CN108455990A - 一种氮化硅基复合陶瓷材料及其sps制备工艺 - Google Patents

一种氮化硅基复合陶瓷材料及其sps制备工艺 Download PDF

Info

Publication number
CN108455990A
CN108455990A CN201810344753.2A CN201810344753A CN108455990A CN 108455990 A CN108455990 A CN 108455990A CN 201810344753 A CN201810344753 A CN 201810344753A CN 108455990 A CN108455990 A CN 108455990A
Authority
CN
China
Prior art keywords
silicon nitride
ceramic material
matrix composite
composite ceramic
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810344753.2A
Other languages
English (en)
Inventor
汪振华
曹丽燕
刘奎
殷增斌
袁军堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810344753.2A priority Critical patent/CN108455990A/zh
Publication of CN108455990A publication Critical patent/CN108455990A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化硅基复合陶瓷材料及其SPS制备工艺。本发明的氮化硅基复合陶瓷材料,以质量百分数计,包含如下组分:α‑Si3N4 60%‑80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 10%‑30%(或Ti(C,N)10%‑30%、或TiC 10%‑30%)。本发明通过选择合适的第二相并对其含量进行优化,采用放电等离子烧结技术以较快的升温速率和较短的烧结时间制备得到氮化硅基复合陶瓷材料。本发明制备出的氮化硅基复合陶瓷材料不但致密度较高,而且力学性能也较优异,综合性能最佳的样品维氏硬度达到17.66GPa,断裂韧性达到7.01MPa.m1/2,与已报道的放电等离子烧结的氮化硅基复合陶瓷材料相比断裂韧性提高了14.41%‑41.37%,与文献1相比硬度提高了37.71%。

