CN112209728A - 一种光固化氮化硅陶瓷及其制备方法 - Google Patents
一种光固化氮化硅陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN112209728A CN112209728A CN202011171996.4A CN202011171996A CN112209728A CN 112209728 A CN112209728 A CN 112209728A CN 202011171996 A CN202011171996 A CN 202011171996A CN 112209728 A CN112209728 A CN 112209728A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- parts
- photocuring
- nitride ceramic
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/82—Asbestos; Glass; Fused silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
本发明公开了一种光固化氮化硅陶瓷及其制备方法,所述氮化硅陶瓷由以下原料制备而成:所述原料按重量份数比为:氮化硅35‑45份、纳米二氧化钛3‑4份、消泡剂0.4‑1.2份、铁硅铝2‑4份、分散剂0.6‑0.8份、流变改性剂0.7‑0.9份、玻璃纤维1.4‑1.8份、聚醚酮酮1.6‑2份和液态光敏树脂30‑36份;本发明通过采用氮化硅为主料,配合液态光敏树脂,在紫外线照射下,聚合物由胶质树脂转变成坚硬物质,添加分散剂和消泡剂,使成形后的氮化硅陶瓷表面平整,材料分散均匀,强度高,添加流变改性剂,提高氮化硅陶瓷粘度流变特性,并预先将聚醚酮酮和玻璃纤维复合反应,生成可增强氮化硅陶瓷强度的复合材料,经氮气煅烧、干燥、热脱脂和烧结后,得到强度高、成本低的光固化氮化硅陶瓷。
Description
技术领域
本发明涉及陶瓷材料技术领域,具体为一种光固化氮化硅陶瓷及其制备方法。
背景技术
氮化硅陶瓷具有高的硬度和比强度、优异的耐磨性能、良好的化学稳定性等特点,在高温下能保持相当高的机械强度。因此,在热机、航天、机械、生物医学等诸多领域得到了广泛的重视,具有广阔的应用前景。陶瓷工艺分为粉体制备、坯体成型、干燥、烧结和后加工等几个阶段,其中坯体成型作为联系粉体与制品的中间环节,对陶瓷材料的性能有着至关重要的影响。
陶瓷材料以其优异的力学性能、化学稳定性、抗高温性能,广泛应用于化工、军事、机械、电子、半导体、航天等行业。然而,上述特性给复杂形状陶瓷零件的成形带来了许多困难。传统的陶瓷加工技术只要是采用凝胶注模成型、注浆成型、注射成型等技术,这些技术一般加工成型精度低,且需要模具难以获得形状特别复杂的构件。近些年来,以光固化为基础的增材技术被广泛发展成为加工复杂形状陶瓷材的新思路。这种增材制造技术一般是采用陶瓷粉体和树脂混合的浆料在紫外光的照射下成型,成型后再经过高温烧结除去坯体中的有机杂质。
现有的光固化氮化硅材料在制备成形后,强度较低,同时,成本较高,不能满足人人们对于氮化硅陶瓷的需求,为此,提出一种光固化氮化硅陶瓷及其制备方法。
发明内容
本发明的目的在于提供一种光固化氮化硅陶瓷及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种光固化氮化硅陶瓷,所述氮化硅陶瓷由以下原料制备而成:所述原料按重量份数比为:氮化硅35-45份、纳米二氧化钛3-4份、消泡剂0.4-1.2份、铁硅铝2-4份、分散剂0.6-0.8份、流变改性剂0.7-0.9份、玻璃纤维1.4-1.8份、聚醚酮酮1.6-2份和液态光敏树脂30-36份。
优选的:所述液态光敏树脂由齐聚物、光引发剂和稀释剂组成,所述齐聚物光引发剂和稀释剂的比例为25-30:0.5-1.5:1。
优选的:所述光敏剂由氢硫基和乙烯基组成,所述氢硫基和乙烯基的比例为1:1。
优选的:所述齐聚物为丙烯酸酯化环氧树脂、不饱和聚酯、聚氨酯和多硫醇/多烯光固化树脂中的任意一种或多种混合。
优选的:所述稀释剂为苯乙烯、乙烯基吡咯烷酮、醋酸乙烯酯、丙烯酸丁酯、丙烯酸异辛酯、丙烯酸羟基酯中的任意一种。
优选的:所述流变改性剂为丙烯酸流变改性剂。
一种光固化氮化硅陶瓷的制备方法,包括以下步骤:
S1、将玻璃纤维和聚醚酮酮反应后,备用;
S2、将氮化硅、纳米二氧化钛、铁硅铝、加入液态光敏树脂中,搅拌5-8min后,加入玻璃纤维和聚醚酮酮反应后的混合物,继续搅拌4-6min,加入分散剂、流变改性剂和消泡剂,搅拌1-2min,得到陶瓷浆料;
S3、将陶瓷浆料放置于光固化成型设备中,通过光固化3D打印,制得光固化成型坯体;
S4、将光固化成型坯体在氮气氛围煅烧后,冷却得到陶瓷坯胎;
S5、将陶瓷胚胎干燥、热脱脂和烧结后,得到光固化氮化硅陶瓷。
优选的:在所述S3中,光固化3D打印中,紫外光的波长为310-410nm,低强度紫外光的光照强度为9-11mw/cm2,高强度紫外光的光照强度为15-20mw/cm2,照射时间9-15s,分层厚度为60-120μm,单层曝光时间为15-30s。
优选的:在所述S4中,氮气氛围煅烧时,氮气氛围下500-600℃煅烧6-12小时,然后10℃/min速率升温至1400-1800℃煅烧3-4小时,再2℃/min升温至1650-1700℃煅烧20-24小时得到陶瓷坯胎,冷却后光固化氮化硅陶瓷。
与现有技术相比,本发明的有益效果是:本发明通过采用氮化硅为主料,配合液态光敏树脂,在紫外线照射下,聚合物由胶质树脂转变成坚硬物质,添加分散剂和消泡剂,使成形后的氮化硅陶瓷表面平整,材料分散均匀,强度高,添加流变改性剂,提高氮化硅陶瓷粘度流变特性,并预先将聚醚酮酮和玻璃纤维复合反应,生成可增强氮化硅陶瓷强度的复合材料,配合价格低廉的铁硅铝,经氮气煅烧、干燥、热脱脂和烧结后,得到强度高、成本低的光固化氮化硅陶瓷。
附图说明
图1为本发明的制备方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参阅图1,本发明提供一种技术方案:一种光固化氮化硅陶瓷,氮化硅陶瓷由以下原料制备而成:原料按重量份数比为:氮化硅35份、纳米二氧化钛3份、消泡剂0.4份、铁硅铝2份、分散剂0.6份、流变改性剂0.7份、玻璃纤维1.4份、聚醚酮酮1.6份和液态光敏树脂30份。
本实施例中,具体的:液态光敏树脂由齐聚物、光引发剂和稀释剂组成,齐聚物光引发剂和稀释剂的比例为25:0.5:1。
进一步的:光敏剂由氢硫基和乙烯基组成,氢硫基和乙烯基的比例为1:1。
在前述方案的基础上:齐聚物为丙烯酸酯化环氧树脂、不饱和聚酯、聚氨酯和多硫醇固化树脂混合。
本实施例中,具体的:稀释剂为苯乙烯。
在前述方案的基础上:流变改性剂为丙烯酸流变改性剂。
一种光固化氮化硅陶瓷的制备方法,包括以下步骤:
S1、将玻璃纤维和聚醚酮酮反应后,备用;
S2、将氮化硅、纳米二氧化钛、铁硅铝、加入液态光敏树脂中,搅拌5min后,加入玻璃纤维和聚醚酮酮反应后的混合物,继续搅拌4min,加入分散剂、流变改性剂和消泡剂,搅拌1min,得到陶瓷浆料;
S3、将陶瓷浆料放置于光固化成型设备中,通过光固化3D打印,制得光固化成型坯体;
S4、将光固化成型坯体在氮气氛围煅烧后,冷却得到陶瓷坯胎;
S5、将陶瓷胚胎干燥、热脱脂和烧结后,得到光固化氮化硅陶瓷。
本实施例中,具体的:在S3中,光固化3D打印中,紫外光的波长为310nm,低强度紫外光的光照强度为9mw/cm2,高强度紫外光的光照强度为15mw/cm2,照射时间9s,分层厚度为60μm,单层曝光时间为15s。
进一步的:在S4中,氮气氛围煅烧时,氮气氛围下500℃煅烧6小时,然后10℃/min速率升温至1400℃煅烧4小时,再2℃/min升温至1650℃煅烧24小时得到陶瓷坯胎,冷却后光固化氮化硅陶瓷。
实施例二
请参阅图1,本发明还提供了一种技术方案,与实施例一不同的是:一种光固化氮化硅陶瓷,氮化硅陶瓷由以下原料制备而成:原料按重量份数比为:氮化硅40份、纳米二氧化钛4份、消泡剂0.8份、铁硅铝3份、分散剂0.7份、流变改性剂0.8份、玻璃纤维1.6份、聚醚酮酮1.8份和液态光敏树脂33份。
本实施例中,具体的:液态光敏树脂由齐聚物、光引发剂和稀释剂组成,齐聚物光引发剂和稀释剂的比例为28:1:1。
在前述方案的基础上:齐聚物为不饱和聚酯、聚氨酯和多烯光固化树脂混合。
本实施例中,具体的:稀释剂为丙烯酸丁酯。
一种光固化氮化硅陶瓷的制备方法,包括以下步骤:
S1、将玻璃纤维和聚醚酮酮反应后,备用;
S2、将氮化硅、纳米二氧化钛、铁硅铝、加入液态光敏树脂中,搅拌7min后,加入玻璃纤维和聚醚酮酮反应后的混合物,继续搅拌5min,加入分散剂、流变改性剂和消泡剂,搅拌2min,得到陶瓷浆料;
S3、将陶瓷浆料放置于光固化成型设备中,通过光固化3D打印,制得光固化成型坯体;
S4、将光固化成型坯体在氮气氛围煅烧后,冷却得到陶瓷坯胎;
S5、将陶瓷胚胎干燥、热脱脂和烧结后,得到光固化氮化硅陶瓷。
本实施例中,具体的:在S3中,光固化3D打印中,紫外光的波长为360nm,低强度紫外光的光照强度为10mw/cm2,高强度紫外光的光照强度为17mw/cm2,照射时间12s,分层厚度为90μm,单层曝光时间为22s。
进一步的:在S4中,氮气氛围煅烧时,氮气氛围下550℃煅烧8小时,然后10℃/min速率升温至1600℃煅烧4小时,再2℃/min升温至1700℃煅烧22小时得到陶瓷坯胎,冷却后光固化氮化硅陶瓷。
实施例三
请参阅图1,本发明还提供了一种技术方案,与实施例一不同的是:一种光固化氮化硅陶瓷,氮化硅陶瓷由以下原料制备而成:原料按重量份数比为:氮化硅45份、纳米二氧化钛4份、消泡剂1.2份、铁硅铝4份、分散剂0.8份、流变改性剂0.9份、玻璃纤维1.8份、聚醚酮酮2份和液态光敏树脂36份。
本实施例中,具体的:液态光敏树脂由齐聚物、光引发剂和稀释剂组成,齐聚物光引发剂和稀释剂的比例为30:1.5:1。
在前述方案的基础上:齐聚物为丙烯酸酯化环氧树脂和不饱和聚酯混合。
本实施例中,具体的:稀释剂为丙烯酸羟基酯。
一种光固化氮化硅陶瓷的制备方法,包括以下步骤:
S1、将玻璃纤维和聚醚酮酮反应后,备用;
S2、将氮化硅、纳米二氧化钛、铁硅铝、加入液态光敏树脂中,搅拌8min后,加入玻璃纤维和聚醚酮酮反应后的混合物,继续搅拌6min,加入分散剂、流变改性剂和消泡剂,搅拌2min,得到陶瓷浆料;
S3、将陶瓷浆料放置于光固化成型设备中,通过光固化3D打印,制得光固化成型坯体;
S4、将光固化成型坯体在氮气氛围煅烧后,冷却得到陶瓷坯胎;
S5、将陶瓷胚胎干燥、热脱脂和烧结后,得到光固化氮化硅陶瓷。
本实施例中,具体的:在S3中,光固化3D打印中,紫外光的波长为410nm,低强度紫外光的光照强度为11mw/cm2,高强度紫外光的光照强度为20mw/cm2,照射时间15s,分层厚度为120μm,单层曝光时间为30s。
进一步的:在S4中,氮气氛围煅烧时,氮气氛围下600℃煅烧12小时,然后10℃/min速率升温至1800℃煅烧4小时,再2℃/min升温至1700℃煅烧20小时得到陶瓷坯胎,冷却后光固化氮化硅陶瓷。
工作原理:本发明中,采用氮化硅为主料,氮化硅作为一种性能优良的高温结构陶瓷在航空燃气发动机部件、化工耐腐蚀耐摩擦零件、高温陶瓷轴承、切削刀具、雷达天线罩等方面具有广泛的应用,配合液态光敏树脂,在紫外线照射下,液态光敏树脂中的分子结合成长长的交联聚合物高分子,在键结时,聚合物由胶质树脂转变成坚硬物质,并在其中添加分散剂和消泡剂,使成形后的氮化硅陶瓷表面平整,材料分散均匀,强度高,添加流变改性剂,提高氮化硅陶瓷粘度流变特性,并预先将聚醚酮酮和玻璃纤维复合反应,生成可增强氮化硅陶瓷强度的复合材料,配合价格低廉的铁硅铝,经氮气煅烧、干燥、热脱脂和烧结后,得到强度高、成本低的光固化氮化硅陶瓷。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (9)
1.一种光固化氮化硅陶瓷,其特征在于,所述氮化硅陶瓷由以下原料制备而成:所述原料按重量份数比为:氮化硅35-45份、纳米二氧化钛3-4份、消泡剂0.4-1.2份、铁硅铝2-4份、分散剂0.6-0.8份、流变改性剂0.7-0.9份、玻璃纤维1.4-1.8份、聚醚酮酮1.6-2份和液态光敏树脂30-36份。
2.根据权利要求1所述的一种光固化氮化硅陶瓷,其特征在于:所述液态光敏树脂由齐聚物、光引发剂和稀释剂组成,所述齐聚物光引发剂和稀释剂的比例为25-30:0.5-1.5:1。
3.根据权利要求2所述的一种光固化氮化硅陶瓷,其特征在于:所述光敏剂由氢硫基和乙烯基组成,所述氢硫基和乙烯基的比例为1:1。
4.根据权利要求2所述的一种光固化氮化硅陶瓷,其特征在于:所述齐聚物为丙烯酸酯化环氧树脂、不饱和聚酯、聚氨酯和多硫醇/多烯光固化树脂中的任意一种或多种混合。
5.根据权利要求1所述的一种光固化氮化硅陶瓷,其特征在于:所述稀释剂为苯乙烯、乙烯基吡咯烷酮、醋酸乙烯酯、丙烯酸丁酯、丙烯酸异辛酯、丙烯酸羟基酯中的任意一种。
6.根据权利要求1所述的一种光固化氮化硅陶瓷,其特征在于:所述流变改性剂为丙烯酸流变改性剂。
7.一种光固化氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将玻璃纤维和聚醚酮酮反应后,备用;
S2、将氮化硅、纳米二氧化钛、铁硅铝、加入液态光敏树脂中,搅拌5-8min后,加入玻璃纤维和聚醚酮酮反应后的混合物,继续搅拌4-6min,加入分散剂、流变改性剂和消泡剂,搅拌1-2min,得到陶瓷浆料;
S3、将陶瓷浆料放置于光固化成型设备中,通过光固化3D打印,制得光固化成型坯体;
S4、将光固化成型坯体在氮气氛围煅烧后,冷却得到陶瓷坯胎;
S5、将陶瓷胚胎干燥、热脱脂和烧结后,得到光固化氮化硅陶瓷。
8.根据权利要求1所述的一种光固化氮化硅陶瓷的制备方法,其特征在于:在所述S3中,光固化3D打印中,紫外光的波长为310-410nm,低强度紫外光的光照强度为9-11mw/cm2,高强度紫外光的光照强度为15-20mw/cm2,照射时间9-15s,分层厚度为60-120μm,单层曝光时间为15-30s。
9.根据权利要求1所述的一种光固化氮化硅陶瓷的制备方法,其特征在于:在所述S4中,氮气氛围煅烧时,氮气氛围下500-600℃煅烧6-12小时,然后10℃/min速率升温至1400-1800℃煅烧3-4小时,再2℃/min升温至1650-1700℃煅烧20-24小时得到陶瓷坯胎,冷却后光固化氮化硅陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011171996.4A CN112209728A (zh) | 2020-10-28 | 2020-10-28 | 一种光固化氮化硅陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011171996.4A CN112209728A (zh) | 2020-10-28 | 2020-10-28 | 一种光固化氮化硅陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112209728A true CN112209728A (zh) | 2021-01-12 |
Family
ID=74057299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011171996.4A Withdrawn CN112209728A (zh) | 2020-10-28 | 2020-10-28 | 一种光固化氮化硅陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112209728A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113860880A (zh) * | 2021-09-03 | 2021-12-31 | 萍乡旭材科技有限公司 | 一种具有良好固化性能的氮化硅陶瓷浆料 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143247A (ja) * | 2002-10-23 | 2004-05-20 | Jsr Corp | 光硬化性液状組成物、立体形状物及びこれらの製造方法 |
WO2009052139A2 (en) * | 2007-10-16 | 2009-04-23 | Zimmer Dental, Inc. | Dental implant and prosthetic device preparation kit and methods therefor |
CN102307920A (zh) * | 2009-02-05 | 2012-01-04 | 阿科玛股份有限公司 | 用聚醚酮酮上胶的纤维 |
CN103080227A (zh) * | 2010-07-13 | 2013-05-01 | 英威达技术有限公司 | 高尺寸稳定性聚酯组合物 |
CN105665697A (zh) * | 2016-03-11 | 2016-06-15 | 中山大学惠州研究院 | 一种fdm 3d打印用金属或陶瓷耗材及其制备方法与打印成品方法 |
CN106699191A (zh) * | 2017-01-20 | 2017-05-24 | 广东工业大学 | 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法 |
CN107158474A (zh) * | 2017-05-26 | 2017-09-15 | 山东工业陶瓷研究设计院有限公司 | 光固化3d打印牙科种植体用浆料及其制备方法和应用 |
CN107722193A (zh) * | 2017-10-18 | 2018-02-23 | 中山大简科技有限公司 | 一种用于光固化快速成形的高硬度光敏树脂组合物 |
CN107880522A (zh) * | 2017-12-22 | 2018-04-06 | 山东凯盛新材料股份有限公司 | 晶须增强聚醚酮酮复合材料及其制备方法 |
CN108033793A (zh) * | 2017-11-17 | 2018-05-15 | 南京旭羽睿材料科技有限公司 | 一种3d打印用氮化硅陶瓷材料及其制备方法 |
CN109135175A (zh) * | 2018-08-09 | 2019-01-04 | 华东理工大学 | 聚醚酮酮基复合材料、组合物、修复体及制备方法、应用 |
CN109943023A (zh) * | 2019-04-08 | 2019-06-28 | 深圳先进技术研究院 | 一种导热电磁屏蔽复合材料及其制备方法和应用 |
CN110054862A (zh) * | 2019-05-17 | 2019-07-26 | 广西慧思通科技有限公司 | 一种适用于3d打印的peek复合材料 |
CN110922709A (zh) * | 2019-12-18 | 2020-03-27 | 苏州世华新材料科技股份有限公司 | 一种导电聚合物复合吸波材料及其制备方法 |
CN111452358A (zh) * | 2020-04-10 | 2020-07-28 | 西安交通大学 | 一种基于粉末浆料并利用放射线的体制造方法 |
-
2020
- 2020-10-28 CN CN202011171996.4A patent/CN112209728A/zh not_active Withdrawn
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143247A (ja) * | 2002-10-23 | 2004-05-20 | Jsr Corp | 光硬化性液状組成物、立体形状物及びこれらの製造方法 |
WO2009052139A2 (en) * | 2007-10-16 | 2009-04-23 | Zimmer Dental, Inc. | Dental implant and prosthetic device preparation kit and methods therefor |
CN102307920A (zh) * | 2009-02-05 | 2012-01-04 | 阿科玛股份有限公司 | 用聚醚酮酮上胶的纤维 |
CN103080227A (zh) * | 2010-07-13 | 2013-05-01 | 英威达技术有限公司 | 高尺寸稳定性聚酯组合物 |
CN105665697A (zh) * | 2016-03-11 | 2016-06-15 | 中山大学惠州研究院 | 一种fdm 3d打印用金属或陶瓷耗材及其制备方法与打印成品方法 |
CN106699191A (zh) * | 2017-01-20 | 2017-05-24 | 广东工业大学 | 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法 |
CN107158474A (zh) * | 2017-05-26 | 2017-09-15 | 山东工业陶瓷研究设计院有限公司 | 光固化3d打印牙科种植体用浆料及其制备方法和应用 |
CN107722193A (zh) * | 2017-10-18 | 2018-02-23 | 中山大简科技有限公司 | 一种用于光固化快速成形的高硬度光敏树脂组合物 |
CN108033793A (zh) * | 2017-11-17 | 2018-05-15 | 南京旭羽睿材料科技有限公司 | 一种3d打印用氮化硅陶瓷材料及其制备方法 |
CN107880522A (zh) * | 2017-12-22 | 2018-04-06 | 山东凯盛新材料股份有限公司 | 晶须增强聚醚酮酮复合材料及其制备方法 |
CN109135175A (zh) * | 2018-08-09 | 2019-01-04 | 华东理工大学 | 聚醚酮酮基复合材料、组合物、修复体及制备方法、应用 |
CN109943023A (zh) * | 2019-04-08 | 2019-06-28 | 深圳先进技术研究院 | 一种导热电磁屏蔽复合材料及其制备方法和应用 |
CN110054862A (zh) * | 2019-05-17 | 2019-07-26 | 广西慧思通科技有限公司 | 一种适用于3d打印的peek复合材料 |
CN110922709A (zh) * | 2019-12-18 | 2020-03-27 | 苏州世华新材料科技股份有限公司 | 一种导电聚合物复合吸波材料及其制备方法 |
CN111452358A (zh) * | 2020-04-10 | 2020-07-28 | 西安交通大学 | 一种基于粉末浆料并利用放射线的体制造方法 |
Non-Patent Citations (1)
Title |
---|
李洪峰等: "短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性", 《材料导报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113860880A (zh) * | 2021-09-03 | 2021-12-31 | 萍乡旭材科技有限公司 | 一种具有良好固化性能的氮化硅陶瓷浆料 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Polymer‐derived silicon nitride ceramics by digital light processing based additive manufacturing | |
Zhao et al. | A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms | |
CN108675796B (zh) | 一种氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法和应用 | |
Yang et al. | Silicon carbide whiskers reinforced SiOC ceramics through digital light processing 3D printing technology | |
CN109265922B (zh) | 一种高韧性自催化环氧树脂及制备方法 | |
CN109734450B (zh) | 一种用于光固化增材制造的光敏陶瓷液的制备方法 | |
CN106810286B (zh) | 一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法 | |
CN108424149A (zh) | 光固化氮化硅陶瓷浆料 | |
CN110963788A (zh) | 一种陶瓷浆料的制备方法和陶瓷器件 | |
CN104761243A (zh) | 一种用热固性有机硅树脂结合陶瓷粉末制备陶瓷型芯的方法 | |
CN112209728A (zh) | 一种光固化氮化硅陶瓷及其制备方法 | |
Zhu et al. | Preparation of complex SiOC ceramics by a novel photocurable precursor with liquid crystal display (LCD) 3D printing technology | |
CN113968738A (zh) | 一种用于增材制造的陶瓷先驱体浆料和增材制造工艺 | |
CN112159226A (zh) | 一种光固化氧化锆陶瓷浆料及其制备方法与应用 | |
Guo et al. | Application of SiO2-coated SiC powder in stereolithography and sintering densification of SiC ceramic composites | |
CN109438631B (zh) | 一种高精度和高热变形温度立体光刻3d打印光敏树脂及其制备方法 | |
CN101972852B (zh) | 一种制备复杂形状钼零件的方法 | |
CN116283299A (zh) | 一种增材制造陶瓷微球增强先驱体陶瓷的方法 | |
Yang et al. | Printing adaptability and vitrification of UV photo-responsive silica nanocomposites | |
KR20110111572A (ko) | 굴절률 제어형 투명 유무기하이브리드 습식소재의 제조방법 및 이에 의해 제조된 굴절률 제어형 투명 유무기하이브리드 습식소재 | |
CN108841316B (zh) | 一种紫外光固化铽键合高分子材料的制备方法 | |
CN103421277B (zh) | 基于纳米氧化硅颗粒的环氧树脂复合材料的制备方法 | |
CN110803919A (zh) | 一种3d打印用陶瓷粉末及其制备方法 | |
CN103145950B (zh) | 一种利用金纳米粒子光热效应固化环氧树脂的方法 | |
CN113800943B (zh) | 基于光固化技术制备孔隙梯度Si3N4基陶瓷材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20210112 |
|
WW01 | Invention patent application withdrawn after publication |