CN113860880A - 一种具有良好固化性能的氮化硅陶瓷浆料 - Google Patents

一种具有良好固化性能的氮化硅陶瓷浆料 Download PDF

Info

Publication number
CN113860880A
CN113860880A CN202111033694.5A CN202111033694A CN113860880A CN 113860880 A CN113860880 A CN 113860880A CN 202111033694 A CN202111033694 A CN 202111033694A CN 113860880 A CN113860880 A CN 113860880A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramic
parts
ceramic particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111033694.5A
Other languages
English (en)
Inventor
刘耀
占丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingxiang Xucai Technology Co ltd
Original Assignee
Pingxiang Xucai Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingxiang Xucai Technology Co ltd filed Critical Pingxiang Xucai Technology Co ltd
Priority to CN202111033694.5A priority Critical patent/CN113860880A/zh
Publication of CN113860880A publication Critical patent/CN113860880A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

发明公开了一种具有良好固化性能的氮化硅陶瓷浆料的制备方法,包括以下具体步骤:1)称取表面改性剂与不同颜色粒径的氮化硅陶瓷颗粒混合搅拌10‑20min,然后干燥制得改性氮化硅陶瓷颗粒;2)将改性氮化硅陶瓷颗粒与稀释剂混合进行真空搅拌除泡,搅拌得到预混液;3)在预混液中加入质量分数为1‑10wt.%的引发剂进行真空搅拌除泡,搅拌即可,本发明通过合理的级配以及匹配陶瓷粉末的颜色、粒径分布来实现具有良好固化性能的氮化硅陶瓷浆料。

Description

一种具有良好固化性能的氮化硅陶瓷浆料
技术领域
本发明涉及光固化氮化硅陶瓷技术领域,具体讲是一种具有良好固化性能的氮化硅陶瓷浆料。
背景技术
陶瓷颗粒对紫外光的吸收能够决定陶瓷光固化浆料的光固化性能。陶瓷粉末的颜色、粒径大小、粒径分布等都会影响陶瓷粉末对紫外光吸收、折射和散射。Griffith等和Chartier等发现,陶瓷浆料的固化深度主要由陶瓷颗粒和介质之间的折射率差(△n)平方所影响,△n越小,固化厚度越大。其次,影响固化深度的第二个因素是粒子间距和紫外波长的比值Q。Q值越小,固化深度越大。Abouliatim等通过库贝尔卡-蒙克模型的建立,对不同粒径的Al2O3和SiO2陶瓷颗粒与紫外光的消光系数与透射深度的研究关系发现,随着陶瓷颗粒粒径的增大,紫外光的漫反射率和漫反射透过率升高,浆料固化深度减小和固化宽度增大。
Jang等人通过研究ZrO2粒度分布对固化厚度的影响,研究发现当粉末粒度分布越窄,紫外光的折射越大,固化深度越小。需要指出的是,能量密度、配方体系、固相含量同样着影响着浆料的固化厚度和固化深度。Tomeckova等通过对SiO2陶瓷浆料进行光固化时,建立紫外光的吸收和散射的衰减方程,研究发现浆料的固化深度和固化宽度受临界能量的影响,曝光能量越大,固化深度越大和固化宽度越小。Li通过对不同固相含量的Al2O3浆料流变性研究发现,随着固相含量的增加,浆料润湿角增大,固化厚度增大和宽度减小。
需要指出的是,由于Al2O3和ZrO2等氧化物陶瓷具有相对较小的吸光率,其光固化浆料的固化性能较好,因此,氧化物陶瓷的光固化机理及光固化成型获得了较为更为广泛的研究。然而,由于氮化物和碳化物陶瓷通常为灰白色或深色,其紫外光的吸收率高,固化性能差,这直接导致了其难固化成型。Ding等对不同颜色和粒径的SiC陶瓷粉末紫外光吸收证实,颜色较深的SiC陶瓷具有较强的紫外光吸收,其光固化性能变差。
发明内容
本发明所要解决的技术问题是,克服以上现有技术的缺点:提供一种具有良好固化性能的氮化硅陶瓷浆料的制备方法。申请人研究发现,除氮化物本身的高紫外光吸收率,陶瓷粉末的颜色、粒径大小、粒径分布等也能够影响陶瓷粉末对紫外光吸收、折射和散射。本发明通过合理的级配以及匹配陶瓷粉末的颜色、粒径分布来实现具有良好固化性能的氮化硅陶瓷浆料。
本发明的技术解决方案如下:一种具有良好固化性能的氮化硅陶瓷浆料的制备方法,包括以下具体步骤:
1)称取表面改性剂与不同颜色、不同粒径的氮化硅陶瓷颗粒混合搅拌10-20min,然后干燥制得改性氮化硅陶瓷颗粒;
2)将改性氮化硅陶瓷颗粒与稀释剂混合进行真空搅拌除泡,搅拌时间10-30min得到预混液,其中,以重量份数计:稀释剂100份、改性氮化硅陶瓷颗粒1-30份;
3)在预混液中加入质量分数为1-10wt.%的引发剂进行真空搅拌除泡,搅拌时间20-30min即可制得具有良好固化性能的氮化硅陶瓷浆料。
作为优化,所述表面改性剂为KH550、KH560、KH570中的一种或者几种。
作为优化,步骤1)中,以重量份数计:表面改性剂10-15份、粒径范围为80nm-5μm且由白色、灰白色、深灰色三种颜色组成的氮化硅陶瓷颗粒混合物30-40份。
作为最优选,步骤1)中,以重量份数计:表面改性剂10-15份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为2μm的白色氮化硅陶瓷颗粒(W-2.0)5-6份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为1.5μm的白色氮化硅陶瓷颗粒(W-1.5)3-5份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的白色氮化硅陶瓷颗粒(W-0.8)9-10份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的灰白色氮化硅陶瓷颗粒(G-0.8)5-7份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的深灰色氮化硅陶瓷颗粒(D-0.8)9-10份。
作为优选,所述稀释剂为HEA、HDDA、TMPTA中的一种或者几种。作为优选,所述引发剂为TPO、819、184中的一种或者几种。
采用本发明制备的氮化硅陶瓷浆料在405nm光机上进行固化成型,得到黑色的氮化硅陶瓷坯体;将固化后的氮化硅陶瓷坯体进行脱脂;然后将脱脂后的氮化硅坯体放入气压烧结炉中,烧结温度为1700-1800℃。
本发明的有益效果是:申请人发现,除氮化物本身的高紫外光吸收率,陶瓷粉末的颜色、粒径大小、粒径分布等也能够影响陶瓷粉末对紫外光吸收、折射和散射。本发明通过合理的级配以及匹配陶瓷粉末的颜色、粒径分布,制备得到具有良好固化性能的氮化硅陶瓷浆料。
附图说明
图1为不同颜色粒度Si3N4体积分数为30vol.%时浆料沉降速率图。
图2为不同颜色粒度Si3N4体积分数为30vol.%时浆料的流变剪切速率-粘度关系曲线。
图3为不同颜色粒度Si3N4的润湿性。
图4为不同颜色粒度Si3N4的C=C转换率。
图5为不同颜色粒度Si3N4的固化深度与曝光能量的关系。
图6(a)和(b)为不同颜色粒度Si3N4体积分数为30vol.%浆料紫外吸光度值。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例
按照如下方法制备具有良好固化性能的氮化硅陶瓷浆料,具体步骤如下:
1)称取表面改性剂KH550与不同颜色、不同粒径的氮化硅陶瓷颗粒混合搅拌20min,然后干燥制得改性氮化硅陶瓷颗粒;以重量份数计:表面改性剂15份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为2μm的白色氮化硅陶瓷颗粒(W-2.0)5份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为1.5μm的白色氮化硅陶瓷颗粒(W-1.5)5份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的白色氮化硅陶瓷颗粒(W-0.8)9份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的灰白色氮化硅陶瓷颗粒(G-0.8)7份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8μm的深灰色氮化硅陶瓷颗粒(D-0.8)10份。
2)将改性氮化硅陶瓷颗粒与稀释剂混合进行真空搅拌除泡,搅拌时间30min得到预混液,其中,以重量份数计:稀释剂HDDA100份、改性氮化硅陶瓷颗粒30份;
3)在预混液中加入质量分数为10wt.%的引发剂TPO进行真空搅拌除泡,搅拌时间30min即可制得具有良好固化性能的氮化硅陶瓷浆料。
由图4可见,不同颜色和平均颗粒粒径的Si3N4陶瓷浆料的C=C转化率的变化趋势基本一致,C=C转化率随着曝光时间的增加而增长。不过,随着曝光时间的延长,其变化速率不断减小。
图6显示了不同颜色和粒径的Si3N4颗粒和陶瓷浆料的紫外吸光度值。由图可见,在相同的粒径下,深灰色、灰色和白色Si3N4陶瓷颗粒的吸光值分别为0.9013、0.6976和0.3118。而Si3N4浆料的吸光度值也随着浆料中陶瓷颗粒颜色的加深而增大。与此同时,具有相同粒径但不同颜色的Si3N4陶瓷浆料的紫外吸光值也呈现出颜色越浅,紫外光的吸收率越小的趋势。紫外-可见光的吸收过程实际上是是分子内电子跃迁的结果,它反映了分子中价电子跃迁时的能量变化与化合物所含发色基团之间的关系。不同的化合物由于分子结构不同,电子跃迁的类型会产生差异,因此,紫外-可见吸收光谱会呈现出不同特征的吸收峰,而吸收峰的波长和强度与分子中价电子的类型有关。
申请人根据自行的研究发现图1-6中不同颜色粒径氮化硅陶瓷颗粒的性能,通过合理的级配以及匹配陶瓷粉末的颜色、粒径分布,制备得到具有良好固化性能的氮化硅陶瓷浆料。采用本实施例制备的氮化硅陶瓷浆料在405nm光机上进行固化成型,得到黑色的氮化硅陶瓷坯体;将固化后的氮化硅陶瓷坯体进行脱脂;然后将脱脂后的氮化硅坯体放入气压烧结炉中,烧结温度为1700-1800℃。制备得到的产品致密度、显微硬度和断裂韧性分别为3.12g/cm3,14.11±0.1GPa和7.63±0.5MPa·m1/2。
以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (6)

