CN108675797A - 氮化硅基复合陶瓷材料及其微波烧结制备方法 - Google Patents

氮化硅基复合陶瓷材料及其微波烧结制备方法 Download PDF

Info

Publication number
CN108675797A
CN108675797A CN201810681359.8A CN201810681359A CN108675797A CN 108675797 A CN108675797 A CN 108675797A CN 201810681359 A CN201810681359 A CN 201810681359A CN 108675797 A CN108675797 A CN 108675797A
Authority
CN
China
Prior art keywords
silicon nitride
ceramic material
matrix composite
ball
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810681359.8A
Other languages
English (en)
Other versions
CN108675797B (zh
Inventor
殷增斌
徐伟伟
陈明丹
袁军堂
汪振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810681359.8A priority Critical patent/CN108675797B/zh
Publication of CN108675797A publication Critical patent/CN108675797A/zh
Application granted granted Critical
Publication of CN108675797B publication Critical patent/CN108675797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种氮化硅基复合陶瓷材料及其微波烧结制备方法。本发明的氮化硅基复合陶瓷材料,以重量百分数计,包含如下成分:α‑Si3N4 68%~75%、Y2O3 3%~5%、MgO 3%~5%、Al2O3 2%~4%、(W,Ti)C 15%~20%、Ni 1%~4%。本发明的氮化硅基复合陶瓷材料以微波介质做热源,在氮气气氛保护下,通过优化组分配比、烧结温度、保温时间等工艺参数,采用微波烧结技术,以较快的升温速率制备得到。本发明制备的陶瓷材料不但具备较高的硬度,同时还有良好的韧性,综合性能最高的样品硬度达到17.27±0.26GPa,韧性达到7.35±0.57MPa.m1/2

