WO2022089378A1 - 一种具有裂纹愈合能力的陶瓷材料及其制备方法 - Google Patents

一种具有裂纹愈合能力的陶瓷材料及其制备方法 Download PDF

Info

Publication number
WO2022089378A1
WO2022089378A1 PCT/CN2021/126174 CN2021126174W WO2022089378A1 WO 2022089378 A1 WO2022089378 A1 WO 2022089378A1 CN 2021126174 W CN2021126174 W CN 2021126174W WO 2022089378 A1 WO2022089378 A1 WO 2022089378A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
tic
zrsi
crack
powder
Prior art date
Application number
PCT/CN2021/126174
Other languages
English (en)
French (fr)
Inventor
陈照强
肖光春
许崇海
衣明东
张静婕
张帅
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Priority to AU2021368918A priority Critical patent/AU2021368918B2/en
Publication of WO2022089378A1 publication Critical patent/WO2022089378A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide

Definitions

  • the invention relates to the technical field of ceramic materials, in particular to a ceramic material with crack healing ability and a preparation method thereof.
  • Ceramic materials have received more and more attention and applications in the past decades due to their excellent properties, such as high temperature resistance, corrosion resistance, wear resistance and high strength.
  • ceramic materials also have obvious shortcomings, such as micro-cracks easily generated by mechanical shock and thermal shock during high-speed dry cutting, high friction coefficient, and sensitivity to defects. This will cause the ceramic material to reach the failure standard in advance, resulting in a great waste of resources and economy.
  • the ceramic material with crack healing ability refers to adding a suitable repair agent to the ceramic material matrix.
  • the self-healing ceramic material is by adding a specific healing agent to the ceramic matrix.
  • the chemical reaction of the agent or healing agent to heal the crack of the ceramic material has shown that after the healing agent heals the crack, the strength of the ceramic material is restored and the service life is prolonged.
  • the preparation of self-healing ceramic materials by adding SiC, MoSi 2 , MAX and other materials has been disclosed in the prior art.
  • the heat treatment temperature of SiC materials needs to be 1000-1300 ° C.
  • the lower the heat treatment temperature the longer the time required, and when the temperature is lower than 1000 ° C cracks. Healing takes tens of hours to heal etc.
  • the present invention discloses a Si 3 N 4 /TiC/ZrSi 2 ceramic material with crack healing ability and a preparation method thereof.
  • a repairing agent ZrSi 2 By adding a repairing agent ZrSi 2 , the Si 3 N 4
  • the /TiC ceramic material has good crack repair ability and good sintering compactness, which enhances the comprehensive mechanical properties of the ceramic tool material.
  • a ceramic material with crack healing ability the composition of which is ⁇ -Si 3 N 4 60-80%, TiC 5-15%, ZrSi 2 0-20%, Al 2 according to volume percentage O 3 3-7%, Y 2 O 3 5-7%.
  • ⁇ -Si 3 N 4 is the matrix
  • TiC is the reinforcing phase
  • ZrSi 2 is the healing agent
  • Al 2 O 3 and Y 2 O 3 are the sintering aids.
  • a method for preparing the ceramic material with crack healing ability described in the first aspect comprising the following steps:
  • step (3) pour the final suspension obtained in step (3) into the ball milling tank, add ball milling balls according to the weight ratio of balls to material 10:1, and carry out ball milling for 48h under protective atmosphere;
  • step (4) drying the ball milling liquid obtained in step (4) at 80-120 ° C for 12-24 h in a vacuum drying oven, and then sieving through a 100-120 mesh sieve to obtain mixed powder, which is sealed and stored for later use;
  • step (6) Load the mixed powder obtained in step (5) into a graphite mold, and after cold-pressing, put it into an SPS sintering furnace for sintering.
  • the selected healing agent ZrSi 2 in the present invention can react with oxygen at a lower temperature to form ZrO which can heal cracks 2 and SiO 2 , effectively heal the cracks in the ceramic tool material; the flexural strength of the ceramic material can be restored to more than 80% of the smooth sample, which improves the service life of the ceramic tool material;
  • ZrSi 2 also acts as a conductive phase to promote the SPS sintering of Si 3 N 4 , and the addition of ZrSi 2 can act as a sintering aid;
  • the preparation method has the advantages of simple process, low equipment requirements and strong reliability.
  • Fig. 1 is the SEM image of the cross-section of the Si 3 N 4 /TiC/ZrSi 2 ceramic material prepared in Example 1 of the present invention
  • Fig. 2 is the crack morphology of the Si 3 N 4 /TiC/ZrSi 2 ceramic material prepared in Example 1 of the present invention
  • Example 3 is the morphology of the Si 3 N 4 /TiC/ZrSi 2 ceramic material prepared in Example 1 of the present invention after crack healing;
  • FIG. 4 is an EDS detection diagram of the crack healing area of the Si 3 N 4 /TiC/ZrSi 2 ceramic material prepared in Example 1 of the present invention
  • FIG. 5 is an XRD test diagram of the Si 3 N 4 /TiC/ZrSi 2 ceramic material prepared in Example 1 of the present invention after crack healing and post-crack healing.