1.一种具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于,包括以下具体步骤:
1)称取表面改性剂与不同颜色、不同粒径的氮化硅陶瓷颗粒混合搅拌10-20min,然后干燥制得改性氮化硅陶瓷颗粒;
2)将改性氮化硅陶瓷颗粒与稀释剂混合进行真空搅拌除泡,搅拌时间10-30min得到预混液,其中,以重量份数计:稀释剂100份、改性氮化硅陶瓷颗粒1-30份;
3)在预混液中加入质量分数为1-10wt.%的引发剂进行真空搅拌除泡,搅拌时间20-30min即可制得具有良好固化性能的氮化硅陶瓷浆料。
2.根据权利要求1所述的具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于,所述表面改性剂为KH550、KH560、KH570中的一种或者几种。
3. 根据权利要求1所述的具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于,步骤1)中,以重量份数计:表面改性剂10-15份、粒径范围为80 nm-5µm且由白色、灰白色、深灰色三种颜色组成的氮化硅陶瓷颗粒混合物30-40份。
4.根据权利要求3所述的具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于:
表面改性剂10-15份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为2µm的白色氮化硅陶瓷颗粒(W-2.0)5-6份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为1.5µm的白色氮化硅陶瓷颗粒(W-1.5)3-5份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8µm的白色氮化硅陶瓷颗粒(W-0.8)9-10份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8µm的灰白色氮化硅陶瓷颗粒(G-0.8)5-7份;
辽宁德盛特种陶瓷制造有限公司生产出售的粒径为0.8µm的深灰色氮化硅陶瓷颗粒(D-0.8)9-10份。
5.根据权利要求1所述的具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于,所述稀释剂为HEA、HDDA、TMPTA中的一种或者几种。
6.根据权利要求1所述的具有良好固化性能的氮化硅陶瓷浆料的制备方法,其特征在于,所述引发剂为TPO、819、184中的一种或者几种。
CN202111033694.5A 2021-09-03 2021-09-03 一种具有良好固化性能的氮化硅陶瓷浆料 Pending CN113860880A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111033694.5A CN113860880A (zh) 2021-09-03 2021-09-03 一种具有良好固化性能的氮化硅陶瓷浆料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111033694.5A CN113860880A (zh) 2021-09-03 2021-09-03 一种具有良好固化性能的氮化硅陶瓷浆料

Publications (1)

Publication Number Publication Date
CN113860880A true CN113860880A (zh) 2021-12-31

