CN105601283A - 一种导电网络结构Si3N4陶瓷的制备方法 - Google Patents

一种导电网络结构Si3N4陶瓷的制备方法 Download PDF

Info

Publication number
CN105601283A
CN105601283A CN201610062136.4A CN201610062136A CN105601283A CN 105601283 A CN105601283 A CN 105601283A CN 201610062136 A CN201610062136 A CN 201610062136A CN 105601283 A CN105601283 A CN 105601283A
Authority
CN
China
Prior art keywords
preparation
sintering
milling
insulation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610062136.4A
Other languages
English (en)
Other versions
CN105601283B (zh
Inventor
郭伟明
吴利翔
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610062136.4A priority Critical patent/CN105601283B/zh
Publication of CN105601283A publication Critical patent/CN105601283A/zh
Application granted granted Critical
Publication of CN105601283B publication Critical patent/CN105601283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种导电网络结构Si3N4陶瓷的制备方法,包括下列步骤:1)以Si粉为原料,以Al2O3-Re2O3为烧结助剂,经混料、球磨、干燥后,得到Si-Al2O3-Re2O3混合粉体;其中Re为稀土元素;2)将步骤1)得到的Si-Al2O3-Re2O3混合粉体定型,在氮气氛下进行预烧,将预烧后的坯体在MO2溶胶中浸泡0.5~24h,烘干后,在氮气氛下进行二次烧结,制备得到具有导电网络结构Si3N4陶瓷。本发明所得到的Si3N4陶瓷相对密度大于95%,电导率达到1000~3000S?m-1,硬度为8~20GPa,断裂韧性为6~12MPa?m1/2,抗弯强度为800~1200MPa。本发明的Si3N4陶瓷可以应用于电火花加工成任意形状的工件,尤其是陶瓷涡轮叶片这种形状复杂的工件,这是目前市面上普通Si3N4陶瓷所不具备。

Description

一种导电网络结构Si3N4陶瓷的制备方法
技术领域
本发明具体涉及一种导电网络结构Si3N4陶瓷的制备方法。
背景技术
Si3N4陶瓷具有耐磨、耐高温等优异性能,广泛应用于高速切削刀具以及发动机关键零部件等。通常Si3N4陶瓷以高纯Si3N4粉体为原料通过热压烧结制备,成本较高,而且不能制备复杂形状的样品。
为了降低成本、制备复杂形状,出现了以Si粉为原料,通过反应气压烧结制备Si3N4陶瓷。一方面,将粉体制备和陶瓷致密化合成一步,显著降低成本;另一方面,通过气压烧结,可实现大批量、复杂形状的Si3N4陶瓷的制备。然而,由于Si粉氮化的速度比较缓慢,并且氮化后形成的Si3N4致密化较困难。因此,实际上Si粉反应气压烧结制备Si3N4陶瓷的工艺条件非常苛刻。例如,Zhu等人以Si粉为原料,通过反应气压烧结制备Si3N4陶瓷,首先Si粉在1400℃保温8h完成氮化,然后形成的Si3N4粉体继续升温到1900℃在10atm氮气下保温12h才能完成致密化(Xinwen Zhu, You Zhou, Kiyoshi Hirao, et al. Processing andThermal Conductivity of Sintered Reaction-Bonded Silicon Nitride. I: Effectof Si Powder Characteristics[J]. Journal of the American Ceramic Society,2006, 89(11):3331–3339.)。Si粉反应气压烧结制备Si3N4陶瓷主要存在两大问题:(1)Si粉氮化时间较长,需要在1400℃保温8h;(2)Si3N4致密化条件过于苛刻,氮气压力较高(10atm)、烧结温度较高(1900℃)、保温时间较长(12h)。如此长周期并且苛刻的制备工艺部分抵消了以Si粉为原料带来的低成本优势。此外,Si3N4陶瓷因为硬度高,脆性大,因此面临难加工问题,特别是不能用于电火花加工成形状复杂的工件,因而限制了其在工业上的应用。
如果在Si3N4陶瓷加入导电网络结构,传统的方法是直接混入导电相,如TiN或TiCN等,存在如下问题:1)需要混入量较多才能达到良好导电效果,通常需要40%左右,现有技术很难在引入较少导电相的情况下形成网络状分布;2)加入过多的导电相不利于陶瓷的烧结致密,陶瓷易发生团聚,导致分布不均匀。
发明内容
本发明的目的在于提供一种导电网络结构Si3N4陶瓷的制备方法。
本发明所采取的技术方案是:
一种导电网络结构Si3N4陶瓷的制备方法,包括下列步骤:
1)以Si粉为原料,以Al2O3-Re2O3为烧结助剂,经混料、球磨、干燥后,得到Si-Al2O3-Re2O3混合粉体;其中Re为稀土元素;
2)将步骤1)得到的Si-Al2O3-Re2O3混合粉体定型,在氮气氛下进行预烧,将预烧后的坯体在MO2溶胶中浸泡0.5~24h,烘干后,在氮气氛下进行二次烧结,制备得到具有导电网络结构Si3N4陶瓷。
优选的,稀土元素Re包括Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,Ho, Er, Tm, Yb, Lu。
更优选的,稀土元素Re为Y, Yb, Gd, Ce, Eu。
更优选的,稀土元素Re为Y。
优选的,Si粉纯度为95%~100%,粒径为<10μm;MO2纯度为98~100%,粒径为<100nm;Al2O3粉纯度为95%~100%,Re2O3纯度为95%~100%。
优选的,步骤1)中,所加入组分按照质量百分比计,包括60%~99%的Si和1%~40%的Al2O3-Re2O3
优选的,步骤1)中,Al2O3-Re2O3中的Al2O3和Re2O3质量百分比为(1%~99%):(99%~1%)。
优选的,步骤1)中,所加入组分按照质量百分比计,包括90%的Si和10%的Al2O3-Y2O3,其中Al2O3-Y2O3中的Al2O3和Y2O3质量百分比为55%:45%。
优选的,步骤1)中球磨为湿磨,球料比为(1:1)~(4:1),球磨时间为4~18h。
优选的,步骤1)中球磨为湿磨,溶剂为乙醇,球磨介质为Si3N4,球磨时间为6~12h。
优选的,球磨时溶剂的量加到球磨罐3/4的位置。
优选的,步骤2)中所述的预烧温度为1100~1300℃,保温0.5~4h。
优选的,步骤2)中所述的预烧温度为1200℃,保温2h。
优选的,步骤2)中MO2溶胶为TiO2或 ZrO2或 HfO2溶胶,浓度为1~5 mol/L。
更优选的,步骤2)中MO2溶胶为TiO2或 ZrO2或 HfO2的溶胶,浓度为1.6mol/L。
在上述条件下,包括MO2溶胶浓度为1~5mol/L,浸渍溶胶时间为0.5~24h,引入导电相的质量分数为2%~10%。
优选的,上述MO2溶胶的制备方法为:将适量含TiO2或 ZrO2或 HfO2的纳米增强相溶液和环己醇利用强力电动搅拌器(1000转/分钟)搅拌得到溶剂A;再将适量CTAB溶解于去离子水中,之后加入适量环己醇得到溶剂B;将溶剂B一滴滴加入溶剂A得到溶剂C;将溶剂C经强力电动搅拌器(1000转/分钟)搅拌6h后调节pH值至8.3,得到所需MO2溶胶。
优选的,步骤2)中二次烧结是以20℃/min的升温速率将温度升至1350~1600℃并保温0.5~4h,然后以10℃/min的升温速率将温度升至1600~1900℃,并保温0.5~4h。
优选的,步骤2)中二次烧结法是以20℃/min的升温速度将温度升到1400℃保温2h,然后以10℃/min的升温速度将温度升到1800℃保温2h。
优选的,步骤1)中二次烧结是在氮气氛下采用无压烧结或加压烧结。
优选的,气氛烧结时为了防止石墨污染,使用氮化硼坩埚。
本发明的有益效果是:
在本发明中,以MO2作为Si粉氮化的催化剂,显著加快了氮化速度,在1400℃氮化时间从8h显著降低到1~2h;在低于1300℃下预烧使块体在避免出现熔Si现象的同时保持足够的气孔率和强度;此外,Si3N4致密化条件也变得非常缓和,导电相在Si3N4陶瓷均匀分布而且起到第二相增强的效果。
现有技术中,当加入足够多的导电相时,陶瓷很难烧结致密,而且易发生团聚,而本发明通过将RBSN浸泡在MO2溶胶中,在引入较少导电相(2%~10%)的情况下,实现了MO2在RBSN中均匀分布,在Al2O3-Re2O3烧结助剂的作用下快速制备具有导电网络结构Si3N4陶瓷。此外,将预烧后的坯体浸渍溶胶时,可通过控制浸渍的时间来控制渗入MO2的量;以及通过控制溶胶的浓度来控制引入的导电相。本发明得到的导电网络结构Si3N4陶瓷,因导电相均匀分布在Si3N4陶瓷内部,而且引入的导电相不仅具有颗粒增强效果,还可以提高Si3N4陶瓷的耐磨性,导电相的网络状分布还可以使得Si3N4陶瓷应用于电火花加工成任意形状的工件,尤其是陶瓷涡轮叶片这种形状复杂的工件,这是目前市面上普通Si3N4陶瓷所不具备。
本发明所得到的Si3N4陶瓷相对密度大于95%,电导率达到1000~3000 S·m-1,硬度为8~20GPa,断裂韧性为6~12MPa m1/2,抗弯强度为800~1200MPa。
具体实施方式
一种导电网络结构Si3N4陶瓷的制备方法,包括下列步骤:
1)以Si粉为原料,以Al2O3-Re2O3为烧结助剂,经混料、球磨、干燥后,得到Si-Al2O3-Re2O3混合粉体;其中Re为稀土元素;
2)将步骤1)得到的Si-Al2O3-Re2O3混合粉体定型,在氮气氛下进行预烧,将预烧后的坯体在MO2溶胶中浸泡0.5~24h,烘干后,在氮气氛下进行二次烧结,制备得到具有导电网络结构Si3N4陶瓷。
优选的,稀土元素Re包括Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,Ho, Er, Tm, Yb, Lu。
更优选的,稀土元素Re为Y, Yb, Gd, Ce, Eu。
更优选的,稀土元素Re为Y。
优选的,Si粉纯度为95%~100%,粒径为<10μm;MO2纯度为98~100%,粒径为<100nm;Al2O3粉纯度为95%~100%,Re2O3纯度为95%~100%。
优选的,步骤1)中,所加入组分按照质量百分比计,包括60%~99%的Si和1%~40%的Al2O3-Re2O3
优选的,步骤1)中,Al2O3-Re2O3中的Al2O3和Re2O3质量百分比为(1%~99%):(99%~1%)。
优选的,步骤1)中,所加入组分按照质量百分比计,包括90%的Si和10%的Al2O3-Y2O3,其中Al2O3-Y2O3中的Al2O3和Y2O3质量百分比为55%:45%。
优选的,步骤1)中球磨为湿磨,球料比为(1:1)~(4:1),球磨时间为4~18h。
优选的,步骤1)中球磨为湿磨,溶剂为乙醇,球磨介质为Si3N4,球磨时间为6~12h。
优选的,球磨时溶剂的量加到球磨罐3/4的位置。
优选的,步骤2)中所述的预烧温度为1100~1300℃,保温0.5~4h。
优选的,步骤2)中所述的预烧温度为1200℃,保温2h。
优选的,步骤2)中MO2溶胶为TiO2或 ZrO2或 HfO2溶胶,浓度为1~5 mol/L。
更优选的,步骤2)中MO2溶胶为TiO2或 ZrO2或 HfO2的溶胶,浓度为1.6mol/L。
在上述条件下,包括MO2溶胶浓度为1~5mol/L,浸渍溶胶时间为0.5~24h,引入导电相的质量分数为2%~10%。
优选的,上述MO2溶胶的制备方法为:将适量含TiO2或 ZrO2或 HfO2的纳米增强相溶液和环己醇利用强力电动搅拌器(1000转/分钟)搅拌得到溶剂A;再将适量CTAB溶解于去离子水中,之后加入适量环己醇得到溶剂B;将溶剂B一滴滴加入溶剂A得到溶剂C;将溶剂C经强力电动搅拌器(1000转/分钟)搅拌6h后调节pH值至8.3,得到所需MO2溶胶。
优选的,步骤2)中二次烧结是以20℃/min的升温速率将温度升至1350~1600℃并保温0.5~4h,然后以10℃/min的升温速率将温度升至1600~1900℃,并保温0.5~4h。
优选的,步骤2)中二次烧结法是以20℃/min的升温速度将温度升到1400℃保温2h,然后以10℃/min的升温速度将温度升到1800℃保温2h。
优选的,步骤1)中二次烧结是在氮气氛下采用无压烧结或加压烧结。
优选的,气氛烧结时为了防止石墨污染,使用氮化硼坩埚。
以下结合实施例进一步说明本发明,但不限于此。
实施例1
一种导电网络结构Si3N4陶瓷的制备方法,包括下列步骤:
本发明以Si粉(粒径<10μm)为基体原料,以MO2粉(粒径为<100nm)、Al2O3粉(纯度为99.9%)和Y2O3粉(纯度为99.9%)为添加剂。
按照下述质量百分比,准确称取各组分原料:包括90%的Si粉、10%的Al2O3-Y2O3(其中Al2O3:Y2O3的质量百分比为55%:45%),以乙醇为溶剂,以Si3N4球为球磨介质,在行星式球磨机上混合8h,经混料、干燥后,得到混合均匀的Si-Al2O3-Y2O3混合粉体。将Si-Al2O3-Re2O3混合粉体放入模具中,通过干压成型获得坯体后,以20℃/min升温到1200℃预烧,保温2h,整个过程烧结气氛为氮气。将经过预烧的坯体在5mol/L的ZrO2的溶胶中浸泡2h,烘干后,将胚体放入氮化硼坩埚进行二次烧结,以20℃/min的升温速度将温度升到1400℃保温2h,然后以10℃/min的升温速度将温度升到1800℃保温2h,整个过程烧结气氛为氮气,制备得到具有导电网络结构Si3N4陶瓷。
本实施例制备得到的Si3N4陶瓷的相对密度达到98%,引入ZrN的质量分数为2%,电导率达到2000 S·m-1,可应用电火花加工将其加工成形状复杂的工件,硬度为15GPa,断裂韧性为8MPa m1/2,弯曲强度为800MPa。
实施例2
按照下述质量百分比,准确称取各组分原料:包括80%的Si粉、20%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在3mol/L的TiO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1375℃保温4h,然后升温至1900℃保温2h,加压30MPa的热压烧结。制备得到的Si3N4陶瓷的相对密度为99%,引入TiN的质量分数为5%,电导率达到2000 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为16GPa,断裂韧性为10MPam1/2,弯曲强度为1000Mpa。
实施例3
按照下述质量百分比,准确称取各组分原料:包括80%的Si粉、20%的Al2O3-Eu2O3(其中Al2O3:Eu2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1300℃保温2h预烧后,将经过预烧的坯体在4mol/L的HfO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1350℃保温4h,然后升温至1800℃保温2h,10MPa的气压烧结。制备所得陶瓷材料的相对密度为99%,引入HfN的质量分数为3%,电导率达到1500 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为16GPa,断裂韧性为9MPam1/2,弯曲强度为900Mpa。
实施例4
按照下述质量百分比,准确称取各组分原料:包括95%的Si粉、5%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为70%:30%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在5mol/L的ZrO2的溶胶中浸泡4h,二次烧结工艺为首先升温至1600℃保温2h,然后升温至1900℃保温2h,无压烧结。制备所得陶瓷材料的相对密度为99%,引入ZrN的质量分数为5%,电导率达到2000 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为16GPa,断裂韧性为10MPam1/2,弯曲强度为1000Mpa。
实施例5
按照下述质量百分比,准确称取各组分原料:包括75%的Si粉、25%的Al2O3-Ce2O3(其中Al2O3:Ce2O3的质量百分比为55%:45%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在5mol/L的TiO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1375℃保温4h,然后升温至1900℃保温2h,加压30MPa的热压烧结。制备所得陶瓷材料的相对密度为99%,引入TiN的质量分数为8%,电导率达到2500 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为17GPa,断裂韧性为10MPam1/2,弯曲强度为1000Mpa。
实施例6
按照下述质量百分比,准确称取各组分原料:包括90%的Si粉、10%的Al2O3-Y2O3(其中Al2O3:Y2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在2.5mol/L的ZrO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1500℃保温4h,然后升温至1900℃保温2h的无压烧结。制备所得陶瓷材料的相对密度为99%,引入ZrN的质量分数为5%,电导率达到2000 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为15GPa,断裂韧性为10MPa m1/2,弯曲强度为1500Mpa。
实施例7
按照下述质量百分比,准确称取各组分原料:包括75%的Si粉、25%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在3.5mol/L的ZrO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1375℃保温4h,然后升温至1850℃保温2h,加压30MPa的热压烧结。制备所得陶瓷材料的相对密度为99%,引入ZrN的质量分数为4%,电导率达到2000 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为18GPa,断裂韧性为11MPa m1/2,弯曲强度为1200Mpa。
实施例8
按照下述质量百分比,准确称取各组分原料:包括80%的Si粉、20%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体在2mol/L的TiO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1400℃保温4h,然后升温至1900℃保温2h,加压30MPa的热压烧结。制备所得陶瓷材料的相对密度为99%,引入TiN的质量分数为4%,电导率达到1800 S·m-1,可应用电火花加工将其加工成形状复杂的工件,材料的硬度为16GPa,断裂韧性为10MPam1/2,弯曲强度为1000Mpa。
对比例1
按照下述质量百分比,准确称取各组分原料:包括80%的Si粉、20%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1400℃保温2h预烧后,将经过预烧的坯体在5mol/L的TiO2的溶胶中浸泡4h,二次烧结工艺为氮气氛下首先升温至1400℃保温4h,然后升温至1900℃保温2h,加压30MPa的热压烧结。引入TiN的质量分数只有0.1%,样品导电性很微弱,无法满足电火花加工的导电性要求。
对比例2
按照下述质量百分比,准确称取各组分原料:包括80%的Si粉、20%的Al2O3-Yb2O3(其中Al2O3:Yb2O3的质量百分比为60%:40%),按照实施例1方法在氮气氛下1100℃保温2h预烧后,将经过预烧的坯体无浸渍MO2溶胶处理,二次烧结工艺为氮气氛下首先升温至1400℃保温4h,然后升温至1900℃保温2h,加压30MPa的热压烧结。样品无导电性,无法使用电火花加工,限制了其可加工性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种导电网络结构Si3N4陶瓷的制备方法,其特征在于,包括下列步骤:
1)以Si粉为原料,以Al2O3-Re2O3为烧结助剂,经混料、球磨、干燥后,得到Si-Al2O3-Re2O3混合粉体;其中Re为稀土元素;
2)将步骤1)得到的Si-Al2O3-Re2O3混合粉体定型,在氮气氛下进行预烧,将预烧后的坯体在MO2溶胶中浸泡0.5~24h,烘干后,在氮气氛下进行二次烧结,制备得到具有导电网络结构Si3N4陶瓷。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,所加入组分按照质量百分比计,包括60%~99%的Si和1%~40%的Al2O3-Re2O3
3.根据权利要求1或2所述的制备方法,其特征在于:步骤1)中,Al2O3-Re2O3中的Al2O3和Re2O3质量百分比为(1%~99%):(99%~1%)。
4.根据权利要求1所述的制备方法,其特征在于:步骤1)中,所加入组分按照质量百分比计,包括90%的Si和10%的Al2O3-Y2O3,其中Al2O3-Y2O3中的Al2O3和Y2O3质量百分比为55%:45%。
5.根据权利要求1所述的制备方法,其特征在于:步骤1)中球磨为湿磨,球料比为(1:1)~(4:1),球磨时间为4~18h。
6.根据权利要求1所述的制备方法,其特征在于:步骤1)中球磨为湿磨,溶剂为乙醇,球磨介质为Si3N4,球磨时间为6~12h。
7.根据权利要求1所述的制备方法,其特征在于:步骤2)中所述的预烧温度为1100~1300℃,保温0.5~4h。
8.根据权利要求1所述的制备方法,其特征在于:步骤2)中所述的预烧温度为1200℃,保温2h。
9.根据权利要求1所述的制备方法,其特征在于:步骤2)中MO2溶胶为TiO2或 ZrO2或HfO2溶胶,浓度为1~5 mol/L。
10.根据权利要求1所述的方法,其特征在于:步骤2)中二次烧结是以20℃/min的升温速率将温度升至1350~1600℃并保温0.5~4h,然后以10℃/min的升温速率将温度升至1600~1900℃,并保温0.5~4h。
CN201610062136.4A 2016-01-29 2016-01-29 一种导电网络结构Si3N4陶瓷的制备方法 Active CN105601283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610062136.4A CN105601283B (zh) 2016-01-29 2016-01-29 一种导电网络结构Si3N4陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610062136.4A CN105601283B (zh) 2016-01-29 2016-01-29 一种导电网络结构Si3N4陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN105601283A true CN105601283A (zh) 2016-05-25
CN105601283B CN105601283B (zh) 2018-06-26

Family

ID=55981715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610062136.4A Active CN105601283B (zh) 2016-01-29 2016-01-29 一种导电网络结构Si3N4陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN105601283B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707410A (zh) * 2018-06-28 2018-10-26 芜湖市棠华建材科技有限公司 家具用漆
CN111960838A (zh) * 2020-08-31 2020-11-20 武汉科技大学 光伏级硅冶炼用氮化硅骨架增强石英基陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887796A (zh) * 2006-07-28 2007-01-03 东北大学 利用铁矿石尾矿制备Si3N4/TiN复相导电陶瓷材料的方法
CN104355626A (zh) * 2014-07-04 2015-02-18 广东工业大学 一种低温制备导电Si3N4-ZrB2复相陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887796A (zh) * 2006-07-28 2007-01-03 东北大学 利用铁矿石尾矿制备Si3N4/TiN复相导电陶瓷材料的方法
CN104355626A (zh) * 2014-07-04 2015-02-18 广东工业大学 一种低温制备导电Si3N4-ZrB2复相陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707410A (zh) * 2018-06-28 2018-10-26 芜湖市棠华建材科技有限公司 家具用漆
CN111960838A (zh) * 2020-08-31 2020-11-20 武汉科技大学 光伏级硅冶炼用氮化硅骨架增强石英基陶瓷及其制备方法
CN111960838B (zh) * 2020-08-31 2022-01-14 武汉科技大学 光伏级硅冶炼用氮化硅骨架增强石英基陶瓷及其制备方法

Also Published As

Publication number Publication date
CN105601283B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN109516811A (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN102115332B (zh) 一种高强度β-SiAlON陶瓷及其无压烧结制备方法
CN108516820B (zh) 一种氧化铟锡靶材的短流程烧结工艺
CN112851365B (zh) 一种氮化硅基复相导电陶瓷的制备方法
CN109053206A (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN109879669A (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
JP5930317B2 (ja) 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
JP2951771B2 (ja) 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
CN106904977A (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN107963890B (zh) 一种氮化钛多孔导电陶瓷的制备方法
JPH10338571A (ja) 反応結合ムライト含有セラミックス
CN105254307B (zh) 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法
WO2015019992A1 (ja) 炭化ホウ素セラミックス及びその作製法
CN105601283A (zh) 一种导电网络结构Si3N4陶瓷的制备方法
CN109180186A (zh) 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法
CN105777130B (zh) 反应烧结碳化硼陶瓷复合材料的凝胶注模成型制备方法
CN105819867B (zh) 一种可电火花加工和机械加工的Si3N4-ZrSi2-BN复相陶瓷材料及制备方法
CN104261822A (zh) 一种氧化锆复合陶瓷及其制备方法
CN104609864B (zh) 一种利用氮化硅铁粉末制备块体陶瓷材料的方法
CN102976755B (zh) Ti(C,N)陶瓷的激光熔覆制备工艺
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
JP3007730B2 (ja) 希土類酸化物−アルミナ焼結体およびその製造方法
CN109970454A (zh) 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷
CN105948783B (zh) 一种Si2N2O-Si3N4-TiN多孔陶瓷的制备方法
CN112759401A (zh) 一种利用微波烧结制备高熵硼陶瓷表面材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210918

Address after: 130000 building F2, phase 2-1, Beihu science and Technology Industrial Park, Beihu science and Technology Development Zone, Changchun City, Jilin Province

Patentee after: JILIN CHANGYU TETAO NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 510006 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong 729

Patentee before: GUANGDONG University OF TECHNOLOGY

TR01 Transfer of patent right