CN102093058B - 一种α-SiAlON/BN 复合陶瓷材料及其制备方法 - Google Patents
一种α-SiAlON/BN 复合陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN102093058B CN102093058B CN 201010603934 CN201010603934A CN102093058B CN 102093058 B CN102093058 B CN 102093058B CN 201010603934 CN201010603934 CN 201010603934 CN 201010603934 A CN201010603934 A CN 201010603934A CN 102093058 B CN102093058 B CN 102093058B
- Authority
- CN
- China
- Prior art keywords
- sialon
- powder
- sintering
- composite ceramic
- ceramic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910003564 SiAlON Inorganic materials 0.000 title claims abstract description 72
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 40
- 238000005245 sintering Methods 0.000 claims abstract description 28
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052582 BN Inorganic materials 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 6
- 238000007731 hot pressing Methods 0.000 claims abstract description 6
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000013461 design Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910002804 graphite Inorganic materials 0.000 abstract description 8
- 239000010439 graphite Substances 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000000498 ball milling Methods 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 239000012299 nitrogen atmosphere Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 9
- 230000035939 shock Effects 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Abstract
本发明涉及一种α-SiAlON/BN复合陶瓷材料及其制备方法,采用热压烧结技术,以α相的氮化硅粉,氮化铝粉、氧化铝粉和氧化钇粉末为原料按α-SiAlON组成通式Ym/3Si12-(m+n)Alm+nOnN16-n设计成分,其中m,n为选择组分点的参数,再外掺六方氮化硼,原料粉末经球磨、烘干、造粒后,装入石墨模具,在流动氮气环境中以10~40℃/min的升温速率加热到1800~1950℃,在15~35MPa压力下烧结30~120min。该方法制备的α-SiAlON/BN复合陶瓷具有耐高温、高温强度高的特点。
Description
技术领域
本发明属复合陶瓷材料技术领域,具体涉及的是一种α-SiAlON/BN复合陶瓷材料的制备方法。
背景技术
α-SiAlON(α′)由于具有很好的热稳定性、化学稳定性和优良的机械性能而适合在恶劣环境下使用,是一种非常优异的结构工程材料。α-SiAlON与氮化硅比具有易烧结的优点,而且烧结后液相能固溶进α-SiAlON晶格,从而减少晶界玻璃相,有利于提高高温性能。六方氮化硼具有很好的化学惰性、自润滑性、较小的介电常数、优良的抗热震性和机械加工性,特别是它在微结构上具有的片状叠层结晶构造及较大的各向异性热膨胀特性,使它作为第二相改性材料在复相陶瓷材料系统中得到越来越广泛的应用。把氮化硼引入到SiAlON陶瓷中制成复合陶瓷材料,可提高材料的高温力学性能和抗热震性、降低介电常数,同时便于机械加工。
