CN108439995A - 一种复相陶瓷及其制备方法 - Google Patents

一种复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN108439995A
CN108439995A CN201810508754.6A CN201810508754A CN108439995A CN 108439995 A CN108439995 A CN 108439995A CN 201810508754 A CN201810508754 A CN 201810508754A CN 108439995 A CN108439995 A CN 108439995A
Authority
CN
China
Prior art keywords
sintering
complex phase
powder
phase ceramic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810508754.6A
Other languages
English (en)
Other versions
CN108439995B (zh
Inventor
罗志伟
卢安贤
张岩
张静
刘建磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Hongjia Home Decoration Co.,Ltd.
Hunan Lazy Man Information Technology Co.,Ltd.
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810508754.6A priority Critical patent/CN108439995B/zh
Publication of CN108439995A publication Critical patent/CN108439995A/zh
Application granted granted Critical
Publication of CN108439995B publication Critical patent/CN108439995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种复相陶瓷及其制备方法,该复相陶瓷由质量百分比为28~32%Y2Si2O7,27~33%SiC和35~45%β‑Si3N4棒状晶体组成。本发明利用Y2Si2O7中的残余Y2O3和SiO2对氮化硅陶瓷的烧结的积极作用,采用Y2Si2O7粉末、SiC粉末和α‑Si3N4粉末作为原料,在高温烧结过程中,Y2Si2O7游离出Si4+和稀土Y3+离子促进α‑Si3N4在烧结过程中向高长径比的棒状的β‑Si3N4相转变,降低Si3N4相转变过程中的烧结温度,简化烧结工艺,而且原位生长β‑Si3N4棒晶,可以类似于纤维增强的作用,从而提高相陶瓷的力学性能。本发明中Y2Si2O7粉末起到烧结助剂的作用,从而可以提升碳化硅陶瓷的致密性,增强复相陶瓷材料的密度和力学性能。

