CN107963891A - 一种单相氮化硅陶瓷材料及其微波烧结制备工艺 - Google Patents

一种单相氮化硅陶瓷材料及其微波烧结制备工艺 Download PDF

Info

Publication number
CN107963891A
CN107963891A CN201610915558.1A CN201610915558A CN107963891A CN 107963891 A CN107963891 A CN 107963891A CN 201610915558 A CN201610915558 A CN 201610915558A CN 107963891 A CN107963891 A CN 107963891A
Authority
CN
China
Prior art keywords
silicon nitride
ceramic material
ball
ball milling
nitride ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610915558.1A
Other languages
English (en)
Inventor
殷增斌
徐伟伟
袁军堂
程寓
汪振华
胡小秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610915558.1A priority Critical patent/CN107963891A/zh
Publication of CN107963891A publication Critical patent/CN107963891A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种单相氮化硅陶瓷材料及其微波烧结制备工艺。本发明的单相氮化硅陶瓷材料,以重量百分数计,包含如下组分:α‑Si3N4 86%‑94%、Y2O3 3%‑7%、MgO 3%‑7%、Al2O3 0%‑4%。本发明以微波介质作热源,在氮气气氛保护下,通过优化组分配比、烧结温度、保温时间等工艺参数,采用微波烧结技术,以较快的升温速率制备得到氮化硅陶瓷材料。本发明制备出的陶瓷材料不但具备较高的硬度,同时还有良好的韧性,综合性能最高的样品硬度达到14.92±0.20GPa,断裂韧性达到6.44±0.02MPa.m1/2,提高生产效率的同时降低生产成本,易于规模生产。