国内外关与α-SiAlON/BN复合陶瓷粉末的制备有两篇报道,但尚未见关与α-SiAlON/BN复合陶瓷块体材料的报道,所见报道中与BN复合的SiAlON为β-SiAlON和O′-SiAlON。巫俊斌等(富硼渣碳热还原氮化合成(Ca,Mg)-α-SiAlON/BN复合粉体,耐火材料,2009,43(2):106-109;富硼渣还原氮化合成(Ca,Mg)-α-SiAlON/BN陶瓷粉,中国稀土学报,2008,26:74-79)以富硼渣为主要原料采用碳热还原氮化法合成了(Ca,Mg)-α-SiAlON/BN复合粉体,目前未见其关于利用此粉体制备陶瓷性能方面的报道;隋万美(BN对SiAlON复相陶瓷性能的影响,材料科学进展,1993,7(4):361-364)等采用热压烧结方法研究了BN含量对SiAlON复相陶瓷力学性能和热学性能的影响,结果表明BN有利于提高陶瓷的抗热震性,并使高温强度有所提高,但该文章未介绍SiAlON的组成,隋万美(BN/SiAlON复相陶瓷的显微结构及SiAlON晶粒z值的不确定性,材料研究学报,1998,12(3):277-281)同时还研究了BN/SiAlON复相陶瓷的显微结构,其SiAlON相组成为β-SiAlON;崔秀君(SiAlON结合BN复合材料致密化影响因素的研究,钢铁研究,2005,5:5-7)等以金属Si、Al粉、BN粉及活性氧化铝微粉为主要原料采用反应烧结方法制备SiAlON结合BN复合材料,认为BN含量越高合成材料越难致密,添加Y2O3可以显著地促进材料的致密化,其所制备陶瓷的致密度普遍不高,掺20%BN时Y2O3掺量为6%获得的最致密材料气孔率大于21%;甄强等(反应烧结合成O′-SiAlON/BN复合材料的工艺研究,耐火材料,2006,40(4):241-245)以微米级α-Si3N4、SiO2、Al2O3和h-BN为原料,通过反应烧结法合成了O-SiAlON/BN复合材料,但未对其高温力学性能进行报道,甄强等(O′-SiAlON/BN复合材侵蚀机理,材料研究学报,2001,15(5):571-576)还研究了O′-SiAlON/BN复合材料在钢液中侵蚀的热力学和动力学过程,认为在钢液侵蚀材料过程中BN晶粒在侵蚀层内壁聚集逐渐形成较厚的扩散层阻碍了试样在钢液中侵蚀反应的进行,其同时还研究了O′-SiAlON/BN复合材料的摩擦磨损性能(O′-SiAlON/BN复合材料的摩擦磨损性能研究,摩擦学学报,2002,22(3):161-164)。国外的学者在β-SiAlON/BN复合陶瓷方面也开展了一些研究工作:Hayama(Fracture energy and microstructure of β′-SiAlON-BN composite,Journal of the Ceramic Society of Japan,1995,(103)1200:833-837)研究了β-SiAlON/BN复合材料的断裂能和微观结构;Mizutani(Fabrication and propertiesof nano-sized BN-particulate-dispersed SiAlON ceramics,Ceramic Engineering andScience Proceedings,1997,18(4):669-677)制备了纳米BN分散的SiAlON陶瓷,其首先在NH3环境中还原H3BO3+2CO(NH2)2制得β-Si6-ZAlZOZN8-Z/BN纳米粉,再采用热压方法在N2+5%H2中烧结陶瓷;Hayama(Thermal shock resistance ofβ′-Sialon-BN composites prepared by pressureless sintering and reaction bonding,Journal of the Society of Materials Science,1996,45(6):614-619)研究了β-SiAlON/BN复合材料的抗热震性。
目前国内薛向欣等的一个专利(一种利用富硼渣制备氮化硼/赛隆陶瓷复合材料的方法,专利申请号200710158984.6)是关与(Ca,Mg)α-SiAlON/BN复合陶瓷制备的,制备过程包括(Ca,Mg)α-SiAlON/BN粉体制备和烧结两个步骤,与本专利采用的方法完全不同。国外未见α-SiAlON/BN复合陶瓷方面的专利报道。
发明内容
本发明的目的在于提供一种α-SiAlON/BN复合陶瓷材料及其制备方法。
本发明所提供的α-SiAlON/BN复合陶瓷材料,是在α-SiAlON原始粉末的基础上再掺加六方氮化硼混合后再进行烧结而得,其中α-SiAlON的分子式为Ym/3Si12-(m+n)Alm+nOnN16-n,式中1.0<m<1.3,1.0<n<1.5,六方氮化硼的掺量为α-SiAlON原始粉末质量的5%~20%。
本发明的具体制备方法如下:
第一步、混合:α-SiAlON的原料粉末和六方氮化硼同时放入无水乙醇中用行星式球磨机混合,混合时间不小于12小时;
第二步、烧结:采用热压烧结方法制备α-SiAlON/BN复合陶瓷材料,烧结气氛为先真空后氮气,升温速率为10~40℃/min,烧结温度为1800~1950℃,烧结时间为30~120min,控制轴向机械压力为15~35MPa。
烧结完毕后关闭电源,使材料在流动氮气环境中随炉冷却。
本发明的目的是通过下列方式实施的。即结合Y2O3-Si3N4-AlN-Al2O3多元系统中α-SiAlON相图,利用α相的氮化硅,氮化铝、氧化铝和稀土氧化物,通过严格控制的热压烧结工艺,制备出具有耐高温和很好高温强度的α-SiAlON/BN复合陶瓷材料。
对本发明的几点具体说明:
1、本发明根据已有的Y2O3-Si3N4-AlN-Al2O3多元系统中α-SiAlON相平面的知识,以α-SiAlON通式Ym/3Si12-(m+n)Alm+nOnN16-n中的m、n为选择组分点的参数,1.0<m<1.3,1.0<n<1.5。
2、原料:包括α相的氮化硅,氮化铝、氧化铝、氧化钇和六方氮化硼粉末。按上述的设计组成配比称量α-SiAlON的原料粉末后,称取不小于α-SiAlON原料粉总质量5%~20%的六方氮化硼,在聚四氟乙烯罐中以无水乙醇为分散介质,Si3N4球为球磨介质混合12小时以上,取出料浆烘干后,过50目筛。
3、制备:将混好的粉料放于石墨模具中,再将装好粉料的模具放在热压炉内。为了避免粉料和石墨模具粘结,模具与粉料之间用石墨纸隔开。先抽真空,然后加压至设定压力,再通入流动N2作为保护气体。烧结过程中采用匀速升温,升温速率控制在10~40℃/min,升温至1800~1950℃后在15~35MPa压力下保温40~120min。烧结完毕后关闭电源,继续通流动氮气,待样品冷却至室温后取出,用金刚石切割机、磨床以及研磨抛光机把样品加工到测试要求的尺寸,即获得α-SiAlON/BN复合陶瓷。
4、材料:该材料的密度低于3.2g/cm3,相组成为α-SiAlON和BN。该材料的硬度大于15GPa、室温弯曲强度大于460MPa、1000℃弯曲强度大于500MPa、抗热震性好。
本发明的优点是:
1、α-SiAlON的烧结过程属于瞬时液相烧结,具有易烧结的特点。
2、制备工艺简单,原料粉末易实现均匀混合。
3、六方氮化硼的片状结构使材料具有易加工的特点。
4、六方氮化硼与α-SiAlON热学上的性能差异使该复合结构陶瓷具有更高的高温力学性能和良好的热震性。室温弯曲强度大于460MPa,1000℃弯曲强度大于500MPa,抗热震性好。
5、所制备的陶瓷复合材料具有较高的硬度,维氏硬度大于15GPa,同时其使具有耐高温的特点,空气环境中1100℃无氧化现象。
附图说明
图1、实施例1制备出的陶瓷材料的XRD图。
图2、实施例1得到的陶瓷材料的断口形貌照片。
图3、实施例2制备出的陶瓷材料的XRD图。
图4、实施例2得到的陶瓷材料的断口形貌照片。
具体实施方式
实施例1、
用纯度高于99.9%的氧化钇掺杂,以α相的氮化硅,氮化铝和氧化铝粉末为原料。在α-SiAlON单相平面内选择配料点,按分子式Ym/3Si12-(m+n)Alm+nOnN16-n计算当1.0<m<1.5、n=1.4时原料粉末中的氮化硅、氮化铝、氧化铝和氧化钇的质量百分含量,再按上述粉末总质量的20%称取六方氮化硼粉末,将称好的粉料在聚四氟乙烯罐中以无水乙醇为分散介质,用氮化硅球作为球磨介质,球磨24小时。混合好的浆料烘干后装入铺好石墨纸的石墨模具中,再将装好粉料的模具放在热压炉内。为了避免粉料和石墨模具粘结,模具与粉料之间用石墨纸隔开。先抽真空,然后加压至设定压力,再通入流动氮气作为保护气体。烧结过程中采用匀速升温,升温速率控制在10~40℃/min,升温至1800~1950℃后在15~35MPa压力下保温40~120min。烧结完毕后关闭电源,继续通流动氮气,待样品冷却至室温后取出,再用金刚石切割机、磨床和研磨抛光机加工得到陶瓷材料试样进行性能表征。
实施例2、
本实施例与实施例1相比,其Y-α-SiAlON陶瓷的分子式为Ym/3Si12-(m+n)Alm+nOnN16-n,式中m=1.2、0.8<n<1.5,六方氮化硼的掺量为Y-α-SiAlON粉末总质量的5%,具体制备方法同实施例1。
Claims (5)
1.一种α-SiAlON/BN复合陶瓷材料,其特征在于由α-SiAlON配料原始粉末再掺加六方氮化硼制成,其中,α-SiAlON的分子式为Ym/3Si12-(m+n)Alm+nOnN16-n,式中1.0<m<1.3,1.0<n<1.5,六方氮化硼的掺量为α-SiAlON原始粉末质量的5%~20%。
2.根据权利要求1所述的一种α-SiAlON/BN复合陶瓷材料,其特征在于所述α-SiAlON的分子式为Y0.4Si9.4Al2.6O1.4N14.6,六方氮化硼最大掺量为α-SiAlON原始粉末质量的20%。
3.权利要求1所述的一种α-SiAlON/BN复合陶瓷材料的制备方法,其特征在于以α相氮化硅粉,氮化铝粉、氧化铝粉和氧化钇粉末为原料,按分子式Ym/3Si12-(m+n)Alm+nOnN16-n设计成分,按α-SiAlON原始粉末总质量掺加六方氮化硼,其中1.0<m<1.3,1.0<n<1.5,六方氮化硼的掺量为α-SiAlON原始粉末质量的5%~20%,具体的制备方法如下:
第一步、混合:α-SiAlON的原料粉末和六方氮化硼同时放入无水乙醇中用行星式球磨机混合;
第二步、烧结:采用热压烧结方法制备α-SiAlON/BN复合陶瓷材料,烧结气氛为先真空后氮气,升温速率为10~40℃/min,烧结温度为1800~1950℃,烧结时间为30~120min,控制轴向机械压力为15~35MPa。
4.根据权利要求3所述的一种α-SiAlON/BN复合陶瓷材料的制备方法,其特征在于第一步混合时间不小于12小时。
5.根据权利要求3所述的一种α-SiAlON/BN复合陶瓷材料的制备方法,其特征在于烧结完毕后关闭电源,材料在流动氮气环境中随炉冷却。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010603934 CN102093058B (zh) | 2010-12-23 | 2010-12-23 | 一种α-SiAlON/BN 复合陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010603934 CN102093058B (zh) | 2010-12-23 | 2010-12-23 | 一种α-SiAlON/BN 复合陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102093058A CN102093058A (zh) | 2011-06-15 |
CN102093058B true CN102093058B (zh) | 2013-10-23 |
Family
ID=44126347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010603934 Expired - Fee Related CN102093058B (zh) | 2010-12-23 | 2010-12-23 | 一种α-SiAlON/BN 复合陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102093058B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102240982B (zh) * | 2011-08-25 | 2013-12-25 | 山东理工大学 | 赛龙陶瓷磨盘及制备方法 |
CN102251968B (zh) * | 2011-08-25 | 2015-03-18 | 山东理工大学 | 转子泵赛龙陶瓷凸轮及制备方法 |
DE102012104049A1 (de) * | 2012-05-09 | 2013-11-28 | Esk Ceramics Gmbh & Co. Kg | Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung |
CN103803986B (zh) * | 2014-03-13 | 2015-09-09 | 中国人民解放军国防科学技术大学 | 一种Si-Al-O-N-B复相陶瓷材料及其制备方法 |
CN104531065B (zh) * | 2014-12-12 | 2016-10-19 | 广东工业大学 | 一种超硬磨料的制备方法 |
US10167234B2 (en) | 2016-12-06 | 2019-01-01 | King Fahd University Of Petroleum And Minerals | Method of making an alumina-silicate oxynitride and cubic boron nitride ceramic composite |
CN107162577B (zh) * | 2017-05-22 | 2020-05-22 | 江苏中路交通科学技术有限公司 | 一种应用于塔式太阳能热发电系统的太阳能陶瓷材料 |
CN112456981A (zh) * | 2020-12-10 | 2021-03-09 | 山东鹏程陶瓷新材料科技有限公司 | 一种Al2O3-BN复相陶瓷及其制备方法 |
CN115340389B (zh) * | 2021-05-13 | 2023-01-31 | 中国科学院上海硅酸盐研究所 | 一种多孔β-SiAlON陶瓷及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1142478A (zh) * | 1995-08-04 | 1997-02-12 | 中国科学院上海硅酸盐研究所 | 赛隆复相陶瓷及制备方法 |
CN1332707A (zh) * | 1998-11-19 | 2002-01-23 | 维苏维尤斯·克鲁斯布公司 | 复合材料 |
CN101186506A (zh) * | 2007-12-18 | 2008-05-28 | 东北大学 | 一种利用富硼渣制备氮化硼/赛隆陶瓷复合材料的方法 |
-
2010
- 2010-12-23 CN CN 201010603934 patent/CN102093058B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1142478A (zh) * | 1995-08-04 | 1997-02-12 | 中国科学院上海硅酸盐研究所 | 赛隆复相陶瓷及制备方法 |
CN1332707A (zh) * | 1998-11-19 | 2002-01-23 | 维苏维尤斯·克鲁斯布公司 | 复合材料 |
CN101186506A (zh) * | 2007-12-18 | 2008-05-28 | 东北大学 | 一种利用富硼渣制备氮化硼/赛隆陶瓷复合材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102093058A (zh) | 2011-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102093058B (zh) | 一种α-SiAlON/BN 复合陶瓷材料及其制备方法 | |
CN102173813B (zh) | 一种含硼化锆复相陶瓷材料的制备方法 | |