Description

一种复相陶瓷及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种复相陶瓷及其制备方法。
背景技术
Y2Si2O7陶瓷、Si3N4陶瓷和SiC陶瓷都具有很好的耐高温、抗化学腐蚀和抗热冲击性能,在耐高温材料领域有很好的应用前景。但是单一的陶瓷都存在一定的缺陷,如Si3N4陶瓷在制备过程一般需要采用热压烧结(HP)、气压烧结(GPS)、热等静压烧结(HIP)工艺,才能使Si3N4陶瓷的致密化及促进α-Si3N4向β-Si3N4相的转变,工艺的烧结温度一般高达1900℃以上,从而导致Si3N4陶瓷制品的价格较为昂贵,而且Si3N4陶瓷由于共价键的原因易脆断。又如SiC陶瓷由于碳化硅的强共价键性,必须在坯体中加入氧化铝等作为烧结助剂形成液相才能使碳化硅坯体致密化。
为解决单一的陶瓷材料的缺陷,复相陶瓷成为当前的一个研究热点。复相陶瓷利用陶瓷材料之间的互补性,将多种陶瓷材料混合后通过烧结等工艺获得,从而解决改善单一材料的劣势。为提高SiC陶瓷的力学性能,专利号CN103664179B中公开了β-Sialon-Si3N4-SiC复合陶瓷材料,虽然其综合力学强度有一定的提升,但是这种复合陶瓷材料的制备工艺相当的复杂,而且其密度仅有2.7~2.85gcm3,抗弯强度介于170~180MPa之间,综合力学性能提升有限,因而限制了其应用。
发明内容
本发明的目的提供一种密度高、综合力学性能好且工艺简单的复相陶瓷及其制备方法。
本发明这种复相陶瓷,由质量百分比为28~32%Y2Si2O7,27~33%SiC和35~45%Si3N4为β-Si3N4棒状晶体组成。
本发明这种复相陶瓷,由质量百分比为29~31%Y2Si2O7,29~31%SiC和38~42%β-Si3N4棒状晶体组成。
本发明这种复相陶瓷的制备方法,包括以下步骤:
1)Y2Si2O7粉末的制备
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨后,过筛,得到混合粉体;将混合粉体置于锈钢模具压制成坯体,将坯体干燥后,在空气气氛下,进行烧结,随炉冷却并粉碎,得到Y2Si2O7粉末;
2)复相陶瓷的制备
将SiC、α-Si3N4粉末与步骤1)中Y2Si2O7粉末按照设定比例进行球磨混合,球磨完后,进行烘干和过筛,得到粉末混合料;将粉末混合料放入不锈钢磨具压制成坯体,胚体干燥后,在氮气气氛下,进行真空烧结,烧结完毕后,即得复相陶瓷。
所述步骤1)中,球磨时间为9~11h,筛为300~400目的筛子;压制强度为10~15MPa,烧结的升温速率3~5℃/min,烧结温度为1500~1520℃;烧结时间为6~8h。
所述步骤2)中,真空烧结前,对烧结炉进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后;升温至烧结温度后,通入氮气至压强为0.15~0.20MPa。
所述步骤2)中,球磨时间为9~11h,筛为400~600目的筛子;干燥温度为100~105℃;真空烧结的升温速率3~5℃/min,烧结温度为1650~1680℃;烧结时间为3~4h。
所述的复相陶瓷的密度约为3.35~3.41g/cm3,线热膨胀系数(25~600℃)约为(3.17~3.34)×10-6/℃,维氏显微硬度约为14.8~16.1GPa,抗弯强度约为442~477MPa,弹性模量约为221~239GPa,热导率为23.9~28.1W/(m·K)。
原位生长棒晶增强陶瓷基复合材料是近十年来发展起来的新型制备工艺,其本质是通过科学的成分设计,合理的工艺条件,选取合适的制备方法获得具有增强增韧效果的陶瓷基复合材料显微结构,从而提高陶瓷材料的力学性能。尽管目前的相关文献报导相对较少,但是这种制备工艺是一种非常有前景的新材料制备技术。为了克服普通陶瓷材料力学性能较差的缺点,同时克服外加纤维增强物的缺点,采用原位生长晶自增强的方法,在原料中加入α-Si3N4,通过对工艺的控制,在复合材料中生长出β-Si3N4棒状晶体,β-Si3N4棒状晶体与陶瓷基体有较好的化学相容性,因此能起到类似纤维增强的作用,提高复相陶瓷的力学性能。
本发明的有益效果:
1)本发明利用Y2Si2O7中的残余Y2O3和SiO2对氮化硅陶瓷的烧结的积极作用,采用Y2Si2O7粉末、SiC粉末和α-Si3N4粉末作为原料,在高温烧结过程中,Y2Si2O7游离出Si4+和稀土Y3+离子促进α-Si3N4在烧结过程中向高长径比的长棒状的β-Si3N4相转变,降低Si3N4相转变过程中的烧结温度,简化烧结工艺,而且原位生长β-Si3N4棒晶,可以类似于纤维增强的作用,从而提高相陶瓷的力学性能。
2)本发明中Y2Si2O7粉末起到烧结助剂的作用,从而可以提升碳化硅陶瓷的致密性,增加复相陶瓷的密度和力学性能。
3)本发明中的复相陶瓷具有低热膨胀系数,优良的抗热腐蚀性能和抗摩擦磨损性能,其密度大于3.35g/cm3,维氏显微硬度大于14.8GPa,抗弯强度大于442MPa,弹性模量大于221GPa,热导率介于23.9-28.1W/(m·K)之间,可在1000℃长期使用。
4)本发明的复相陶瓷的制备方法较简单,制备温度较低,对环境友好,生产成本较低,该材料在耐高温耐磨结构材料领域有广阔的应用前。
附图说明
图1为本发明实施例2和5所制备的复相陶瓷的XRD图谱;
图2为本发明实施例5所制备的复相陶瓷放大10000倍的SEM图片;
图3为本发明实施例5所制备的复相陶瓷的放大20000倍的断裂面的SEM图片。
具体实施方式
实施例1
本实施例中放入复相陶瓷组分包括质量百分比为28%Y2Si2O7,33%SiC和39%Si3N4
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨11h后,过300目筛,得到混合粉体;将混合粉体置于不锈钢模具,12MPa的压力下压制成坯体,将坯体进行干燥后,置于烧结炉中,以5℃/min的升温速率升温至1500℃,然后在该温度和空气气氛下,烧结7h,烧结完后,随炉冷却并粉碎,得到Y2Si2O7粉末。
将SiC、α-Si3N4粉末与Y2Si2O7粉末按照质量比为33:39:28进行混合,球磨10h后,置于100℃真空干燥箱中进行干燥处理,干燥后粉末过400目筛,得到混合粉体,将混合粉体放入到不锈钢磨具中,50MPa下压制成坯体。将坯体置于真空烧结炉中,烧结开始前,对炉膛进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后,以5℃/min升温速率升温至1660℃后,通入氮气,至炉内压强为0.15~0.20MPa,然后在该温度和气氛条件下,进行真空烧结3h,烧结完后,在该气氛下进行冷却,得到Y2Si2O7-SiC-Si3N4复相陶瓷,其密度与综合力学性能如表1所示。
实施例2
本实施例中放入复相陶瓷组分包括质量百分比为32%Y2Si2O7,27%SiC和41%Si3N4
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨9h后,过400目筛,得到混合粉体;将混合粉体置于不锈钢模具,15MPa的压力下压制成坯体,将坯体进行干燥后,置于烧结炉中,以4℃/min的升温速率升温至1520℃,然后在该温度和空气气氛下,烧结6h,烧结完后,随炉冷却并粉碎,得到Y2Si2O7粉末。
将SiC、α-Si3N4粉末与Y2Si2O7粉末按照质量比为32:27:41进行混合,球磨11h后,置于100℃真空干燥箱中进行干燥处理,干燥后粉末过600目筛,得到混合粉体,将混合粉体放入到不锈钢磨具中,50MPa下压制成坯体。将坯体置于真空烧结炉中,烧结开始前,对炉膛进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后,以5℃/min升温速率升温至1670℃后,通入氮气,至炉内压强为0.15~0.20MPa,然后在该温度和气氛条件下,进行真空烧结3h,烧结完后,在该气氛下进行冷却,得到Y2Si2O7-SiC-Si3N4复相陶瓷,其密度与综合力学性能如表1所示。
本实施例的复相陶瓷进行XRD分析,其结果如图1所示,由图1可知,XRD图谱中共有3种晶相的特征衍射峰,分别为Y2Si2O7、SiC和β-Si3N4的衍射峰,并无α-Si3N4的特征衍射峰,说明在烧结过程中,α-Si3N4粉末完全转变为β-Si3N4
实施例3
本实施例中放入复相陶瓷组分包括质量百分比为30%Y2Si2O7,30%SiC和40%Si3N4
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨10h后,过300目筛,得到混合粉体;将混合粉体置于不锈钢模具,10MPa的压力下压制成坯体,将坯体进行干燥后,置于烧结炉中,以5℃/min的升温速率升温至1500℃,然后在该温度和空气气氛下,烧结6h,烧结完后,随炉冷却并粉碎,得到Y2Si2O7粉末。
