CN117285361A - 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法 - Google Patents

一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法 Download PDF

Info

Publication number
CN117285361A
CN117285361A CN202310982614.3A CN202310982614A CN117285361A CN 117285361 A CN117285361 A CN 117285361A CN 202310982614 A CN202310982614 A CN 202310982614A CN 117285361 A CN117285361 A CN 117285361A
Authority
CN
China
Prior art keywords
silicon nitride
printing
powder
ceramic
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310982614.3A
Other languages
English (en)
Inventor
陈斐
王绪业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202310982614.3A priority Critical patent/CN117285361A/zh
Publication of CN117285361A publication Critical patent/CN117285361A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料及其打印方法,采用粗β相氮化硅粉末和细α相氮化硅粉末进行级配,能够显著降低光固化3D打印氮化硅陶瓷浆料的粘度,提高其固化深度,配置高固相含量的氮化硅陶瓷浆料。有利于打印高精度、无缺陷的氮化硅坯体。进一步的,本发明通过多相颗粒级配灵活调控粉末体系的烧结驱动力和相变机制,结合对烧结温度的合理选择,能够获得高致密、高强度的氮化硅陶瓷。实施例结果表明,本发明制备得到的氮化硅陶瓷致密度94.5%,抗弯强度为472MPa,具有优异的综合性能。