Description

一种单相氮化硅陶瓷材料及其微波烧结制备工艺
技术领域
本发明属于微波烧结材料技术领域,涉及一种单相氮化硅陶瓷材料及其微波烧结制备工艺。
背景技术
Si3N4陶瓷是一种具有高比强、高比模、耐高温、抗氧化、耐磨损、抗蠕变、抗疲劳和抗热震等优良性能的陶瓷材料,适用于高温、摩擦、重载等环境恶劣的工况,可用于航空航天用部件、轴承、高速切削刀具等领域。目前,氮化硅陶瓷的传统烧结工艺主要有:反应烧结、无压烧结、气压烧结、热压烧结和热等静压烧结。但传统烧结存在许多弊端:设备和维护成本高昂;采用热辐射、热传导的加热方式会引起材料内的温度梯度较大,材料内部容易产生残余应力;制备周期长,效率低,不利于材料的批量生产。
微波烧结是一种经济、节能、高效、环保的烧结方式,具有促进相变、降低烧结温度、改善微观组织、提高材料性能等优点。将微波烧结技术应用到陶瓷材料制备领域已成为近年来一个热门的话题,就氮化硅陶瓷材料的微波烧结而言,现阶段也有了少量的公开报道。文献1(S.Chockalingam,D.A.Earl,Mechanical properties of 2.45GHz microwavesintered Si3N4-Y2O3-MgO-ZrO2system,J.Eur.Ceram.Soc.29(2009)2037-2043.)中以6wt.%Y2O3+4wt.%MgO+2.5wt.%ZrO2为助烧剂,微波烧结至1750℃保温15min,制得氮化硅陶瓷致密度为95%,硬度为14GPa,断裂韧性为5.8MPa.m1/2,但烧结温度高,且制得的氮化硅陶瓷断裂韧性较低。文献2(S.Chockalingam,D.A.Earl,Microwave sintering ofSi3N4with LiYO2and ZrO2as sintering additives,Mater.Design.31(2010)1559-1562.)中以10wt.%LiYO2+5wt.%ZrO2为助烧剂,采用微波烧结技术在1600℃保温15min,制备得到致密度为93%,硬度为13GPa,断裂韧性为6.1MPa.m1/2的氮化硅陶瓷材料,该报道中所采用的助烧剂成本高,且制得的材料的致密度低,材料硬度仍需提高。文献3(S.MENGYONG,etal,The densification of Si3N4ceramics using different additives via microwavesintering,J.Ceram.Soc.Jpn.122(2014)914-916.)中对微波烧结氮化硅进行研究,以6wt.%Y2O3+2wt.%Al2O3+5wt.%ZrO2+6wt.%Li2CO3为助烧剂在1550℃保温30min,制得致密度为97%,硬度为12GPa,抗弯强度为403MPa的单相氮化硅陶瓷,但使用了19wt.%的助烧剂,原料成本高,而且保温时间长,其效率较低,另外材料力学性能也较低。
由上可知,目前氮化硅陶瓷材料的微波烧结工艺仍不完善,仍停留在单相氮化硅材料的制备阶段,而且现有报道中微波烧结氮化硅所使用的助烧剂含量较高,达到12.5-19wt.%,尤其是一些昂贵原料的使用增加了材料制备成本。另外现有的微波烧结制备的氮化硅陶瓷材料存在制备周期偏长、致密度偏低、力学性能不高的问题。因此对氮化硅陶瓷微波烧结工艺进行研究并加以完善,优化助烧剂含量对提高氮化硅材料力学性能以及促进其产业化具有重大意义。
发明内容
本发明的目的在于提供一种单相氮化硅陶瓷材料,该陶瓷材料是在氮化硅基体中添加了适量的助烧剂,并优化了各助烧剂组分的比例关系,在降低原料成本的同时,提高了材料的综合力学性能,具有高硬度和高韧性。
实现上述目的的技术方案如下:
一种单相氮化硅陶瓷材料,以重量百分数计,包含如下组分:α-Si3N4 86%-94%,Y2O3 3%-7%,MgO 3%-7%,Al2O3 0%-4%。
进一步地,本发明还提供上述单相氮化硅陶瓷材料微波烧结制备工艺,采用高效节能的微波烧结技术,通过优化烧结温度、保温时间等工艺参数,实现在短时间内制备出具有较高综合力学性能的氮化硅陶瓷材料,包括如下步骤:
步骤1,按比例称取α-Si3N4、Y2O3、MgO和Al2O3粉末,进行球磨混合;
步骤2,制备质量浓度为1-5%的聚乙烯醇溶液,在球磨结束前2小时加入到步骤1的混合粉料中;
步骤3,将球磨后的混合粉料进行干燥,然后研磨并过筛;
步骤4,将筛选好的粉料在150-200MPa的压力下压制成型;
步骤5,氮气氛围中,采用微波烧结工艺,以30-40℃/min的升温速率持续升温到1600-1700℃,保温5-15min,随后随炉冷却,制得单相氮化硅陶瓷材料。
步骤1中,所述的球磨混合是将称取的粉料放入球磨罐中,以无水乙醇为介质,球料比为6:1-8:1,球磨混合时间为24-72小时。
优选地,所述的球磨罐选用刚玉罐,磨球选用氮化硅球,球料比为7:1,球磨混合时间为48小时。
步骤4中,所述的保压时间为1-3min。
本发明与现有技术相比,其显著优点是:
(1)减少了助烧剂的含量,保温时间缩短了33.3%-66.7%,提高生产效率的同时降低生产成本,易于规模生产;
(2)在不提高稀土元素氧化物等昂贵原料含量的条件下,通过助烧剂的协同作用,采用微波烧结技术制备出的单相氮化硅陶瓷具有优良力学性能及微观组织结构,其中综合性能最高的样品硬度达14.92±0.20GPa,断裂韧性达6.44±0.02MPa.m1/2,与现有的单相氮化硅材料性能相比,硬度提高了6.6%-24.3%,断裂韧性提高了5.3%-11.0%,且形成了独特的双峰结构。
附图说明
图1为实施例1制得的单相氮化硅陶瓷材料的腐蚀表面SEM图。
图2为实施例6制得的单相氮化硅陶瓷材料的腐蚀表面SEM图。
具体实施方式
下面结合实施例和附图对本发明做进一步详细说明。
实施例1:
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N490%、Y2O3 5%、MgO 5%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为6:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1600℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为13.62±0.31GPa,断裂韧性为6.85±0.16MPa.m1/2
实施例2
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N494%、Y2O3 3%、MgO 3%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为3wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为200MPa,保压2分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入40MPa氮气;开启微波电源进行加热,以35℃/min的升温速率将试样加热至1650℃,保温15min,然后随炉冷却。经测试得,材料的维氏硬度为13.55±0.52GPa,断裂韧性为6.89±0.28MPa.m1/2
实施例3
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N488%、Y2O3 7%、MgO 3%、Al2O3 2%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为8:1,并在球磨结束2小时前加入浓度为1wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为175MPa,保压1分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入60MPa氮气;开启微波电源进行加热,以40℃/min的升温速率将试样加热至1650℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为13.28±0.15GPa,断裂韧性为7.6±0.49MPa.m1/2
实施例4
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N486%、Y2O3 3%、MgO 7%、Al2O3 4%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为3wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为175MPa,保压2分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以35℃/min的升温速率将试样加热至1650℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为13.78±0.12GPa,断裂韧性为7.67±0.22MPa.m1/2
实施例5
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N488%、Y2O3 5%、MgO 3%、Al2O3 4%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为3wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为175MPa,保压2分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1700℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为14.71±0.16GPa,断裂韧性为6.38±0.15MPa.m1/2
实施例6
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N488%、Y2O3 5%、MgO 5%、Al2O3 2%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入刚玉球磨罐中球磨48小时,球料比为7:1,并在球磨结束2小时前加入浓度为3wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为175MPa,保压2分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1700℃,保温10min,然后随炉冷却。经测试得,材料的维氏硬度为14.92±0.2GPa,断裂韧性为6.44±0.02MPa.m1/2
从图1、图2可以看出氮化硅在微波烧结中实现了从α-Si3N4向β-Si3N4的完全转变,且形成的柱状晶具有两种不同长径比,独特的双峰结构使得材料微观结构更加致密,且两幅图对比会发现助烧剂成分和含量对柱状晶的晶粒大小和长径比会有影响。
对比例1
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N490%、Y2O3 5%、MgO 5%进行配料,将配制的混合粉末以无水乙醇为介质,氮化硅球为磨球,放入聚氨酯球磨罐中球磨72小时,球料比为8:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1600℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为12.55±0.37GPa,断裂韧性为5.08±0.56MPa.m1/2。此对比例说明球磨罐的选择对材料性能有影响,即使增加球磨时间,球磨混合效果仍显不佳,最后材料力学性能也处于较低水平。
对比例2
一种单相氮化硅陶瓷材料及其微波烧结制备工艺,具体为:按质量百分数α-Si3N490%、Y2O3 5%、MgO 5%进行配料,将配制的混合粉末以无水乙醇为介质,氧化铝球为磨球,放入聚氨酯球磨罐中球磨24小时,球料比为6:1,并在球磨结束2小时前加入浓度为5wt%的聚乙烯醇水溶液;球磨后烘干研磨,并过100目筛,将过筛后的粉料进行干压成型,压力为150MPa,保压3分钟;将压坯放入保温装置并置于微波烧结炉中,将炉腔内抽成真空状态,然后冲入50MPa氮气;开启微波电源进行加热,以30℃/min的升温速率将试样加热至1600℃,保温5min,然后随炉冷却。经测试得,材料的维氏硬度为11.28±0.34GPa,断裂韧性为5.59±0.61MPa.m1/2。此对比例说明磨球的选择对材料力学性能有影响,使用氧化铝球会在混料中引入氧化铝,即使减少球磨时间,最后材料力学性能也较低。