  • the present invention discloses a Si 3 N 4 /TiC/ZrSi 2 ceramic material with crack healing ability and a preparation method thereof.
  • a ceramic material with crack healing capability is provided, which is based on ⁇ -Si 3 N 4 as a matrix, TiC as a reinforcing phase, ZrSi 2 as a healing agent, Al 2 O 3 and Y 2 O 3 is a sintering aid, the volume percentage of each component is ⁇ -Si 3 N 4 60-80%, TiC 5-15%, ZrSi 2 0-20%, Al 2 O 3 3-7%, Y 2 O 3 5-7%.
  • ZrSi 2 is added to the matrix of the Si 3 N 4 /TiC ceramic tool material to achieve the function of crack healing in the ceramic tool material.
  • the healing agent ZrSi 2 can react with oxygen at a lower temperature of 600° C. to generate ZrO 2 and SiO 2 that can heal cracks can effectively heal cracks in ceramic tool materials; the flexural strength of ceramic materials can be restored to more than 80% of that of smooth samples, and the service life of tools such as tools prepared from ceramic materials can be improved.
  • the volume percentage of each component is: ⁇ -Si 3 N 4 65-75%, TiC 10%, ZrSi 2 5-15%, Al 2 O 3 4%, Y 2 O 3 6%; the sum of the components is 100%.
  • the average particle size of the ⁇ -Si 3 N 4 powder is 0.5-1 ⁇ m; the average particle size of the TiC powder is 0.5-1 ⁇ m; the average particle size of the ZrSi 2 powder is 1-3 ⁇ m; the average particle size of the Al 2 O 3 powder is The diameter of the powder is 0.5-2 ⁇ m; the average particle size of the Y 2 O 3 powder is 0.1-0.5 ⁇ m.
  • a method for preparing the above-mentioned ceramic material with crack healing ability comprising the following steps:
  • step (3) pour the final suspension obtained in step (3) into the ball milling tank, add ball milling balls according to the weight ratio of balls to material 10:1, and carry out ball milling for 48h under protective atmosphere;
  • step (4) drying the ball milling liquid obtained in step (4) at 80-120 ° C for 12-24 h in a vacuum drying oven, and then sieving through a 100-120 mesh sieve to obtain mixed powder, which is sealed and stored for later use;
  • step (5) The mixed powder obtained in step (5) is put into a graphite mold, and after being cold-pressed, it is put into a spark plasma sintering furnace for sintering.
  • the dispersant described in step (3) is polyethylene glycol 6000;
  • the ball grinding balls in step (5) are cemented carbide balls YG6 or YG8, and the protective atmosphere is nitrogen;
  • the spark plasma sintering parameters of step (6) heating rate: before 1300 °C, 90-110 °C/min, higher than 1300 °C, 30-50 °C/min; sintering temperature 1700 -1750°C; holding time 20-35min, holding at 1600°C and after reaching the sintering temperature for 10-17min; axial pressure 25-35MPa.
  • Spark plasma sintering can greatly improve the sinterability of most materials and enable them to sinter rapidly at relatively low temperatures and in a short period of time, thereby expanding the possibilities for developing new advanced materials.
  • the essential difference between spark plasma sintering and the traditional sintering method (hot pressing) is the heating method, because hot pressing sintered material is heated only by heat conduction from the container, while spark plasma sintering is a form of dual heat generation by current and container. If spark plasma sintering is used for rapid sintering of ceramic materials, better mechanical properties can be obtained on the basis of maintaining the ability of ceramic materials to heal cracks.
  • ZrSi 2 can also act as a conductive phase, and its addition also promotes the spark plasma sintering of Si 3 N 4 , and the addition of ZrSi 2 can act as a sintering aid.
  • the ceramic material prepared by the invention has good sintering compactness and enhances the comprehensive mechanical property capability of the ceramic material.
  • the average particle size of ⁇ -Si 3 N 4 powder is 0.5-1 ⁇ m; the average particle size of TiC powder is 0.5-1 ⁇ m; the average particle size of ZrSi 2 powder is 1-3 ⁇ m; Al 2 The average particle size of the O 3 powder is 0.5-2 ⁇ m; the average particle size of the Y 2 O 3 powder is 0.1-0.5 ⁇ m.
  • the obtained ball milling liquid was dried at 110 °C for 12 hours in a vacuum drying oven, and then sieved through a 100-mesh sieve to obtain a mixed powder.
  • the obtained mixed powder was put into a graphite mold, and then put into an SPS sintering furnace after cold pressing. Hot-pressing sintering in medium; SPS sintering parameters: 100°C/min before 1300°C; 1300°C-1450°C 50°C/min; 1450°C-1600°C 30°C/min; 1600°C hold for 15min; /min; 1700°C for 10min; pressure 30MPa.
  • the ceramic material prepared in this example is cut into standard strip samples of 3mm ⁇ 4mm ⁇ 35mm, and then the strips are subjected to rough grinding, grinding, chamfering and polishing.
  • the mechanical properties were tested, and the results showed that the flexural strength of the material was 751MPa, the hardness was 15.91GPa, and the fracture toughness was 6.96MPa ⁇ M 1/2 .
  • Cracks of 350-450 ⁇ m were prefabricated on the surface of the tool using a Vickers hardness tester.