Description

一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料及其 打印方法
技术领域
本发明属于陶瓷增材制造技术领域,具体涉及到一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料及其打印方法。
背景技术
氮化硅陶瓷具有优异的综合性能,包括高机械强度、低热膨胀系数和出色的热稳定性,是极端环境应用中最有前途的先进陶瓷材料之一。在航空航天、工业制造等领域,氮化硅陶瓷得到了广泛的应用。尽管氮化硅具有众多优点,但其高硬度和低韧性使得加工和生产复杂形状的零件具有挑战性。随着光固化成型技术的发展,制备复杂形状的陶瓷结构变得更加容易。
由于α相氮化硅粉末的相变增强机理,传统方法制备氮化硅陶瓷通常使用纳米级的α相氮化硅粉末。然而,使用纳米或亚微米级粉末配置的光固化3D打印浆料往往具有较高的粘度和较低的固化深度,这可能导致打印失败或样品缺陷,影响最终陶瓷制品的性能。此外由于强共价键的存在,较粗的微米级α相氮化硅粉末又难以转化烧结,也会对陶瓷性能产生不利影响。有研究学者通过添加其他陶瓷或表面涂层的方式来提高氮化硅浆料的固化深度,但制备的氮化硅陶瓷强度较差。专利CN202210179265使用高折射率的树脂来配置氮化硅浆料,但仅能小幅度提高浆料的固化深度。
因此,本专利提出了一种基于多相颗粒级配的光固化3D打印制备氮化硅陶瓷的方法。在改善氮化硅浆料性能的同时确保烧结过程中氮化硅粉体的相变机制,制备出高强度的光固化氮化硅陶瓷产品。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有技术中存在的问题,提出了本发明。
因此,本发明的目的是,克服现有技术中的不足,提供一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料。
为解决上述技术问题,本发明提供了如下技术方案:包括,
陶瓷混合粉末、光敏树脂预混液、分散剂、触变剂;
其中,所述陶瓷混合粉末为多相颗粒级配氮化硅粉末与烧结助剂,所述光敏树脂预混液包括光敏树脂单体、预聚物、增塑剂以及光引发剂;
所述多相颗粒级配氮化硅粉末由粒径为3~50μm的粗β相氮化硅粉末和粒径为0.1~3μm的细α相氮化硅粉末级配得到,其中细α相氮化硅粉末的占比为20%~90%。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:以质量百分比计,所述陶瓷混合粉末中,多相颗粒级配氮化硅粉末的质量百分比为84~96%,烧结助剂的质量百分比为4%~16%,其中,所述烧结助剂为氧化铝与氧化钇的混合粉末,粒度为0.1~2μm。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:所述氧化铝质量为陶瓷混合粉末质量的2~8%,所述氧化钇质量为陶瓷混合粉末质量的2~8%。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:所述光敏树脂预混液包括,混合溶液,以及所述混合溶液质量2~5%的光引发剂;
其中,以质量百分比计,所述混合溶液包括,40~100%的光敏树脂单体,0~30%的预聚物、0~30%的增塑剂。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:所述光敏树脂单体包括丙烯酰吗啉、环三羟甲基丙烷甲缩醛丙烯酸酯、二乙氧化新二醇二丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯中的一种或多种;
所述预聚物包括环氧丙烯酸酯、聚氨酯丙烯酸酯中的一种或多种;
所述增塑剂包括聚乙二醇、2,2,4-三甲基-1,3-戊二醇二异酸酯和邻苯二甲酸二甲酯中的一种或多种;
所述光引发剂包括2,4,6-三甲基苯甲酰基-二苯基氧化膦。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:所述分散剂为SP710,添加量为陶瓷混合粉末的1~4%,所述触变剂为八甲基环四硅氧烷,添加量为陶瓷混合粉末的1~5%。
本发明的另一目的是,提供一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的制备方法,包括,多相颗粒级配氮化硅粉末和烧结助剂混合球磨,得到陶瓷混合粉末;