Claims (5)

1.一种单相氮化硅陶瓷材料,其特征在于,以重量百分数计,包含如下组分:α-Si3N486%-94%,Y2O3 3%-7%,MgO 3%-7%,Al2O3 0%-4%。
2.一种如权利要求1所述的单相氮化硅陶瓷材料的微波烧结制备工艺,其特征在于,包括如下步骤:
步骤1,按比例称取α-Si3N4、Y2O3、MgO和Al2O3粉末,进行球磨混合;
步骤2,制备质量浓度为1-5%的聚乙烯醇溶液,在球磨结束前2小时加入到步骤1的混合粉料中;
步骤3,将球磨后的混合粉料进行干燥,然后研磨并过筛;
步骤4,将筛选好的粉料在150-200MPa的压力下压制成型;
步骤5,氮气氛围中,采用微波烧结工艺,以30-40℃/min的升温速率持续升温到1600-1700℃,保温5-15min,随后随炉冷却,制得单相氮化硅陶瓷材料。
3.如权利要求2所述的微波烧结制备工艺,其特征在于,步骤1中,所述的球磨混合是将称取的粉料放入球磨罐中,以无水乙醇为介质,球料比为6:1-8:1,球磨混合时间为24-72小时。
4.如权利要求3所述的微波烧结制备工艺,其特征在于,所述的球磨罐为刚玉罐,磨球为氮化硅球,球料比为7:1,球磨混合时间为48小时。
5.如权利要求2所述的微波烧结制备工艺,其特征在于,步骤4中,所述的保压时间为1-3min。
CN201610915558.1A 2016-10-20 2016-10-20 一种单相氮化硅陶瓷材料及其微波烧结制备工艺 Pending CN107963891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610915558.1A CN107963891A (zh) 2016-10-20 2016-10-20 一种单相氮化硅陶瓷材料及其微波烧结制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610915558.1A CN107963891A (zh) 2016-10-20 2016-10-20 一种单相氮化硅陶瓷材料及其微波烧结制备工艺

Publications (1)

Publication Number Publication Date
CN107963891A true CN107963891A (zh) 2018-04-27

Family

ID=61997282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610915558.1A Pending CN107963891A (zh) 2016-10-20 2016-10-20 一种单相氮化硅陶瓷材料及其微波烧结制备工艺

Country Status (1)

Country Link
CN (1) CN107963891A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623308A (zh) * 2018-05-23 2018-10-09 淄博恒世科技发展有限公司 氮化硅球用母核及其生产工艺
CN108675797A (zh) * 2018-06-27 2018-10-19 南京理工大学 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN113173797A (zh) * 2021-06-01 2021-07-27 湖南新华源科技有限公司 一种Al2O3基陶瓷焊接密封元器件及其制备方法
CN113429211A (zh) * 2021-08-27 2021-09-24 中南大学湘雅医院 一种氮化硅陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903792A (zh) * 2005-07-29 2007-01-31 南京理工大学 AlN-Si3N4-SiC陶瓷材料的制备方法
CN102070341A (zh) * 2009-11-19 2011-05-25 长沙平拓新材料科技有限公司 一种自增韧氮化硅陶瓷微波固相合成制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903792A (zh) * 2005-07-29 2007-01-31 南京理工大学 AlN-Si3N4-SiC陶瓷材料的制备方法
CN102070341A (zh) * 2009-11-19 2011-05-25 长沙平拓新材料科技有限公司 一种自增韧氮化硅陶瓷微波固相合成制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HIROTA, M等: "Effects of various rare earth sesquioxide additives on grain growth in millimeter-wave sintered silicon nitride ceramics", 《IEICE TRANSACTIONS ON ELECTRONICS》 *
JONES, MI等: "Grain growth in microwave sintered Si3N4 ceramics sintered from different starting powders", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
张劲松等: "Si3N4陶瓷的微波烧结", 《材料科学进展》 *
徐伟伟等: "Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering", 《MATERIALS SCIENCE AND ENGINEERING: A》 *
李淳伟: "Si3N4复合陶瓷的增韧方法及其机理研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
米国际等: "《数控加工实训教程》", 31 July 2008, 航空工业出版社 *
蒋强国: "含三元烧结助剂氮化硅陶瓷的制备、微观结构及性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
陈力等: "烧结助剂对自增韧Si3N4陶瓷显微结构和性能的影响", 《硅酸盐学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623308A (zh) * 2018-05-23 2018-10-09 淄博恒世科技发展有限公司 氮化硅球用母核及其生产工艺
CN108623308B (zh) * 2018-05-23 2021-02-02 淄博恒世科技发展有限公司 氮化硅球用母核及其生产工艺
CN108675797A (zh) * 2018-06-27 2018-10-19 南京理工大学 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN108675797B (zh) * 2018-06-27 2021-05-04 南京理工大学 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN113173797A (zh) * 2021-06-01 2021-07-27 湖南新华源科技有限公司 一种Al2O3基陶瓷焊接密封元器件及其制备方法
CN113173797B (zh) * 2021-06-01 2021-12-07 湖南新华源科技有限公司 一种Al2O3基陶瓷焊接密封元器件及其制备方法
CN113429211A (zh) * 2021-08-27 2021-09-24 中南大学湘雅医院 一种氮化硅陶瓷材料及其制备方法
CN113429211B (zh) * 2021-08-27 2021-11-02 中南大学湘雅医院 一种氮化硅陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107963891A (zh) 一种单相氮化硅陶瓷材料及其微波烧结制备工艺
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN106830944B (zh) 一种陶瓷复合材料及其烧制方法和应用
CN108439995B (zh) 一种复相陶瓷及其制备方法
CN112851365B (zh) 一种氮化硅基复相导电陶瓷的制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN114538931B (zh) 一种高性能AlON透明陶瓷及其低温快速制备方法
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN111517806B (zh) 一种高韧性氮化硅陶瓷及其制备方法
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN104045349B (zh) 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN101565308A (zh) 氮化硼纳米管增强的氮化硅陶瓷及其制备方法
CN108411137A (zh) 超细晶碳化钨基硬质合金的制备方法
CN107663093A (zh) 一种Si3N4基复合陶瓷及其制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN107164803A (zh) 一种简单控制相变制备β‑氮化硅晶须的方法
CN101407420B (zh) 一种基于碳热还原制备无晶界相多孔氮化硅陶瓷的方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN107285329B (zh) 一种二硼化钨硬质材料及其制备方法和应用
CN113149676A (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN109336614B (zh) 一种Sialon/Ti-22Al-25Nb陶瓷基复合材料的制备方法
CN104446459A (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180427