  • the cracked sample was heat-treated in a high-temperature air furnace at a heat treatment temperature of 600 °C and held for 30 minutes; the cracked sample after heat treatment was tested for flexural strength at room temperature. 90.14% of the sample.
  • Fig. 3 shows the crack surface morphology after heat treatment, and it is found that the crack is basically healed.
  • EDS analysis as shown in Figure 4, it can be seen from the distribution of Zr, Si and O elements at the crack that this is due to the TiO 2 and SiO 2 generated by the oxidation of ZrSi 2 to repair the crack.
  • the detection pattern of Fig. 5XRD also proves the existence of ZrO 2 and SiO 2 .
  • the volume percentages of the raw material components are ⁇ -Si 3 N 4 70%, TiC 10%, ZrSi 2 10%, Al 2 O 3 4%, Y 2 O 3 6%
  • the obtained ball milling liquid was dried in a vacuum drying oven at 120°C for 24 hours, and then sieved through a 100-mesh sieve to obtain a mixed powder.
  • the obtained mixed powder was put into a graphite mold, and then put into SPS for sintering after cold pressing.
  • the ceramic material prepared in this example is cut into standard strip samples of 3mm ⁇ 4mm ⁇ 35mm, and then the strips are subjected to rough grinding, grinding, chamfering and polishing.
  • the mechanical properties were tested, and the results showed that the flexural strength of the material was 802MPa, the hardness was 15.36GPa, and the fracture toughness was 8.02MPa ⁇ M 1/2 .
  • Figure 1 is the SEM image of the fracture surface of the ceramic material. It can be found that ZrSi 2 is evenly distributed in the ceramic matrix, and the ⁇ -Si 3 N 4 has uniform grains and good density, which is beneficial to the mechanical properties of the ceramic material. Cracks of 350-450 ⁇ m were prefabricated on the surface of the tool using a Vickers hardness tester. The cracked sample was heat-treated in a high-temperature air furnace at a heat treatment temperature of 600 °C and held for 30 minutes; the cracked sample after heat treatment was subjected to a room temperature flexural strength test. 88.78% of the sample.
  • the volume percentages of the raw material components are ⁇ -Si 3 N 4 60%, TiC 15%, ZrSi 2 15%, Al 2 O 3 4%, Y 2 O 3 6%
  • the obtained ball milling liquid was dried in a vacuum drying oven at 120°C for 24 hours, and then sieved through a 100-mesh sieve to obtain a mixed powder.
  • the obtained mixed powder was put into a graphite mold, and then put into SPS for sintering after cold pressing. Hot pressing sintering in the furnace; hot pressing sintering parameters: 100°C/min before 1300°C; 1300°C-1450°C 50°C/min; 1450°C-1600°C 30°C/min
  • the ceramic material prepared in this example is cut into standard strip samples of 3mm ⁇ 4mm ⁇ 35mm, and then the strips are subjected to rough grinding, grinding, chamfering and polishing.
  • the mechanical properties were tested, and the results showed that the flexural strength of the material was 685MPa, the hardness was 14.82GPa, and the fracture toughness was 7.53MPa ⁇ M 1/2 .
  • Cracks of 350-450 ⁇ m were prefabricated on the surface of the tool using a Vickers hardness tester. The cracked sample was heat treated in a high temperature air furnace, the heat treatment temperature was 600 °C, and the temperature was kept for 30 minutes; the cracked sample after heat treatment was tested for flexural strength at room temperature. 80.43% of the sample.
  • the volume percentage of raw material components is ⁇ -Si 3 N 4 75%, TiC 10%, ZrSi 2 5%, Al 2 O 3 4%, Y 2 O 3 6%
  • the obtained ball milling liquid was dried in a vacuum drying oven at 120 ° C for 24 hours, and then sieved through a 100-mesh sieve to obtain a mixed powder.
  • the obtained mixed powder was put into a graphite mold, and then put into an SPS sintering furnace after cold pressing. Hot-pressing sintering is carried out in the middle; hot-pressing sintering parameters: 100°C/min before 1300°C; 1300°C-1450°C 50°C/min; 1450°C-1600°C 30°C/min
  • the ceramic material prepared in this example is cut into standard strip samples of 3mm ⁇ 4mm ⁇ 35mm, and then the strips are subjected to rough grinding, grinding, chamfering and polishing.
  • the mechanical properties were tested, and the results showed that the flexural strength of the material was 802MPa, the hardness was 15.36GPa, and the fracture toughness was 8.02MPa ⁇ M 1/2 .
  • Cracks of 350-450 ⁇ m were prefabricated on the surface of the tool using a Vickers hardness tester.
  • the cracked sample was heat treated under high temperature vacuum conditions, the heat treatment temperature was 600 °C, and the temperature was kept for 30 minutes; the cracked sample after heat treatment was tested for flexural strength at room temperature. 47.51% of the smooth specimen.
  • the lower flexural strength recovery of ceramic materials is mainly due to the lack of oxidation reaction to generate oxides to repair cracks. However, the material strength is partially recovered, which is partly recovered by the release of residual stress inside the tool at high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

