时间为4~24h。
4.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述硅粉、硼粉、ZrO2、MgO、Yb2O3的质量比为(70~84):(2~6):(5~13):(5~7.4):(4~6)。
5.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述溶剂为乙醇、丙醇、甲醇或丙酮。
6.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述升温的速率均为5~20℃/min。
7.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h。
8.根据权利要求1所述的高孔隙率和高强度的氮化硅陶瓷,其特征在于,所述煅烧的时间为1~30min,所述煅烧的压力为0.1~1MPa。
9.根据权利要求1~8任一项所述的高孔隙率和高强度的氮化硅陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.以硅粉、硼粉、MgO、Yb2O3、ZrO2为原料,加入溶剂和球磨介质,在辊式球磨机上混合6~24h,干燥后得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1200~1600℃并充入反应气体N2,保温0.5~2h,获得高孔隙率的和高强度的氮化硅陶瓷。
10.权利要求1~8任一项所述的高孔隙率和高强度的氮化硅陶瓷在高温气体/液体过滤器、支持分离膜、热绝缘体或催化剂领域中的应用。
CN201910656251.8A 2019-07-19 2019-07-19 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用 Pending CN110483061A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910656251.8A CN110483061A (zh) 2019-07-19 2019-07-19 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910656251.8A CN110483061A (zh) 2019-07-19 2019-07-19 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110483061A true CN110483061A (zh) 2019-11-22

Family

ID=68547606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910656251.8A Pending CN110483061A (zh) 2019-07-19 2019-07-19 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110483061A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225718A (zh) * 2021-12-24 2022-03-25 中国科学院上海硅酸盐研究所 一种多孔氮化硅陶瓷表面NaA分子筛膜及其制备方法
CN115028469A (zh) * 2022-06-16 2022-09-09 西安热工研究院有限公司 一种高强度耐磨损多孔氮化硅的制备方法及其产品
CN115414798A (zh) * 2022-08-19 2022-12-02 电子科技大学长三角研究院(湖州) 一种微纳复合纤维结构氮化硅基陶瓷分离膜的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
CN109942310A (zh) * 2019-03-19 2019-06-28 广东工业大学 一种高性能氮化硅多孔陶瓷的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
CN109942310A (zh) * 2019-03-19 2019-06-28 广东工业大学 一种高性能氮化硅多孔陶瓷的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225718A (zh) * 2021-12-24 2022-03-25 中国科学院上海硅酸盐研究所 一种多孔氮化硅陶瓷表面NaA分子筛膜及其制备方法
CN115028469A (zh) * 2022-06-16 2022-09-09 西安热工研究院有限公司 一种高强度耐磨损多孔氮化硅的制备方法及其产品
CN115414798A (zh) * 2022-08-19 2022-12-02 电子科技大学长三角研究院(湖州) 一种微纳复合纤维结构氮化硅基陶瓷分离膜的制备方法及其应用
CN115414798B (zh) * 2022-08-19 2024-03-29 电子科技大学长三角研究院(湖州) 一种微纳复合纤维结构氮化硅基陶瓷分离膜的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN102807391B (zh) 多孔碳化硅陶瓷的制备方法
CN110483061A (zh) 一种高孔隙率和高强度的氮化硅陶瓷及其制备方法和应用
CN101215173B (zh) 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN103274696B (zh) 一种热透波多孔陶瓷材料及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
Li et al. Study on in-situ reaction synthesis and mechanical properties of Si2N2O ceramic
CN108439995A (zh) 一种复相陶瓷及其制备方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN103232228A (zh) 一种多孔氧化铝复合陶瓷的制备方法
CN101734925B (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN103614808A (zh) 带有绒毛状晶须的莫来石纤维及制备方法
CN109574680A (zh) 一种气固反应结合液相烧结法制备多孔氮化硅陶瓷的方法
JPS5851910B2 (ja) チツカケイソケイシヨウケツタイノセイゾウホウホウ
CN101580393A (zh) 一种铪酸钇透明陶瓷的制备方法
CN114685165A (zh) 一种十元褐钇铌矿结构高熵氧化物陶瓷及其制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN108585887A (zh) 一种TixZr1-xB2超高温固溶体陶瓷粉体的制备方法
CN102807389B (zh) 一种Si3N4-Si2N2O多孔复相陶瓷的制备方法
CN112341207A (zh) 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法
US20050112389A1 (en) High temperature nanocomposite and method of making
JP4348429B2 (ja) 窒化ケイ素多孔体及びその製造方法
CN106800413B (zh) 一种钇铝碳陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191122

WD01 Invention patent application deemed withdrawn after publication