将SiC、α-Si3N4粉末与Y2Si2O7粉末按照质量比为30:30:40进行混合,球磨10h后,置于100℃真空干燥箱中进行干燥处理,干燥后粉末过400目筛,得到混合粉体,将混合粉体放入到不锈钢磨具中,50MPa下压制成坯体。将坯体置于真空烧结炉中,烧结开始前,对炉膛进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后,以5℃/min升温速率升温至1660℃后,通入氮气,至炉内压强为0.15~0.20MPa,然后在该温度和气氛条件下,进行真空烧结3h,烧结完后,在该气氛下进行冷却,得到Y2Si2O7-SiC-Si3N4复相陶瓷,其密度与综合力学性能如表1所示。
实施例4
本实施例中放入复相陶瓷组分包括质量百分比为32%Y2Si2O7,33%SiC和35%Si3N4
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨10h后,过300目筛,得到混合粉体;将混合粉体置于不锈钢模具,10MPa的压力下压制成坯体,将坯体进行干燥后,置于烧结炉中,以5℃/min的升温速率升温至1500℃,然后在该温度和空气气氛下,烧结6h,烧结完后,随炉冷却并粉碎,得到Y2Si2O7粉末。
将SiC、α-Si3N4粉末与Y2Si2O7粉末按照质量比为32:33:35进行混合,球磨10h后,置于100℃真空干燥箱中进行干燥处理,干燥后粉末过400目筛,得到混合粉体,将混合粉体放入到不锈钢磨具中,50MPa下压制成坯体。将坯体置于真空烧结炉中,烧结开始前,对炉膛进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后,以5℃/min升温速率升温至1650℃后,通入氮气,至炉内压强为0.15~0.20MPa,然后在该温度和气氛条件下,进行真空烧结4h,烧结完后,在该气氛下进行冷却,得到Y2Si2O7-SiC-Si3N4复相陶瓷,其密度与综合力学性能如表1所示。
实施例5
本实施例中放入复相陶瓷组分包括质量百分比为28%Y2Si2O7,27%SiC和45%Si3N4
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨10h后,过300目筛,得到混合粉体;将混合粉体置于不锈钢模具,10MPa的压力下压制成坯体,将坯体进行干燥后,置于烧结炉中,以5℃/min的升温速率升温至1500℃,然后在该温度和空气气氛下,烧结6h,烧结完后,随炉冷却并粉碎,得到Y2Si2O7粉末。
将SiC、α-Si3N4粉末与Y2Si2O7粉末按照质量比为28:27:45进行混合,球磨10h后,置于100℃真空干燥箱中进行干燥处理,干燥后粉末过400目筛,得到混合粉体,将混合粉体放入到不锈钢磨具中,50MPa下压制成坯体。将坯体置于真空烧结炉中,烧结开始前,对炉膛进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后,以5℃/min升温速率升温至1650℃后,通入氮气,至炉内压强为0.15~0.20MPa,然后在该温度和气氛条件下,进行真空烧结3.5h,烧结完后,在该气氛下进行冷却,得到Y2Si2O7-SiC-Si3N4复相陶瓷,其密度与综合力学性能如表1所示。
本实施例的复相陶瓷进行XRD分析,其结果如图1所示,由图1可知,XRD图谱中共有3种晶相的特征衍射峰,分别为Y2Si2O7、SiC和β-Si3N4的衍射峰,并无α-Si3N4的特征衍射峰,说明在烧结过程中,α-Si3N4粉末完全转变为β-Si3N4
本实施例制备的复相陶瓷的微观形貌如图2和图3所示。图2为复相陶瓷材料样品在抛光后的背散射电子显微照片,根据背散射电子像的衬度可知,黑色相为α-SiC和β-Si3N4晶粒,其中长棒状晶体为β-Si3N4相,片状晶体为α-SiC相,亮白色为Y2Si2O7相。图3为复相陶瓷样品在抗弯强度试验后形成的断裂面的显微照片,断裂的模式为晶粒间断裂,这意味着存在较弱的晶粒间结构使得裂纹桥偏转和晶粒从断裂面中拔出,同时也有部分β-Si3N4晶粒发生断裂。因此,复相陶瓷中β-Si3N4的含量对力学性能起非常关键的作用。
表1

Claims (9)

1.一种复相陶瓷,其特征在于,由质量百分比为28~32%Y2Si2O7,27~33%SiC和35~45%β-Si3N4棒状晶体组成。
2.根据权利要求1所述的复相陶瓷,其特征在于,由质量百分比为29~31%Y2Si2O7,29~31%SiC和38~42%β-Si3N4棒状晶体组成。
3.根据权利要求1或2所述的复相陶瓷的制备方法,包括以下步骤:
1)Y2Si2O7粉末的制备
将Y2O3和SiO2按照摩尔比1:2进行混合,球磨后,过筛,得到混合粉体;将混合粉体置于锈钢模具压制成坯体,将坯体干燥后,在空气气氛下,进行烧结,随炉冷却并粉碎,得到Y2Si2O7粉末;
2)复相陶瓷的制备
将SiC、α-Si3N4粉末与步骤1)中Y2Si2O7粉末按照设定比例进行球磨混合,球磨完后,进行烘干和过筛,得到粉末混合料;将粉末混合料放入不锈钢磨具压制成坯体,胚体干燥后,在氮气气氛下,进行真空烧结,烧结完毕后,即得复相陶瓷。
4.根据权利要求3所述的复相陶瓷的制备方法,其特征在于,所述步骤1)中,球磨时间为9~11h,筛为300~400目的筛子。
5.根据权利要求3所述的复相陶瓷的制备方法,其特征在于,所述步骤1)中,压制强度为10~15MPa,烧结的升温速率3~5℃/min,烧结温度为1500~1520℃;烧结时间为6~8h。
6.根据权利要求3所述的复相陶瓷的制备方法,其特征在于,所述步骤2)中,真空烧结前,对烧结炉进行抽真空处理,抽到真空状态后通满氮气,接着再抽真空,反复3次后;升温至烧结温度后,通入氮气至压强为0.15~0.20MPa。
7.根据权利要求3所述的复相陶瓷的制备方法,其特征在于,所述步骤2)中,球磨时间为9~11h,筛为400~600目的筛子;干燥温度为100~105℃。
8.根据权利要求3所述的复相陶瓷的制备方法,其特征在于,所述步骤2)中,真空烧结的升温速率3~5℃/min,烧结温度为1650~1680℃;烧结时间为3~4h。
9.根据权利要求1或2所述的复相陶瓷,其特征在于所述复相陶瓷的密度约为3.35~3.41g/cm3,线热膨胀系数(25~600℃)约为3.17~3.34×10-6/℃,维氏显微硬度约为14.8~16.1GPa,抗弯强度约为442~477MPa,弹性模量约为221~239GPa,热导率为23.9~28.1W/(m·K)。
CN201810508754.6A 2018-05-24 2018-05-24 一种复相陶瓷及其制备方法 Active CN108439995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810508754.6A CN108439995B (zh) 2018-05-24 2018-05-24 一种复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810508754.6A CN108439995B (zh) 2018-05-24 2018-05-24 一种复相陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108439995A true CN108439995A (zh) 2018-08-24
CN108439995B CN108439995B (zh) 2020-12-22

Family

ID=63205534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810508754.6A Active CN108439995B (zh) 2018-05-24 2018-05-24 一种复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108439995B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099090A (zh) * 2018-09-17 2018-12-28 安徽博耐克摩擦材料有限公司 一种稀土陶瓷刹车片及其制备方法
CN109111156A (zh) * 2018-09-17 2019-01-01 安徽博耐克摩擦材料有限公司 一种稀土陶瓷复合刹车片及其制备方法
CN110436955A (zh) * 2019-07-23 2019-11-12 中国航发北京航空材料研究院 一种钇改性SiCf/SiC陶瓷基复合材料及其制备方法
CN112939461A (zh) * 2021-03-31 2021-06-11 广东欧文莱陶瓷有限公司 一种布纹陶瓷釉料
CN113105270A (zh) * 2021-03-31 2021-07-13 广东欧文莱陶瓷有限公司 一种布纹瓷砖及其制备方法
CN113929471A (zh) * 2021-11-08 2022-01-14 西安交通大学 一种耐高温氧化Si3N4/O’-sialon复合陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558880A (zh) * 2000-04-28 2004-12-29 新日本制铁株式会社 热风流量调整阀体及其制造方法
CN101747028A (zh) * 2008-11-28 2010-06-23 中国科学院金属研究所 大块致密配比精确可控的Y2Si2O7/ZrO2陶瓷复合材料的制备方法
CN101913878A (zh) * 2010-07-19 2010-12-15 北京科技大学 一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法
CN103848639A (zh) * 2012-11-28 2014-06-11 大连大友高技术陶瓷有限公司 一种氮化硅增韧陶瓷
CN104529167A (zh) * 2015-01-07 2015-04-22 中南大学 原位生长β-Si3N4纤维/棒晶增强微晶玻璃复合材料及其制备方法
JP2016160117A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 窒化珪素質セラミックス焼結体及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558880A (zh) * 2000-04-28 2004-12-29 新日本制铁株式会社 热风流量调整阀体及其制造方法
CN101747028A (zh) * 2008-11-28 2010-06-23 中国科学院金属研究所 大块致密配比精确可控的Y2Si2O7/ZrO2陶瓷复合材料的制备方法
CN101913878A (zh) * 2010-07-19 2010-12-15 北京科技大学 一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法
CN103848639A (zh) * 2012-11-28 2014-06-11 大连大友高技术陶瓷有限公司 一种氮化硅增韧陶瓷
CN104529167A (zh) * 2015-01-07 2015-04-22 中南大学 原位生长β-Si3N4纤维/棒晶增强微晶玻璃复合材料及其制备方法
JP2016160117A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 窒化珪素質セラミックス焼結体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIWEI LUO: "In situ synthesis and properties of self-reinforced", 《BULL. MATER. SCI.》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109099090A (zh) * 2018-09-17 2018-12-28 安徽博耐克摩擦材料有限公司 一种稀土陶瓷刹车片及其制备方法
CN109111156A (zh) * 2018-09-17 2019-01-01 安徽博耐克摩擦材料有限公司 一种稀土陶瓷复合刹车片及其制备方法
CN110436955A (zh) * 2019-07-23 2019-11-12 中国航发北京航空材料研究院 一种钇改性SiCf/SiC陶瓷基复合材料及其制备方法
CN110436955B (zh) * 2019-07-23 2021-10-15 中国航发北京航空材料研究院 一种钇改性SiCf/SiC陶瓷基复合材料及其制备方法
CN112939461A (zh) * 2021-03-31 2021-06-11 广东欧文莱陶瓷有限公司 一种布纹陶瓷釉料
CN113105270A (zh) * 2021-03-31 2021-07-13 广东欧文莱陶瓷有限公司 一种布纹瓷砖及其制备方法
CN113929471A (zh) * 2021-11-08 2022-01-14 西安交通大学 一种耐高温氧化Si3N4/O’-sialon复合陶瓷及其制备方法