一种具有裂纹愈合能力的陶瓷材料及其制备方法,按照体积百分数其组成为α-Si 3N 4 60-80%,TiC 5-15%,ZrSi 2 0-20%,Al 2O 3 3-7%,Y 2O 35-7%,使用无水乙醇为分散介质制备α-Si 3N 4、TiC 和ZrSi 2悬浮液,混合后加入分散剂,和Al 2O 3 和Y 2O 3粉体,经湿法球磨混料和SPS烧结制备而成。该陶瓷刀具材料具有良好的烧结致密性,增强了陶瓷刀具材料的综合力学性能力;依靠ZrSi 2在600℃的氧化反应实现陶瓷材料裂纹的愈合,陶瓷材料的抗弯强度可以恢复到光滑试样的80%以上,提高了陶瓷刀具材料的使用寿命。

Description

一种具有裂纹愈合能力的陶瓷材料及其制备方法 技术领域
本发明涉及陶瓷材料技术领域,具体涉及一种具有裂纹愈合能力的陶瓷材料及其制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
陶瓷材料由于其优异的性能,如耐高温、耐腐蚀、耐磨损和高强度,在过去几十年中受到越来越多的关注和应用。然而,陶瓷材料也存在明显的缺点,如高速干切削过程受机械冲击和热震作用力易产生微裂纹,摩擦系数高、以及对缺陷敏感等。这将导致陶瓷材料提前达到失效标准,造成了极大的资源和经济的浪费。
针对上述问题,近年来研究者开发了具有裂纹愈合能力的陶瓷材料。通过向陶瓷基体中添加具有特定功能的组分,使刀具材料具有裂纹愈合的功能。具有裂纹愈合能力的陶瓷材料是指在陶瓷材料基体中添加合适的修复剂,当陶瓷材料的裂纹产生时自修复陶瓷材料是通过向陶瓷基体添加特定的愈合剂,当材料产生裂纹时,通过愈合剂或者愈合剂的化学反应来使陶瓷材料的裂纹愈合。研究表明愈合剂使裂纹愈合后,陶瓷材料强度恢复,使用寿命延长。现有技术中已经公开了添加SiC和MoSi 2、MAX相等材料制备自愈合陶瓷材料。发明人发现现有技术中的自愈合陶瓷材料也存在一定的不足,如SiC材料的热处理 温度需要在1000-1300℃,热处理温度越低所需时间越长,当温度低于1000℃时裂纹愈合需要几十小时来愈合等。
发明内容
为了解决现有技术中存在的技术问题,本发明公开了一种具有裂纹愈合能力的Si 3N 4/TiC/ZrSi 2陶瓷材料及其制备方法,通过添加修复剂ZrSi 2,使Si 3N 4/TiC陶瓷材料具有良好的裂纹修复能力,并且具有良好的烧结致密性,增强了陶瓷刀具材料的综合力学性能力。
具体地,本发明的技术方案如下所述:
在本发明的第一方面,提供一种具有裂纹愈合能力的陶瓷材料,按照体积百分数其组成为α-Si 3N 460-80%,TiC5-15%,ZrSi 2 0-20%,Al 2O 3 3-7%,Y 2O 3 5-7%。
其中,α-Si 3N 4为基体,TiC为增强相,ZrSi 2为愈合剂,Al 2O 3和Y 2O 3为烧结助剂。
在本发明的第二方面,提供一种第一方面所述具有裂纹愈合能力的陶瓷材料的制备方法,包括以下步骤:
(1)按比例称取α-Si 3N 4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌15-25min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;
(2)将上述三种悬浮液混合得到复相悬浮液;
(3)称取Si 3N 4重量的1-5wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中;然后按比例添加Al 2O 3和Y 2O 3粉体,超声分散并机械搅拌20-40min;
(4)将步骤(3)所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在保护气氛下进行球磨48h;
(5)将步骤(4)得到的球磨液在真空干燥箱80-120℃下干燥12-24h,然后经100-120目筛过筛,得到混合粉料,密封保存备用;
(6)将步骤(5)得到的混合粉料装入石墨模具中,经冷压成型后放入SPS烧结炉中进行烧结。
本发明的具体实施方式具有以下有益效果:
通过在Si 3N 4/TiC陶瓷材料基体中添加ZrSi 2来实现陶瓷刀具材料裂纹愈合的功能,本发明选用的愈合剂ZrSi 2在较低温度下便可以与氧气发生反应生成可以愈合裂纹的ZrO 2和SiO 2,有效愈合陶瓷刀具材料中的裂纹;陶瓷材料的抗弯强度可以恢复到光滑试样的80%以上,提高了陶瓷刀具材料的使用寿命;
ZrSi 2还作为导电相促进Si 3N 4的SPS烧结,并且ZrSi 2的加入可以起到烧结助剂的作用;
制备方法工艺简单,设备要求低,可靠性强。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的Si 3N 4/TiC/ZrSi 2陶瓷材料断面SEM图;
图2为本发明实施例1制备的Si 3N 4/TiC/ZrSi 2陶瓷材料裂纹形貌;
图3为本发明实施例1制备的Si 3N 4/TiC/ZrSi 2陶瓷材料裂纹愈合后形貌;
图4为本发明实施例1制备的Si 3N 4/TiC/ZrSi 2陶瓷材料裂纹愈合区域EDS检测图;
图5为本发明实施例1制备的Si 3N 4/TiC/ZrSi 2陶瓷材料裂纹愈和后XRD检测图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术中论述的,现有技术中已经添加SiC和MoSi 2、MAX相等材料制备自愈合陶瓷材料,但是现有技术制备的自愈合陶瓷材料也存在一定的不足,如热处理温度高,愈合时间长等。鉴于此,本发明公开了一种具有裂纹愈合能力的Si 3N 4/TiC/ZrSi 2陶瓷材料及其制备方法。