光敏树脂单体、预聚物、增塑剂形成混合物,再往混合物中加入光引发剂形成预混液;
陶瓷混合粉末、预混液散剂和触变剂混合形成氮化硅陶瓷浆料。
本发明的另一目的是,提供一种光固化3D打印氮化硅陶瓷的方法。
为解决上述技术问题,本发明提供了如下技术方案:包括,
通过光固化打印机打印氮化硅陶瓷浆料,形成氮化硅打印坯体;
依次对打印坯体进行清洗、脱脂、高温烧结处理,得到氮化硅陶瓷。
作为本发明所述基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的一种优选方案,其中:所述高温烧结为无压烧结或气压烧结,烧结温度为1700~1950℃。
本发明有益效果:
本发明采用粗β相氮化硅粉末和细α相氮化硅粉末进行级配,能够显著降低光固化3D打印氮化硅陶瓷浆料的粘度,提高其固化深度,配置高固相含量的氮化硅陶瓷浆料。有利于打印高精度、无缺陷的氮化硅坯体。进一步的,本发明通过多相颗粒级配灵活调控粉末体系的烧结驱动力和相变机制,结合对烧结温度的合理选择,能够获得高致密、高强度的氮化硅陶瓷。实施例结果表明,本发明制备得到的氮化硅陶瓷致密度94.5%,抗弯强度为472MPa,具有优异的综合性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料及其打印方法整体流程示意图。
图2为本发明实施例1中级配得到的陶瓷粉体的SEM图。
图3为本发明实施例1中级配得到的陶瓷粉体的XRD图。
图4为本发明实施例1烧结后的氮化硅陶瓷抛光表面的EBSD形貌图。
图5为实施例1~4以及对比例1~2陶瓷粉末混合后的粒径分布对比
图6为实施例1~4以及对比例1~2烧结得到氮化硅陶瓷的相组成对比图。
图7为实施例1~6不同烧结温度以及不同α-Si3N4粉末含量(Fn)制得氮化硅陶瓷的抗弯强度对比图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
本发明中具体实施例中所用原料的英文缩写及全称对应关系如表1所示。
表1
本发明中所用原料无特殊说明均为本领域普通市售。
其中,Si3N4粉末购自中国山东瓷兴新材料有限公司,光敏树脂购自中山市千佑化学材料有限公司,SP710分散剂购自鑫博诚环保材料有限公司,引发剂Irgacure 819购自富斯曼科技(北京)有限公司。
本发明中所用3D打印机为QuickDemos智能制造高科技公司开发的CeraStation1.0陶瓷3D打印机,用于测试的陶瓷打印层厚度为25μm,曝光能量为22mW/cm2,曝光时间为10s。
本发明采用阿基米德排水法测定氮化硅陶瓷的实际密度;相对密度由实际密度与氮化硅陶瓷的理论密度的比值获得。
本发明在加载速度为5mm/min的情况下,进行三点弯曲试验,测定陶瓷的抗弯强度。
实施例1
本实施例提供了一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料及其打印方法,具体的:
1)按以下配方称取原料:
陶瓷混合粉末:88%的Si3N4粉末(3μm的β-Si3N4粉末与0.6μm的α-Si3N4粉末质量比为6:4),12%的烧结助剂(5%的Y2O3和7%的Al2O3);
光敏树脂预混液:
混合物:ACMO、DEGDA、TEGTA、EA、TBXI,质量比为2:3:3:2:1;
混合物质量3%的光引发剂Irgacure819;
陶瓷混合粉末与光敏树脂预混液的体积比1:1;
陶瓷混合粉末质量2%的分散剂SP710,陶瓷混合粉末质量3%的触变剂D4;
2)制备氮化硅陶瓷浆料:
陶瓷混合粉末原料混合置于球磨罐中,加入无水乙醇和研磨球,于行星式球磨机中球磨4h,干燥过筛备用;
ACMO、DEGDA、TEGTA、EA、TBXI混合后加入光引发剂Irgacure819,通过磁力搅拌机搅拌形成预混液;
预处理的陶瓷混合粉末和预混液混合,依次加入分散剂、触变剂D4,通过均质机搅拌均匀并真空脱泡后得到氮化硅陶瓷浆料。
图2、图3分别为氮化硅陶瓷粉体的SEM以及XRD图谱,可以看出,3μm的β-Si3N4粉末与0.6μm的α-Si3N4粉末均呈不规则形状,3μm的β-Si3N4物相均为β相,0.6μm的α-Si3N4粉末主要为α相含有少量的β相。
3)进行3D打印:
光固化3D打印氮化硅陶瓷浆料采用光固化3D打印成型得到氮化硅打印坯体,用异丙醇超声清洗3次,每次10min,清洗后采用两步脱脂法对打印坯体进行脱脂,首先在氮气气氛下以1℃/min的升温速率升温至418℃,并在此温度下保温2h,随后以同样升温速率升温至600℃并保温2h;随炉冷却后在氧气气氛下以5℃/min的升温速率升温至600℃并保温4h,以脱去坯体中残余的碳,脱脂完毕后进行高温烧结,烧结温度为1850℃,保温时间为4h,即得到α-Si3N4粉末掺杂量为40%的F40氮化硅陶瓷。
图4为本实施例烧结后的氮化硅陶瓷抛光表面的EBSD形貌,横截面显示出其许多长棒状β晶粒(深色),它们在裂纹偏转、晶粒拉出和桥接中起作用,大大提高了样品的强度。
实施例2
本实施例与实施例1不同之处在于调整Si3N4粉末中3μm的β-Si3N4粉末与0.6μm的α-Si3N4粉末质量比为4:6,其余配方以及工艺参数均与实施例1相同,制得本实施例的F60氮化硅陶瓷。
实施例3
本实施例与实施例1不同之处在于调整Si3N4粉末中3μm的β-Si3N4粉末与0.6μm的α-Si3N4粉末质量比为8:2,其余配方以及工艺参数均与实施例1相同,制得本实施例的F20氮化硅陶瓷。
实施例4
本实施例与实施例1不同之处在于调整Si3N4粉末中3μm的β-Si3N4粉末与0.6μm的α-Si3N4粉末质量比为2:8,其余配方以及工艺参数均与实施例1相同,制得本实施例的F80氮化硅陶瓷。
对比例1
本对比例与实施例1不同之处在于调整Si3N4粉末仅为0.6μm的α-Si3N4粉末,其余配方以及工艺参数均与实施例1相同,制得本对比例的F100氮化硅陶瓷。
对比例2
本对比例与实施例1不同之处在于调整Si3N4粉末仅为3μm的β-Si3N4粉末,其余配方以及工艺参数均与实施例1相同,制得本对比例的F0氮化硅陶瓷。图5为实施例1~4以及对比例1~2陶瓷粉末混合后的粒径分布对比,可以看到通过多项颗粒级配混合的粉末呈双峰分布,在此基础上才能制备出粘度低、稳定性好、固化深度高的浆料,有利于后续打印出层间结合良好、缺陷少的坯体。
图6为实施例1~4以及对比例1~2烧结得到氮化硅陶瓷的相组成对比,可以看出,烧结后试样的主要晶相为β-Si3N4相,表明发生了α-Si3N4相的相变,当0.6μm的α-Si3N4粉末含量小于40%时,α相完全转化为β相,而当0.6μm的α-Si3N4粉末含量大于40%时,仍有小部分α相未转化,测定各氮化硅陶瓷的x相对密度以及抗弯曲强度,结果如表2所示。
表2不同α-Si3N4粉末含量的陶瓷浆料及氮化硅陶瓷性能对比
从表2可以看出,Si3N4粉末中α-Si3N4粉末与β-Si3N4粉末的掺杂比例或含量对制备的Si3N4陶瓷的强度有重要影响,这是由于本发明精心设计的多相粒度级配策略,一方面优化了浆料性能,大大避免了坯体打印过程中可能引入的缺陷,另一方面,通过灵活调控粉末体系的烧结驱动力和相变机制,有利于通过光固化3D打印制备出高强度氮化硅陶瓷。
实施例5
本实施例用以探究当烧结温度为1750℃时,不同0.6μm的α-Si3N4粉末含量制得氮化硅陶瓷的性能,与实施例1不同之处在于,调整烧结温度为1750℃,调整0.6μm的α-Si3N4粉末含量分别为0%、20%、40%、60%、80%、100%,其余工艺步骤及参数均与实施例1相同,制得本实施例不同α-Si3N4粉末含量的氮化硅陶瓷。
实施例6
本实施例与实施例5不同之处在于,调整烧结温度为1950℃,其余工艺参数均与实施例5相同,制得本实施例不同0.6μm的α-Si3N4粉末含量的氮化硅陶瓷。
对比实施例1~6不同烧结温度以及不同0.6μm的α-Si3N4粉末含量制得氮化硅陶瓷的抗弯强度,结果如图7所示。
从图中可以看出,在1750℃时,由于小晶粒的细晶强化作用和α相的转变作用,随着0.6μm的α-Si3N4含量的增加,抗弯强度增加,有利于强度的提高,而当烧结温度达到1950℃时,随着0.6μm的α-Si3N4含量的增加,试样的抗弯强度反而降低,这主要是由于烧结颈搭接形成较大孔隙的试样相对密度降低,从而导致强度降低,而烧结温度为1850℃时,F40含量为40%的样品的最大抗弯强度为472.08MPa,显著高于其他样品。
综上,本发明采用粗β相氮化硅粉末和细α相氮化硅粉末进行级配,能够显著降低光固化3D打印氮化硅陶瓷浆料的粘度,提高其固化深度,配置高固相含量的氮化硅陶瓷浆料。有利于打印高精度、无缺陷的氮化硅坯体。进一步的,本发明通过多相颗粒级配灵活调控粉末体系的烧结驱动力和相变机制,结合对烧结温度的合理选择,能够获得高致密、高强度的氮化硅陶瓷。实施例结果表明,本发明制备得到的氮化硅陶瓷致密度94.5%,抗弯强度为472MPa,具有优异的综合性能。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:包括,陶瓷混合粉末、光敏树脂预混液、分散剂、触变剂;
其中,所述陶瓷混合粉末为多相颗粒级配氮化硅粉末与烧结助剂,所述光敏树脂预混液包括光敏树脂单体、预聚物、增塑剂以及光引发剂;
所述多相颗粒级配氮化硅粉末由粒径为3~50μm的粗β相氮化硅粉末和粒径为0.1~3μm的细α相氮化硅粉末级配得到,其中,细α相氮化硅粉末的占比为20%~90%。
2.如权利要求1所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:以质量百分比计,所述陶瓷混合粉末中,多相颗粒级配氮化硅粉末的质量百分比为84~96%,烧结助剂的质量百分比为4%~16%,其中,所述烧结助剂为氧化铝与氧化钇的混合粉末,粒度为0.1~2μm。
3.如权利要求2所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:所述氧化铝质量为陶瓷混合粉末质量的2~8%,所述氧化钇质量为陶瓷混合粉末质量的2~8%。
4.如权利要求1所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:所述光敏树脂预混液包括,混合溶液,以及所述混合溶液质量2~5%的光引发剂;
其中,以质量百分比计,所述混合溶液包括,40~100%的光敏树脂单体,0~30%的预聚物、0~30%的增塑剂。
5.如权利要求4所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:所述光敏树脂单体包括丙烯酰吗啉、环三羟甲基丙烷甲缩醛丙烯酸酯、二乙氧化新二醇二丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯中的一种或多种;
所述预聚物包括环氧丙烯酸酯、聚氨酯丙烯酸酯中的一种或多种;
所述增塑剂包括聚乙二醇、2,2,4-三甲基-1,3-戊二醇二异酸酯和邻苯二甲酸二甲酯中的一种或多种;
所述光引发剂包括2,4,6-三甲基苯甲酰基-二苯基氧化膦。
6.如权利要求1所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:所述分散剂为SP710,添加量为陶瓷混合粉末的1~4%,所述触变剂为八甲基环四硅氧烷,添加量为陶瓷混合粉末的1~5%。
7.如权利要求1所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料,其特征在于:所述浆料的固含量为40~60vol%。
8.如权利要求1~7任一所述的基于多相颗粒级配的光固化3D打印氮化硅陶瓷浆料的制备方法,其特征在于:包括,
多相颗粒级配氮化硅粉末和烧结助剂混合球磨,得到陶瓷混合粉末;
光敏树脂单体、预聚物、增塑剂形成混合物,再往混合物中加入光引发剂形成预混液;
陶瓷混合粉末、预混液散剂和触变剂混合形成氮化硅陶瓷浆料。
9.一种应用如权利要求1~7任一所述浆料进行光固化3D打印氮化硅陶瓷的方法,其特征在于:包括,
通过光固化打印机打印氮化硅陶瓷浆料,形成氮化硅打印坯体;
依次对打印坯体进行清洗、脱脂、高温烧结处理,得到氮化硅陶瓷。
10.如权利要求9所述光固化3D打印氮化硅陶瓷的方法,其特征在于:所述高温烧结为无压烧结或气压烧结,烧结温度为1700~1950℃,保温时间为3~5h。
CN202310982614.3A 2023-08-07 2023-08-07 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法 Pending CN117285361A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310982614.3A CN117285361A (zh) 2023-08-07 2023-08-07 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310982614.3A CN117285361A (zh) 2023-08-07 2023-08-07 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Publications (1)

Publication Number Publication Date
CN117285361A true CN117285361A (zh) 2023-12-26

Family

ID=89243328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310982614.3A Pending CN117285361A (zh) 2023-08-07 2023-08-07 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Country Status (1)

Country Link
CN (1) CN117285361A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026671A (en) * 1989-03-17 1991-06-25 Ngk Insulators, Ltd. Sintered silicon nitride and method for making the same
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用
CN113511901A (zh) * 2021-04-21 2021-10-19 广东工业大学 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN113860880A (zh) * 2021-09-03 2021-12-31 萍乡旭材科技有限公司 一种具有良好固化性能的氮化硅陶瓷浆料
CN115536401A (zh) * 2022-10-31 2022-12-30 华中科技大学 一种基于放电等离子烧结的光固化成形陶瓷及其制备方法
CN116535220A (zh) * 2023-05-29 2023-08-04 共享智能装备有限公司 一种氮化硅陶瓷粉末制品的脱脂烧结方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026671A (en) * 1989-03-17 1991-06-25 Ngk Insulators, Ltd. Sintered silicon nitride and method for making the same
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用
CN113511901A (zh) * 2021-04-21 2021-10-19 广东工业大学 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN113860880A (zh) * 2021-09-03 2021-12-31 萍乡旭材科技有限公司 一种具有良好固化性能的氮化硅陶瓷浆料
CN115536401A (zh) * 2022-10-31 2022-12-30 华中科技大学 一种基于放电等离子烧结的光固化成形陶瓷及其制备方法
CN116535220A (zh) * 2023-05-29 2023-08-04 共享智能装备有限公司 一种氮化硅陶瓷粉末制品的脱脂烧结方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李荐等: "β-Si3 N4含量对Y2O3-MgO-α-Si3N4陶瓷性能的影响", 矿冶工程, pages 91 - 93 *

Similar Documents

Publication Publication Date Title
CN108503365B (zh) 一种基于光固化技术的碳化硅陶瓷及其制备方法
CN101456737A (zh) 一种碳化硼基复合陶瓷及其制备方法
Zou et al. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing
CN111848172B (zh) 二硅化钼/碳化硅三维聚合物先驱体陶瓷及其制备方法
CN116874311B (zh) 光固化3d打印工艺制备硼酸铝多孔陶瓷的方法
CN111333423A (zh) 面曝光光固化3d打印的含金刚石的碳化硅陶瓷零件的方法
CN115872752A (zh) 一种光固化3d打印用陶瓷浆料及其制备方法、陶瓷及其制备方法
Wu et al. Realization of complex-shaped and high-performance alumina ceramic cutting tools via Vat photopolymerization based 3D printing: A novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent
Huang et al. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing
Yin et al. Influence of debinding parameter and nano-ZrO2 particles on the silica-based ceramic cores fabricated by stereolithography-based additive manufacturing
Tian et al. Effect of polystyrene addition on properties of porous Si3N4 ceramics fabricated by digital light processing
Huang et al. Reinforcement effect in printing precision and sintering performance for liquid crystal display stereolithography additive manufacturing of alumina ceramics
Yang et al. Effect of different sintering additives on the microstructure, phase compositions and mechanical properties of Si3N4/SiC ceramics
CN114436657A (zh) 一种基于粉体熔融沉积法的3d打印成型复合材料及其制备方法
CN117285361A (zh) 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法
CN115180965B (zh) 一种聚碳硅烷增强氧化铝陶瓷浆料的制备方法和3d打印光固化成型工艺
Wu et al. Influence of the ratio of sintering aids on the properties of porous Si3N4 ceramics fabricated by digital light processing
CN115849885B (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN115010496B (zh) 一种性能可控的b4c-金刚石复合材料的制备方法
Yang et al. The influence mechanism of nano-alumina content in semi-solid ceramic precursor fluid on the forming performance via a light-cured 3D printing method
CN114524676B (zh) 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
CN113548903B (zh) 一种碳化硅增强氮化硅陶瓷及其制备方法
Jin et al. Additive manufacturing Cf/SiC composites with high fiber content by stereolithography combined with precursor infiltration and pyrolysis
Wu et al. Influence of the content of polymethyl methacrylate on the properties of porous Si3N4 ceramics fabricated by digital light processing
CN114014654A (zh) 一种活性填料增强前驱体陶瓷复合材料的光固化增材制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination