WO2019134354A1 - 一种Si3N4梯度材料及其制备方法 - Google Patents

一种Si3N4梯度材料及其制备方法 Download PDF

Info

Publication number
WO2019134354A1
WO2019134354A1 PCT/CN2018/093666 CN2018093666W WO2019134354A1 WO 2019134354 A1 WO2019134354 A1 WO 2019134354A1 CN 2018093666 W CN2018093666 W CN 2018093666W WO 2019134354 A1 WO2019134354 A1 WO 2019134354A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mixed powder
sintering aid
sintering
tio
Prior art date
Application number
PCT/CN2018/093666
Other languages
English (en)
French (fr)
Inventor
郭伟明
吴利翔
牛文彬
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2019134354A1 publication Critical patent/WO2019134354A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to the technical field of Si 3 N 4 ceramic materials, and more particularly to a Si 3 N 4 gradient material and a preparation method thereof.
  • Si 3 N 4 ceramic material As a structural material, Si 3 N 4 ceramic material has excellent mechanical properties, such as high hardness, high strength, wear resistance, high temperature resistance, etc. It can be widely used in bearings, high-speed cutting tools, armor, etc. Under the harsh conditions of high temperature and high-speed cutting, it is still easy to wear and has a limited life. Therefore, it is necessary to further strengthen the surface and enhance the reliability of its use.
  • gradient materials can be prepared or PVD or CVD technology can be used for its performance. Make further improvements.
  • PVD and CVD technologies there is often a defect that the coating is too thin and the protection effect is not good.
  • PVD and CVD technologies also have the problem of insufficient bonding between the substrate and the coating, and PVD and CVD are applied to the non-conductive materials.
  • the preparation of Si 3 N 4 gradient material is mainly achieved by sintering raw materials and even materials with different compositions, which have different properties of surface layer and hardness; however, due to differences in composition and structure between surface layer and core material Therefore, the bonding strength between the two is weak, and some even have the separation of the surface layer and the core during the sintering process, which greatly weakens the application of the Si 3 N 4 gradient material.
  • the object of the present invention is to provide a Si 3 N 4 gradient material and a preparation method thereof, and the Si 3 N 4 gradient material obtained by the preparation method provided by the invention has strong binding force and improved mechanical properties. .
  • the invention provides a preparation method of a Si 3 N 4 gradient material, comprising the following steps:
  • the mixed powder A includes Si powder, TiO 2 powder, and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of 1 or less;
  • the mixed powder B includes Si, TiO 2 and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of more than 1;
  • the Re is selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu;
  • step b) The body obtained in step b) is nitrided and sintered to obtain a Si 3 N 4 gradient material.
  • the purity of the Si powder in the step a) is 95% or more, and the particle diameter is 100 ⁇ m or less; the purity of the TiO 2 powder is 98% or more, and the particle diameter is 10 ⁇ m or less.
  • the mass fraction ratio of the Si powder and the TiO 2 powder in the mixed powder A in the step a) is (60% to 99%): (1% to 40%), Si 3 N 4 and the sintering aid
  • the molar ratio is (80% to 95%): (5% to 20%);
  • the mass fraction ratio of the Si powder and the TiO 2 powder in the mixed powder B is (60% to 99%): (1% to 40%), and the molar ratio of the Si 3 N 4 to the sintering aid is (80% ⁇ 95%): (5% to 20%).
  • the sintering aid in the mixed powder A in the step a) is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of 1:1;
  • the sintering aid in the mixed powder B is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of (2 to 3):1.
  • the multilayer structure in the step b) is a three-layer structure; the three-layer structure is composed according to the arrangement of the mixed powder B-mixed powder A-mixed powder B.
  • the press forming method in the step b) is cold isostatic pressing; the cold isostatic pressing has a pressure of 100 MPa to 300 MPa and a time of 1 min to 10 min.
  • the temperature of nitriding in step c) is from 1250 ° C to 1600 ° C for a period of from 0.5 h to 24 h.
  • the sintering method in the step c) is pressureless sintering, gas pressure sintering of 10 MPa to 50 MPa, or SPS sintering of 10 MPa to 50 MPa.
  • the sintering temperature in the step c) is 1600 ° C to 2000 ° C, and the time is 0.5 h to 24 h.
  • the invention also provides a Si 3 N 4 gradient material prepared by the preparation method described in the above technical solution.
  • the invention provides a preparation method of a Si 3 N 4 gradient material, comprising the steps of: a) providing a mixed powder A and a mixed powder B; the mixed powder A comprises Si powder, TiO 2 powder and sintering aid Wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of less than or equal to 1; the mixed powder B includes Si, TiO 2 and a sintering aid, wherein the sintering aid has a molar ratio greater than 1 Composition of Al 2 O 3 and Re 2 O 3 ; the Re is selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu ; b) alternately laying the mixed powder A and the mixed powder B to form a multilayer structure, and press-forming to obtain a green body; c) nitriding the body obtained in the step b) and sintering
  • the invention realizes the preparation of the Si 3 N 4 gradient material by phase transformation, and specifically realizes the ⁇ -nitrogen in the nitriding stage by controlling the ratio of Al 2 O 3 and Re 2 O 3 in the sintering aid.
  • the control of silicon/ ⁇ -silicon nitride results in a strong bonding force of the gradient layer, so that the obtained Si 3 N 4 gradient material has a strong bonding force and the mechanical properties are improved.
  • the preparation method provided by the invention can control the thickness of the gradient layer according to requirements; the process is simple and the cost is low.
  • Example 1 is an XRD pattern of a surface layer of a material after nitriding in Example 1 of the present invention
  • Example 3 is a cross-sectional SEM photograph of a surface layer of a Si 3 N 4 gradient material prepared in Example 1 of the present invention
  • Example 4 is a SEM photograph of a polished corrosion surface of a surface layer of a Si 3 N 4 gradient material prepared in Example 1 of the present invention
  • Example 5 is a cross-sectional SEM photograph of an inner intermediate layer of a Si 3 N 4 gradient material prepared in Example 1 of the present invention
  • Example 6 is a SEM photograph of a polished etching surface of an inner intermediate layer of a Si 3 N 4 gradient material prepared in Example 1 of the present invention.
  • the invention provides a preparation method of a Si 3 N 4 gradient material, comprising the following steps:
  • the mixed powder A includes Si powder, TiO 2 powder, and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of 1 or less;
  • the mixed powder B includes Si, TiO 2 and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of more than 1;
  • the Re is selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu;
  • step b) The body obtained in step b) is nitrided and sintered to obtain a Si 3 N 4 gradient material.
  • the present invention first provides a mixed powder A and a mixed powder B.
  • the mixed powder A includes Si powder, TiO 2 powder, and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of 1 or less, preferably by a molar ratio. It is composed of 1:1 Al 2 O 3 and Re 2 O 3 ;
  • the mixed powder B includes Si, TiO 2 and a sintering aid, wherein the sintering aid is composed of Al 2 O 3 and Re 2 having a molar ratio of more than 1.
  • the O 3 composition is preferably composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of (2 to 3):1.
  • the purity of the Si powder is preferably 95% or more, more preferably 95% to 100%; and the particle diameter of the Si powder is preferably 100 ⁇ m or less, more preferably ⁇ 100 ⁇ m.
  • the purity of the TiO 2 powder is preferably 98% or more, more preferably 98% to 100%; and the particle diameter of the TiO 2 powder is preferably 10 ⁇ m or less, more preferably ⁇ 10 ⁇ m.
  • the source of the Si powder and the TiO 2 powder of the present invention is not particularly limited, and a commercially available product well known to those skilled in the art may be used.
  • the mass fraction ratio of the Si powder and the TiO 2 powder in the mixed powder A is preferably (60% to 99%): (1% to 40%), more preferably (85% to 95%). : (5% to 15%).
  • the mass fraction ratio of the Si powder and the TiO 2 powder in the mixed powder B is preferably (60% to 99%): (1% to 40%), more preferably (85% to 95%). : (5% to 15%).
  • the mass fraction ratios of the Si powder and the TiO 2 powder in the mixed powder A and the mixed powder B are the same.
  • the sintering aid is composed of Al 2 O 3 and Re 2 O 3 ; wherein the Re is selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb Dy, Ho, Er, Tm, Yb or Lu, preferably Y, La, Yb or Lu.
  • the source of the sintering aid of the present invention is not particularly limited, and is obtained by mixing commercially available Re 2 O 3 powder and Al 2 O 3 powder well known to those skilled in the art.
  • the purity of the Re 2 O 3 powder is preferably 99.9% or more; the purity of the Al 2 O 3 powder is preferably 95% or more, more preferably 95% to 100%.
  • the molar ratio of Si 3 N 4 and the sintering aid in the mixed powder A is preferably (80% to 95%): (5% to 20%), more preferably (90% to 93%). ): (7% to 10%).
  • the molar ratio of Si 3 N 4 and the sintering aid in the mixed powder B is preferably (80% to 95%): (5% to 20%), more preferably (90% to 93%). ): (7% to 10%).
  • the molar ratio of Si 3 N 4 and the sintering aid in the mixed powder A and the mixed powder B is the same.
  • Si 3 N 4 is calculated in accordance with the complete nitridation of Si powder.
  • the mixed powder A and the mixed powder B each belong to a mixed powder of Si-TiO 2 -Al 2 O 3 -Re 2 O 3 .
  • the preparation process of the Si-TiO 2 -Al 2 O 3 -Re 2 O 3 mixed powder is preferably:
  • Si powder, TiO 2 powder and sintering aid are compounded, ethanol is used as solvent, Si 3 N 4 sphere is used as ball milling medium, and mixed in planetary ball mill for 6h ⁇ 10h, and dried to obtain Si-TiO 2 -Al 2 O 3 -Re 2 O 3 mixed powder.
  • the mixed powder A and the mixed powder B are respectively obtained; wherein, in the mixed powder A, the sintering aid has a molar ratio of less than or equal to 1 the Al 2 O 3 and Re 2 O 3, preferably of a molar ratio of 1: composition of Al 1 2 O 3 and Re 2 O 3; B, the mixed powder, a sintering aid is greater than a molar ratio of Al 1
  • the composition of 2 O 3 and Re 2 O 3 is preferably composed of Al 2 O 3 and Re 2 O 3 having a molar ratio of (2 to 3):1.
  • the mixed powder A and the mixed powder B are alternately laid to form a multilayer structure, and press-molded to obtain a green body.
  • the alternately laid manner is preferably carried out by sequentially laying a mixed powder A-mixed powder B-mixed powder A in a molding die, and so on, or in turn in a molding die, which is well known to those skilled in the art. Laying the mixed powder B-mixed powder A-mixed powder B, and so on.
  • the multilayer structure is preferably a three-layer structure; the three-layer structure is preferably composed in accordance with the arrangement of the mixed powder B-mixed powder A-mixed powder B.
  • the press molding method is preferably cold isostatic pressing; the pressure of the cold isostatic pressing is preferably 100 MPa to 300 MPa, more preferably 200 MPa; and the cold isostatic pressing time is preferably 1 min to 10 min, more preferably 5 min.
  • the obtained body is nitrided and sintered to obtain a Si 3 N 4 gradient material.
  • the method for nitriding according to the present invention is not particularly limited, and a technical solution for carrying out the reaction in nitrogen gas well known to those skilled in the art may be employed.
  • the nitriding temperature is preferably from 1,250 ° C to 1,600 ° C, more preferably from 1,300 ° C to 1,450 ° C; and the nitriding time is preferably from 0.5 h to 24 h, more preferably from 2 h to 4 h.
  • the invention realizes the control of ⁇ -silicon nitride/ ⁇ -silicon nitride in the nitriding stage by controlling the ratio of Al 2 O 3 and Re 2 O 3 in Al 2 O 3 -Re 2 O 3 , when nitriding
  • isoaxial silicon nitride is obtained by sintering; when ⁇ -silicon nitride and ⁇ -silicon nitride in which two phases coexist after nitriding, sintering is performed to obtain long columnar silicon nitride.
  • the sintering method is preferably pressureless sintering, gas pressure sintering of 10 MPa to 50 MPa, or SPS sintering of 10 MPa to 50 MPa, more preferably pressureless sintering, gas pressure sintering of 10 MPa, gas pressure sintering of 30 MPa, and pressure of 50 MPa.
  • the present invention preferably performs sintering under a nitrogen atmosphere, and the pressure of the nitrogen gas is preferably from 0.5 atm to 1.5 atm, more preferably at least 1 atm.
  • the sintering temperature is preferably 1600 ° C to 2000 ° C, more preferably 1600 ° C to 1900 ° C; and the sintering time is preferably 0.5 h to 24 h, more preferably 2 h to 4 h.
  • the invention also provides a Si 3 N 4 gradient material prepared by the preparation method described in the above technical solution.
  • the gradient layer in the Si 3 N 4 gradient material provided by the invention has strong bonding force and can control the thickness of the gradient layer according to requirements.
  • the mechanical properties of the Si 3 N 4 gradient material are improved, the relative density is greater than 98%, the hardness is 19GPa to 25GPa, the fracture toughness is 12MPa ⁇ m 1/2 to 14MPa ⁇ m 1/2 , and the flexural strength is 1200MPa. ⁇ 1400MPa.
  • the invention provides a preparation method of a Si 3 N 4 gradient material, comprising the steps of: a) providing a mixed powder A and a mixed powder B; the mixed powder A comprises Si powder, TiO 2 powder and sintering aid Wherein the sintering aid consists of Al 2 O 3 and Re 2 O 3 having a molar ratio of less than or equal to 1; the mixed powder B comprises Si, TiO 2 and a sintering aid, wherein the sintering aid has a molar ratio greater than 1 Composition of Al 2 O 3 and Re 2 O 3 ; the Re is selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu ; b) alternately laying the mixed powder A and the mixed powder B to form a multilayer structure, and press-forming to obtain a green body; c) nitriding the body obtained in the step b) and sintering
  • the invention realizes the preparation of the Si 3 N 4 gradient material by phase transformation, and specifically realizes the ⁇ -nitrogen in the nitriding stage by controlling the ratio of Al 2 O 3 and Re 2 O 3 in the sintering aid.
  • the control of silicon/ ⁇ -silicon nitride results in a strong bonding force of the gradient layer, so that the obtained Si 3 N 4 gradient material has a strong bonding force and the mechanical properties are improved.
  • the preparation method provided by the invention can control the thickness of the gradient layer according to requirements; the process is simple and the cost is low.
  • the Y 2 O 3 powder, Yb 2 O 3 powder, Gd 2 O 3 powder, La 2 O 3 powder and Lu 2 O 3 powder used in the following examples of the present invention are all provided by Beijing Pan Dechen Technology Co., Ltd., and other The raw materials are all commercially available; among them, the purity of Y 2 O 3 powder, Yb 2 O 3 powder, Gd 2 O 3 powder, La 2 O 3 powder and Lu 2 O 3 powder is 99.9%, and Al 2 O 3 powder The purity is 95% to 100%, the purity of the Si powder is 95% to 100%, the particle size is ⁇ 100 ⁇ m, the purity of the TiO 2 powder is 98% to 100%, and the particle diameter is ⁇ 10 ⁇ m.
  • Si:TiO 2 mass fraction ratio is 95%: 5%
  • control Si 3 N 4 sintering aid molar ratio is 93%: 7% of the ingredients, wherein Si 3 N 4 according to Si powder Calculated by complete nitriding; the sintering aid consists of Al 2 O 3 and Y 2 O 3 with a molar ratio of 2.5:1;
  • Si powder and TiO 2 powder are used as raw materials, and Al 2 O 3 powder and Y 2 O 3 powder are used as sintering aids, and Si powder, TiO 2 powder and sintering aid are respectively formulated according to the above formula, and ethanol is used as a solvent.
  • the Si 3 N 4 sphere was used as a ball milling medium, and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -Y 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -Y 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1400 ° C for 2 hours, and then subjected to pressureless sintering.
  • the sintering atmosphere was 1 atm of nitrogen gas, and the temperature was maintained at 1800 ° C for 2 hours to obtain a Si 3 N 4 gradient material.
  • FIG. 1 is an XRD pattern of the surface layer of the nitrided material in Example 1 of the present invention
  • FIG. It is an XRD pattern of the inner intermediate layer of the nitrided material in Example 1 of the present invention.
  • 1 to 2 when the molar ratio of Al 2 O 3 :Y 2 O 3 is more than 1, a single-phase ⁇ -silicon nitride is obtained, and when the molar ratio of Al 2 O 3 :Y 2 O 3 is not more than 1, Two-phase coexisting ⁇ -silicon nitride and ⁇ -silicon nitride.
  • FIGS. 3 to 6 Scanning electron microscopy analysis of the Si 3 N 4 gradient material prepared in Example 1 of the present invention is shown in FIGS. 3 to 6;
  • FIG. 3 is a surface layer of the Si 3 N 4 gradient material prepared in Example 1 of the present invention.
  • a cross-sectional SEM photograph in FIG. 4 is an SEM photograph of the etched surface 3 N 4 polishing surface Si layer obtained gradient material prepared in Example 1 invention embodiment,
  • Fig. 6 is a SEM photograph of the polished etching surface of the inner intermediate layer of the Si 3 N 4 gradient material prepared in Example 1 of the present invention.
  • the surface layer of the Si 3 N 4 gradient material prepared in Example 1 has only single-phase ⁇ -silicon nitride, the morphology after sintering is all equiaxed; as shown in FIGS. 5-6 Since the inner intermediate layer of the Si 3 N 4 gradient material prepared in Example 1 is ⁇ -silicon nitride and ⁇ -silicon nitride in which two phases coexist, a long columnar crystal having self-toughening is obtained after sintering.
  • the acquisition method of the section is: using a universal testing machine to test the strength of the curved sample, and the universal testing machine crushes the sample, and then performs SEM analysis on the surface section of the sample;
  • the specific process of polishing corrosion is: taking the sample from the middle After the incision, the intermediate layer was polished, and then plasma etching was performed using a plasma etching apparatus for 28 s. After etching, the surface of the sample was subjected to SEM analysis.
  • the Si 3 N 4 gradient material prepared in Example 1 of the present invention was found to have a relative density of 99%, a hardness of 19 GPa, a fracture toughness of 12 MPa ⁇ m 1/2 and a flexural strength of 1200 MPa.
  • Si:TiO 2 mass fraction ratio is 90%: 10%
  • control Si 3 N 4 sintering aid molar ratio is 90%: 10% ingredients, wherein Si 3 N 4 according to Si powder Calculated by complete nitriding; the sintering aid consists of Al 2 O 3 and Yb 2 O 3 with a molar ratio of 3:1;
  • Si powder and TiO 2 powder as raw materials, Al 2 O 3 powder and Yb 2 O 3 powder as sintering aids, Si powder, TiO 2 powder and sintering aid were respectively formulated according to the above formula, and ethanol was used as solvent.
  • the Si 3 N 4 sphere was used as a ball milling medium, and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -Yb 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -Yb 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1375 ° C for 4 hours, and then subjected to gas pressure sintering at 10 MPa.
  • the sintering atmosphere was 1 atm nitrogen gas, and the temperature was maintained at 1900 ° C for 4 hours to obtain a Si 3 N 4 gradient material.
  • the Si 3 N 4 gradient material prepared in Example 2 of the present invention was found to have a relative density of 99%, a hardness of 23 GPa, a fracture toughness of 14 MPa ⁇ m 1/2 and a flexural strength of 1400 MPa.
  • Si powder and TiO 2 powder as raw materials and Al 2 O 3 powder Yb 2 O 3 powder as sintering aid Si powder, TiO 2 powder and sintering aid were respectively formulated according to the above formula, and ethanol was used as solvent.
  • the Si 3 N 4 sphere was a ball milling medium and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -Yb 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -Yb 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1375 ° C for 4 h, and further subjected to SPS sintering at 50 MPa, the sintering atmosphere was 1 atm nitrogen gas, and the temperature was maintained at 1700 ° C for 4 h to obtain a Si 3 N 4 gradient material.
  • the Si 3 N 4 gradient material prepared in Example 3 of the present invention was found to have a relative density of 99%, a hardness of 25 GPa, a fracture toughness of 14 MPa ⁇ m 1/2 and a flexural strength of 1400 MPa.
  • Si:TiO 2 mass fraction ratio is 90%: 10%
  • control Si 3 N 4 sintering aid molar ratio is 90%: 10% ingredients, wherein Si 3 N 4 according to Si powder Calculated by complete nitriding; the sintering aid consists of Al 2 O 3 and Gd 2 O 3 with a molar ratio of 3:1;
  • Si powder and TiO 2 powder are used as raw materials, and Al 2 O 3 powder and Gd 2 O 3 powder are used as sintering aids, and Si powder, TiO 2 powder and sintering aid are respectively formulated according to the above formula, and ethanol is used as a solvent.
  • the Si 3 N 4 sphere was used as a ball milling medium, and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -Gd 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -Gd 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1450 ° C for 2 hours, and then subjected to gas pressure sintering at 30 MPa.
  • the sintering atmosphere was 1 atm of nitrogen gas, and the temperature was maintained at 1800 ° C for 4 hours to obtain a Si 3 N 4 gradient material.
  • the Si 3 N 4 gradient material prepared in Example 4 of the present invention was found to have a relative density of 99%, a hardness of 22 GPa, a fracture toughness of 13 MPa ⁇ m 1/2 and a flexural strength of 1300 MPa.
  • Si powder and TiO 2 powder are used as raw materials, and Al 2 O 3 powder and La 2 O 3 powder are used as sintering aids, and Si powder, TiO 2 powder and sintering aid are respectively formulated according to the above formula, and ethanol is used as a solvent.
  • the Si 3 N 4 sphere was used as a ball milling medium, and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -La 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -La 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1400 ° C for 2 hours, and then subjected to gas pressure sintering at 30 MPa.
  • the sintering atmosphere was 1 atm nitrogen gas, and the temperature was kept at 1700 ° C for 4 hours to obtain a Si 3 N 4 gradient material.
  • the Si 3 N 4 gradient material prepared in Example 5 of the present invention was found to have a relative density of 99%, a hardness of 23 GPa, a fracture toughness of 14 MPa ⁇ m 1/2 and a flexural strength of 1400 MPa.
  • Si:TiO 2 mass fraction ratio is 90%: 10%
  • control Si 3 N 4 sintering aid molar ratio is 90%: 10% ingredients, wherein Si 3 N 4 according to Si powder Calculated by complete nitriding; the sintering aid consists of Al 2 O 3 and Lu 2 O 3 with a molar ratio of 3:1;
  • Si powder and TiO 2 powder are used as raw materials, and Al 2 O 3 powder and Lu 2 O 3 powder are used as sintering aids, and Si powder, TiO 2 powder and sintering aid are respectively formulated according to the above formula, and ethanol is used as a solvent.
  • the Si 3 N 4 sphere was used as a ball milling medium, and mixed on a planetary ball mill for 8 hours, and dried to obtain a Si-TiO 2 -Al 2 O 3 -Lu 2 O 3 mixed powder.
  • the Si-TiO 2 -Al 2 O 3 -Lu 2 O 3 mixed powder obtained in the step (1) is formed into a three-layer structure according to the arrangement of the mixed powder B-mixed powder A-mixed powder B. 200 MPa was kept at 300 s cold isostatic pressing to obtain a green body.
  • the green body obtained in the step (2) was nitrided at 1300 ° C for 4 hours, and then subjected to gas pressure sintering at 50 MPa.
  • the sintering atmosphere was 1 atm nitrogen gas, and the temperature was maintained at 1600 ° C for 4 hours to obtain a Si 3 N 4 gradient material.
  • the Si 3 N 4 gradient material prepared in Example 6 of the present invention was found to have a relative density of 99%, a hardness of 25 GPa, a fracture toughness of 12 MPa ⁇ m 1/2 and a flexural strength of 1200 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

提供一种Si3N4梯度材料的制备方法,包括以下步骤:a)提供混合粉体A和混合粉体B;混合粉体A包括Si粉、TiO2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al2O3和Re2O3组成;混合粉体B包括Si、TiO2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al2O3和Re2O3组成;Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;b)将混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;c)将步骤b)得到的坯体氮化后烧结,得到Si3N4梯度材料。该方法通过控制烧结助剂中Al2O3和Re2O3配比,在氮化阶段实现β-氮化硅/α-氮化硅的控制,得到的Si3N4梯度材料梯度层之间具有极强的结合力,具备表硬芯韧的优异力学性能。还提供一种由该方法制备的Si3N4梯度材料。

Description

一种Si 3N 4梯度材料及其制备方法 技术领域
本发明涉及Si 3N 4陶瓷材料技术领域,更具体地说,是涉及一种Si 3N 4梯度材料及其制备方法。
背景技术
Si 3N 4陶瓷材料作为一种结构材料,具有优异的力学性能,如高硬度、高强、耐磨、耐高温等优异性能,可广泛应用于轴承、高速切削刀具、装甲等方面;但在极高温以及高速切削等恶劣条件下仍然容易磨损,寿命有限,所以需要对表面进一步增强,加强其使用可靠性,对于Si 3N 4陶瓷材料通常可进行制备梯度材料或者运用PVD、CVD技术对其性能进行进一步改善。
对于PVD、CVD技术,往往存在涂层太薄防护效果不佳这一缺陷;并且,PVD、CVD技术还存在基体与涂层之间结合力不足的问题,而对不导电材料运用PVD、CVD技术时,还需要对材料表面覆盖一层导电层,再对其进行涂层处理,而基体与导电层之间又存在结合力不足的问题。因此,对于Si 3N 4陶瓷材料更多采用制备梯度材料对其性能进行进一步改善。
目前,Si 3N 4梯度材料的制备主要是通过将原料成分甚至组成相差很大的材料烧结为一体,实现表层与硬度具有不同的性能;但是由于表层与芯部材料在成分、结构上的差别,使得两者的结合力较弱,有的甚至在烧结过程中都会出现表层与芯部的脱离,这极大地弱化了Si 3N 4梯度材料的应用。
发明内容
有鉴于此,本发明的目的在于提供一种Si 3N 4梯度材料及其制备方法,采用本发明提供的制备方法得到的Si 3N 4梯度材料具有极强的结合力,且力学性能得到改善。
本发明提供了一种Si 3N 4梯度材料的制备方法,包括以下步骤:
a)提供混合粉体A和混合粉体B;
所述混合粉体A包括Si粉、TiO 2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成;
所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;
b)将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;
c)将步骤b)得到的坯体氮化后烧结,得到Si 3N 4梯度材料。
优选的,步骤a)中所述Si粉的纯度大于等于95%,粒径小于等于100μm;所述TiO 2粉的纯度大于等于98%,粒径小于等于10μm。
优选的,步骤a)中所述混合粉体A中Si粉和TiO 2粉的质量分数比为(60%~99%):(1%~40%),Si 3N 4和烧结助剂的摩尔比为(80%~95%):(5%~20%);
所述混合粉体B中Si粉和TiO 2粉的质量分数比为(60%~99%):(1%~40%),Si 3N 4和烧结助剂的摩尔比为(80%~95%):(5%~20%)。
优选的,步骤a)中混合粉体A中的烧结助剂由摩尔比为1:1的Al 2O 3和Re 2O 3组成;
混合粉体B中的烧结助剂由摩尔比为(2~3):1的Al 2O 3和Re 2O 3组成。
优选的,步骤b)中所述多层结构为三层结构;所述三层结构按照混合粉体B-混合粉体A-混合粉体B的排列方式组成。
优选的,步骤b)中所述压制成型的方式为冷等静压成型;所述冷等静压成型的压力为100MPa~300MPa,时间为1min~10min。
优选的,步骤c)中所述氮化的温度为1250℃~1600℃,时间为0.5h~24h。
优选的,步骤c)中所述烧结的方式为无压烧结、10MPa~50MPa的气压烧结或10MPa~50MPa的SPS烧结。
优选的,步骤c)中所述烧结的温度为1600℃~2000℃,时间为0.5h~24h。
本发明还提供了一种Si 3N 4梯度材料,由上述技术方案所述的制备方法制备得到。
本发明提供了一种Si 3N 4梯度材料的制备方法,包括以下步骤:a)提供混合粉体A和混合粉体B;所述混合粉体A包括Si粉、TiO 2粉和烧结助剂, 其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成;所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;b)将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;c)将步骤b)得到的坯体氮化后烧结,得到Si 3N 4梯度材料。与现有技术相比,本发明通过相变实现了Si 3N 4梯度材料的制备,具体通过控制烧结助剂中Al 2O 3和Re 2O 3配比,在氮化阶段实现β-氮化硅/α-氮化硅的控制,得到的梯度层结合力强,从而使得到的Si 3N 4梯度材料具有极强的结合力,并且力学性能得到改善。
另外,本发明提供的制备方法能够根据需求对梯度层厚度进行控制;工艺简单、成本低。
附图说明
图1为本发明实施例1中氮化后材料表面层的XRD图谱;
图2为本发明实施例1中氮化后材料内部中间层的XRD图谱;
图3为本发明实施例1制备得到的Si 3N 4梯度材料表面层的断面SEM照片;
图4为本发明实施例1制备得到的Si 3N 4梯度材料表面层的抛光腐蚀面SEM照片;
图5为本发明实施例1制备得到的Si 3N 4梯度材料内部中间层的断面SEM照片;
图6为本发明实施例1制备得到的Si 3N 4梯度材料内部中间层的抛光腐蚀面SEM照片。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种Si 3N 4梯度材料的制备方法,包括以下步骤:
a)提供混合粉体A和混合粉体B;
所述混合粉体A包括Si粉、TiO 2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成;
所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;
b)将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;
c)将步骤b)得到的坯体氮化后烧结,得到Si 3N 4梯度材料。
本发明首先提供混合粉体A和混合粉体B。在本发明中,所述混合粉体A包括Si粉、TiO 2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成,优选由摩尔比为1:1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成,优选由摩尔比为(2~3):1的Al 2O 3和Re 2O 3组成。
在本发明中,所述Si粉的纯度优选大于等于95%,更优选为95%~100%;所述Si粉的粒径优选小于等于100μm,更优选为<100μm。在本发明中,所述TiO 2粉的纯度优选大于等于98%,更优选为98%~100%;所述TiO 2粉的粒径优选小于等于10μm,更优选为<10μm。本发明对所述Si粉和TiO 2粉的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。
在本发明中,所述混合粉体A中Si粉和TiO 2粉的质量分数比优选为(60%~99%):(1%~40%),更优选为(85%~95%):(5%~15%)。在本发明中,所述混合粉体B中Si粉和TiO 2粉的质量分数比优选为(60%~99%):(1%~40%),更优选为(85%~95%):(5%~15%)。在本发明优选的实施例中,所述混合粉体A和所述混合粉体B中Si粉和TiO 2粉的质量分数比相同。
在本发明中,所述烧结助剂由Al 2O 3和Re 2O 3组成;其中,所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu,优选为Y、La、Yb或Lu。本发明对所述烧结助剂的来源没有特殊限制,采用本领域技术人员熟知的市售Re 2O 3粉与Al 2O 3粉混合而成。在本发明 中,所述Re 2O 3粉的纯度优选大于等于99.9%;所述Al 2O 3粉的纯度优选大于等于95%,更优选为95%~100%。
在本发明中,所述混合粉体A中Si 3N 4和烧结助剂的摩尔比优选为(80%~95%):(5%~20%),更优选为(90%~93%):(7%~10%)。在本发明中,所述混合粉体B中Si 3N 4和烧结助剂的摩尔比优选为(80%~95%):(5%~20%),更优选为(90%~93%):(7%~10%)。在本发明优选的实施例中,所述混合粉体A和所述混合粉体B中Si 3N 4和烧结助剂的摩尔比相同。在本发明中,Si 3N 4按照Si粉完全氮化进行计算。
在本发明中,所述混合粉体A和所述混合粉体B均属于Si-TiO 2-Al 2O 3-Re 2O 3混合粉体。在本发明中,所述Si-TiO 2-Al 2O 3-Re 2O 3混合粉体的制备过程优选具体为:
将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合6h~10h,干燥后得到Si-TiO 2-Al 2O 3-Re 2O 3混合粉体。根据烧结助剂中Al 2O 3和Re 2O 3的摩尔比不同,分别得到混合粉体A和混合粉体B;其中,所述混合粉体A中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成,优选由摩尔比为1:1的Al 2O 3和Re 2O 3组成;所述混合粉体B中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成,优选由摩尔比为(2~3):1的Al 2O 3和Re 2O 3组成。
得到所述混合粉体A和所述混合粉体B后,本发明将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体。在本发明中,所述交替铺设的方式优选采用本领域技术人员熟知的依次在成型模具中铺设混合粉体A-混合粉体B-混合粉体A,以此类推;或依次在成型模具中铺设混合粉体B-混合粉体A-混合粉体B,以此类推。
在本发明中,所述多层结构优选为三层结构;所述三层结构优选按照混合粉体B-混合粉体A-混合粉体B的排列方式组成。
在本发明中,所述压制成型的方式优选为冷等静压成型;所述冷等静压成型的压力优选为100MPa~300MPa,更优选为200MPa;所述冷等静压成型的时间优选为1min~10min,更优选为5min。
得到所述坯体后,本发明将得到的坯体氮化后烧结,得到Si 3N 4梯度材料。本发明对所述氮化的方法没有特殊限制,采用本领域技术人员熟知的在氮气 中进行反应的技术方案即可。在本发明中,所述氮化的温度优选为1250℃~1600℃,更优选为1300℃~1450℃;所述氮化的时间优选为0.5h~24h,更优选为2h~4h。本发明通过控制Al 2O 3-Re 2O 3中Al 2O 3和Re 2O 3配比,在氮化阶段实现β-氮化硅/α-氮化硅的控制,当氮化后全为β-氮化硅时,烧结得到等轴状氮化硅;当氮化后为两相共存的α-氮化硅和β-氮化硅时,烧结得到长柱状氮化硅。
在本发明中,所述烧结的方式优选为无压烧结、10MPa~50MPa的气压烧结或10MPa~50MPa的SPS烧结,更优选为无压烧结、10MPa的气压烧结、30MPa的气压烧结、50MPa的气压烧结或50MPa的SPS烧结。本发明优选在氮气气氛下进行烧结,所述氮气的压强优选为0.5atm~1.5atm,更优选为1atm。
在本发明中,所述烧结的温度优选为1600℃~2000℃,更优选为1600℃~1900℃;所述烧结的时间优选为0.5h~24h,更优选为2h~4h。
本发明还提供了一种Si 3N 4梯度材料,由上述技术方案所述的制备方法制备得到。本发明提供的Si 3N 4梯度材料中的梯度层结合力强,并且能够根据需求对梯度层厚度进行控制。同时,所述Si 3N 4梯度材料力学性能得到改善,其相对密度大于98%,硬度为19GPa~25GPa,断裂韧性为12MPa·m 1/2~14MPa·m 1/2,抗弯强度为1200MPa~1400MPa。
本发明提供了一种Si 3N 4梯度材料的制备方法,包括以下步骤:a)提供混合粉体A和混合粉体B;所述混合粉体A包括Si粉、TiO 2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成;所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;b)将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;c)将步骤b)得到的坯体氮化后烧结,得到Si 3N 4梯度材料。与现有技术相比,本发明通过相变实现了Si 3N 4梯度材料的制备,具体通过控制烧结助剂中Al 2O 3和Re 2O 3配比,在氮化阶段实现β-氮化硅/α-氮化硅的控制,得到的梯度层结合力强,从而使得到的Si 3N 4梯度材料具有极强的结合力,并且力学性能得到改善。
另外,本发明提供的制备方法能够根据需求对梯度层厚度进行控制;工艺简单、成本低。
为了进一步说明本发明,下面通过以下实施例进行详细说明。本发明以下实施例所用的Y 2O 3粉、Yb 2O 3粉、Gd 2O 3粉、La 2O 3粉和Lu 2O 3粉均由北京泛德辰科技有限公司提供,所用的其他原料均为市售商品;其中,Y 2O 3粉、Yb 2O 3粉、Gd 2O 3粉、La 2O 3粉和Lu 2O 3粉的纯度均为99.9%,Al 2O 3粉的纯度为95%~100%,Si粉的纯度为95%~100%,粒径为<100μm,TiO 2粉的纯度为98%~100%,粒径为<10μm。
实施例1
(1)混合粉体A配方:Si:TiO 2的质量分数比为95%:5%,控制Si 3N 4:烧结助剂的摩尔比为93%:7%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和Y 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为95%:5%,控制Si 3N 4:烧结助剂的摩尔比为93%:7%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为2.5:1的Al 2O 3和Y 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉和Y 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-Y 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-Y 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1400℃下氮化2h,再进行无压烧结,烧结气氛为1atm氮气,在1800℃下保温2h,得到Si 3N 4梯度材料。
对本发明实施例1制备得到的Si 3N 4梯度材料进行XRD分析,结果参见图1~2所示;其中,图1为本发明实施例1中氮化后材料表面层的XRD图谱,图2为本发明实施例1中氮化后材料内部中间层的XRD图谱。由图1~2可知,Al 2O 3:Y 2O 3的摩尔比大于1时,得到单相β-氮化硅,Al 2O 3:Y 2O 3的摩尔比不大于1时,得到两相共存的α-氮化硅和β-氮化硅。
对本发明实施例1制备得到的Si 3N 4梯度材料进行扫描电镜分析,结果参见图3~6所示;其中,图3为本发明实施例1制备得到的Si 3N 4梯度材料表面层的断面SEM照片,图4为本发明实施例1制备得到的Si 3N 4梯度材料表面层的抛光腐蚀面SEM照片,图5为本发明实施例1制备得到的Si 3N 4梯度材料内部中间层的 断面SEM照片,图6为本发明实施例1制备得到的Si 3N 4梯度材料内部中间层的抛光腐蚀面SEM照片。由图3~4可知,由于实施例1制备得到的Si 3N 4梯度材料表面层只有单相β-氮化硅存在,因此烧结后形貌全部呈等轴状晶;由图5~6可知,由于实施例1制备得到的Si 3N 4梯度材料内部中间层为两相共存的α-氮化硅和β-氮化硅,因此烧结后得到具有自增韧的长柱状晶。
上述表征过程中,断面的获取方法是:采用万能试验机对抗弯样品进行强度测试,万能试验机将样品压断后,对样品表层断面进行SEM分析;抛光腐蚀的具体过程为:将样品从中间切开后,对中间层面进行抛光处理后,采用等离子刻蚀设备,采用28W的功率腐蚀80s,腐蚀后对样品表面进行SEM分析。
经检测,本发明实施例1制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为19GPa,断裂韧性为12MPa·m 1/2,抗弯强度为1200MPa。
实施例2
(1)混合粉体A配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和Yb 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为3:1的Al 2O 3和Yb 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉和Yb 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-Yb 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-Yb 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1375℃下氮化4h,再进行10MPa的气压烧结,烧结气氛为1atm氮气,在1900℃下保温4h,得到Si 3N 4梯度材料。
经检测,本发明实施例2制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为23GPa,断裂韧性为14MPa·m 1/2,抗弯强度为1400MPa。
实施例3
(1)混合粉体A配方:Si:TiO 2的质量分数比为85%:15%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和Yb 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为85%:15%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为3:1的Al 2O 3和Yb 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉Yb 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-Yb 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-Yb 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1375℃下氮化4h,再进行50MPa的SPS烧结,烧结气氛为1atm氮气,在1700℃下保温4h,得到Si 3N 4梯度材料。
经检测,本发明实施例3制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为25GPa,断裂韧性为14MPa·m 1/2,抗弯强度为1400MPa。
实施例4
(1)混合粉体A配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和Gd 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为3:1的Al 2O 3和Gd 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉和Gd 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-Gd 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-Gd 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1450℃下氮化2h,再进行30MPa的气压烧 结,烧结气氛为1atm氮气,在1800℃下保温4h,得到Si 3N 4梯度材料。
经检测,本发明实施例4制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为22GPa,断裂韧性为13MPa·m 1/2,抗弯强度为1300MPa。
实施例5
(1)混合粉体A配方:Si:TiO 2的质量分数比为92%:8%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和La 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为92%:8%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为2.5:1的Al 2O 3和La 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉和La 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-La 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-La 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1400℃下氮化2h,再进行30MPa的气压烧结,烧结气氛为1atm氮气,在1700℃下保温4h,得到Si 3N 4梯度材料。
经检测,本发明实施例5制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为23GPa,断裂韧性为14MPa·m 1/2,抗弯强度为1400MPa。
实施例6
(1)混合粉体A配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为1:1的Al 2O 3和Lu 2O 3组成;
混合粉体B配方:Si:TiO 2的质量分数比为90%:10%,控制Si 3N 4:烧结助剂的摩尔比为90%:10%配料,其中,Si 3N 4按照Si粉完全氮化进行计算;烧结助剂由摩尔比为3:1的Al 2O 3和Lu 2O 3组成;
以Si粉和TiO 2粉为原料,以Al 2O 3粉和Lu 2O 3粉为烧结助剂,分别按照上述配方将Si粉、TiO 2粉和烧结助剂进行配料,以乙醇为溶剂,以Si 3N 4球为球磨介质,在行星式球磨机上混合8h,干燥后得到Si-TiO 2-Al 2O 3-Lu 2O 3混合粉体。
(2)将步骤(1)得到Si-TiO 2-Al 2O 3-Lu 2O 3混合粉体按照混合粉体B-混合粉体A-混合粉体B的排列方式组成三层结构,经200MPa保持300s冷等静压,得到坯体。
(3)将步骤(2)得到的坯体在1300℃下氮化4h,再进行50MPa的气压烧结,烧结气氛为1atm氮气,在1600℃下保温4h,得到Si 3N 4梯度材料。
经检测,本发明实施例6制备得到的Si 3N 4梯度材料的相对密度为99%,硬度为25GPa,断裂韧性为12MPa·m 1/2,抗弯强度为1200MPa。
所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种Si 3N 4梯度材料的制备方法,包括以下步骤:
    a)提供混合粉体A和混合粉体B;
    所述混合粉体A包括Si粉、TiO 2粉和烧结助剂,其中,烧结助剂由摩尔比小于等于1的Al 2O 3和Re 2O 3组成;所述混合粉体B包括Si、TiO 2和烧结助剂,其中,烧结助剂由摩尔比大于1的Al 2O 3和Re 2O 3组成;
    所述Re选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu;
    b)将所述混合粉体A和混合粉体B交替铺设形成多层结构,经压制成型,得到坯体;
    c)将步骤b)得到的坯体氮化后烧结,得到Si 3N 4梯度材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤a)中所述Si粉的纯度大于等于95%,粒径小于等于100μm;所述TiO 2粉的纯度大于等于98%,粒径小于等于10μm。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤a)中所述混合粉体A中Si粉和TiO 2粉的质量分数比为(60%~99%):(1%~40%),Si 3N 4和烧结助剂的摩尔比为(80%~95%):(5%~20%);
    所述混合粉体B中Si粉和TiO 2粉的质量分数比为(60%~99%):(1%~40%),Si 3N 4和烧结助剂的摩尔比为(80%~95%):(5%~20%)。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤a)中混合粉体A中的烧结助剂由摩尔比为1:1的Al 2O 3和Re 2O 3组成;
    混合粉体B中的烧结助剂由摩尔比为(2~3):1的Al 2O 3和Re 2O 3组成。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤b)中所述多层结构为三层结构;所述三层结构按照混合粉体B-混合粉体A-混合粉体B的排列方式组成。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤b)中所述压制成型的方式为冷等静压成型;所述冷等静压成型的压力为100MPa~300MPa,时间为1min~10min。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤c)中所述氮化的温度为1250℃~1600℃,时间为0.5h~24h。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤c)中所述烧结的方式为无压烧结、10MPa~50MPa的气压烧结或10MPa~50MPa的SPS烧结。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤c)中所述烧结的温度为1600℃~2000℃,时间为0.5h~24h。
  10. 一种Si 3N 4梯度材料,其特征在于,由权利要求1~9任一项所述的制备方法制备得到。
PCT/CN2018/093666 2018-01-05 2018-06-29 一种Si3N4梯度材料及其制备方法 WO2019134354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810010141.XA CN108046808B (zh) 2018-01-05 2018-01-05 一种Si3N4梯度材料及其制备方法
CN201810010141.X 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019134354A1 true WO2019134354A1 (zh) 2019-07-11

Family

ID=62126661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093666 WO2019134354A1 (zh) 2018-01-05 2018-06-29 一种Si3N4梯度材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108046808B (zh)
WO (1) WO2019134354A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046808B (zh) * 2018-01-05 2020-08-11 广东工业大学 一种Si3N4梯度材料及其制备方法
CN109970454A (zh) * 2019-03-20 2019-07-05 广东工业大学 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷
CN110483062A (zh) * 2019-08-21 2019-11-22 广东工业大学 一种高性能氮化硅陶瓷及其制备方法和应用
CN114835501B (zh) * 2022-05-19 2023-06-23 广东工业大学 一种氮化硅基织构化梯度材料及其制备方法和应用
CN115124353B (zh) * 2022-07-15 2023-01-24 中材高新氮化物陶瓷有限公司 一种层状复合陶瓷圆柱滚子及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486578A (zh) * 2009-02-27 2009-07-22 山东大学 氮化硅基纳米复合梯度功能陶瓷刀具材料及其制备方法
CN102320170A (zh) * 2010-07-08 2012-01-18 山东大学 一种梯度纳米复合陶瓷刀具材料及其制备方法
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN108046808A (zh) * 2018-01-05 2018-05-18 广东工业大学 一种Si3N4梯度材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663876A (en) * 1979-10-23 1981-05-30 Kobe Steel Ltd Manufacture of silicon nitride sintered body
ES2116395T3 (es) * 1992-12-23 1998-07-16 Hoechst Ag Material ceramico de nitruro de silicio resistente a altas temperaturas y procedimiento para su fabricacion.
EP0669295B1 (en) * 1994-02-28 1998-09-16 Honda Giken Kogyo Kabushiki Kaisha Method for producing a silicon nitride reaction - sintered body
JPH0848568A (ja) * 1994-08-04 1996-02-20 Honda Motor Co Ltd セラミック焼結体の製造方法
US20030104921A1 (en) * 2000-12-06 2003-06-05 Ceramtec Ag Innovative Ceramic Engineering Silicon nitride ceramic with a high mechanical strength at room temperature and at elevated temperature
CN100486931C (zh) * 2007-06-07 2009-05-13 西北第二民族学院 一种高强度、高韧性的氮化硅陶瓷液相烧结法
CN101531521A (zh) * 2008-12-29 2009-09-16 中国地质大学(北京) 一种耐高温冲蚀磨损Fe/Mo-Sialon基陶瓷复合材料及其制备方法
CN101817684B (zh) * 2010-03-25 2012-08-15 西安交通大学 一种多孔Si3N4基体表面覆涂h-BN涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486578A (zh) * 2009-02-27 2009-07-22 山东大学 氮化硅基纳米复合梯度功能陶瓷刀具材料及其制备方法
CN102320170A (zh) * 2010-07-08 2012-01-18 山东大学 一种梯度纳米复合陶瓷刀具材料及其制备方法
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN108046808A (zh) * 2018-01-05 2018-05-18 广东工业大学 一种Si3N4梯度材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO, WEIMING ET AL.: "Effect of Ti02 Additives on Nitridation of Si Powders", MATERIALS LETTERS, vol. 177, 15 August 2016 (2016-08-15), pages 61 - 63 *
ZHENG, GUANGMING: "Fabrication and High Speed Cutting Performance of Sialon-Si3N4Graded Nano- composite Ceramic Tools", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY, vol. I, no. 12, 15 January 2013 (2013-01-15) *

Also Published As

Publication number Publication date
CN108046808B (zh) 2020-08-11
CN108046808A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019134354A1 (zh) 一种Si3N4梯度材料及其制备方法
Lu et al. Effect of Y2O3 and Yb2O3 on the microstructure and mechanical properties of silicon nitride
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
TWI570090B (zh) Composite ceramic and semiconductor manufacturing device components
KR20120134128A (ko) 반도체 제조 장치용 내식성 부재 및 그 제법
US20160104551A1 (en) Yttria based conductive plasma-resistant member and methods thereof
JP2006232659A (ja) 炭化ケイ素焼結体及びその製造方法
TWI326676B (zh)
CN105254307B (zh) 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法
US11837488B2 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
JP2002003276A (ja) 炭化ケイ素−窒化ホウ素複合材料の反応合成
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
CN107954722B (zh) 一种通过自扩散制备Si3N4梯度材料的方法
CN111484333A (zh) 一种兼具高热导率和高强度的氮化铝陶瓷及其制备方法
WO2022163730A1 (ja) 窒化ケイ素焼結体および窒化ケイ素焼結体の製造方法
Park et al. Two cores in one grain in the microstructure of silicon nitride prepared with aligned whisker seeds
US20130090228A1 (en) Composite body and method of making
JP2004352572A (ja) アルミナセラミックス及びその製造方法
JP5728684B2 (ja) 快削性セラミックス及びその製造方法
JPWO2011122376A1 (ja) 半導体製造装置用耐食性部材及びその製法
JPH10259058A (ja) サイアロン複合体及びその製造方法
KR102209383B1 (ko) 이터븀과 이트륨이 공도핑된 사이알론 및 그 제조방법
KR102411792B1 (ko) 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법
JP3616790B2 (ja) 高耐性粒子配向窒化ケイ素多孔体とその製造方法
Li et al. Thermal Conductivity and Flexural Strength of Two-Step Hot-Pressed SiC Ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898112

Country of ref document: EP

Kind code of ref document: A1