CN106904977A - 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法 - Google Patents

一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法 Download PDF

Info

Publication number
CN106904977A
CN106904977A CN201710164160.3A CN201710164160A CN106904977A CN 106904977 A CN106904977 A CN 106904977A CN 201710164160 A CN201710164160 A CN 201710164160A CN 106904977 A CN106904977 A CN 106904977A
Authority
CN
China
Prior art keywords
sintering
ceramic material
risen
temperature
heating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710164160.3A
Other languages
English (en)
Other versions
CN106904977B (zh
Inventor
郭伟明
于俊杰
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710164160.3A priority Critical patent/CN106904977B/zh
Publication of CN106904977A publication Critical patent/CN106904977A/zh
Application granted granted Critical
Publication of CN106904977B publication Critical patent/CN106904977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法,其以Si3N4粉为原料,以Al2O3‑Re2O3为烧结助剂,Si3N4、Al2O3和Re2O3分别按质量分数比经混料、干燥后得到Si3N4‑Al2O3‑Re2O3混合粉体;将混合粉体通过热压烧结获得Si3N4陶瓷坯体;将所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4‑Al2O3‑Re2O3混合粉体作为陶瓷材料表层,通过热压烧结获得Si3N4陶瓷材料。利用该方法所制备的陶瓷材料的相对密度高于99%,表层硬度为15~25GPa,断裂韧性为6~10MPa·m1/2,心部硬度为10~20GPa,断裂韧性为8~14MPa·m1/2