本发明的一种实施方式中,提供了一种具有裂纹愈合能力的陶瓷材料,其是以α-Si 3N 4为基体,TiC为增强相,ZrSi 2为愈合剂,Al 2O 3和Y 2O 3为烧结助剂,各组分的体积百分数为α-Si 3N 460-80%,TiC5-15%,ZrSi 2 0-20%,Al 2O 3 3-7%,Y 2O 3 5-7%。
本发明的实施方式中通过在Si 3N 4/TiC陶瓷刀具材料基体中添加ZrSi 2来实现陶瓷刀具材料裂纹愈合的功能,愈合剂ZrSi 2在较低温度600℃下便可以与氧气发生反应生成可以愈合裂纹的ZrO 2和SiO 2,有效愈合陶瓷刀具材料中的裂纹;陶瓷材料的抗弯强度可以恢复到光滑试样的80%以上,提高陶瓷材料制备的刀具等器件的使用寿命。
在一种具体的实施方式中,各组分的体积百分数为:α-Si 3N 4 65-75%,TiC 10%,ZrSi 2 5-15%,Al 2O 3 4%,Y 2O 36%;各组分之和为100%。
优选的,α-Si 3N 4粉体平均粒径为0.5-1μm;TiC粉体平均粒径为0.5-1μm;ZrSi 2粉体平均粒径为1-3μm;Al 2O 3粉体平均粒径为0.5-2μm;Y 2O 3粉体平均粒径为0.1-0.5μm。
本发明的一种实施方式中,提供了一种上述具有裂纹愈合能力的陶瓷材料的制备方法,包括以下步骤:
(1)按比例称取α-Si 3N 4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌15-25min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;
(2)将上述三种悬浮液混合得到复相悬浮液;
(3)称取Si 3N 4重量的1-5wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中;然后按比例添加Al 2O 3和Y 2O 3粉体,超声分散并机械搅拌20-40min;
(4)将步骤(3)所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在保护气氛下进行球磨48h;
(5)将步骤(4)得到的球磨液在真空干燥箱80-120℃下干燥12-24h,然后经100-120目筛过筛,得到混合粉料,密封保存备用;
(6)将步骤(5)得到的混合粉料装入石墨模具中,经冷压成型后放入放电等离子烧结炉中进行烧结。
在一种具体的实施方式中,步骤(3)所述分散剂为聚乙二醇6000;
在一种具体的实施方式中,步骤(5)所述球磨球为硬质合金小球YG6或YG8,保护气氛为氮气;
在一种具体的实施方式中,步骤(6)所述放电等离子烧结参数:升温速率:在1300℃之前,90-110℃/min,高于1300℃,30-50℃/min;烧结温度1700-1750℃;保温时间20-35min,分别在1600℃和达到烧结温度后保温 10-17min;轴向压力25-35MPa。
放电等离子烧结能够极大地提高大多数材料的可烧结性,并使其在相对较低的温度和较短的时间内迅速烧结,从而扩展了开发新的先进材料的可能性。放电等离子烧结与传统烧结方法(热压)之间的本质区别在于加热方式,因为热压烧结的材料仅通过来自容器的热传导进行加热,而放电等离子烧结则是通过电流和容器的双重发热形式。如果利用放电等离子烧结进行陶瓷材料的快速烧结,可以在保持陶瓷材料具有裂纹愈合的能力的基础上具有更好力学性能。
ZrSi 2还可以作为导电相,其加入也促进了Si 3N 4的放电等离子烧结,并且ZrSi 2的加入可以起到烧结助剂的作用。本发明制备的陶瓷材料具有良好的烧结致密性,增强了陶瓷材料的综合力学性能力。
下面结合具体实施例对本发明作进一步阐述,但是本发明并不仅限于以下实施例。所述方法如无特别说明均为常规方法。
各实施例的原料组分中,α-Si 3N 4粉体平均粒径为0.5-1μm;TiC粉体平均粒径为0.5-1μm;ZrSi 2粉体平均粒径为1-3μm;Al 2O 3粉体平均粒径为0.5-2μm;Y 2O 3粉体平均粒径为0.1-0.5μm。
实施例1
基于SPS烧结的具有裂纹愈合能力的Si 3N 4/TiC/ZrSi 2陶瓷材料的制备方法,原料组分的体积百分比为α-Si 3N 475%,TiC10%,ZrSi 25%,Al 2O 3 4%,Y 2O 36%;
按比例称取α-Si 3N 4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌20min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;将上述三种悬浮液混合得到复相悬浮液。称取Si 3N 4粉体重量的3wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中然后按比例添加Al 2O 3和Y 2O 3 粉体,超声分散并机械搅拌30min;将所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在氮气气氛下进行球磨48h;
将得到的球磨液在真空干燥箱110℃下干燥12h,然后经100目筛过筛,得到混合粉料,将得到的混合粉料装入石墨模具中,经冷压成型后放入SPS烧结炉中进行热压烧结;SPS烧结参数:1300℃以前100℃/min;1300℃-1450℃50℃/min;1450℃-1600℃30℃/min;1600℃保温15min;1600℃-1700℃30℃/min;1700℃保温10min;压力30MPa。