Family

ID=78989638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111033694.5A Pending CN113860880A (zh) 2021-09-03 2021-09-03 一种具有良好固化性能的氮化硅陶瓷浆料

Country Status (1)

Country Link
CN (1) CN113860880A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285361A (zh) * 2023-08-07 2023-12-26 武汉理工大学 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045191A1 (zh) * 2015-09-16 2017-03-23 广东工业大学 一种光固化成型的高致密陶瓷的制备方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法
CN108424149A (zh) * 2018-04-27 2018-08-21 中南大学 光固化氮化硅陶瓷浆料
CN108675796A (zh) * 2018-06-05 2018-10-19 广东工业大学 一种氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法和应用
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法
CN112174676A (zh) * 2020-09-16 2021-01-05 山东工业陶瓷研究设计院有限公司 一种氮化硅髋臼杯的制备方法
CN112209728A (zh) * 2020-10-28 2021-01-12 衡阳凯新特种材料科技有限公司 一种光固化氮化硅陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045191A1 (zh) * 2015-09-16 2017-03-23 广东工业大学 一种光固化成型的高致密陶瓷的制备方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法
CN108424149A (zh) * 2018-04-27 2018-08-21 中南大学 光固化氮化硅陶瓷浆料
CN108675796A (zh) * 2018-06-05 2018-10-19 广东工业大学 一种氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法和应用
CN110395991A (zh) * 2019-07-25 2019-11-01 西安增材制造国家研究院有限公司 一种光固化氮化硅陶瓷膏料及其制备方法
CN112174676A (zh) * 2020-09-16 2021-01-05 山东工业陶瓷研究设计院有限公司 一种氮化硅髋臼杯的制备方法
CN112209728A (zh) * 2020-10-28 2021-01-12 衡阳凯新特种材料科技有限公司 一种光固化氮化硅陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285361A (zh) * 2023-08-07 2023-12-26 武汉理工大学 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Similar Documents

Publication Publication Date Title
Xing et al. Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent
Brinckmann et al. Stereolithography of SiOC polymer‐derived ceramics filled with SiC micronwhiskers
Liu et al. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography
Tang et al. The preparation of SiC ceramic photosensitive slurry for rapid stereolithography
CN108218440B (zh) 光固化树脂基陶瓷复合材料及陶瓷胚体脱脂方法
CN110803915A (zh) 一种陶瓷光固化材料及其制备方法
CN110483008B (zh) 一种用于光固化3d打印陶瓷的浆料及其陶瓷产品制备方法
Hu et al. Effect of SiC powder on the properties of SiC slurry for stereolithography
CN113860880A (zh) 一种具有良好固化性能的氮化硅陶瓷浆料
WO2011018939A1 (ja) 球状コアシェル型酸化セリウム/高分子ハイブリッドナノ粒子の集積体及びその製造方法
CN108249930B (zh) 提供光洁轮廓的光固化树脂基陶瓷复合材料及胚体脱脂方法
CN101243126A (zh) 含固体填料的可聚合组合物,由它形成的制品和形成方法
Zou et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing
JP2022507818A (ja) TiO2ナノ結晶の合成、キャップ、および分散
CN113754441B (zh) 一种光敏树脂及其制备方法和应用
Quanchao et al. High-performance and high-precision Al2O3 architectures enabled by high-solid-loading, graphene-containing slurries for top-down DLP 3D printing
Lin et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions
Wu et al. Realization of complex-shaped and high-performance alumina ceramic cutting tools via Vat photopolymerization based 3D printing: A novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent
CN114410175A (zh) 一种汽车内饰件用高耐磨涂料及其制备方法
CN114958075A (zh) 一种水性反射油墨及其制备方法与在光伏玻璃中的应用
Guo et al. Application of SiO2-coated SiC powder in stereolithography and sintering densification of SiC ceramic composites
Wang et al. Preparation of Si3N4 ceramic based on digital light processing 3D printing and precursor infiltration and pyrolysis
CN106366702B (zh) 低聚物修饰微粒与其制造方法以及涂料
CN117285349B (zh) 一种3d打印彩色氧化锆陶瓷浆料及其制备方法和应用
CN112159226A (zh) 一种光固化氧化锆陶瓷浆料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211231

RJ01 Rejection of invention patent application after publication