CN110498686B - 一种夹层碳化硅微波热结构坩埚及其制备方法 - Google Patents
一种夹层碳化硅微波热结构坩埚及其制备方法 Download PDFInfo
- Publication number
- CN110498686B CN110498686B CN201910820526.7A CN201910820526A CN110498686B CN 110498686 B CN110498686 B CN 110498686B CN 201910820526 A CN201910820526 A CN 201910820526A CN 110498686 B CN110498686 B CN 110498686B
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- crucible
- quartz
- temperature
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C12/00—Powdered glass; Bead compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
- C04B2235/365—Borosilicate glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/08—Non-oxidic interlayers
- C04B2237/083—Carbide interlayers, e.g. silicon carbide interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/341—Silica or silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种夹层碳化硅微波热结构坩埚及其制备方法,其特征在于:在两个叠套石英坩埚的间隙中填充碳化硅浆料,高温烧结后制得;所述碳化硅浆料由以下质量百分比的原料制成:70%~85%碳化硅粉体、5%~15%烧结助剂和10%~25%有机物;烧结助剂为MgO‑Al2O3‑SiO2‑B3O2玻璃粉体,由以下质量百分比的原料制得:MgO18%~25%、Al2O317%~23%、SiO250%~55%和B3O25%~15%;有机物由以下质量百分比的原料制得:丁基卡必醇70~90%、1,4‑丁内脂5~13%、乙基纤维素1.5~3.5%和山梨醇酐三油酸酯1.5~3.5%。本发明优点:省去了制备坩埚的模具,且内外两层石英坩埚又可作为碳化硅材料的透波阻抗匹配层,有助于提高碳化硅的吸波性能;本制备方法简单,可广泛用于微波加热。
Description
技术领域
本发明属复合陶瓷坩埚制备领域,涉及一种夹层碳化硅微波热结构坩埚及其制备方法。
背景技术
传统加热方式是根据热传导、对流或辐射原理,热量是由材料外部向内部传递,从而对物料进行加热,其缺点是加热时间长,加热不均匀,容易出现局部过热现象,进而不能达到要求。而微波加热技术是通过被加热体内部偶极分子高频往复运动,产生“内摩擦热”而使被加热物料温度升高,使物料内、外部同时被加热,加热均匀、速度快,且能够对局部区域选择性加热,减少热能浪费。同时微波加热易于控制、反应灵敏。微波能使被加热物料在极短的时间内获得或失去加热能量来源,不存在“余热”等滞后现象,有利于进行控制和连续化操作。
石英坩埚是最常用的加热容器,但石英的介电常数和损耗都较小,几乎不吸收微波,其属于透波材料,不能作为微波热结构材料。而碳化硅材料具有优异的半导体特性,同时具有耐高温、低密度、力学性能优异、低价格、产量大等诸多优点,是一种非常有前景的微波热结构材料。但碳化硅本身介电常数与空气的介电常数差异过大,导致电磁波从空气入射到碳化硅表面时发生强反射,因而降低吸波性能,解决碳化硅本身吸波性能差的可行性办法是通过结构设计来制备碳化硅复合材料。
发明内容
本发明的目的是为了解决碳化硅材料作为微波热结构材料吸波性能差的问题,提供一种夹层碳化硅微波热结构坩埚及其制备方法。
为了实现上述目的,本发明采用的技术方案如下:
一种夹层碳化硅微波热结构坩埚,其特征在于:在两个叠套石英坩埚的间隙中填充碳化硅浆料,高温烧结后制得;
所述碳化硅浆料由以下质量百分比的原料制成:70%~85%碳化硅粉体、5%~15%烧结助剂和10%~25%有机物;烧结助剂为MgO-Al2O3-SiO2-B2O3玻璃粉体,由以下质量百分比的原料制得:MgO18%~25%、Al2O317%~23%、SiO250%~55%和B2O35%~15%;有机物由以下质量百分比的原料制得:丁基卡必醇70~90%、1,4-丁内脂5~13%、乙基纤维素1.5~3.5%和山梨醇酐三油酸酯1.5~3.5%,其中有机物的所有原料质量配比之和满足100%。
进一步,所述其中碳化硅粉的粒径为20~100μm,烧结助剂中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:0.5~120μm、0.1~100μm、0.5~100μm和7~74μm。
一种夹层碳化硅微波热结构坩埚的制备方法,其特征在于包括以下步骤:
(1)选用形状相同、尺寸不同的两个弧形或圆柱形石英坩埚,石英坩埚厚度为3~10mm,两个石英坩埚之间的间隙宽度为3~15mm,将石英坩埚浸入乙醇中进行超声清洗2~10 min,然后放入烘箱中,60~80℃烘干20~60min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.准确称取上述质量百分比的玻璃粉体原料混合后在球磨机内混合2~5h,过80~110目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1500~1600℃,升温速率为3~7℃/min,保温1~3h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎至粒径小于2mm,随后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨7~12h,其中磨球与玻璃渣质量比为3~5:1,球磨转速为200~250转/分,球磨后的玻璃渣在旋转蒸发器上60~100℃烘干1~3h,随后过180~250目筛,得到玻璃粉体;
b.有机物的制备:
按上述质量百分比,在丁基卡必醇中加入乙基纤维素,在80~100℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时80~100℃下持续加热和搅拌1.5~2.5h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按上述质量百分比称取制备好的玻璃粉体、有机溶液与碳化硅粉体进行球磨混合,球料质量比为2~4:1,球磨转速和时间分别为240~280转/分和20~30min,之后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/2-1/4体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置8~12h后放入烘箱中烘干,温度和时间分别为100~130℃、1.5~3h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~600℃,升温速率为0.5~3℃/min,在450~600℃保温2~4h以排除碳化硅浆料中的有机物,之后以4~6℃/min的升温速率升高到1000~1300℃烧结0.5~3h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
本发明是通过透波阻抗匹配层的设计来制备碳化硅复合材料,即在碳化硅材料表面复合低介电常数的匹配层,以减小其与空气的阻抗匹配性,而石英就是优良的阻抗匹配层材料。
本发明的优点:利用形状相同、尺寸不同的两个石英坩埚叠套在一起形成的间隙,省去了制备坩埚的模具,且内外两层石英坩埚又可作为碳化硅材料的透波阻抗匹配层,有助于提高碳化硅的吸波性能;本制备方法艺简单,不需要模具,可广泛用于微波加热。
附图说明
图1是一种夹层碳化硅微波热结构弧形坩埚的示意图;
图2是一种夹层碳化硅微波热结构圆柱形坩埚的示意图。
具体实施方式
结合图1、图2,对本发明作进一步说明,一种夹层碳化硅微波热结构坩埚及其制备方法,具体实施步骤如下:
实施例1
(1)选用形状相同、尺寸不同的两个弧形石英坩埚,石英坩埚厚度为3mm,两个石英坩埚之间的间隙宽度为3~6mm,将石英坩埚浸入乙醇中进行超声清洗(频率40KHZ,时间2min),然后放入烘箱,60℃烘干60min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.按如下质量百分比准确称取各玻璃粉体原料:MgO 20%、Al2O3 18%、SiO2 52%和B2O3 10%,其中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:80μm、50μm、70μm和40μm,将上述各原料初步混合后在球磨机内混合2h,过80目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1500℃,升温速率为3℃/min,保温3h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎(粒径小于2mm)后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨7h,其中磨球与玻璃渣质量比为3:1,球磨转速为250转/分,球磨后的玻璃渣在旋转蒸发器上60℃烘干3h,随后过180目筛,得到玻璃粉体;
b.有机物的制备:
按如下质量百分比称取各原料:丁基卡必醇70%、1,4-丁内脂13%、乙基纤维素3.5%和山梨醇酐三油酸酯3.5%,向丁基卡必醇中加入乙基纤维素,在80℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时80℃下持续加热和搅拌2.5h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按如下质量百分比称取10%的玻璃粉体、20%的有机溶液、70%的碳化硅粉体(碳化硅粉的粒径50μm)进行球磨混合,球料质量比为2:1,280转/分球磨20min,随后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/2体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置8h后放入烘箱中,100℃烘干3h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~450℃,升温速率为0.5℃/min,在450℃保温4h以排除碳化硅浆料中的有机物,之后从450℃开始以4℃/min的升温速率升高到1000℃烧结3h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
实施例2