将本实施例制备的陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行粗磨、研磨、倒角、抛光处理。对其进行力学性能测试,结果显示材料抗弯强度为751MPa,硬度为15.91GPa,断裂韧性为6.96MPa·M 1/2。利用维氏硬度计在刀具表面预制350-450μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度600℃,保温30min;将热处理后的裂纹试样进行室温抗弯强度测试,试样强度从产生裂纹时的298MPa提高到677Mpa,恢复到光滑试样的90.14%。相比于未进行热处理的陶瓷材料(图2),如图3所示为热处理后的裂纹表面形貌,发现裂纹基本愈合。经过EDS分析,如图4所示,由裂纹处Zr、Si、O元素的分布可知,这是由于ZrSi 2氧化生成的TiO 2和SiO 2对裂纹进行了修复。并且图5XRD的检测图也证明ZrO 2和SiO 2的存在。
实施例2
原料组分的体积百分比为α-Si 3N 470%,TiC 10%,ZrSi 210%,Al 2O 3 4%,Y 2O 36%
按比例称取α-Si 3N 4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌20min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;将上述三种悬浮液混合得到复相悬浮液。称取α-Si 3N 4粉体重量的 5wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中然后按比例添加Al 2O 3和Y 2O 3粉体,超声分散并机械搅拌20min;将所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在氮气气氛下进行球磨48h;
将得到的球磨液在真空干燥箱120℃下干燥24小时,然后经100目筛过筛,得到混合粉料,将得到的混合粉料装入石墨模具中,经冷压成型后放入SPS烧结炉中进行热压烧结;热压烧结参数:1300℃以前100℃/min;1300℃-1450℃50℃/min;1450℃-1600℃30℃/min;1600℃保温15min;1600℃-1700℃30℃/min;1700℃保温10min;压力30MPa。
将本实施例制备的陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行粗磨、研磨、倒角、抛光处理。对其进行力学性能测试,结果显示材料抗弯强度为802MPa,硬度为15.36GPa,断裂韧性为8.02MPa·M 1/2。如图1为陶瓷材料的断裂表面SEM图,可以发现ZrSi 2均匀的分布在陶瓷基体中,β-Si 3N 4晶粒均匀,致密度良好,这有利于陶瓷材料的力学性能。利用维氏硬度计在刀具表面预制350-450μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度600℃,保温30min;将热处理后的裂纹试样进行室温抗弯强度测试,试样强度从产生裂纹时的301MPa提高到712MPa,恢复到光滑试样的88.78%。
实施例3
原料组分的体积百分比为α-Si 3N 460%,TiC 15%,ZrSi 2 15%,Al 2O 3 4%,Y 2O 36%
按比例称取α-Si 3N 4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌20min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;将上述三种悬浮液混合得到复相悬浮液。称取α-Si 3N 4粉体重量的 5wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中然后按比例添加Al 2O 3和Y 2O 3粉体,超声分散并机械搅拌20min;将所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在氮气气氛下进行球磨48h;
将得到的球磨液在真空干燥箱120℃下干燥24小时,然后经100目筛过筛,得到混合粉料,将得到的混合粉料装入石墨模具中,经冷压成型后放入SPS烧结炉中进行热压烧结;热压烧结参数:1300℃以前100℃/min;1300℃-1450℃50℃/min;1450℃-1600℃30℃/min
1600℃保温15min;1600℃-1750℃30℃/min;1750℃保温15min;压力30MPa。,保温时间10min,压力30MPa。
将本实施例制备的陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行粗磨、研磨、倒角、抛光处理。对其进行力学性能测试,结果显示材料抗弯强度为685MPa,硬度为14.82GPa,断裂韧性为7.53MPa·M 1/2。利用维氏硬度计在刀具表面预制350-450μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度600℃,保温30min;将热处理后的裂纹试样进行室温抗弯强度测试,试样强度从产生裂纹时的221MPa提高到551Mpa,恢复到光滑试样的80.43%。
对比例1
原料组分的体积百分比为α-Si 3N 475%,TiC 10%,ZrSi 25%,Al 2O 3 4%,Y 2O 36%
按比例称取α-Si 3N4,TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌20min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;将上述三种悬浮液混合得到复相悬浮液。称取α-Si 3N 4粉体重量的5wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中然后按比例添加Al 2O 3 和Y 2O 3粉体,超声分散并机械搅拌20min;将所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在氮气气氛下进行球磨48h;