Description

一种氮化硅基复合陶瓷材料及其SPS制备工艺
技术领域
本发明属于放电等离子烧结材料技术领域,涉及一种氮化硅基复合陶瓷材料及其SPS制备工艺。
背景技术
氮化硅陶瓷是最有潜力的工程结构材料之一,该材料具有高比强、高比模、耐高温、耐磨损、抗氧化和抗蠕变等优良性能。正是由于它的这些优异性能,Si3N4陶瓷在要求较高的工作环境下也表现出了它特有的应用价值,例如发动机零件,切削工具,轴承,热交换器,活塞泵等。然而,Si3N4陶瓷固有的高脆性和差的抗热冲击能力又限制了其在高速加工领域中的广泛应用。因此,在Si3N4基体中加入合适的第二相使其适用于环境更加恶劣的工况是目前的研究方向之一。
现阶段Si3N4基陶瓷的烧结方法以无压、热压、气压、热等静压、反应烧结等传统烧结方式为主,但因传统烧结方式能耗高、效率低等弊端大大限制了Si3N4基陶瓷的大规模生产。随着放电等离子技术的发展,将该技术应用到陶瓷材料制备领域成为了国内外研究的热点。
放电等离子烧结(SPS),它是一种快速、低温、节能、环保的材料制备加工新技术,具有烧结快速、烧结温度低、烧结机理特殊、操作简单方便等优点,并使得最终的产品具有组织细小均匀、能保持原材料的自然状态、致密度高等特点。就放电等离子烧结Si3N4基复合陶瓷材料而言,目前也有了较少的公开报道。文献1(S.Bahrami,et al,Spark plasmasintering of silicon nitride/barium aluminum silicate,Ceram.Int.43(2017)9153–9157.)中采用放电等离子烧结技术制备Si3N4-30vol%BAS复合材料,以30℃/min的速率升温至1700℃下保温5min的烧结工艺下制得的氮化硅复合材料表现出了较好的微观结构和力学性能,其中致密度为99.8±0.1%,抗弯强度352±16MPa,维氏硬度11±0.1GPa,断裂韧性5.6±0.05MPa·m1/2,但该报道所制备的氮化硅复合材料烧结温度高,升温速率慢,且力学性能较低;文献2(N.Ahmad,H.Sueyoshi,Microstructure and mechanical propertiesof silicon nitride-titanium nitride composites prepared by spark plasmasintering,Mater.Res.Bull.46(2011)460–463.)采用放电等离子烧结方式在1550℃、压力40MPa、保温时间10min的工艺下制备Si3N4-30wt.%TiN复合陶瓷,发现TiN等轴晶均匀分布在Si3N4基体中,制得的材料的致密度为91.6%,显微硬度为21.7GPa,抗弯强度为621MPa,断裂韧性为4.11MPa·m1/2。该报道中制得的复合陶瓷的致密度较低,且材料韧性仍需提高;文献3(T.Cygan,et al,Influence of graphene addition and sintering temperature onphysical properties of Si3N4matrix composites,Int.J.Refract.Met.H.57(2016)19-23.)采用放电等离子技术制备氮化硅/石墨烯复合陶瓷,添加1%wt石墨烯的Si3N4-Gn复合材料,在最佳烧结温度(1700℃)下其致密度和断裂韧性最大,分别为99.31%,6.0MPa·m1 /2,硬度大约为1840HV。该报道中制备的氮化硅复合陶瓷的烧结温度高,烧结时间(30min)较长,且韧性可进一步提高。
综上所述,目前Si3N4基陶瓷的放电等离子烧结仍以单相Si3N4的制备为主,Si3N4复合陶瓷体系较少,SPS制备工艺不完善,致密度低且力学性能还有待提高。因此优化氮化硅基复合陶瓷材料的SPS制备工艺及选择合适的第二相并对其含量进行优化对提高氮化硅基复合陶瓷材料的机械性能以及促进高速加工领域的发展和应用具有重大意义。
发明内容
本发明的目的在于提供一种氮化硅基复合陶瓷材料,该陶瓷材料是在氮化硅基体中添加了适量的烧结助剂和第二相,并优化了第二相的含量,在保证性能不低于单相氮化硅陶瓷的基础上,提高了材料的综合力学性能,具有高硬度和高韧性。
实现上述目的的技术方案如下:
一种氮化硅基复合陶瓷材料,以质量百分数计,包含如下组分:α-Si3N4 60%-80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 10%-30%(或Ti(C,N)10%-30%、或TiC 10%-30%)。
进一步地,本发明还提供上述氮化硅基复合陶瓷材料的放电等离子烧结制备工艺,采用高效节能的放电等离子烧结技术,实现在短时间内制备出具有较高综合力学性能的氮化硅基复合陶瓷材料,包括如下步骤:
步骤1,按比例称取α-Si3N4、MgSiN2、Y2O3、CeO2、Co和WC(或Ti(C,N)或TiC)粉末,进行球磨混合;
步骤2,将球磨后的混合粉料进行干燥,然后研磨并过100目筛;
步骤3,将筛选好的粉料在10MPa的压力下预压;
步骤4,在氩气保护气氛下,采用放电等离子烧结工艺,在50MPa的压力下以100℃/min的升温速率持续升温到1650℃,保温6min,随后随炉冷却,制得氮化硅基复合陶瓷材料。
步骤1中,所述的球磨混合是将称取的粉料放入球磨罐中,以无水乙醇为介质,所述的球磨罐优选聚氨酯球磨罐,磨球选用氮化硅球,球料比为7:1,球磨混合时间为48小时。
步骤3中,筛选好的粉料放在内径为20mm的圆形石墨模具中,预压时间2min。
本发明与现有技术相比,其显著优点是:
(1)升温速率较快,烧结时间缩短,提高了生产效率,易于规模生产;
(2)采用放电等离子烧结技术制备出的氮化硅基复合陶瓷材料具有优异的力学性能及微观结构,其中综合力学性能最佳的样品维氏硬度达17.66GPa,断裂韧性达7.01MPa·m1/2,与上述报道中材料性能相比断裂韧性提高了14.41%-41.37%,与文献1相比硬度提高了37.71%。
附图说明
图1为实施例1制得的氮化硅基复合陶瓷材料的腐蚀断口表面的SEM图。
图2为实施例6制得的氮化硅基复合陶瓷材料的腐蚀断口表面的SEM图。
具体实施方式
下面结合实施例和附图对本发明做进一步详细说明。
实施例1:
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N480%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 10%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为99.11%,维氏硬度为17.66GPa,断裂韧性为7.01MPa.m1/2
实施例2
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N470%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 20%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为99.80%,维氏硬度为16.64GPa,断裂韧性为6.79MPa.m1/2
实施例3
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N460%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 30%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.10%,维氏硬度为16.49GPa,断裂韧性为6.65MPa.m1/2
实施例4
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N480%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、Ti(C,N)10%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为99.18%,维氏硬度为16.46GPa,断裂韧性为6.58MPa.m1/2
实施例5
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N470%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、Ti(C,N)20%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.63%,维氏硬度为16.44GPa,断裂韧性为6.79MPa.m1/2
实施例6
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N460%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、Ti(C,N)30%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.74%,维氏硬度为15.53GPa,断裂韧性为6.90MPa.m1/2
实施例7
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N480%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、TiC 10%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.63%,维氏硬度为16.22GPa,断裂韧性为5.92MPa.m1/2
实施例8
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N470%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、TiC 20%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.79%,维氏硬度为15.00GPa,断裂韧性为6.08MPa.m1/2
实施例9
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N460%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、TiC 30%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.25%,维氏硬度为14.84GPa,断裂韧性为5.97MPa.m1/2
从图1、图2可以看出空间网状结构中嵌着许多细长的棒状β-Si3N4晶粒,使得材料表现出较高的断裂韧性。两幅图对比发现第二相的成分对棒状β-Si3N4晶粒的含量和大小会有影响。
实施例10
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N465%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 25%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为99.04%,维氏硬度为15.67GPa,断裂韧性为6.33MPa.m1/2
实施例11
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N475%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 15%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为99.05%,维氏硬度为16.62GPa,断裂韧性为6.78MPa.m1/2
对比例1
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N470%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 20%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为98.00%,维氏硬度为15.86GPa,断裂韧性为6.05MPa.m1/2
对比例2
一种氮化硅基复合陶瓷材料及其SPS制备工艺,具体为:按质量百分数α-Si3N470%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、TiC 20%进行配料,将配得的混合粉料以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1;球磨后烘干研磨,并过100目筛,将过筛后的粉料放在内径为20mm的圆形石墨模具中进行预压,压力为10MPa,保压2分钟;将包裹有碳毡的石墨模具放入放电等离子烧结系统的腔室中,将炉腔内抽成真空状态,然后冲入一定的氩气;施加压力50MPa,开启烧结按钮进行加热,以100℃/min的升温速率将试样加热至1650℃,保温6min,然后随炉冷却。经测试得,材料的致密度为97.75%,维氏硬度为14.71GPa,断裂韧性为6.39MPa.m1/2
对比例1和2说明球磨罐的选择对材料性能有影响,采用刚玉球磨罐球磨的混合效果不佳,材料力学性能处于较低水平。