Heydari et al. | Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites | |
CN101456737B (zh) | 一种碳化硼基复合陶瓷及其制备方法 | |
Wang et al. | Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics | |
CN102115332B (zh) | 一种高强度β-SiAlON陶瓷及其无压烧结制备方法 | |
Zhu et al. | Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction‐bonded Si3N4 | |
CN101269967A (zh) | 一种制备碳化硼陶瓷的方法 | |
Peng et al. | Effects of alumina sources on the microstructure and properties of nitrided Al2O3-C refractories | |
US8937029B2 (en) | High-rigidity ceramic material and production method therefor | |
Yang et al. | Microstructure tailoring of high thermal conductive silicon nitride through addition of nuclei with spark plasma sintering and post-sintering heat treatment | |
Ye et al. | Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites | |
Hongsheng et al. | Fabrication of β-Si3N4 with high thermal conductivity under ultra-high pressure | |
Qin et al. | Silicon nitride ceramics consolidated by oscillatory pressure sintering | |
Lv et al. | Effect of controllable decomposition of MAX phase (Ti3SiC2) on mechanical properties of rapidly sintered polycrystalline diamond by HPHT | |
Ye et al. | Spark plasma sintering of cBN/β-SiAlON composites | |
CN113416076A (zh) | 一种自增强碳化硅陶瓷材料的制备方法 | |
Zhang et al. | Microstructure evolution and high-temperature mechanical properties of porous Si3N4 ceramics prepared by SHS with a small amount of Y2O3 addition | |
Zhou et al. | Microstructure evolution of Si3N4 ceramics with high thermal conductivity by using Y2O3 and MgSiN2 as sintering additives | |
Chen et al. | Synthesis of Si3N4/SiC reaction-bonded SiC refractories: The effects of Si/C molar ratio on microstructure and properties | |
Han et al. | Properties of silicon nitride for aluminum melts prepared by nitrided pressureless sintering | |
CN102659414B (zh) | 一种易烧结AlN多型体-Sialon复相材料及其制备方法 | |
Lee et al. | Densification of reaction bonded silicon nitride with the addition of fine Si powder-effects on the sinterability and mechanical properties | |
Tanaka et al. | Effect of silicon nitride addition on the thermal and mechanical properties of magnesium silicon nitride ceramics | |
CN106977198A (zh) | 热压烧结氧化锆复合陶瓷绝缘件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131023 Termination date: 20191223 |