(1)选用形状相同、尺寸不同的两个弧形石英坩埚,石英坩埚厚度为4.3mm,两个石英坩埚之间的间隙宽度为5~10mm,将石英坩埚浸入乙醇中进行超声清洗(频率40KHZ,时间10min),然后放入烘箱,80℃烘干20min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.按如下质量百分比准确称取各玻璃粉体原料:MgO 22%、Al2O3 18%、SiO2 52%和B2O3 8%,其中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:50μm、40μm、70μm和30μm,将上述各原料初步混合后在球磨机内混合5h,过110目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1600℃,升温速率为7℃/min,保温1h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎(粒径小于2mm)后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨12h,其中磨球与玻璃渣质量比为5:1,球磨转速为200转/分,球磨后的玻璃渣在旋转蒸发器上100℃烘干1h,随后过250目筛,得到玻璃粉体;
b.有机物的制备:
按如下质量百分比称取各原料:丁基卡必醇90%、1,4-丁内脂5%、乙基纤维素2.5%和山梨醇酐三油酸酯2.5%,向丁基卡必醇中加入乙基纤维素,在100℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时100℃下持续加热和搅拌1.5h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按如下质量百分比称取10%的玻璃粉体、10%的有机溶液、80%的碳化硅粉体(碳化硅粉的粒径70μm)进行球磨混合,球料质量比为4:1,240转/分球磨30min,随后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/4体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置12h后放入烘箱中,130℃烘干1.5h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~600℃,升温速率为3℃/min,在600℃保温2h以排除碳化硅浆料中的有机物,之后从600℃开始以6℃/min的升温速率升高到1300℃烧结0.5h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
实施例3
(1)选用形状相同、尺寸不同的两个弧形石英坩埚,石英坩埚厚度为7mm,两个石英坩埚之间的间隙宽度为5~15mm,将石英坩埚浸入乙醇中进行超声清洗(频率40KHZ,时间5min),然后放入烘箱,70℃烘干30min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.按如下质量百分比准确称取各玻璃粉体原料:MgO 22%、Al2O3 18%、SiO2 50%和B2O3 10%,其中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:40μm、70μm、50μm和60μm,将上述各原料初步混合后在球磨机内混合4h,过100目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1550℃,升温速率为5℃/min,保温3h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎(粒径小于2mm)后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨7h,其中磨球与玻璃渣质量比为4:1,球磨转速为240转/分,球磨后的玻璃渣在旋转蒸发器上80℃烘干1.5h,随后过200目筛,得到玻璃粉体;
b.有机物的制备:
按如下质量百分比称取各原料:丁基卡必醇85%、1,4-丁内脂11.5%、乙基纤维素2%和山梨醇酐三油酸酯1.5%,向丁基卡必醇中加入乙基纤维素,在90℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时90℃下持续加热和搅拌2h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按如下质量百分比称取5%的玻璃粉体、20%的有机溶液、75%的碳化硅粉体(碳化硅粉的粒径70μm)进行球磨混合,球料质量比为3:1,260转/分球磨30min,随后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/3体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置8h后放入烘箱中,130℃烘干1.5h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~500℃,升温速率为1℃/min,在500℃保温3h以排除碳化硅浆料中的有机物,之后从500℃开始以5℃/min的升温速率升高到1100℃烧结2h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
实施例4
