CN105801124A - 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料 - Google Patents

一种结构功能一体化的碳化硅陶瓷复合微波吸收材料 Download PDF

Info

Publication number
CN105801124A
CN105801124A CN201610139456.5A CN201610139456A CN105801124A CN 105801124 A CN105801124 A CN 105801124A CN 201610139456 A CN201610139456 A CN 201610139456A CN 105801124 A CN105801124 A CN 105801124A
Authority
CN
China
Prior art keywords
silicon carbide
composite microwave
vitrified bond
microwave absorption
function integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610139456.5A
Other languages
English (en)
Other versions
CN105801124B (zh
Inventor
李志宏
李颖
孟庆聪
朱玉梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610139456.5A priority Critical patent/CN105801124B/zh
Publication of CN105801124A publication Critical patent/CN105801124A/zh
Application granted granted Critical
Publication of CN105801124B publication Critical patent/CN105801124B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种结构功能一体化的碳化硅陶瓷复合微波吸收材料,其原料组分及其质量百分比含量为10%~40%陶瓷结合剂,60%~90%SiC粉末;所述陶瓷结合剂的原料组分及其质量百分比含量为25%~50%SiO2,3%~10%Al2O3,20%~40%B2O3,5%~15%Li2O,4%~10%CaO,5%~10%Na2O。先将陶瓷结合剂原料于高温熔块炉中加热至1300℃,经过充分熔炼、水淬、烘干、研磨、过筛,配料并压制成型后于840℃一步烧结,制得碳化硅陶瓷复合微波吸收材料。本发明的材料强度在55‑75Mpa之间,介电性能稳定可调制,在8.2‑12.4GHz频带范围内,反射率在0至‑5.2dB范围内变化,满足了结构功能一体化的应用要求,可以应用在多层微波吸收材料领域。本发明低温烧成,制备成本低,操作工序简单,具有巨大的经济和社会效益。

Description

一种结构功能一体化的碳化硅陶瓷复合微波吸收材料
技术领域
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种结构功能一体化的碳化硅陶瓷复合微波吸收材料。
背景技术
随着电子工业的发展,雷达,电子干扰机等军用设备和个人通讯器材等民用设备的应用愈加广泛,电磁辐射问题也随之而来。军用隐身技术,精密仪器工作等特定场合要求无电磁辐射的环境。吸波材料和电磁屏蔽材料是应对电磁辐射问题的关键材料。
电磁波在传播过程中受媒质和媒质交界面的作用,产生反射、散射、折射、绕射和吸收等现象。传统电磁屏蔽材料能对电磁波产生反射,保护材料内部不受电磁干扰,吸波材料能对射入表面的电磁波产生吸收,与传统的电磁屏蔽材料相比对电磁干扰的消除更加彻底,不对外界环境造成二次电磁污染。
碳化硅具有高温吸波性能高,介电性能可通过掺杂改性调节等优点,可实现轻质,薄层,宽频带吸收。纯的碳化硅在微波频段的吸波性能表现并不突出。为了提高碳化硅材料的吸波性能,需要对碳化硅进行处理,总的来说有掺杂改性和形成含碳化硅复合材料两类方法。目前对陶瓷结合剂的研究主要是在结构材料领域,对其功能特性的研究不多。陶瓷结合剂烧成后为非晶态,非晶态的陶瓷的复介电常数通常实部虚部都较低,电磁波容易进入材料内部,与碳化硅可以形成透波/吸波复合材料,有利于得到高性能的吸波材料。与其他方法制备碳化硅复合材料相比,利用陶瓷结合剂结合碳化硅的方法得到材料的成型性能好,机械强度高,满足结构功能一体化要求,在多层微波吸收材料应用上有较大潜力。在制备方面,采用一步烧成法,工艺相对简单,可以大规模生产。
发明内容
本发明的目的,是利用经济简易的一步烧成方法提供一种能够满足结构功能一体化应用的碳化硅陶瓷复合微波吸收材料,并使其介电性能稳定可调制。
本发明通过如下技术方案予以实现:
一种结构功能一体化的碳化硅陶瓷复合微波吸收材料,由陶瓷结合剂和碳化硅粉末组成,其特征在于,其原料组分及其质量百分比含量为:10%~40%陶瓷结合剂,60%~90%SiC粉末;
所述陶瓷结合剂为B2O3-Al2O3-SiO2系陶瓷结合剂,其原料及其质量百分比含量为:25%~50%SiO2,3%~10%Al2O3,20%~40%B2O3,5%~15%Li2O,4%~10%CaO,5%~10%Na2O。
上述碳化硅陶瓷复合微波吸收材料的制备方法如下:
(1)将25%~50%SiO2,3%~10%Al2O3,20%~40%B2O3,5%~15%Li2O,4%~10%CaO,5%~10%Na2O按比例混合,然后放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,在100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂;
(2)将步骤(1)制得的陶瓷结合剂按10%~40%与60%~90%的SiC粉末混合均匀;
(3)将步骤(2)混合均匀的粉料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后湿磨5h,在100℃烘箱干燥24h后压制成型为生坯;
(4)将步骤(3)的生坯在如下温度制度下进行一步烧结:
以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料;
(5)将步骤(4)的制品打磨至所需尺寸,对其进行性能测试。
所述SiC粉末为3.5~10.0μm的β-SiC粉末。
所述步骤(3)的湿磨机的转速为600RPM。
本发明提供了一种微波吸收用的碳化硅陶瓷复合材料,材料强度在55-75Mpa之间,介电性能稳定可调制,在8.2-12.4GHz频带范围内,反射率在0至-5.2dB范围内变化,满足了结构功能一体化的应用要求,可以应用在多层微波吸收材料领域。本发明采用常规原料和低温一步烧成法,制备成本低,原料容易获得,操作工序简单,具有巨大的经济和社会效益。
具体实施方式
本发明均采用市售分析纯原料,下面结合具体实施例对本发明作进一步说明。
实施例1
按重量百分比称量陶瓷结合剂原料:50%SiO2,10%Al2O3,20%B2O3,5%Li2O,10%CaO,5%Na2O,进行混合。
将混合后的原料放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,再于100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂。
按重量百分比称量10%陶瓷结合剂与90%粒径为3.5μm的β-SiC粉末,进行混合。
将上述原料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后加入70ml无水乙醇,于600RPM转速下湿磨5h,在100℃烘箱干燥24h后压制成型为生坯。
将生坯进行一步烧结:以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料。
打磨制品至所需尺寸,对其进行性能测试。
实施例1的强度在55-60MPa之间,介电常数稳定在在9.21-9.42之间,介电损耗稳定在0.027-0.048之间,厚度为2.00mm,在8.2-12.4GHz频带范围内,反射率在0至-2.2dB范围内变化。
实施例2
按重量百分比称量陶瓷结合剂原料:40%SiO2,5%Al2O3,29%B2O3,10%Li2O,6%CaO,10%Na2O,进行混合。
将混合后的原料放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,再于100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂。
按重量百分比称量20%陶瓷结合剂与80%粒径为7.0μm的β-SiC粉末,进行混合。
将上述原料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后加入70ml无水乙醇,于600RPM转速下湿磨5h,在100℃烘箱干燥24h后压制成型为生坯。
将生坯进行一步烧结:以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料。
打磨制品至所需尺寸,对其进行性能测试。
实施例2的强度在70-75MPa之间,介电常数稳定在在9.32-9.51之间,介电损耗稳定在0.031-0.047之间,厚度为2.00mm,在8.2-12.4GHz频带范围内,反射率在0至-2.5dB范围内变化。
实施例3
按重量百分比称量陶瓷结合剂原料:45%SiO2,4%Al2O3,34%B2O3,6%Li2O,5%CaO,6%Na2O,进行混合。
将混合后的原料放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,再于100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂。
按重量百分比称量30%陶瓷结合剂与70%粒径为7.0μm的β-SiC粉末,进行混合。
将上述原料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后加入70ml无水乙醇,于600RPM转速下湿磨5h,在100℃烘箱干燥24h后压制成型为生坯。
将生坯进行一步烧结:以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料。
打磨制品至所需尺寸,对其进行性能测试。
实施例3的强度在60-66MPa之间,介电常数稳定在在7.71-8.18之间,介电损耗稳定在0.033-0.081之间,厚度为2.00mm,在8.2-12.4GHz频带范围内,反射率在0至-3.2dB范围内变化。
实施例4
按重量百分比称量陶瓷结合剂原料:26%SiO2,7%Al2O3,40%B2O3,12%Li2O,7%CaO,8%Na2O,进行混合。
将混合后的原料放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,再于100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂。
按重量百分比称量40%陶瓷结合剂与60%粒径为10.0μm的β-SiC粉末,进行混合。
将上述原料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后加入70ml无水乙醇,于600RPM转速下湿磨5h,在100℃烘箱干燥24h后压制成型为生坯。
将生坯进行一步烧结:以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料。
打磨制品至所需尺寸,对其进行性能测试。
实施例4的强度在55-60MPa之间,介电常数稳定在在8.98-9.72之间,介电损耗稳定在0.030-0.065之间,厚度为2.00mm,在8.2-12.4GHz频带范围内,反射率在0至-5.2dB范围内变化。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (3)

1.一种结构功能一体化的碳化硅陶瓷复合微波吸收材料,由陶瓷结合剂和碳化硅粉末组成,其特征在于,其原料组分及其质量百分比含量为:10%~40%陶瓷结合剂,60%~90%SiC粉末;
所述陶瓷结合剂为B2O3-Al2O3-SiO2系陶瓷结合剂,其原料及其质量百分比含量为:25%~50%SiO2,3%~10%Al2O3,20%~40%B2O3,5%~15%Li2O,4%~10%CaO,5%~10%Na2O。
上述碳化硅陶瓷复合微波吸收材料的制备方法如下:
(1)将25%~50%SiO2,3%~10%Al2O3,20%~40%B2O3,5%~15%Li2O,4%~10%CaO,5%~10%Na2O按比例混合,然后放入高温熔块炉中加热至1300℃,保温2h进行充分熔炼,水淬,在100℃烘箱中干燥24h后进行研磨,过200目筛,制得陶瓷结合剂;
(2)将步骤(1)制得的陶瓷结合剂按10%~40%与60%~90%的SiC粉末混合均匀;
(3)将步骤(2)混合均匀的粉料按照料︰球︰无水乙醇=3︰10︰7的质量比混合,然后湿磨5h,在100℃烘箱干燥24h后压制成型为生坯;
(4)将步骤(3)的生坯在如下温度制度下进行一步烧结:
以3℃/min的升温速率升温至500℃,保温1h,继续以3℃/min的升温速率升温至840℃,保温2h,自然冷却至室温,制得碳化硅陶瓷复合微波吸收材料;
(5)将步骤(4)的制品打磨至所需尺寸,对其进行性能测试。
2.根据权利要求1所述的一种结构功能一体化的碳化硅陶瓷复合微波吸收材料,其特征在于,所述SiC粉末为3.5~10.0μm的β-SiC粉末。
3.根据权利要求1所述的一种结构功能一体化的碳化硅陶瓷复合微波吸收材料,其特征在于,所述步骤(3)的湿磨机的转速为600RPM。
CN201610139456.5A 2016-03-11 2016-03-11 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料 Expired - Fee Related CN105801124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610139456.5A CN105801124B (zh) 2016-03-11 2016-03-11 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610139456.5A CN105801124B (zh) 2016-03-11 2016-03-11 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料

Publications (2)

Publication Number Publication Date
CN105801124A true CN105801124A (zh) 2016-07-27
CN105801124B CN105801124B (zh) 2018-06-26

Family

ID=56468184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610139456.5A Expired - Fee Related CN105801124B (zh) 2016-03-11 2016-03-11 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料

Country Status (1)

Country Link
CN (1) CN105801124B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441166A (zh) * 2017-12-21 2018-08-24 哈尔滨工业大学(威海) 一种锂铝硅微晶玻璃/碳化硅/碳纤维三元复合吸波材料及其制备方法
CN110614592A (zh) * 2019-08-19 2019-12-27 沈阳中科超硬磨具磨削研究所 一种微波陶瓷结合剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434828A (zh) * 2008-12-19 2009-05-20 天津大学 烧结磨料及其制备方法
CN102211938A (zh) * 2011-03-07 2011-10-12 中国人民解放军国防科学技术大学 一种碳化硅复合材料的吸波陶瓷及其制备方法
CN103058695A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种硅碳氮吸波陶瓷基复合材料的制备方法
CN104326752A (zh) * 2014-09-28 2015-02-04 安徽德润工业设备有限公司 一种SiC陶瓷的低温常压液相烧结制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434828A (zh) * 2008-12-19 2009-05-20 天津大学 烧结磨料及其制备方法
CN102211938A (zh) * 2011-03-07 2011-10-12 中国人民解放军国防科学技术大学 一种碳化硅复合材料的吸波陶瓷及其制备方法
CN103058695A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种硅碳氮吸波陶瓷基复合材料的制备方法
CN104326752A (zh) * 2014-09-28 2015-02-04 安徽德润工业设备有限公司 一种SiC陶瓷的低温常压液相烧结制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴培赟: "碳化硅致密陶瓷材料研究进展", 《中 国 陶 瓷》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441166A (zh) * 2017-12-21 2018-08-24 哈尔滨工业大学(威海) 一种锂铝硅微晶玻璃/碳化硅/碳纤维三元复合吸波材料及其制备方法
CN108441166B (zh) * 2017-12-21 2021-05-28 哈尔滨工业大学(威海) 一种锂铝硅微晶玻璃/碳化硅/碳纤维三元复合吸波材料及其制备方法
CN110614592A (zh) * 2019-08-19 2019-12-27 沈阳中科超硬磨具磨削研究所 一种微波陶瓷结合剂的制备方法

Also Published As

Publication number Publication date
CN105801124B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN106966733B (zh) 一种微波碳化硅陶瓷发热体及其制备方法
CN105237044B (zh) 多孔纤维状ZrO2陶瓷隔热材料表面的TaSi2-SiO2-BSG高发射率涂层及制备方法
CN106007804B (zh) 一种耐高温高阻抗表面雷达吸波材料及其制备方法
CN104876616A (zh) 一种耐高温吸波材料及其制备方法
CN102758164B (zh) 一种耐温热喷涂雷达吸波涂层及其喷涂粉末制备方法
CN103172408A (zh) 一种高强度氧化铝陶瓷金属化膏剂及其制备方法
CN106957179A (zh) 一种SiBN纤维增强SiO2‑BN‑Al2O3透波复合材料的制备方法
CN103664213A (zh) 一种混编纤维增韧的高温透波复合材料的制备方法
CN106116700A (zh) 氮化物陶瓷高温耐磨涂层及其制备方法
CN109437830A (zh) 一种耐高温透波隔热瓦及其制备方法
CN107573080A (zh) 一种浸渍法制备SiCN/Si3N4复合陶瓷的方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN105084873A (zh) 一种氧化铝基微波陶瓷的制备方法
CN105801124A (zh) 一种结构功能一体化的碳化硅陶瓷复合微波吸收材料
CN103964860B (zh) 一种以纳米硅溶胶为烧结助剂热压制备的氮化硼基透波复合材料的制备方法
CN102887702A (zh) 低温烧结锂锌钛系微波介质陶瓷及其制备方法
CN102199034B (zh) 堇青石基微波介质陶瓷材料的制造方法
CN106830919A (zh) 低温烧结钨锰铁矿结构微波介质陶瓷及其制备方法
CN103693946B (zh) 一种高热导率的含TiO2衰减瓷及其制备方法
Meng et al. Mechanical and X-band dielectric properties of vitrified bonded SiC composites
CN104445954B (zh) 一种硼硅酸盐玻璃基低温共烧陶瓷材料及其制备方法
CN103601477B (zh) 一种低电压驻波比吸收体制备工艺
CN109896845B (zh) 一种微波高功率材料及其制备工艺
CN109320263B (zh) 烧结助剂与石英陶瓷及其制备与应用方法
Shi et al. Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580° C in air

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300350 Haijing garden, Haihe Education Park, Jinnan, Tianjin, 135, Tianjin University.

Patentee after: Tianjin University

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92

Patentee before: Tianjin University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180626

Termination date: 20200311