将得到的球磨液在真空干燥箱120℃下干燥24h,然后经100目筛过筛,得到混合粉料,将得到的混合粉料装入石墨模具中,经冷压成型后放入SPS烧结炉中进行热压烧结;热压烧结参数:1300℃以前100℃/min;1300℃-1450℃50℃/min;1450℃-1600℃30℃/min
1600℃保温15min;1600℃-1750℃30℃/min;1750℃保温15min;压力30MPa。,保温时间10min,压力30MPa。
将本实施例制备的陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行粗磨、研磨、倒角、抛光处理。对其进行力学性能测试,结果显示材料抗弯强度为802MPa,硬度为15.36GPa,断裂韧性为8.02MPa·M 1/2。利用维氏硬度计在刀具表面预制350-450μm裂纹。将裂纹试样在高温真空条件下中进行热处理,热处理温度600℃,保温30min;将热处理后的裂纹试样进行室温抗弯强度测试,试样强度从产生裂纹时的298MPa提高到381Mpa,恢复到光滑试样的47.51%。陶瓷材料的抗弯强度恢复较低主要由于没有发生氧化反应生成氧化物对裂纹进行修复。然而材料强度得到部分恢复,这是由于高温下刀具内部残余应力的释放恢复了其部分强度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有裂纹愈合能力的陶瓷材料,其特征在于,按照体积百分数其组成为α-Si 3N 4 60-80%,TiC 5-15%,ZrSi 2 0-20%,Al 2O 3 3-7%,Y 2O 3 5-7%。
  2. 如权利要求1所述具有裂纹愈合能力的陶瓷材料,其特征在于,按照体积百分数其组成为:α-Si 3N 4 65-75%,TiC 10%,ZrSi 2 5-15%,Al 2O 3 4%,Y 2O 3 6%;各组分之和为100%。
  3. 如权利要求1所述具有裂纹愈合能力的陶瓷材料,其特征在于所述α-Si 3N 4粉体平均粒径为0.5-1μm。
  4. 如权利要求1所述具有裂纹愈合能力的陶瓷材料,其特征在于,TiC粉体平均粒径为0.5-1μm。
  5. 如权利要求1所述具有裂纹愈合能力的陶瓷材料,其特征在于,ZrSi 2粉体平均粒径为1-3μm。
  6. 如权利要求1所述具有裂纹愈合能力的陶瓷材料,其特征在于,Al 2O 3粉体平均粒径为0.5-2μm;Y 2O 3粉体平均粒径为0.1-0.5μm。
  7. 权利要求1所述具有裂纹愈合能力的陶瓷材料的制备方法,其特征在于,包括以下步骤:
    (1)按比例称取α-Si 3N 4、TiC和ZrSi 2粉体,分别加入适量的无水乙醇为分散介质,超声分散并机械搅拌15-25min,制得α-Si 3N 4悬浮液,TiC悬浮液和ZrSi 2悬浮液;
    (2)将上述三种悬浮液混合得到复相悬浮液;
    (3)称取Si 3N 4重量的1-4wt%的分散剂,以无水乙醇溶解后加入复相悬浮液中然后按比例添加Al 2O 3和Y 2O 3粉体,超声分散并机械搅拌20-40min;
    (4)将步骤(3)所得的最终悬浮液倒入球磨罐,按照球料重量比10:1加入球磨球,在保护气氛下进行球磨48h;
    (5)将步骤(4)得到的球磨液在真空干燥箱80-120℃下干燥12-24h,然后经100-120目筛过筛,得到混合粉料,密封保存备用;
    (6)将步骤(5)得到的混合粉料装入石墨模具中,经冷压成型后放入放电等离子烧结炉中进行放电等离子烧结。
  8. 如权利要求7所述具有裂纹愈合能力的陶瓷材料的制备方法,其特征在于,步骤(3)所述分散剂为聚乙二醇6000。
  9. 如权利要求7所述具有裂纹愈合能力的陶瓷材料的制备方法,其特征在于,步骤(5)所述球磨球为硬质合金小球YG6或YG8,保护气氛为氮气。
  10. 如权利要求7所述具有裂纹愈合能力的陶瓷材料的制备方法,其特征在于步骤(6)所述放电等离子烧结参数:升温速率:在1300℃之前,
    90-110℃/min,高于1300℃,30-50℃/min;烧结温度1700-1750℃;保温时间20-35min,分别在1600℃和达到烧结温度后保温10-17min;轴向压力25-35MPa。
PCT/CN2021/126174 2020-10-29 2021-10-25 一种具有裂纹愈合能力的陶瓷材料及其制备方法 WO2022089378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021368918A AU2021368918B2 (en) 2020-10-29 2021-10-25 Ceramic material having crack healing capability and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011181198.X 2020-10-29
CN202011181198.XA CN112279653B (zh) 2020-10-29 2020-10-29 一种具有裂纹愈合能力的陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022089378A1 true WO2022089378A1 (zh) 2022-05-05

