CN110436898A - 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 - Google Patents
一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 Download PDFInfo
- Publication number
- CN110436898A CN110436898A CN201910862531.4A CN201910862531A CN110436898A CN 110436898 A CN110436898 A CN 110436898A CN 201910862531 A CN201910862531 A CN 201910862531A CN 110436898 A CN110436898 A CN 110436898A
- Authority
- CN
- China
- Prior art keywords
- powder
- fabricated
- mechanical property
- situ
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/667—Sintering using wave energy, e.g. microwave sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,本发明为解决现阶段Al2O3陶瓷韧性差、强度低以及摩擦系数高的问题。具体包括:按照一定比例将Al2O3粉、Ti粉与AlN粉加入球磨罐中,使用水或酒精作为球磨介质,球磨混合一定时间后取出并烘干,经过过筛、造粒后使用一定压力的冷压成型和冷等静压。将压制好的胚体置于无压烧结炉中,使用真空烧结或惰性气氛保护烧结手段,通过一定的升温速率使得胚体达到一定温度后保温。在烧结过程中Ti粉与AlN发生反应,原位生成Ti2AlN与TiN,对Al2O3陶瓷基体起到增强增韧以及提高摩擦性能的作用。本发明适用于制备高性能Al2O3基复合材料。
Description
技术领域
本发明涉及高性能陶瓷基复合材料制备技术领域,具体涉及一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法。
背景技术
Ti2AlN是MAX相中的典型代表,在Ti2AlN中Ti和Al之间以金属键相连接,使其具有比传统陶瓷更好的导电性和可机械加工性,Ti2AlN的热膨胀系数教低,在高温条件下变形小,抗热震性能优异,并且独特的三元层状结构使其具有自润滑性,在高温下承受载荷的能力良好。N和Ti、Al之间以离子键连接,具有比金属材料更高的强度、硬度及耐磨性,Ti2AlN也具有比金属材料更优秀的抗腐蚀性能。
Al2O3陶瓷材料具有很多优点如硬度、强度高,耐高温性能好等优良性能,使其在机械、化工、冶金、轻纺和航空航天等许多领域得到了广泛的应用。但是它的脆性大在很大程度下制约了它的应用。
为提高氧化铝陶瓷的性能,通常加入Ti粉进行烧结,但是由于高温下Ti和Al2O3间会生成大量的Ti-Al金属间化合物,这些化合物会弱化晶界,导致制备的Ti/Al2O3复合材料的性能的下降。研究中们主要通过在Ti/Al2O3复合材料中加入Nb、Y2O3、Pr6O11等抑制Ti-Al金属间化合物形成,减少金属间化合物给复合材料带来危害,但并不能进一步提升Al2O3的力学性能。
但如果能够抑制消耗Ti-Al金属间化合物的生成且将生成的Ti-Al金属间化合物通过反应转变成一种对基体有益的增强相。那么就有望进一步优化Al2O3基复合材料的性能,让它在工业生产中得到更为广泛的应用。
发明内容
本发明所要解决的问题是:提供一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,通过加入Ti粉和AlN粉在烧结过程消除复合材料中Ti-Al金属间化合物的危害,通过原位反应生成Ti2AlN和TiN第二相增强相,进一步提高复合材料的力学性能。
本发明为解决上述问题所提供的技术方案为:一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,所述方法包括以下步骤,
(1)将一定比例的Al2O3粉、Ti粉与AlN粉加入球磨罐中球磨混粉,使用水或酒精作为球磨介质;
(2)球磨一定时间后,将原料粉取出烘干,经过过筛、造粒后使用一定压力的冷压成型和冷等静压;
(3)将压制好的胚体置于无压烧结炉中,使用真空烧结或惰性气氛保护烧结手段,通过一定的升温速率使得胚体达到一定温度后保温,得到高性能Al2O3基复合材料。
优选的,所述步骤(1)中Ti粉的体积分数为5~40vol%,Ti粉与AlN粉的摩尔比2:(0.5~1.5)。
优选的,所述步骤(2)中球磨时间为12~24h,冷等静压压力为100~300MPa。
优选的,所述步骤(3)中的无压烧结炉为气氛管式炉、高温真空炉或者是微波烧结炉。
优选的,所述步骤(3)中升温速率为5~20℃/min,烧结温度为1400℃~1700℃,保温时间为30~120min,烧结气氛为真空、氩气气氛或者氮气气氛。
优选的,采用此方法制备高性能Al2O3基复合材料,抗弯强度320~375Mpa,断裂韧性5.1~8.7Mpa·m1/2,摩擦系数小于0.437。
本发明采用无压烧结法原位合成Ti2AlN和TiN强化Al2O3陶瓷力学性能的Ti2AlN/TiN/Al2O3复合材料。以Al2O3为基体,在烧结过程中原位生成多种第二相,生成的层状Ti2AlN和TiN提高了复合材料的韧性、强度,改善了材料的耐磨性。与其他技术相比,本发明的突出优势为:
(1)采用无压烧结技术,降低了设备的要求,对环境友好。
(2)原位反应生成Ti2AlN,无需Ti2AlN粉体的预合成,降低成本,直接由原料分原位生成分布均匀的第二相弥散粒子,避免了原料混合不均。
(3)反应生成物表面无污染,与基体有良好的浸润性,结合强度高,净化了晶界,改善了材料的高温性能。
(4)原位反应生成Ti2AlN与TiN晶粒细小弥散。
(5)所制备的复合材料具有优异的断裂韧性、抗弯强度以及较低的摩擦系数。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为原位合成Ti2AlN和TiN强化Al2O3陶瓷试样的XRD图。
图2为实施例1中制备Ti2AlN和TiN强化Al2O3复合材料断口SEM图。
图3为实施例2中制备Ti2AlN和TiN强化Al2O3复合材料断口SEM图。
图4为实施例3中制备Ti2AlN和TiN强化Al2O3陶瓷试样的XRD图。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
实施例1
将原料粉按照体积比Al2O3:Ti:TiN=68vol%:20vol%:12vol%(其中Ti与TiN的摩尔比为2:1)配粉30g,加入球磨罐中,加入30ml酒精作为球磨介质球磨12h,之后使用70℃真空干燥箱干燥,将混合粉体过200目筛子后加入8滴5%PVA进行研磨造粒,使用φ60mm不锈钢磨具,20Mpa压力将粉体压制成型后再经冷等静压使用200Mpa压力保压5min。之后将胚体放置微波烧结炉中烧结,烧结过程通入Ar气体保护,升温速率15℃/min,加热至1500℃保温30min后炉冷取出,使用金刚石沙盘磨去表面烧损层与氧化层。复合材料块体致密度为94.57%,硬度≥17GPa,平均摩擦系数0.18989,在WDW-50万能试验机测试得,复合材料抗弯强度≥370MPa,断裂韧性≥8Mpa·m1/2。复合材料断口SME图如图2。
实施例2
将原料粉按照体积比Al2O3:Ti:TiN=84vol%:10vol%:6vol%(其中Ti与TiN的摩尔比为2:1)配粉30g,加入球磨罐中,加入30ml酒精作为球磨介质球磨12h,之后使用70℃真空干燥箱干燥,将混合粉体过200目筛子后加入8滴5%PVA进行研磨造粒,使用φ60mm不锈钢磨具,20Mpa压力将粉体压制成型后再经冷等静压使用200Mpa压力保压5min。之后将胚体放置微波烧结炉中烧结,烧结过程通入Ar气体保护,升温速率15℃/min,加热至1550℃保温60min后炉冷取出,使用金刚石沙盘磨去表面烧损层与氧化层。复合材料块体致密度为92.34%,硬度≥21GPa,平均摩擦系数0.33028,在WDW-50万能试验机测试得,复合材料抗弯强度≥330MPa,断裂韧性≥6Mpa·m1/2。复合材料断口SME图如图3。
实施例3
将原料粉按照体积比Al2O3:Ti:TiN=73vol%:20vol%:7vol%(其中Ti与TiN的摩尔比>2:1)配粉30g,加入球磨罐中,加入30ml酒精作为球磨介质球磨12h,之后使用70℃真空干燥箱干燥,将混合粉体过200目筛子后加入8滴5%PVA进行研磨造粒,使用φ60mm不锈钢磨具,20Mpa压力将粉体压制成型后再经冷等静压使用200Mpa压力保压5min。之后将胚体放置管式炉中烧结,烧结过程通入Ar气体保护,升温速率5℃/min,加热至1600℃保温120min后炉冷取出,使用金刚石沙盘磨去表面烧损层与氧化层。复合材料块体致密度为95.12%,硬度≥19GPa,在WDW-50万能试验机测试得,复合材料抗弯强度≥270MPa,断裂韧性≥3.5Mpa·m1/2。复合材料XRD图如图4。
以上仅就本发明的最佳实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。
Claims (6)
1.一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:所述方法包括以下步骤,
(1)将一定比例的Al2O3粉、Ti粉与AlN粉加入球磨罐中球磨混粉,使用水或酒精作为球磨介质;
(2)球磨一定时间后,将原料粉取出烘干,经过过筛、造粒后使用一定压力的冷压成型和冷等静压;
(3)将压制好的胚体置于无压烧结炉中,使用真空烧结或惰性气氛保护烧结手段,通过一定的升温速率使得胚体达到一定温度后保温,得到高性能Al2O3基复合材料。
2.根据权利要求1所述的一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:所述步骤(1)中Ti粉的体积分数为5~40vol%,Ti粉与AlN粉的摩尔比2:(0.5~1.5)。
3.根据权利要求1所述的一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:所述步骤(2)中球磨时间为12~24h,冷等静压压力为100~300MPa。
4.根据权利要求1所述的一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:所述步骤(3)中的无压烧结炉为气氛管式炉、高温真空炉或者是微波烧结炉。
5.根据权利要求1所述的一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:所述步骤(3)中升温速率为5~20℃/min,烧结温度为1400℃~1700℃,保温时间为30~120min,烧结气氛为真空、氩气气氛或者氮气气氛。
6.根据权利要求1所述的一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法,其特征在于:采用此方法制备高性能Al2O3基复合材料,抗弯强度320~375Mpa,断裂韧性5.1~8.7Mpa·m1/2,摩擦系数小于0.437。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910862531.4A CN110436898A (zh) | 2019-09-12 | 2019-09-12 | 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910862531.4A CN110436898A (zh) | 2019-09-12 | 2019-09-12 | 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110436898A true CN110436898A (zh) | 2019-11-12 |
Family
ID=68440082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910862531.4A Pending CN110436898A (zh) | 2019-09-12 | 2019-09-12 | 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110436898A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111515404A (zh) * | 2020-05-15 | 2020-08-11 | 富耐克超硬材料股份有限公司 | 一种cBN/Al复合材料的制备方法 |
CN112267048A (zh) * | 2020-09-02 | 2021-01-26 | 上海交通大学 | 一种含纳米Ti2AlN粒子的铝基合金及其制备方法 |
CN114538918A (zh) * | 2022-03-28 | 2022-05-27 | 泰州市宏华冶金机械有限公司 | 一种冶金行业用复合材料陶瓷垫块的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6153152A (ja) * | 1984-08-22 | 1986-03-17 | 三菱マテリアル株式会社 | アルミナ基セラミツクスの製造方法 |
CN1721367A (zh) * | 2004-07-15 | 2006-01-18 | 中国科学院金属研究所 | 一种用三氧化二铝弥散强化钛二铝氮陶瓷复合材料及其制备方法 |
CN105838920A (zh) * | 2016-03-25 | 2016-08-10 | 济南大学 | 一种Ti/AlN金属陶瓷复合材料及其制备方法 |
CN107010930A (zh) * | 2017-05-03 | 2017-08-04 | 济南大学 | 一种原位合成钛铝氮化合物增强氧化铝/氮化钛复相陶瓷的方法 |
CN109180187A (zh) * | 2018-08-31 | 2019-01-11 | 中国科学院金属研究所 | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 |
-
2019
- 2019-09-12 CN CN201910862531.4A patent/CN110436898A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6153152A (ja) * | 1984-08-22 | 1986-03-17 | 三菱マテリアル株式会社 | アルミナ基セラミツクスの製造方法 |
CN1721367A (zh) * | 2004-07-15 | 2006-01-18 | 中国科学院金属研究所 | 一种用三氧化二铝弥散强化钛二铝氮陶瓷复合材料及其制备方法 |
CN105838920A (zh) * | 2016-03-25 | 2016-08-10 | 济南大学 | 一种Ti/AlN金属陶瓷复合材料及其制备方法 |