(1)选用形状相同、尺寸不同的两个弧形石英坩埚,石英坩埚厚度为3.5mm,两个石英坩埚之间的间隙宽度为3~8mm,将石英坩埚浸入乙醇中进行超声清洗(频率40KHZ,时间5min),然后放入烘箱,80℃烘干30min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.按如下质量百分比准确称取各玻璃粉体原料:MgO 18%、Al2O3 17%、SiO2 50%和B2O315%,其中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:30μm、50μm、40μm和50μm,将上述各原料初步混合后在球磨机内混合4h,过100目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1550℃,升温速率为5℃/min,保温2h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎(粒径小于2mm)后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨8h,其中磨球与玻璃渣质量比为4:1,球磨转速为240转/分,球磨后的玻璃渣在旋转蒸发器上80℃烘干1.5h,随后过200目筛,得到玻璃粉体;
b.有机物的制备:
按如下质量百分比称取各原料:丁基卡必醇85%、1,4-丁内脂11%、乙基纤维素1.5%和山梨醇酐三油酸酯2.5%,向丁基卡必醇中加入乙基纤维素,在90℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时90℃下持续加热和搅拌2h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按如下质量百分比称取10%的玻璃粉体、10%的有机溶液、80%的碳化硅粉体(碳化硅粉的粒径100μm)进行球磨混合,球料质量比为3:1,260转/分球磨30min,随后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/3体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置10h后放入烘箱中,120℃烘干2h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~500℃,升温速率为1℃/min,在500℃保温3h以排除碳化硅浆料中的有机物,之后从500℃开始以5℃/min的升温速率升高到1200℃烧结2h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
实施例5
(1)选用形状相同、尺寸不同的两个弧形石英坩埚,石英坩埚厚度为10mm,两个石英坩埚之间的间隙宽度为8~15mm,将石英坩埚浸入乙醇中进行超声清洗(频率40KHZ,时间8min),然后放入烘箱,60℃烘干30min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.按如下质量百分比准确称取各玻璃粉体原料:MgO 25%、Al2O3 17%、SiO2 53%和B2O3 5%,其中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:40μm、55μm、60μm和45μm,将上述各原料初步混合后在球磨机内混合3h,过100目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1500℃,升温速率为5℃/min,保温3h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎(粒径小于2mm)后用无水乙醇作为介质(无水乙醇浸没过磨球和玻璃渣即可),球磨9h,其中磨球与玻璃渣质量比为4:1,球磨转速为240转/分,球磨后的玻璃渣在旋转蒸发器上80℃烘干2h,随后过200目筛,得到玻璃粉体;
b.有机物的制备:
按如下质量百分比称取各原料:丁基卡必醇85%、1,4-丁内脂10%、乙基纤维素2.5%和山梨醇酐三油酸酯2.5%,向丁基卡必醇中加入乙基纤维素,在90℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时90℃下持续加热和搅拌2h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按如下质量百分比称取5%的玻璃粉体、25%的有机溶液、70%的碳化硅粉体(碳化硅粉的粒径100μm)进行球磨混合,球料质量比为3:1,260转/分球磨30min,随后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/2体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置10h后放入烘箱中,120℃烘干2h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~550℃,升温速率为2℃/min,在550℃保温3h以排除碳化硅浆料中的有机物,之后从550℃开始以5℃/min的升温速率升高到1200℃烧结3h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
Claims (3)
1.一种夹层碳化硅微波热结构坩埚,其特征在于:在两个叠套石英坩埚的间隙中填充碳化硅浆料,高温烧结后制得;
所述碳化硅浆料由以下质量百分比的原料制成:70%~85%碳化硅粉体、5%~15%烧结助剂和10%~25%有机物;烧结助剂为MgO-Al2O3-SiO2-B2O3玻璃粉体,由以下质量百分比的原料制得:MgO18%~25%、Al2O317%~23%、SiO250%~55%和B2O35%~15%;有机物由以下质量百分比的原料制得:丁基卡必醇70~90%、1,4-丁内脂5~13%、乙基纤维素1.5~3.5%和山梨醇酐三油酸酯1.5~3.5%,其中有机物的所有原料质量配比之和满足100%。
2.根据权利要求1所述一种夹层碳化硅微波热结构坩埚,其特征在于:所述碳化硅粉的粒径为20~100μm,烧结助剂中MgO、Al2O3、SiO2和B2O3粉体的粒径分别为:0.5~120μm、0.1~100μm、0.5~100μm和7~74μm。
3.根据权利要求1或2所述的一种夹层碳化硅微波热结构坩埚的制备方法,其特征在于包括以下步骤:
(1)选用形状相同、尺寸不同的两个弧形或圆柱形石英坩埚,石英坩埚厚度为3~10mm,两个石英坩埚之间的间隙宽度为3~15mm,将石英坩埚浸入乙醇中进行超声清洗 2~10min,然后放入烘箱60~80℃烘干20~60min备用;
(2)配制碳化硅浆料:
a.MgO-Al2O3-SiO2-B2O3玻璃粉体的制备:
a1.准确称取上述质量百分比的玻璃粉体原料混合后在球磨机内混合2~5h,过80~110目筛,将过筛后的混合粉体加入到铂金坩埚中,置于电阻炉中加热至1500~1600℃,升温速率为3~7℃/min,保温1~3h后水淬获得非晶玻璃渣;
a2.非晶玻璃渣在研钵中初步破碎至粒径小于2mm,随后用无水乙醇作为介质,球磨7~12h,其中磨球与玻璃渣质量比为3~5:1,球磨转速为200~250转/分,球磨后的玻璃渣在旋转蒸发器上60~100℃烘干1~3h,随后过180~250目筛,得到玻璃粉体;
b.有机物的制备:
按上述质量百分比,在丁基卡必醇中加入乙基纤维素,在80~100℃水浴中加热、搅拌至乙基纤维素完全溶解,然后再加入1,4-丁内酯和山梨醇酐三油酸酯,同时80~100℃下持续加热和搅拌1.5~2.5h,随后冷却至室温得到澄清有机溶液;
c.碳化硅浆料的制备:
按上述质量百分比称取制备好的玻璃粉体、有机溶液与碳化硅粉体进行球磨混合,球料质量比为2~4:1,球磨转速和时间分别为240~280转/分和20~30min,之后得到混合均匀的碳化硅浆料;
(3)夹层碳化硅坩埚的制备:在步骤(1)中备用的尺寸较大的石英坩埚中装入1/2~1/4体积的碳化硅浆料,再将尺寸较小的石英坩埚慢慢套入其中,直至两个石英坩埚的口部持平,然后再将两个石英坩埚之间的间隙用碳化硅浆料填满,静置8~12h后放入烘箱中烘干,温度和时间分别为100~130℃、1.5~3h;
(4)将步骤(3)制好的夹层碳化硅坩埚置于马弗炉中烧结,烧结工艺为:室温~600℃,升温速率为0.5~3℃/min,在450~600℃保温2~4h以排除碳化硅浆料中的有机物,之后以4~6℃/min的升温速率升高到1000~1300℃烧结0.5~3h,最后随炉冷却至室温,得到夹层碳化硅坩埚。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910820526.7A CN110498686B (zh) | 2019-09-02 | 2019-09-02 | 一种夹层碳化硅微波热结构坩埚及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910820526.7A CN110498686B (zh) | 2019-09-02 | 2019-09-02 | 一种夹层碳化硅微波热结构坩埚及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110498686A CN110498686A (zh) | 2019-11-26 |
CN110498686B true CN110498686B (zh) | 2021-08-20 |
Family
ID=68590947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910820526.7A Active CN110498686B (zh) | 2019-09-02 | 2019-09-02 | 一种夹层碳化硅微波热结构坩埚及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110498686B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115925439B (zh) * | 2022-12-06 | 2024-01-23 | 凯龙蓝烽新材料科技有限公司 | 一种碳化硅颗粒捕集器及其制备方法 |
CN116334737B (zh) * | 2023-04-11 | 2023-12-05 | 通威微电子有限公司 | 一种碳化硅废料液相法回收用坩埚、回收装置及回收方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020192409A1 (en) * | 2000-05-31 | 2002-12-19 | Yasuo Ohama | Multilayer structured quartz glass crucible and method for producing the same |
CN101186130A (zh) * | 2007-12-07 | 2008-05-28 | 中国科学院上海硅酸盐研究所 | 一种高吸波效率的陶瓷基层状材料及制备方法 |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
CN106042515A (zh) * | 2016-05-18 | 2016-10-26 | 中国人民解放军国防科学技术大学 | 一种夹层结构的耐高温雷达吸波材料及其制备方法 |
CN107202203A (zh) * | 2017-07-06 | 2017-09-26 | 盐城工学院 | 一种夹层无机管道及其制备方法 |
CN207193434U (zh) * | 2017-05-22 | 2018-04-06 | 山东大学 | 一种提高碳化硅单晶质量的生长坩埚 |
CN108749229A (zh) * | 2018-04-23 | 2018-11-06 | 西北工业大学 | 一种三明治结构吸波复合材料及制备方法 |
CN109437957A (zh) * | 2018-11-15 | 2019-03-08 | 广东工业大学 | 一种纳米浸渍瞬态共晶相结合化学气相渗透实现SiC陶瓷的连接方法及制备的陶瓷连接件 |
-
2019
- 2019-09-02 CN CN201910820526.7A patent/CN110498686B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020192409A1 (en) * | 2000-05-31 | 2002-12-19 | Yasuo Ohama | Multilayer structured quartz glass crucible and method for producing the same |
CN101186130A (zh) * | 2007-12-07 | 2008-05-28 | 中国科学院上海硅酸盐研究所 | 一种高吸波效率的陶瓷基层状材料及制备方法 |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
CN106042515A (zh) * | 2016-05-18 | 2016-10-26 | 中国人民解放军国防科学技术大学 | 一种夹层结构的耐高温雷达吸波材料及其制备方法 |
CN207193434U (zh) * | 2017-05-22 | 2018-04-06 | 山东大学 | 一种提高碳化硅单晶质量的生长坩埚 |
CN107202203A (zh) * | 2017-07-06 | 2017-09-26 | 盐城工学院 | 一种夹层无机管道及其制备方法 |
CN108749229A (zh) * | 2018-04-23 | 2018-11-06 | 西北工业大学 | 一种三明治结构吸波复合材料及制备方法 |
CN109437957A (zh) * | 2018-11-15 | 2019-03-08 | 广东工业大学 | 一种纳米浸渍瞬态共晶相结合化学气相渗透实现SiC陶瓷的连接方法及制备的陶瓷连接件 |
Also Published As
Publication number | Publication date |
---|---|
CN110498686A (zh) | 2019-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110498686B (zh) | 一种夹层碳化硅微波热结构坩埚及其制备方法 | |
WO2018010633A1 (zh) | 一种cbs系ltcc材料及其制备方法 | |
CN108046789B (zh) | 一种电磁屏蔽复合材料的制备方法 | |
CN108218240B (zh) | 一种无机玻璃基复合铁氧体吸波材料及其制备方法 | |
CN106966599B (zh) | 一种利用微波加热制备的结构梯度尾矿微晶玻璃及其制备方法 | |
CN101200367A (zh) | 钇铁石榴石铁氧体材料制备方法 | |
CN101429015A (zh) | 一种Mg2SiO4低介电常数微波介质陶瓷及其制备方法 | |
CN105174972B (zh) | 一种玻璃/陶瓷纳米复合材料的制备方法 | |
CN105347781B (zh) | 一种陶瓷材料及其制备方法 | |
CN107867828A (zh) | 一种Al2O3陶瓷材料的制备方法及其作为微波陶瓷窗材料的应用 | |
CN114715897A (zh) | 一种尺寸可调的SiC@C介孔空心球及其制备方法和应用 | |
CN109665530B (zh) | 一种用石英砂制备超细方石英粉的方法 | |
CN106281218B (zh) | 一种铝硅酸盐聚合物制备的碳基吸波材料的制备方法 | |
CN102786300A (zh) | 一种辐射热强化吸收剂及其制备方法 | |
CN101882504B (zh) | 各向异性稀土磁体光波微波烧结方法 | |
CN104162661B (zh) | 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法 | |
CN113372103A (zh) | 一种低介电低高频损耗ltcc陶瓷材料及其制备方法 | |
CN105731806A (zh) | 高储能密度铌酸钾锶基玻璃陶储能材料及其制备和应用 | |
CN108048908A (zh) | 一种大尺寸掺钛蓝宝石激光晶体及其制造工艺 | |
CN202218430U (zh) | 基于ir-led陶瓷基板的稀土厚膜电路电热元件 | |
CN105088109B (zh) | 一种微波频段电磁波吸收剂及其制备方法 | |
CN107572827B (zh) | 一种微晶玻璃基板材料及其制备方法 | |
CN108585900B (zh) | 一种高黑度长寿命釉面涂料 | |
CN105801124A (zh) | 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料 | |
CN109369163A (zh) | 大型实心石英陶瓷材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |