CN107954722A - 一种通过自扩散制备Si3N4梯度材料的方法 - Google Patents

一种通过自扩散制备Si3N4梯度材料的方法 Download PDF

Info

Publication number
CN107954722A
CN107954722A CN201711271134.7A CN201711271134A CN107954722A CN 107954722 A CN107954722 A CN 107954722A CN 201711271134 A CN201711271134 A CN 201711271134A CN 107954722 A CN107954722 A CN 107954722A
Authority
CN
China
Prior art keywords
mgo
powder
sintering
fgm
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711271134.7A
Other languages
English (en)
Other versions
CN107954722B (zh
Inventor
郭伟明
吴利翔
牛文彬
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201711271134.7A priority Critical patent/CN107954722B/zh
Publication of CN107954722A publication Critical patent/CN107954722A/zh
Application granted granted Critical
Publication of CN107954722B publication Critical patent/CN107954722B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种通过自扩散制备Si3N4梯度材料的方法。本发明以Si3N4和MO2(M=Ti,Zr,Hf)粉为原料,以MgO‑Re2O3为烧结助剂,经混料、干燥后得到混合粉体;混合粉体经过冷等静压后,将样品埋粉后放入烧结炉中,最终获得Si3N4梯度材料;本发明方法得到的Si3N4材料表面为一层梯度MN层,MN作为一种高硬度、耐磨以及导电相物相,在提高Si3N4陶瓷的表面硬度、抗磨损性的同时,还可实现直接对其表面进行涂层处理;且相对密度高于95%,表层硬度为18~25GPa,断裂韧性为10~14MPa·m1/2,抗弯强度为1000~1500Mpa,梯度层厚度为10~200μm。

Description

一种通过自扩散制备Si3N4梯度材料的方法
技术领域
本发明涉及非氧化物陶瓷基复合材料技术领域,特别涉及一种通过自扩散制备Si3N4梯度材料的方法。
背景技术
Si3N4陶瓷材料作为一种结构材料,具有优异的力学性能,例如高硬度、高强、耐磨、耐高温等优异性能,可广泛应用于轴承、高速切削刀具、装甲等方面,但在极高温以及高速切削等恶劣条件下仍然容易磨损,寿命有限,所以需要对表面进一步增强,加强其使用可靠性,对于Si3N4陶瓷通常可进行制备梯度材料,或者对其进行PVD、CVD涂层处理。
目前梯度材料的制备主要是通过将不同配方或不同原料的材料烧结为一体,实现表层与硬度具有不同的性能,但是由于表层与芯部材料在成分、结构上的差别,使得两者的结合力较弱,有的甚至在烧结过程中都会出现表层与芯部的脱离,这极大地弱化了梯度材料的应用;同样地,对于不导电材料运用PVD、CVD技术时,需要对改材料表面覆盖一层导电层,再对其进行涂层处理,然而在基体与导电层之间仍然存在结合力不足的问题,并且PVD、CVD技术往往还存在涂层太薄防护效果不佳这一缺陷。
基于以上应用背景,急需寻求一种方法实现梯度材料的制备,并且梯度层不仅厚度可调而且之间具有较强的结合力。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种通过自扩散制备SiN4梯度材料的方法。该方法简单,得到的梯度材料,表层和内里结合紧密。
本发明中,通过MO2(TiO2,ZrO2,HfO2)往表面扩散,并且扩散后MO2的量从外到里逐渐减少,扩散的MO2再与Si3N4进行反应,得到梯度MN结构。
本发明的目的通过下述技术方案实现。
一种通过自扩散制备Si3N4梯度材料的方法,包括以下步骤:
(1)以Si3N4和MO2,M=Ti,Zr,Hf粉为原料,以MgO-Re2O3为烧结助剂,经混料、干燥后,得到Si3N4-MO2-MgO-Re2O3混合粉体;
(2)将Si3N4-MO2-MgO-Re2O3混合粉体通过冷等静压成型获得坯体;将坯体埋在Si3N4粉中,并进行后续两步烧结,整个过程烧结气氛为氮气,最后得到具有MN梯度的Si3N4陶瓷。
本发明中,步骤(1)中,Re为Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb或Lu中任一种。
本发明中,步骤(1)中,以Si3N4、MO2和MgO-Re2O3的总质量为100%计,Si3N4的质量百分比为50~75%,MO2的质量百分比为20~40%,MgO-Re2O3的质量百分比为5~30%;MgO-Re2O3中的MgO和Re2O3质量比为1:5~5:1。
本发明中,步骤(1)中,以Si3N4、MO2和MgO-Re2O3的总质量为100%计,Si3N4的质量百分比为60~72%,MO2的质量百分比为20~40%,MgO-Re2O3的质量百分比为8~20%;MgO-Re2O3中的MgO和Re2O3质量比为1:1~3:1。
本发明中,步骤(1)所述的Si3N4粉纯度为95~100%,粒径为<10μm;MO2纯度为98~100%,粒径为<10μm;MgO粉纯度为95~100%,Re2O3纯度为99.9%。
本发明中,步骤(1)中,将Si3N4、MO2和MgO-Re2O3进行混料时,以乙醇为溶剂,以Si3N4球为球磨介质,在行星式球磨机上混合4~18h。
本发明中,步骤(2)中,Si3N4粉属于外加的粗粉(纯度不要求很高),主要是防止ZrO2,TiO2,HfO2挥发直接逸出样品表面。
本发明中,步骤(2)中,冷等静压成型压力100~300MPa,保压时间为1~10min。
本发明中,步骤(2)中,冷等静压成型压力180~220MPa,保压时间为4~6min。
本发明中,步骤(2)中,两步烧结法的烧结程序如下:以18~22℃/min的升温速率将温度升至1250~1600℃并保温0.5~24h,然后以8~12℃/min的升温速率将温度升至1600~2000℃,并保温0.5~24h,整个过程烧结气氛为氮气,通过石墨发热电阻炉烧结获得具有MN梯度的Si3N4梯度材料。
本发明中,上述方法制备得到Si3N4梯度材料,Si3N4梯度材料表面为梯度MN层,其厚度可调节,相对密度大于95%,表层硬度为20~25GPa,断裂韧性为10~14MPa·m1/2,抗弯强度为1000~1500Mpa,梯度层厚度为10~200μm。
和现有技术相比,本发明具有如下的优点及效果:
(1)制备的梯度层之间结合力较强;
(2)制备的梯度层厚度可以进行调节。
附图说明
图1是本发明实施例1中得到的梯度材料中TiN的分布示意图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中,Si3N4梯度材料的梯度层厚度通过扫描电子显微镜放大后,利用测量软件进行测量.
实施例1
一种通过自扩散制备Si3N4梯度材料的具体方法如下:
(1)以Si3N4和ZrO2粉为原料,以MgO和Y2O3为烧结助剂,按Si3N4:ZrO2:MgO-Re2O3的质量分数比为70%:20%:10%,所述的MgO-Re2O3中的MgO:Re2O3质量分数比为55%:45%;以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后,得到混合均匀的Si-ZrO2-MgO-Y2O3混合粉体。
(2)将Si-ZrO2-MgO-Y2O3混合粉体放入模具进行冷等静压成型,冷等静压成型压力200MPa,保压时间为5min。
(3)将Si-ZrO2-MgO-Y2O3坯体埋入Si3N4粉中,放入氮化硼坩埚,以20℃/min的升温速度将温度升到1400℃保温2h,然后以10℃/min的升温速度将温度升到1800℃保温2h,整个过程气氛为1atm的氮气,通过自扩散实现梯度Si3N4陶瓷的制备。制备的复合材料中,Si3N4呈长棒状自增韧结构,具有良好的韧性;TiN,ZrN,HfN呈等轴状,具有高硬度,且MN分布从表面到心部逐渐递减(如图1所示)。
本实施例制备得到的梯度Si3N4陶瓷的相对密度达到99%,硬度为19GPa,断裂韧性为12MPa·m1/2,抗弯强度为1200Mpa,梯度层厚度为60μm。
实施例2
按照Si3N4:ZrO2:MgO-Re2O3的质量分数比为50%:40%:10%进行配料,其中MgO:Yb2O3质量分数比为60%:40%,按照实施例1方法制备Si3N4陶瓷,其中首先升温至1375℃保温24h,然后升温至1900℃保温12h,进行10MPa的气压烧结,烧结气氛为氮气。制备所得陶瓷材料的相对密度为99%,材料的硬度为25GPa,断裂韧性为14MPa·m1/2,抗弯强度为1500Mpa,梯度层厚度为100μm。
实施例3
按照Si3N4:TiO2:MgO-Gd2O3的质量分数比为72%:20%:8%进行配料,其中MgO:Gd2O3质量分数比为60%:40%,按照实施例1方法制备Si3N4陶瓷,其中首先升温至1375℃保温4h,然后升温至1900℃保温4h,进行10MPa的气压烧结,烧结气氛为氮气。制备所得陶瓷材料的相对密度为99%,材料的硬度为20GPa,断裂韧性为14MPa·m1/2,抗弯强度为1200Mpa,梯度层厚度为80μm。
实施例4
按照Si3N4:TiO2:MgO-Y2O3的质量分数比为50%:40%:10%进行配料,其中MgO:Y2O3质量分数比为55%:45%,按照实施例1方法制备Si3N4陶瓷,其中首先升温至1500℃保温24h,然后升温至1900℃保温12h,进行10MPa的气压烧结,烧结气氛为氮气。制备所得陶瓷材料的相对密度为99%,材料的硬度为24GPa,断裂韧性为14MPa·m1/2,抗弯强度为1500Mpa,梯度层厚度为150μm。
实施例5
按照Si3N4:HfO2:MgO-Lu2O3的质量分数比为70%:20%:10%进行配料,其中MgO:Lu2O3质量分数比为60%:40%,按照实施例1方法制备Si3N4陶瓷,其中首先升温至1500℃保温12h,然后升温至1900℃保温12h,进行10MPa的气压烧结,烧结气氛为氮气。制备所得陶瓷材料的相对密度为99%,材料的硬度为25GPa,断裂韧性为14MPa·m1/2,抗弯强度为1500Mpa,梯度层厚度为60μm。
实施例6
按照Si3N4:HfO2:MgO-La2O3的质量分数比为50%:40%:10%进行配料,其中MgO:La2O3质量分数比为55%:45%,按照实施例1方法制备Si3N4陶瓷,其中首先升温至1600℃保温24h,然后升温至1900℃保温12h,进行10MPa的气压烧结,烧结气氛为氮气。制备所得陶瓷材料的相对密度为99%,材料的硬度为25GPa,断裂韧性为14MPa·m1/2,抗弯强度为1500Mpa,梯度层厚度为200μm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种通过自扩散制备Si3N4梯度材料的方法,其特征在于,包括以下步骤:
(1)以Si3N4和MO2,M=Ti,Zr,Hf粉为原料,以MgO-Re2O3为烧结助剂,经混料、干燥后,得到Si3N4-MO2-MgO-Re2O3混合粉体;
(2)将Si3N4-MO2-MgO-Re2O3混合粉体通过冷等静压成型获得坯体;将坯体埋在Si3N4粉中,并进行后续两步烧结,整个过程烧结气氛为氮气,最后得到具有MN梯度的Si3N4陶瓷。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,Re为Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb或Lu中任一种。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,以Si3N4、MO2和MgO-Re2O3的总质量为100%计,Si3N4的质量百分比为50~75%,MO2质量百分比为20~40%,MgO-Re2O3的质量百分比为5~30%;MgO-Re2O3中的MgO和Re2O3质量比为1:5~5:1。
4.根据权利要求1或3所述的方法,其特征在于,步骤(1)中,以Si3N4、MO2和MgO-Re2O3的总质量为100%计,Si3N4的质量百分比为60~72%,MO2质量百分比为20~40%,MgO-Re2O3的质量百分比为8~20%;MgO-Re2O3中的MgO和Re2O3质量比为1:1~3:1。
5.根据权利要求1所述的方法,其特征在于,步骤(1)所述的Si3N4粉纯度为95~100%,粒径为<10μm;MO2纯度为98~100%,粒径为<10μm;MgO粉纯度为95~100%,Re2O3纯度为99.9%。
6.根据权利要求1所述的方法,其特征在于,步骤(1)中,将Si3N4、MO2和MgO-Re2O3进行混料时,以乙醇为溶剂,以Si3N4球为球磨介质,在行星式球磨机上混合4~18h。
7.根据权利要求1所述的方法,其特征在于,步骤(2)中,冷等静压成型压力100~300MPa,保压时间为1~10min。
8.根据权利要求1或7所述的方法,其特征在于,步骤(2)中,冷等静压成型压力180~220MPa,保压时间为4~6min。
9.根据权利要求1所述的方法,其特征在于,步骤(2)中,两步烧结法的烧结程序如下:以18~22℃/min的升温速率将温度升至1250~1600℃并保温0.5~24h,然后以8~12℃/min的升温速率将温度升至1600~2000℃,并保温0.5~24h,整个过程烧结气氛为氮气,通过石墨发热电阻炉烧结获得具有MN梯度的Si3N4梯度材料。
10.根据权利要求1所述的方法,其特征在于,所述方法制备得到Si3N4梯度材料,Si3N4梯度材料的表面为梯度MN层,相对密度大于95%,表层硬度为20~25GPa,断裂韧性为10~14MPa·m1/2,抗弯强度为1000~1500Mpa,梯度层厚度为10~200μm。
CN201711271134.7A 2017-12-05 2017-12-05 一种通过自扩散制备Si3N4梯度材料的方法 Expired - Fee Related CN107954722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711271134.7A CN107954722B (zh) 2017-12-05 2017-12-05 一种通过自扩散制备Si3N4梯度材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711271134.7A CN107954722B (zh) 2017-12-05 2017-12-05 一种通过自扩散制备Si3N4梯度材料的方法

Publications (2)

Publication Number Publication Date
CN107954722A true CN107954722A (zh) 2018-04-24
CN107954722B CN107954722B (zh) 2021-05-04

Family

ID=61957476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711271134.7A Expired - Fee Related CN107954722B (zh) 2017-12-05 2017-12-05 一种通过自扩散制备Si3N4梯度材料的方法

Country Status (1)

Country Link
CN (1) CN107954722B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863396A (zh) * 2018-06-14 2018-11-23 广东工业大学 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992100A (zh) * 2014-06-10 2014-08-20 山东理工大学 利用成份梯度设计制备高强高韧性层状氮化硅陶瓷的工艺
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN105645985A (zh) * 2015-12-31 2016-06-08 广东工业大学 一种表硬心韧的TiB2梯度陶瓷的制备方法
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992100A (zh) * 2014-06-10 2014-08-20 山东理工大学 利用成份梯度设计制备高强高韧性层状氮化硅陶瓷的工艺
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN105645985A (zh) * 2015-12-31 2016-06-08 广东工业大学 一种表硬心韧的TiB2梯度陶瓷的制备方法
CN106904977A (zh) * 2017-03-20 2017-06-30 广东工业大学 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊明等: "包覆氧化锆对氮化硅力学性能的影响", 《人工晶体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863396A (zh) * 2018-06-14 2018-11-23 广东工业大学 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用
CN108863396B (zh) * 2018-06-14 2021-04-06 广东工业大学 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用

Also Published As

Publication number Publication date
CN107954722B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
Liu et al. Laser additive manufacturing and homogeneous densification of complicated shape SiC ceramic parts
Sahin et al. Spark plasma sintering of B4C–SiC composites
CN105016738B (zh) 氮化硅陶瓷及其制备方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
Guo et al. Effect of heating rate on densification, microstructure and strength of spark plasma sintered ZrB2-based ceramics
CN105645985B (zh) 一种表硬心韧的TiB2梯度陶瓷的制备方法
CN102056863A (zh) 金属渗透的碳化硅钛和碳化铝钛坯体
Li et al. Microstructure and mechanical properties of ZrO2 (Y2O3)–Al2O3 nanocomposites prepared by spark plasma sintering
CN105622107B (zh) 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
JP5930317B2 (ja) 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
CN109320259A (zh) 一种氮化硅基金刚石复合材料及其制备方法
CN106810285A (zh) 一种原位生成碳纤维增韧氧化铝陶瓷的制备方法
CN104211392A (zh) 一种陶瓷薄片及其制备方法
CN108046808A (zh) 一种Si3N4梯度材料及其制备方法
WO2003068707A1 (fr) Materiau composite carbone renforce a fibre de carbone resistante a l&#39;oxydation, et procede de production dudit materiau
CN114736022B (zh) 一种高致密度、高强度和超高硬度碳化硼/高熵二硼化物复相陶瓷及其制备方法
CN105948761B (zh) 一种等轴状β-Si3N4+TiN+O′-Sialon复相陶瓷材料及其制备方法
CN108863396A (zh) 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用
CN105254307B (zh) 一种制备Si3N4‑O’‑Sialon‑TiN陶瓷球材料的方法
CN107651964A (zh) 一种AlN基复合陶瓷及其制备方法
CN107954722A (zh) 一种通过自扩散制备Si3N4梯度材料的方法
CN109761622A (zh) 一种基于外场辅助技术的氮化硅基梯度复合材料及其制备方法
CN104261822B (zh) 一种氧化锆复合陶瓷及其制备方法
Serra et al. Enhanced sinterability of mechanical alloyed La9. 33Si2Ge4O26 oxyapatite powders for IT-SOFC electrolytes
CN105819867B (zh) 一种可电火花加工和机械加工的Si3N4-ZrSi2-BN复相陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210504

Termination date: 20211205

CF01 Termination of patent right due to non-payment of annual fee