Family

ID=74352392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126174 WO2022089378A1 (zh) 2020-10-29 2021-10-25 一种具有裂纹愈合能力的陶瓷材料及其制备方法

Country Status (3)

Country Link
CN (1) CN112279653B (zh)
AU (1) AU2021368918B2 (zh)
WO (1) WO2022089378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118125834A (zh) * 2024-05-08 2024-06-04 中材高新氮化物陶瓷有限公司 电阻率可调的氮化硅陶瓷及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279653B (zh) * 2020-10-29 2023-03-17 齐鲁工业大学 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN113896542A (zh) * 2021-11-03 2022-01-07 齐鲁工业大学 一种断裂韧性强的陶瓷材料及制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN103553597A (zh) * 2013-10-30 2014-02-05 西安博科新材料科技有限责任公司 一种自愈合ysz陶瓷热障涂层材料及其制备方法
CN103739292A (zh) * 2014-01-02 2014-04-23 山东大学 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
CN107032796A (zh) * 2017-05-05 2017-08-11 西北工业大学 自愈合SiC/ZrSi2‑MoSi2涂层材料及制备方法
CN108455990A (zh) * 2018-04-17 2018-08-28 南京理工大学 一种氮化硅基复合陶瓷材料及其sps制备工艺
CN112279653A (zh) * 2020-10-29 2021-01-29 齐鲁工业大学 一种具有裂纹愈合能力的陶瓷材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153167A (ja) * 1984-08-22 1986-03-17 株式会社日立製作所 高靭性窒化珪素焼結体およびその製造方法
JPH05294729A (ja) * 1992-04-16 1993-11-09 Ube Ind Ltd 窒化ケイ素質球状焼結体およびその製造方法
JPH08333165A (ja) * 1995-06-02 1996-12-17 Mitsubishi Materials Corp 窒化珪素複合セラミックスの製造方法
US10654756B1 (en) * 2012-06-01 2020-05-19 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Formulations for engineered ceramic matrix composites for high temperature applications
US10822277B2 (en) * 2015-06-17 2020-11-03 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions
CN107098352A (zh) * 2016-02-20 2017-08-29 金承黎 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法
CN109053193B (zh) * 2018-07-23 2021-05-07 太原科技大学 一种氮化硅陶瓷喷嘴及其制备方法
CN111517805A (zh) * 2020-07-06 2020-08-11 佛山华骏特瓷科技有限公司 高耐磨的氮化硅基陶瓷及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN103553597A (zh) * 2013-10-30 2014-02-05 西安博科新材料科技有限责任公司 一种自愈合ysz陶瓷热障涂层材料及其制备方法
CN103739292A (zh) * 2014-01-02 2014-04-23 山东大学 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
CN107032796A (zh) * 2017-05-05 2017-08-11 西北工业大学 自愈合SiC/ZrSi2‑MoSi2涂层材料及制备方法
CN108455990A (zh) * 2018-04-17 2018-08-28 南京理工大学 一种氮化硅基复合陶瓷材料及其sps制备工艺
CN112279653A (zh) * 2020-10-29 2021-01-29 齐鲁工业大学 一种具有裂纹愈合能力的陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118125834A (zh) * 2024-05-08 2024-06-04 中材高新氮化物陶瓷有限公司 电阻率可调的氮化硅陶瓷及其制备方法与应用

Also Published As

Publication number Publication date
CN112279653B (zh) 2023-03-17
AU2021368918B2 (en) 2024-02-01
AU2021368918A1 (en) 2022-09-22
CN112279653A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022089378A1 (zh) 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN106478105B (zh) 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN114853477B (zh) 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN111085688B (zh) 一种钨/氮化硅/钨对称层状梯度复合材料及其快速制备方法和应用
JPS5924751B2 (ja) 焼結成形体
CN106810285A (zh) 一种原位生成碳纤维增韧氧化铝陶瓷的制备方法
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
CN106747446A (zh) 一种微波混合加热合成Al4SiC4粉体的新方法
JP2013500226A (ja) 高靱性セラミック複合材料
CN102765969A (zh) 六硼化镧-二硅化钼-碳化硅抗热震涂层的制备方法
CN115043648A (zh) 一种预应力氧化铝陶瓷复合材料及其制备方法
CN110330316A (zh) 一种裂纹自愈合陶瓷刀具材料及其制备方法
CN111269015B (zh) 一种致密化的莫来石-刚玉-SiC太阳能热发电用复相储热陶瓷材料及其制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN111574209A (zh) 具有自修复能力的自润滑陶瓷刀具及其制备方法、修复方法与应用
CN106830690A (zh) 一种自增强增韧的氮化硅/氮化铝/镧钡铝硅酸盐微晶玻璃三元复合材料及其制备方法
CN116375504A (zh) 一种碳基或陶瓷基复合材料表面的致密高温抗氧化涂层及其制备方法
CN1209318C (zh) 一种氮化物/氧化铝基复合陶瓷材料及其制备工艺
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
CN111099897A (zh) 一种碳化硅复合材料及其制备方法
CN115073186A (zh) 一种氮化硅陶瓷烧结体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021368918

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021368918

Country of ref document: AU

Date of ref document: 20211025

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21885105

Country of ref document: EP

Kind code of ref document: A1