Claims (7)

1.一种氮化硅基复合陶瓷材料,其特征在于,以质量百分数计,包含如下组分:α-Si3N460%-80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 10%-30%。
2.如权利要求1所述的氮化硅基复合陶瓷材料,其特征在于,以质量百分数计,包含如下组分:α-Si3N4 80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、WC 10%。
3.一种氮化硅基复合陶瓷材料,其特征在于,以质量百分数计,包含如下组分:α-Si3N460%-80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、Ti(C,N)10%-30%。
4.一种氮化硅基复合陶瓷材料,其特征在于,以质量百分数计,包含如下组分:α-Si3N460%-80%、MgSiN2 2.25%、Y2O3 5.25%、CeO2 1.5%、Co 1%、TiC 10%-30%。
5.一种氮化硅基复合陶瓷材料的SPS制备工艺,其特征在于,包括如下步骤:
(1)按比例称取α-Si3N4、MgSiN2、Y2O3、CeO2、Co和WC、Ti(C,N)或TiC粉末,进行球磨混合;
(2)将球磨后的混合粉料进行干燥,然后研磨并过100目筛;
(3)将筛选好的粉料在10MPa的压力下预压;
(4)在氩气保护气氛下,采用放电等离子烧结工艺,在50MPa的压力下以100℃/min的升温速率持续升温到1650℃,保温6min,随后随炉冷却,制得氮化硅基复合陶瓷材料。
6.如权利要求5所述的氮化硅基复合陶瓷材料的SPS制备工艺,其特征在于,步骤(1)中,所述的球磨混合是将称取的粉料放入球磨罐中,以无水乙醇为介质,所述的球磨罐优选聚氨酯球磨罐,磨球选用氮化硅球,球料比为7:1,球磨混合时间为48小时。
7.如权利要求5所述的氮化硅基复合陶瓷材料的SPS制备工艺,其特征在于,步骤3中,将筛选好的粉料放在内径为20mm的圆形石墨模具中,预压时间2min。
CN201810344753.2A 2018-04-17 2018-04-17 一种氮化硅基复合陶瓷材料及其sps制备工艺 Pending CN108455990A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810344753.2A CN108455990A (zh) 2018-04-17 2018-04-17 一种氮化硅基复合陶瓷材料及其sps制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810344753.2A CN108455990A (zh) 2018-04-17 2018-04-17 一种氮化硅基复合陶瓷材料及其sps制备工艺

Publications (1)

Publication Number Publication Date
CN108455990A true CN108455990A (zh) 2018-08-28

Family

ID=63234932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810344753.2A Pending CN108455990A (zh) 2018-04-17 2018-04-17 一种氮化硅基复合陶瓷材料及其sps制备工艺

Country Status (1)