Description

氮化硅基复合陶瓷材料及其微波烧结制备方法
技术领域
本发明属于微波烧结材料技术领域,涉及一种氮化硅基复合陶瓷材料及其微波烧结制备方法。
背景技术
氮化硅陶瓷是一种耐磨性好、抗热震性强和力学性能优良的陶瓷材料,尤其是它优良的高温特性,即使在1300℃下仍具备较高的强度,可应用于航空航天用部件、轴承、高速切削刀具等领域。目前,氮化硅陶瓷多使用传统烧结方式制备,如反应烧结、无压烧结、气压烧结、热压烧结、热等静压烧结等。然而传统烧结存在许多弊端,如设备和维护成本高昂;采用热辐射、热传导的加热方式会引起材料内的温度梯度较大,材料内部容易产生残余应力;制备周期长,效率低,不利于材料的批量生产等。微波烧结作为一种高效、节能、环保的新型烧结方式,引起了很多学者的关注和研究。
目前,氮化硅陶瓷材料的微波烧结工艺仍不完善,且仍停留在单相氮化硅材料的制备阶段,其报道也相对较少。从现有文章(W.Xu,et al,Effects of sinteringadditives on mechanical properties and microstructure of Si3N4 ceramics bymicrowave sintering,Materials Science and Engineering:A,684(2017)127-134)可知,添加质量分数5%氧化钇、5%氧化镁和2%氧化铝作为助烧剂,使用微波烧结方式可制备出硬度最高达到14.92±0.20GPa,断裂韧性达到6.44±0.02MPa.m1/2的单相氮化硅陶瓷材料。与其它陶瓷材料相比,其韧性相对较高,但硬度偏低。专利申请号201610481430.9制备了一种氮化硅-碳化硅复合陶瓷,其以MgO为助烧剂,以碳化硅作为增强增韧相,当碳化硅含量为10%、烧结温度为1600℃时,其最高硬度达到15GPa,韧性为7.1MPa·m1/2,其性能提升并不明显,且制备工艺繁琐,尤其是埋粉烧结方式的应用会提高相应制备成本,内部形成较大的温度梯度造成样品性能不稳定。因此,对微波烧结氮化硅复合陶瓷还需要进一步的研究。
综上所述,现有的氮化硅陶瓷材料的微波烧结工艺还有待改善,所制备的氮化硅陶瓷力学性能还有待提高。
发明内容
本发明的目的在于提供一种氮化硅基复合陶瓷材料,该材料是在氮化硅基体中添加适量的助烧剂、增强增韧相和金属相,通过优化各相的组分比例,提高材料综合力学性能,使其具有高硬度和高韧性。
实现上述目的的技术方案如下:
氮化硅基复合陶瓷材料,以重量百分数计,包含如下成分:α-氮化硅(α-Si3N4)68%~75%,氧化钇(Y2O3)3%~5%,氧化镁(MgO)3%~5%,氧化铝(Al2O3)2%~4%,碳化钨钛((W,Ti)C)15%~20%,镍(Ni)1%~4%。
优选地,所述的氮化硅基复合陶瓷材料,以重量百分数计,包含如下成分:α-Si3N471%,Y2O3 5%,MgO 5%,Al2O32%,(W,Ti)C 15%,Ni2%。
本发明还提供上述氮化硅复合陶瓷材料的微波烧结方法,采用微波烧结技术,通过改进辅热装置、优化物相含量、烧结温度和保温时间等参数,实现在短周期内制备出具有较高综合力学性能的氮化硅复合陶瓷材料,包括如下步骤:
步骤1,按比例称取α-Si3N4、Y2O3、MgO、Al2O3、(W,Ti)C和Ni粉末,进行球磨混合,在球磨结束前2小时加入质量浓度为3~5%的聚乙烯醇溶液,球磨结束后,干燥,研磨,过筛;
步骤2,将筛选好的粉料在150~200MPa的压力下压制成型;
步骤3,氮气氛围中,采用微波烧结工艺,将样品放入碳化硅片辅助加热装置并置于保温箱中,以20~40℃/min的升温速率持续升温到1600~1700℃,保温5~20min,随后随炉冷却,制得氮化硅基复合陶瓷材料。
步骤1中,所述的球磨混合是将称取的粉料放入刚玉球磨罐中,以无水乙醇为球磨介质,磨球选用氮化硅球。
步骤3中,所述的氮气气氛,其压力在标准大气压以上,气压在0.1~0.12MPa范围内且处于流动状态。
步骤3中,所述的辅助加热装置是由两片碳化硅片和一个碳化硅环组成,样品置于两个碳化硅片之间,碳化硅环套在样片周围。
本发明与现有技术相比,其显著优点是:
(1)在微波烧结中采用碳化硅片辅助加热取代传统的埋粉辅助烧结,减小材料在烧结过程中的内部温度梯度,简化了制备流程,提高了其生产效率,降低生产成本;
(2)通过优化烧结工艺,添加合适含量的增强增韧相和金属相采用微波烧结技术制备出了具有优良力学性能的氮化硅复合陶瓷材料,综合性能最高的样品硬度达到17.27±0.26GPa,韧性达到7.35±0.57MPa.m1/2,与已报道微波烧结的氮化硅陶瓷材料相比硬度提高了15.13%左右,断裂韧性提高了3.5%左右。
附图说明
图1为实施例7制得的氮化硅基复合陶瓷材料的腐蚀表现SEM图。
图2为实施例7制得的氮化硅基复合陶瓷材料的XRD分析图。
具体实施方式
下面结合实施例和对比例做进一步详细说明。
以下实施例中,所述的辅助加热装置是由两片碳化硅片和一个碳化硅环组成,样品置于两个碳化硅片之间,碳化硅环套在样片周围,置于坩埚中。保温箱由高温莫来石材料制成,并用高温莫来石纤维填充,坩埚置于保温箱中部。
实施例1
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N475%、Y2O3 3%、MgO 5%、Al2O32%、(W,Ti)C 15%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为3wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.11MPa氮气;开启微波电源进行加热,以20℃/min的升温速率将试样加热至1700℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为15.92±0.09GPa,断裂韧性为7.01±0.14MPa.m1/2
实施例2
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N468%、Y2O3 5%、MgO 3%、Al2O34%、(W,Ti)C 20%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为200MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.11MPa氮气;开启微波电源进行加热,以25℃/min的升温速率将试样加热至1600℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为15.31±0.19GPa,断裂韧性为7.65±0.4MPa.m1/2
实施例3
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N472%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni1%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.12MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1650℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为16.64±0.1GPa,断裂韧性为5.82±0.25MPa.m1/2
实施例4
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N471%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni2%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以25℃/min的升温速率将试样加热至1600℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为16.29±0.35GPa,断裂韧性为6.60±0.27MPa.m1/2
实施例5
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N470%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni3%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1650℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为16.01±0.24GPa,断裂韧性为6.02±0.02MPa.m1/2
实施例6
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N469%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni4%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以40℃/min的升温速率将试样加热至1700℃,保温15min,然后随炉冷却。经测试得,材料的维氏硬度为15.74±0.41GPa,断裂韧性为5.71±0.16MPa.m1/2
实施例7
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N471%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni2%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以25℃/min的升温速率将试样加热至1650℃,保温20min,然后随炉冷却。经测试得,材料的维氏硬度为17.27±0.26GPa,断裂韧性为7.35±0.57MPa.m1/2
由图1和图2可以看出,在实例7工艺条件下,氮化硅在烧结过程中部分α相转化为β相,α-Si3N4相硬度高,而β-Si3N4的断裂韧性高,协调控制两者比例可制备出高硬度和高韧性并存的氮化硅基复合陶瓷材料。
对比例1
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N478%、Y2O3 5%、MgO 3%、Al2O34%、(W,Ti)C 10%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为200MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以40℃/min的升温速率将试样加热至1650℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为13.52±0.16GPa,断裂韧性为7.11±0.3MPa.m1/2
可知当(W,Ti)C含量在10%以下时,复合陶瓷性能硬度反而比单相氮化硅陶瓷低,其断裂韧性略有升高。
对比例2
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N472%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Co1%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入碳化硅片辅热装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以25℃/min的升温速率将试样加热至1650℃,保温20min,然后随炉冷却。经测试得,材料的维氏硬度为11.49±0.34GPa,断裂韧性为5.17±0.32MPa.m1/2
与实施例3相比,采用Co作为金属相时,在同样的烧结工艺下,其性能差别较大,硬度和韧性都较低。
对比例3
一种氮化硅基复合陶瓷材料及其微波烧结方法,具体为:按质量百分数α-Si3N471%、Y2O3 5%、MgO 5%、Al2O32%、(W,Ti)C 15%、Ni2%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;采用埋粉烧结方式置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入0.1MPa氮气;开启微波电源进行加热,以25℃/min的升温速率将试样加热至1650℃,保温20min,然后随炉冷却。结果发现,样品与埋粉发生反应,粘结、破碎现象严重,无法进行性能测试。