Also Published As

Publication number Publication date
CN108439995B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN108439995A (zh) 一种复相陶瓷及其制备方法
Xu et al. Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering
CN110590377B (zh) 一种高β相致密氮化硅陶瓷及低温制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN101215173A (zh) 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN104150940A (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN104045350B (zh) 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法
CN100486931C (zh) 一种高强度、高韧性的氮化硅陶瓷液相烧结法
CN102093058B (zh) 一种α-SiAlON/BN 复合陶瓷材料及其制备方法
CN105859301B (zh) 一种氮化硅陶瓷及其制备方法
CN106278283A (zh) 一种分步烧结制备氮化硼陶瓷材料的方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN111908923A (zh) 一种高硬度氮化硅陶瓷及其制备方法
CN109320256A (zh) 一种氮化硅-碳化硅陶瓷复合材料及其制备方法
CN114956818A (zh) 一种低热导率高熵铈酸盐陶瓷材料及其制备方法
CN110436930A (zh) 一种高性能纳米SiC陶瓷及其制备方法和应用
CN101734925B (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN104628392A (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN106747474B (zh) 高热导率氮化硅陶瓷的制备方法
CN104926355A (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN108675797A (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN102731096A (zh) 一种织构化硼化物基超高温陶瓷材料及其制备方法
CN103922744A (zh) 一种高韧性纳米黑瓷材料的制备方法
CN106830690B (zh) 一种自增强增韧的氮化硅/氮化铝/镧钡铝硅酸盐微晶玻璃三元复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230714

Address after: Room 298, Building 1, R&D Headquarters, Central South University Science Park, Yingzuo Road, Yuelu Mountain National University Technopole, Changsha, 410000, Hunan Province

Patentee after: Hunan Lazy Man Information Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Patentee before: CENTRAL SOUTH University

Effective date of registration: 20230714

Address after: 521000 Outside Hongjia Branch Canal, Qiucuo Village, Fengtang Town, Chao'an District, Chaozhou, Guangdong Province

Patentee after: Guangdong Hongjia Home Decoration Co.,Ltd.

Address before: Room 298, Building 1, R&D Headquarters, Central South University Science Park, Yingzuo Road, Yuelu Mountain National University Technopole, Changsha, 410000, Hunan Province

Patentee before: Hunan Lazy Man Information Technology Co.,Ltd.