Country Link
CN (1) CN108455990A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761620A (zh) * 2019-03-05 2019-05-17 武汉理工大学 一种双加热模式放电等离子烧结制备致密氮化硅的方法
CN112919915A (zh) * 2021-03-09 2021-06-08 南京理工大学 一种sps有压烧结粉末压制氮化硅陶瓷异形刀具的方法
WO2022089379A1 (zh) * 2020-10-29 2022-05-05 齐鲁工业大学 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
WO2022089378A1 (zh) * 2020-10-29 2022-05-05 齐鲁工业大学 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN115180960A (zh) * 2022-08-08 2022-10-14 中国科学院兰州化学物理研究所 一种氮化硅陶瓷烧结体及其制备方法
CN116606150A (zh) * 2023-05-24 2023-08-18 南京理工大学 一种大长径比β-SiAlON晶粒定向分布的α/β-SiAlON陶瓷刀具材料制备方法
JP7340622B2 (ja) 2019-12-20 2023-09-07 Ntkカッティングツールズ株式会社 切削工具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103011A (zh) * 1985-04-03 1986-09-10 国家建材局山东工业陶瓷研究所 高韧性氮化硅基陶瓷刀具材料及其制造方法
CN1246253C (zh) * 2004-05-17 2006-03-22 清华大学 氮化硅陶瓷制造方法
CN105506433A (zh) * 2015-12-05 2016-04-20 青岛宏宇环保空调设备有限公司 Ti(C,N)基纳米复合金属陶瓷模具材料
CN107089833A (zh) * 2017-05-15 2017-08-25 福建美士邦精细陶瓷科技有限公司 一种造纸脱水面板用耐磨氮化硅材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85103011A (zh) * 1985-04-03 1986-09-10 国家建材局山东工业陶瓷研究所 高韧性氮化硅基陶瓷刀具材料及其制造方法
CN1246253C (zh) * 2004-05-17 2006-03-22 清华大学 氮化硅陶瓷制造方法
CN105506433A (zh) * 2015-12-05 2016-04-20 青岛宏宇环保空调设备有限公司 Ti(C,N)基纳米复合金属陶瓷模具材料
CN107089833A (zh) * 2017-05-15 2017-08-25 福建美士邦精细陶瓷科技有限公司 一种造纸脱水面板用耐磨氮化硅材料及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761620A (zh) * 2019-03-05 2019-05-17 武汉理工大学 一种双加热模式放电等离子烧结制备致密氮化硅的方法
JP7340622B2 (ja) 2019-12-20 2023-09-07 Ntkカッティングツールズ株式会社 切削工具
WO2022089379A1 (zh) * 2020-10-29 2022-05-05 齐鲁工业大学 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
WO2022089378A1 (zh) * 2020-10-29 2022-05-05 齐鲁工业大学 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN112919915A (zh) * 2021-03-09 2021-06-08 南京理工大学 一种sps有压烧结粉末压制氮化硅陶瓷异形刀具的方法
CN112919915B (zh) * 2021-03-09 2022-12-02 南京理工大学 一种sps有压烧结粉末压制氮化硅陶瓷异形刀具的方法
CN115180960A (zh) * 2022-08-08 2022-10-14 中国科学院兰州化学物理研究所 一种氮化硅陶瓷烧结体及其制备方法
US11919824B2 (en) 2022-08-08 2024-03-05 Lanzhou Institute Of Chemical Physics, Cas Silicon nitride ceramic sintered body and preparation method thereof
CN116606150A (zh) * 2023-05-24 2023-08-18 南京理工大学 一种大长径比β-SiAlON晶粒定向分布的α/β-SiAlON陶瓷刀具材料制备方法

Similar Documents

Publication Publication Date Title
CN108455990A (zh) 一种氮化硅基复合陶瓷材料及其sps制备工艺
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN105016738A (zh) 氮化硅陶瓷及其制备方法
JPH0881278A (ja) ウィスカー強化アルミナ複合体の常圧焼結方法
CN113636842B (zh) 一种高熵二硼化物-碳化硼复相陶瓷、制备方法及其应用
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN107513674B (zh) 一种改善钛铝层状复合材料组织和提高力学性能的方法
CN113698209B (zh) 一种高熵二硼化物-碳化硅复相陶瓷、制备方法及其应用
CN111908923A (zh) 一种高硬度氮化硅陶瓷及其制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN115180960A (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN108516832A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
CN101734925A (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN108314455B (zh) 碳化硅陶瓷及其制备方法和应用
CN108774065B (zh) 一种SiC/MCMBs复合材料及其制备方法和应用
CN107963891A (zh) 一种单相氮化硅陶瓷材料及其微波烧结制备工艺
CN110436898A (zh) 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法
CN102050626A (zh) 一种陶瓷喷砂嘴制造方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN113149676A (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN115991606B (zh) 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法
CN110373593A (zh) 一种碳氮化钛基复合金属陶瓷材料微波烧结工艺
CN1209318C (zh) 一种氮化物/氧化铝基复合陶瓷材料及其制备工艺
CN115724664A (zh) 一种两步烧结快速制备MCMBs/SiC复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180828

RJ01 Rejection of invention patent application after publication