Claims (6)

1.氮化硅基复合陶瓷材料,其特征在于,以重量百分数计,包含如下成分:α-Si3N4 68%~75%,Y2O3 3%~5%,MgO 3%~5%,Al2O3 2%~4%,(W,Ti)C 15%~20%,Ni 1%~4%。
2.根据权利要求1所述的氮化硅基复合陶瓷材料,其特征在于,以重量百分数计,包含如下成分:α-Si3N4 71%,Y2O3 5%,MgO 5%,Al2O3 2%,(W,Ti)C 15%,Ni 2%。
3.根据权利要求1或2所述的氮化硅基复合陶瓷材料的微波烧结制备方法,其特征在于,包括如下步骤:
步骤1,按比例称取α-Si3N4、Y2O3、MgO、Al2O3、(W,Ti)C和Ni粉末,进行球磨混合,在球磨结束前2小时加入质量浓度为3~5%的聚乙烯醇溶液,球磨结束后,干燥,研磨,过筛;
步骤2,将筛选好的粉料在150~200MPa的压力下压制成型;
步骤3,氮气氛围中,采用微波烧结工艺,将样品放入碳化硅片辅助加热装置并置于保温箱中,以20~40℃/min的升温速率持续升温到1600~1700℃,保温5~20min,随后随炉冷却,制得氮化硅基复合陶瓷材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤1中,所述的球磨混合是将称取的粉料放入刚玉球磨罐中,以无水乙醇为球磨介质,磨球选用氮化硅球。
5.根据权利要求3所述的制备方法,其特征在于,步骤3中,所述的氮气气氛,其压力在标准大气压以上,气压在0.1~0.12MPa范围内且处于流动状态。
6.根据权利要求3所述的制备方法,其特征在于,步骤3中,所述的辅助加热装置是由两片碳化硅片和一个碳化硅环组成,样品置于两个碳化硅片之间,碳化硅环套在样片周围。
CN201810681359.8A 2018-06-27 2018-06-27 氮化硅基复合陶瓷材料及其微波烧结制备方法 Active CN108675797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810681359.8A CN108675797B (zh) 2018-06-27 2018-06-27 氮化硅基复合陶瓷材料及其微波烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810681359.8A CN108675797B (zh) 2018-06-27 2018-06-27 氮化硅基复合陶瓷材料及其微波烧结制备方法

Publications (2)

Publication Number Publication Date
CN108675797A true CN108675797A (zh) 2018-10-19
CN108675797B CN108675797B (zh) 2021-05-04

Family

ID=63812333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810681359.8A Active CN108675797B (zh) 2018-06-27 2018-06-27 氮化硅基复合陶瓷材料及其微波烧结制备方法

Country Status (1)

Country Link
CN (1) CN108675797B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109731639A (zh) * 2018-12-25 2019-05-10 太原科技大学 一种用氮化硅陶瓷制造无缝钢管穿孔顶头的方法
CN111253167A (zh) * 2019-10-10 2020-06-09 东南大学 一种碳纤维增韧的氮化硅陶瓷复合材料及其制备工艺
CN111592354A (zh) * 2020-06-03 2020-08-28 陈武亮 一种高性能环保复合建筑陶瓷材料及其制备方法
CN112851365A (zh) * 2021-02-02 2021-05-28 中材高新氮化物陶瓷有限公司 一种氮化硅基复相导电陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
CN203432325U (zh) * 2013-06-28 2014-02-12 南宁越洋科技有限公司 一种氧化锆全瓷牙烧结炉
CN107963891A (zh) * 2016-10-20 2018-04-27 南京理工大学 一种单相氮化硅陶瓷材料及其微波烧结制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
CN203432325U (zh) * 2013-06-28 2014-02-12 南宁越洋科技有限公司 一种氧化锆全瓷牙烧结炉
CN107963891A (zh) * 2016-10-20 2018-04-27 南京理工大学 一种单相氮化硅陶瓷材料及其微波烧结制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱敏等: "《工程材料》", 28 February 2018, 冶金工业出版社 *
田宪华: "Si3N4/(W,Ti)C/Co梯度纳米复合陶瓷刀具的研制及其切削性能研究", 《中国博士学位论文全文数据库工程科技I辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109731639A (zh) * 2018-12-25 2019-05-10 太原科技大学 一种用氮化硅陶瓷制造无缝钢管穿孔顶头的方法
CN111253167A (zh) * 2019-10-10 2020-06-09 东南大学 一种碳纤维增韧的氮化硅陶瓷复合材料及其制备工艺
CN111592354A (zh) * 2020-06-03 2020-08-28 陈武亮 一种高性能环保复合建筑陶瓷材料及其制备方法
CN111592354B (zh) * 2020-06-03 2022-03-29 梅州市溪山陶瓷有限公司 一种高性能环保复合建筑陶瓷材料及其制备方法
CN112851365A (zh) * 2021-02-02 2021-05-28 中材高新氮化物陶瓷有限公司 一种氮化硅基复相导电陶瓷的制备方法

Also Published As

Publication number Publication date
CN108675797B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN108675797A (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN102173813B (zh) 一种含硼化锆复相陶瓷材料的制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN102115332B (zh) 一种高强度β-SiAlON陶瓷及其无压烧结制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN108455990A (zh) 一种氮化硅基复合陶瓷材料及其sps制备工艺
CN109553419A (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
CN106866154B (zh) 氮化硅陶瓷的制备方法
CN1326801C (zh) 矾土基β-Sialon结合刚玉复合材料的制备方法
CN101565308B (zh) 氮化硼纳米管增强的氮化硅陶瓷及其制备方法
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN106800420A (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN108439995A (zh) 一种复相陶瓷及其制备方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
CN105859301A (zh) 一种氮化硅陶瓷及其制备方法
CN107162597A (zh) 一种浇注成型氮化硅结合碳化硅制品的配方及其制作方法
CN103102160A (zh) 一种用粉煤灰制备β-Sialon粉体的微波烧结方法
CN101734925B (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN107963891A (zh) 一种单相氮化硅陶瓷材料及其微波烧结制备工艺
CN107164803A (zh) 一种简单控制相变制备β‑氮化硅晶须的方法
CN104591769A (zh) 一种铝镁硼增韧增强陶瓷及其制备方法
CN105753485B (zh) 氮化硼复相陶瓷材料及其无压烧结工艺
CN112209722A (zh) 氮化硅复合材料及其制备方法、发热体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181019

Assignee: NANJING TOTEMTOOL CO.,LTD.

Assignor: NANJING University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2022980020334

Denomination of invention: Silicon nitride based composite ceramics and its microwave sintering preparation method

Granted publication date: 20210504

License type: Common License

Record date: 20221101