CN107010930A (zh) * | 2017-05-03 | 2017-08-04 | 济南大学 | 一种原位合成钛铝氮化合物增强氧化铝/氮化钛复相陶瓷的方法 |
CN109180187A (zh) * | 2018-08-31 | 2019-01-11 | 中国科学院金属研究所 | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 |
Non-Patent Citations (1)
Title |
---|
尹邦跃等: "《陶瓷核燃料工艺》", 31 January 2016, 哈尔滨工程大学出版社 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111515404A (zh) * | 2020-05-15 | 2020-08-11 | 富耐克超硬材料股份有限公司 | 一种cBN/Al复合材料的制备方法 |
CN111515404B (zh) * | 2020-05-15 | 2023-05-12 | 富耐克超硬材料股份有限公司 | 一种cBN/Al复合材料的制备方法 |
CN112267048A (zh) * | 2020-09-02 | 2021-01-26 | 上海交通大学 | 一种含纳米Ti2AlN粒子的铝基合金及其制备方法 |
CN112267048B (zh) * | 2020-09-02 | 2022-02-25 | 上海交通大学 | 一种含纳米Ti2AlN粒子的铝基合金及其制备方法 |
CN114538918A (zh) * | 2022-03-28 | 2022-05-27 | 泰州市宏华冶金机械有限公司 | 一种冶金行业用复合材料陶瓷垫块的制备方法 |
CN114538918B (zh) * | 2022-03-28 | 2022-11-01 | 泰州市宏华冶金机械有限公司 | 一种冶金行业用复合材料陶瓷垫块的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103572087B (zh) | 碳化硼颗粒增强铝基复合材料的制备方法 | |
CN101892411B (zh) | 一种新型wc基硬质合金材料及其制备方法 | |
CN104164587B (zh) | 一种致密的弥散强化铜基复合材料 | |
CN110436898A (zh) | 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 | |
CN103361532B (zh) | 一种固溶体增韧金属陶瓷及其制备方法 | |
CN114107716B (zh) | 一种电触头用铜基复合材料的制备方法 | |
CN109524190B (zh) | 一种稀土—铁—硅基磁制冷复合材料及其制备方法 | |
CN106216687B (zh) | 一种梯度碳化钨基微纳复合刀具材料及其制备方法 | |
CN109182874A (zh) | 一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法 | |
CN109553419A (zh) | 一种气压固相烧结碳化硼复相陶瓷及其制备方法 | |
CN106191600B (zh) | 一种带硬质合金环的聚晶金刚石拉丝模坯料及其制备方法 | |
CN104878267A (zh) | 一种TiCN基金属陶瓷刀具材料及其微波烧结工艺 | |
CN103572084A (zh) | 一种含氧的钛基合金的粉末冶金制备方法 | |
CN103820691B (zh) | 一种FeAl/TiC复合材料的常压烧结制备方法 | |
CN115991606B (zh) | 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法 | |
CN109207762A (zh) | 一种以微波烧结制备钨钼铜复合材料的方法 | |
CN109811177A (zh) | 一种高导电高强度银-石墨烯复合材料的制备方法 | |
CN102653470A (zh) | 铬二铝碳陶瓷靶材及其真空热压制备方法 | |
CN107513651B (zh) | 一种钛颗粒增强镁基复合材料的制备方法 | |
CN109434119A (zh) | 一种高韧性MXene相掺杂钼合金的制备方法 | |
CN114318038A (zh) | 一种硼化物改性Mo2FeB2基金属陶瓷及其制备方法 | |
CN111393168A (zh) | 一种TiCx增强Ti3SiC2复合材料及其制备方法 | |
CN113846277B (zh) | 一种TiB晶须增强钛基复合材料的制备方法 | |
CN116287850B (zh) | 一种石墨烯改性的铜基复合材料制备方法 | |
CN110981489B (zh) | 一种TiNx-Ti3SiC2复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191112 |