Description

一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
技术领域
本发明涉及非氧化物基陶瓷材料领域,具体公开了一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法。
背景技术
Si3N4陶瓷材料因具有高强度、硬度和断裂韧性,良好的热稳定性及抗腐蚀性能而被广泛研究。通过改变配方或显微形貌获得的Si3N4梯度陶瓷材料因具有较好的综合力学性能而广泛应用于切削刀具,轴承球及发动机关键零部件等。
目前,有关Si3N4基梯度陶瓷材料已有很多研究,但大多集中在分层系统设计上,即通过调节层与层之间的配方而获得梯度结构。例如,Thompson等人通过在SiC基体表层引入Si3N4而制备了Si3N4-SiC复合梯度陶瓷材料。Belmonte等人也采用SPS烧结技术通过原位法制备Si3N4渐进式梯度陶瓷材料。
相对于传统烧结的Si3N4梯度陶瓷材料,本发明通过引入两步烧结法制备表层和心部成分相同且界面结合较好的Si3N4陶瓷材料,既不存在因成分差异引起的应力问题,同时也具有表硬心韧的力学性能。
发明内容
本发明所要解决的技术问题在于提供一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法。
为解决上述技术问题,本发明通过如下技术方案。
一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法,包括如下步骤:
(1)以Si3N4粉为基体原料,以Al2O3-Re2O3为烧结助剂,按照按Si3N4:Al2O3-Re2O3的质量分数比为98~80%:2~20%的配比经混料、干燥后,得到Si3N4-Al2O3-Re2O3混合粉体,其中Re=Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu中的任一种,所述的Al2O3-Re2O3中的Al2O3:Re2O3质量分数比为1~99%:99~1%;
(2)将Si3N4-Al2O3-Re2O3混合粉体,通过热压烧结制备Si3N4陶瓷坯体;
(3)将所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4-Al2O3-Re2O3混合粉体作为陶瓷材料表层,通过热压烧结获得表硬心韧Si3N4陶瓷材料。
上述步骤(1)中,Si3N4粉纯度为95~100%,粒径为<10μm;Al2O3粉纯度为99.99%;Re2O3粉纯度为99.99%。
上述步骤(1)中,将Si3N4和Al2O3-Re2O3按所述质量分数比进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合4~24h,干燥后得到Si3N4-Al2O3-Re2O3混合粉体。
上述步骤(1)中,球磨机是辊式球磨机,在辊式球磨机上混合24h。
上述步骤(1)中,Si3N4:Al2O3-Re2O3的质量分数比为90%:10%,其中Re=Y;所述的Al2O3-Re2O3中的Al2O3:Re2O3(Re=Y)质量分数比为50%:50%。
上述步骤(2)中,热压烧结方法为:将混合粉体放入热压炉模具,以15℃/min的升温速率将温度升至1000~1250℃,然后以10℃/min的升温速率将温度升至1300~1700℃,然后以5℃/min的升温速率将温度升至1700~2000℃,并保温0.5~4h,整个烧结过程为1atm的氮气,烧结压力10~40MPa,通过热压烧结获得断裂韧性高的陶瓷坯体。
上述步骤(2)中,热压烧结方法为:将混合粉体放入热压炉模具,以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,然后以5℃/min的升温速率将温度升至1800℃,并保温1.5h,整个烧结过程为1atm的氮气,烧结压力30MPa,通过热压烧结获得断裂韧性高的陶瓷坯体。
上述步骤(3)中,热压烧结方法为:将所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4-Al2O3-Re2O3混合粉体作为陶瓷材料表层,以15℃/min的升温速率将温度升至1000~1250℃,然后以10℃/min的升温速率将温度升至1300~1700℃,并保温0.5~4h,整个烧结过程为1atm的氮气,烧结压力10~40MPa,通过热压烧结获得表层硬度高、心部韧性高的陶瓷坯体。
上述步骤(3)中,热压烧结方法为:以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,并保温1h,整个烧结过程为1atm的氮气,烧结压力30MPa,通过热压烧结获得表层硬度高、心部韧性高的陶瓷坯体。
本发明制备得到的表硬心韧Si3N4陶瓷材料的相对密度高于99%,表层硬度为15~25GPa,断裂韧性为6~10MPa·m1/2,心部硬度为10~20GPa,断裂韧性为8~14MPa·m1/2
优选地,本发明制备得到的表硬心韧Si3N4陶瓷材料的相对密度高于99.5%,表层硬度为19GPa,断裂韧性为8.5MPa·m1/2;心部硬度为16GPa,断裂韧性为11MPa·m1/2
与现有技术相比,本发明的有益效果:(1)本发明通过引入两步热压烧结法实现了表硬心韧Si3N4陶瓷材料的制备;(2)该梯度材料表层和心部成分相同,不存在因成分差异而引起的应力问题;(3)该梯度结构能显著提高Si3N4陶瓷材料的抗疲劳性能,使Si3N4陶瓷具有更广阔的应用领域;(4)本发明制备得到的表硬心韧Si3N4陶瓷材料的相对密度高于99.5%,表层硬度为19GPa,断裂韧性为8.5MPa·m1/2;心部硬度为16GPa,断裂韧性为11MPa·m1/2
附图说明
图1为本发明实施例1的流程图。
图2为本发明实施例1制备的表硬心韧Si3N4陶瓷材料表层和心部的XRD图谱。
图3为本发明实施例1制备的表硬心韧Si3N4陶瓷材料低倍界面SEM图
图4为本发明实施例1制备的表硬心韧Si3N4陶瓷材料高倍界面SEM图
图5为本发明实施例1制备的表硬心韧Si3N4陶瓷材料表层SEM图
图6为本发明实施例1制备的表硬心韧Si3N4陶瓷材料心部SEM图
具体实施方式
下面结合说明书和具体实施例对本发明做进一步详细、完整地说明,但决非限制本发明,本发明也并非仅局限于下述实施例的内容,下述所使用的实验方法若无特殊说明,均为本技术领域现有常规的方法,所使用的配料或材料,如无特殊说明,均为通过商业途径可得到的配料或材料。下面给出实施案例。
实施例1
如图1所示,一种两步烧结法制备表硬心韧Si3N4陶瓷材料,具体方法如下:
(1)以Si3N4粉(粒径<10μm)为基体原料,以Al2O3-Y2O3为烧结助剂。
本实施例中,按照Si3N4:Al2O3:Y2O3的质量分数比为90%:5%:5%的配比进行混料,以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后,得到混合均匀的Si3N4-Al2O3-Y2O3混合粉体。
(2)将Si3N4-Al2O3-Y2O3混合粉体放入热压炉模具,以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,然后以5℃/min的升温速率将温度升至1800℃,并保温1.5h,整个过程烧结气氛为1atm的氮气,烧结压力30MPa,通过热压烧结获得断裂韧性高的Si3N4陶瓷坯体。
(3)将所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4-Al2O3-Re2O3混合粉体作为陶瓷材料表层,以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,整个过程烧结气氛为1atm的氮气,烧结压力30MPa,通过热压烧结获得表层硬度高,心部韧性高的陶瓷坯体。
本发明制备得到的表硬心韧Si3N4陶瓷材料,其相对密度为99.5%,表层硬度为19GPa,断裂韧性为8.5MPa·m1/2,心部硬度为16GPa,断裂韧性为11MPa·m1/2
实施例2
本发明实施例制备表硬心韧Si3N4陶瓷材料的方法,具体如下:心部按照Si3N4粉质量分数为87%、β-Si3N4晶种粉质量分数为3%,Al2O3-Y2O3粉的质量分数为10%的配比进行配料,其中Al2O3:Y2O3质量分数比为50%:50%;表层按照Si3N4粉质量分数为90%,Al2O3-Y2O3粉的质量分数为10%的配比进行配料,其中Al2O3:Y2O3质量分数比为50%:50%,按照实施例1中(1)的方法制备心部和表层混合粉体;再按照实施案例1中(2)的方法以本实施例中的心部粉体为原料制备心部Si3N4陶瓷坯体;然后再按照实施案例1中(3)的方法制备Si3N4陶瓷坯体,其中表层粉体为本实施例中制备的表层混合粉体。
本实施例制备得到的Si3N4陶瓷材料的相对密度为99%,表层硬度为19GPa,断裂韧性为8.5MPa·m1/2,心部硬度为15.5GPa,断裂韧性为12.5MPa·m1/2
实施例3
本发明实施例制备表硬心韧Si3N4陶瓷材料的方法,具体如下:心部按照Si3N4粉质量分数为90%、β-Si3N4晶种粉质量分数为3%,Al2O3-Y2O3粉的质量分数为10%的配比进行配料,其中Al2O3:Y2O3质量分数比为50%:50%;表层按照Si3N4粉质量分数为86%,Al2O3-Y2O3粉的质量分数为10%,TiO2粉的质量分数为4%的配比进行配料,其中Al2O3:Y2O3质量分数比为40%:60%,按照实施例1中(1)的方法制备心部和表层混合粉体;再按照实施案例1中(2)的方法以本实施例中心部粉体为原料制备心部Si3N4陶瓷坯体;然后再按照实施案例1中(3)的方法制备Si3N4陶瓷坯体,其中表层粉体为本实施例中制备的表层混合粉体。
本实施例制备得到的Si3N4陶瓷材料的相对密度为99.5%,表层硬度为20.5GPa,断裂韧性为9MPa·m1/2,心部硬度为15.5GPa,断裂韧性为12MPa·m1/2
实施例4
本发明实施例制备表硬心韧Si3N4陶瓷材料的方法,具体如下:心部按照Si3N4粉质量分数为90%、β-Si3N4晶种粉质量分数为3%,Al2O3-Lu2O3粉的质量分数为10%的配比进行配料,其中Al2O3:Lu2O3质量分数比为50%:50%;表层按照Si3N4粉质量分数为86%,Al2O3-Y2O3粉的质量分数为10%,TiO2粉的质量分数为4%的配比进行配料,其中Al2O3:Y2O3质量分数比为40%:60%,按照实施例1中(1)的方法制备心部和表层混合粉体;再按照实施案例1中(2)的方法以本实施例中心部粉体为原料制备心部Si3N4陶瓷坯体;然后再按照实施案例1中(3)的方法制备Si3N4陶瓷坯体,其中表层粉体为本实施例中制备的表层混合粉体。
本实施例制备得到的Si3N4陶瓷材料的相对密度为99%,表层硬度为20.5GPa,断裂韧性为8.5MPa·m1/2,心部硬度为16.5GPa,断裂韧性为12MPa·m1/2

Claims (10)

1.一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法,其特征在于包括如下步骤:
(1)以Si3N4粉为基体原料,以Al2O3-Re2O3为烧结助剂,按照按Si3N4:Al2O3-Re2O3的质量分数比为98~80%:2~20%的配比经混料、干燥后,得到Si3N4-Al2O3-Re2O3的混合粉体,其中Re=Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu中的任一种,所述的Al2O3-Re2O3中的Al2O3:Re2O3质量分数比为1~99%:99~1%;
(2)将Si3N4-Al2O3-Re2O3混合粉体,通过热压烧结获得Si3N4陶瓷坯体;
(3)将所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4-Al2O3-Re2O3混合粉体作为陶瓷材料表层,通过热压烧结获得表硬心韧Si3N4陶瓷材料。
2.根据权利要求1所述的方法,其特征在于上述步骤(1)中,Si3N4粉纯度为95~100%,粒径为<10μm;Al2O3粉纯度为99.99%;Re2O3粉纯度为99.99%。
3.根据权利要求1所述的方法,其特征在于上述步骤(1)中,将Si3N4和Al2O3-Re2O3按所述质量分数比进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合4~24h,干燥后得到Si3N4-Al2O3-Re2O3混合粉体。
4.根据权利要求3所述的方法,其特征在于上述步骤(1)中,球磨机是辊式球磨机,在辊式球磨机上混合24h。
5.根据权利要求1所述的方法,其特征在于上述步骤(1)中,Si3N4:Al2O3-Re2O3的质量分数比为90%:10%,其中Re=Y;所述的Al2O3-Re2O3中的Al2O3:Re2O3(Re=Y)质量分数比为50%:50%。
6.根据权利要求1所述的方法,其特征在于上述步骤(2)中,热压烧结方法为:将混合粉体放入热压炉模具,以15℃/min的升温速率将温度升至1000~1250℃,然后以10℃/min的升温速率将温度升至1300~1700℃,然后以5℃/min的升温速率将温度升至1700~2000℃,并保温0.5~4h,整个烧结过程为1atm的氮气,烧结压力10~40MPa,通过热压烧结获得断裂韧性高的陶瓷坯体。
7.根据权利要求6所述的方法,其特征在于上述步骤(2)中,热压烧结方法为:将混合粉体放入热压炉模具,以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,然后以5℃/min的升温速率将温度升至1800℃,并保温1.5h,整个烧结过程为1atm的氮气,烧结压力30MPa,通过热压烧结获得断裂韧性高的陶瓷坯体。
8.根据权利要求1所述的方法,其特征在于上述步骤(3)中,热压烧结方法为:所得Si3N4陶瓷坯体经研磨抛光后作为陶瓷材料心部,再在心部坯体上下表面覆盖Si3N4-Al2O3-Re2O3混合粉体作为陶瓷材料表层,以15℃/min的升温速率将温度升至1000~1250℃,然后以10℃/min的升温速率将温度升至1300~1700℃,并保温0.5~4h,整个烧结过程为1atm的氮气,烧结压力10~40MPa,通过热压烧结获得表层硬度高、心部韧性高的陶瓷坯体,其中心部厚度为5~50mm,表层厚度为0.5~10mm。
9.根据权利要求8所述的方法,其特征在于上述步骤(3)中,热压烧结方法为:以15℃/min的升温速率将温度升至1200℃,然后以10℃/min的升温速率将温度升至1600℃,并保温1h,整个烧结过程为1atm的氮气,烧结压力30MPa,通过热压烧结法获得表层硬度高、心部韧性高的陶瓷坯体。
10.根据权利要求1至9任一项所述的方法,其特征在于制备得到的表硬心韧Si3N4陶瓷材料的相对密度高于99%,表层硬度为15~25GPa,断裂韧性为6~10MPa·m1/2;心部硬度为10~20GPa,断裂韧性为8~14MPa·m1/2
CN201710164160.3A 2017-03-20 2017-03-20 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法 Active CN106904977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710164160.3A CN106904977B (zh) 2017-03-20 2017-03-20 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710164160.3A CN106904977B (zh) 2017-03-20 2017-03-20 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN106904977A true CN106904977A (zh) 2017-06-30
CN106904977B CN106904977B (zh) 2020-09-25

Family

ID=59187212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710164160.3A Active CN106904977B (zh) 2017-03-20 2017-03-20 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN106904977B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512913A (zh) * 2017-09-30 2017-12-26 佛山市飞时达新材料科技有限公司 耐高温高强度纳米陶瓷材料的制备方法
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
CN107954722A (zh) * 2017-12-05 2018-04-24 广东工业大学 一种通过自扩散制备Si3N4梯度材料的方法
CN108191434A (zh) * 2018-03-01 2018-06-22 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法
US20190135705A1 (en) * 2017-11-09 2019-05-09 Canon Kabushiki Kaisha Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
WO2019134354A1 (zh) * 2018-01-05 2019-07-11 广东工业大学 一种Si3N4梯度材料及其制备方法
CN111533561A (zh) * 2020-07-06 2020-08-14 佛山华骏特瓷科技有限公司 氮化硅基陶瓷球及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104926317A (zh) * 2015-06-01 2015-09-23 广东工业大学 一种高韧性Si3N4陶瓷的制备方法
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN106083065A (zh) * 2016-06-08 2016-11-09 广东工业大学 一种高性能Si3N4‑TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104926317A (zh) * 2015-06-01 2015-09-23 广东工业大学 一种高韧性Si3N4陶瓷的制备方法
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN106083065A (zh) * 2016-06-08 2016-11-09 广东工业大学 一种高性能Si3N4‑TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512913A (zh) * 2017-09-30 2017-12-26 佛山市飞时达新材料科技有限公司 耐高温高强度纳米陶瓷材料的制备方法
CN107512913B (zh) * 2017-09-30 2020-06-05 桐乡清锋科技有限公司 耐高温高强度纳米陶瓷材料的制备方法
CN107663093A (zh) * 2017-10-26 2018-02-06 广东工业大学 一种Si3N4基复合陶瓷及其制备方法
US20190135705A1 (en) * 2017-11-09 2019-05-09 Canon Kabushiki Kaisha Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
US10759712B2 (en) * 2017-11-09 2020-09-01 Canon Kabushiki Kaisha Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
US11440850B2 (en) 2017-11-09 2022-09-13 Canon Kabushiki Kaisha Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
CN107954722A (zh) * 2017-12-05 2018-04-24 广东工业大学 一种通过自扩散制备Si3N4梯度材料的方法
CN107954722B (zh) * 2017-12-05 2021-05-04 广东工业大学 一种通过自扩散制备Si3N4梯度材料的方法
WO2019134354A1 (zh) * 2018-01-05 2019-07-11 广东工业大学 一种Si3N4梯度材料及其制备方法
CN108191434A (zh) * 2018-03-01 2018-06-22 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法
CN108191434B (zh) * 2018-03-01 2020-09-18 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法
CN111533561A (zh) * 2020-07-06 2020-08-14 佛山华骏特瓷科技有限公司 氮化硅基陶瓷球及其制备方法和应用

Also Published As

Publication number Publication date
CN106904977B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN106904977A (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN102180674B (zh) 一种反应烧结SiC陶瓷的制备方法
CN105622107B (zh) 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN110818426A (zh) 一种碳材料表面HfB2-TaSi2-SiC抗氧化涂层的制备方法
CN106083065B (zh) 一种高性能Si3N4-TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN101648809A (zh) 氮化硼基复合陶瓷透波材料及其制备方法
CN109160816A (zh) 一种对称且连续变化的表硬心韧氮化硅梯度陶瓷及其制备方法和应用
CN110903091A (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
Duan et al. Effect of solid contents on the mechanical properties of SiC–10 wt.% AlN ceramic composites prepared by gelcasting
CN105254307B (zh) 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法
Yu et al. Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing
CN109761622A (zh) 一种基于外场辅助技术的氮化硅基梯度复合材料及其制备方法
CN104261822B (zh) 一种氧化锆复合陶瓷及其制备方法
CN112062574B (zh) 一种高性能纳米碳化硅陶瓷及其制备方法和应用
Cao et al. Microstructure, mechanical, and thermal properties of B4C-TiB2-SiC composites prepared by reactive hot-pressing
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN105296779A (zh) 一种钛/氧化铝界面反应控制和优化的方法
CN102992776B (zh) 一种h-BN/VC可加工陶瓷的制备方法
CN107954722B (zh) 一种通过自扩散制备Si3N4梯度材料的方法
CN103011821B (zh) 一种h-BN/TiC可加工陶瓷的制备方法
CN105601283A (zh) 一种导电网络结构Si3N4陶瓷的制备方法
CN103011826B (zh) 一种h-BN/ZrB2可加工陶瓷的制备方法
CN103011820B (zh) 一种h-BN/NbC可加工陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210916

Address after: 130000 building F2, phase 2-1, Beihu science and Technology Industrial Park, Beihu science and Technology Development Zone, Changchun City, Jilin Province

Patentee after: JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 510000 Panyu District, Guangzhou, Guangdong, Panyu District, No. 100, West Ring Road, outside the city.

Patentee before: GUANGDONG University OF TECHNOLOGY